Home | History | Annotate | Line # | Download | only in usb
if_axe.c revision 1.117
      1 /*	$NetBSD: if_axe.c,v 1.117 2019/08/19 07:33:37 mrg Exp $	*/
      2 /*	$OpenBSD: if_axe.c,v 1.137 2016/04/13 11:03:37 mpi Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2005, 2006, 2007 Jonathan Gray <jsg (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Copyright (c) 1997, 1998, 1999, 2000-2003
     22  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
     23  *
     24  * Redistribution and use in source and binary forms, with or without
     25  * modification, are permitted provided that the following conditions
     26  * are met:
     27  * 1. Redistributions of source code must retain the above copyright
     28  *    notice, this list of conditions and the following disclaimer.
     29  * 2. Redistributions in binary form must reproduce the above copyright
     30  *    notice, this list of conditions and the following disclaimer in the
     31  *    documentation and/or other materials provided with the distribution.
     32  * 3. All advertising materials mentioning features or use of this software
     33  *    must display the following acknowledgement:
     34  *	This product includes software developed by Bill Paul.
     35  * 4. Neither the name of the author nor the names of any co-contributors
     36  *    may be used to endorse or promote products derived from this software
     37  *    without specific prior written permission.
     38  *
     39  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     40  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     42  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     43  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     44  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     45  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     46  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     47  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     48  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     49  * THE POSSIBILITY OF SUCH DAMAGE.
     50  */
     51 
     52 /*
     53  * ASIX Electronics AX88172/AX88178/AX88778 USB 2.0 ethernet driver.
     54  * Used in the LinkSys USB200M and various other adapters.
     55  *
     56  * Written by Bill Paul <wpaul (at) windriver.com>
     57  * Senior Engineer
     58  * Wind River Systems
     59  */
     60 
     61 /*
     62  * The AX88172 provides USB ethernet supports at 10 and 100Mbps.
     63  * It uses an external PHY (reference designs use a RealTek chip),
     64  * and has a 64-bit multicast hash filter. There is some information
     65  * missing from the manual which one needs to know in order to make
     66  * the chip function:
     67  *
     68  * - You must set bit 7 in the RX control register, otherwise the
     69  *   chip won't receive any packets.
     70  * - You must initialize all 3 IPG registers, or you won't be able
     71  *   to send any packets.
     72  *
     73  * Note that this device appears to only support loading the station
     74  * address via autoload from the EEPROM (i.e. there's no way to manually
     75  * set it).
     76  *
     77  * (Adam Weinberger wanted me to name this driver if_gir.c.)
     78  */
     79 
     80 /*
     81  * Ax88178 and Ax88772 support backported from the OpenBSD driver.
     82  * 2007/02/12, J.R. Oldroyd, fbsd (at) opal.com
     83  *
     84  * Manual here:
     85  * http://www.asix.com.tw/FrootAttach/datasheet/AX88178_datasheet_Rev10.pdf
     86  * http://www.asix.com.tw/FrootAttach/datasheet/AX88772_datasheet_Rev10.pdf
     87  */
     88 
     89 #include <sys/cdefs.h>
     90 __KERNEL_RCSID(0, "$NetBSD: if_axe.c,v 1.117 2019/08/19 07:33:37 mrg Exp $");
     91 
     92 #ifdef _KERNEL_OPT
     93 #include "opt_usb.h"
     94 #include "opt_net_mpsafe.h"
     95 #endif
     96 
     97 #include <sys/param.h>
     98 
     99 #include <dev/usb/usbnet.h>
    100 #include <dev/usb/usbhist.h>
    101 #include <dev/usb/if_axereg.h>
    102 
    103 struct axe_type {
    104 	struct usb_devno	axe_dev;
    105 	uint16_t		axe_flags;
    106 };
    107 
    108 struct axe_softc {
    109 	struct usbnet		axe_un;
    110 
    111 	/* usbnet:un_flags values */
    112 #define AX178		__BIT(0)	/* AX88178 */
    113 #define AX772		__BIT(1)	/* AX88772 */
    114 #define AX772A		__BIT(2)	/* AX88772A */
    115 #define AX772B		__BIT(3)	/* AX88772B */
    116 #define	AXSTD_FRAME	__BIT(12)
    117 #define	AXCSUM_FRAME	__BIT(13)
    118 
    119 	uint8_t			axe_ipgs[3];
    120 	uint8_t 		axe_phyaddrs[2];
    121 	uint16_t		sc_pwrcfg;
    122 	uint16_t		sc_lenmask;
    123 
    124 };
    125 
    126 #define	AXE_IS_178_FAMILY(un)				\
    127 	((un)->un_flags & (AX772 | AX772A | AX772B | AX178))
    128 
    129 #define	AXE_IS_772(un)					\
    130 	((un)->un_flags & (AX772 | AX772A | AX772B))
    131 
    132 #define AX_RXCSUM					\
    133     (IFCAP_CSUM_IPv4_Rx | 				\
    134      IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |	\
    135      IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)
    136 
    137 #define AX_TXCSUM					\
    138     (IFCAP_CSUM_IPv4_Tx | 				\
    139      IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |	\
    140      IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)
    141 
    142 /*
    143  * AXE_178_MAX_FRAME_BURST
    144  * max frame burst size for Ax88178 and Ax88772
    145  *	0	2048 bytes
    146  *	1	4096 bytes
    147  *	2	8192 bytes
    148  *	3	16384 bytes
    149  * use the largest your system can handle without USB stalling.
    150  *
    151  * NB: 88772 parts appear to generate lots of input errors with
    152  * a 2K rx buffer and 8K is only slightly faster than 4K on an
    153  * EHCI port on a T42 so change at your own risk.
    154  */
    155 #define AXE_178_MAX_FRAME_BURST	1
    156 
    157 
    158 #ifdef USB_DEBUG
    159 #ifndef AXE_DEBUG
    160 #define axedebug 0
    161 #else
    162 static int axedebug = 0;
    163 
    164 SYSCTL_SETUP(sysctl_hw_axe_setup, "sysctl hw.axe setup")
    165 {
    166 	int err;
    167 	const struct sysctlnode *rnode;
    168 	const struct sysctlnode *cnode;
    169 
    170 	err = sysctl_createv(clog, 0, NULL, &rnode,
    171 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "axe",
    172 	    SYSCTL_DESCR("axe global controls"),
    173 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
    174 
    175 	if (err)
    176 		goto fail;
    177 
    178 	/* control debugging printfs */
    179 	err = sysctl_createv(clog, 0, &rnode, &cnode,
    180 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
    181 	    "debug", SYSCTL_DESCR("Enable debugging output"),
    182 	    NULL, 0, &axedebug, sizeof(axedebug), CTL_CREATE, CTL_EOL);
    183 	if (err)
    184 		goto fail;
    185 
    186 	return;
    187 fail:
    188 	aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
    189 }
    190 
    191 #endif /* AXE_DEBUG */
    192 #endif /* USB_DEBUG */
    193 
    194 #define DPRINTF(FMT,A,B,C,D)	USBHIST_LOGN(axedebug,1,FMT,A,B,C,D)
    195 #define DPRINTFN(N,FMT,A,B,C,D)	USBHIST_LOGN(axedebug,N,FMT,A,B,C,D)
    196 #define AXEHIST_FUNC()		USBHIST_FUNC()
    197 #define AXEHIST_CALLED(name)	USBHIST_CALLED(axedebug)
    198 
    199 /*
    200  * Various supported device vendors/products.
    201  */
    202 static const struct axe_type axe_devs[] = {
    203 	{ { USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_UFE2000}, 0 },
    204 	{ { USB_VENDOR_ACERCM,		USB_PRODUCT_ACERCM_EP1427X2}, 0 },
    205 	{ { USB_VENDOR_APPLE,		USB_PRODUCT_APPLE_ETHERNET }, AX772 },
    206 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88172}, 0 },
    207 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772}, AX772 },
    208 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772A}, AX772 },
    209 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772B}, AX772B },
    210 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772B_1}, AX772B },
    211 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88178}, AX178 },
    212 	{ { USB_VENDOR_ATEN,		USB_PRODUCT_ATEN_UC210T}, 0 },
    213 	{ { USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D5055 }, AX178 },
    214 	{ { USB_VENDOR_BILLIONTON,	USB_PRODUCT_BILLIONTON_USB2AR}, 0},
    215 	{ { USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_USB200MV2}, AX772A },
    216 	{ { USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_FETHER_USB2_TX }, 0},
    217 	{ { USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DUBE100}, 0 },
    218 	{ { USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DUBE100B1 }, AX772 },
    219 	{ { USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DUBE100B1 }, AX772 },
    220 	{ { USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DUBE100C1 }, AX772B },
    221 	{ { USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_GWUSB2E}, 0 },
    222 	{ { USB_VENDOR_IODATA,		USB_PRODUCT_IODATA_ETGUS2 }, AX178 },
    223 	{ { USB_VENDOR_JVC,		USB_PRODUCT_JVC_MP_PRX1}, 0 },
    224 	{ { USB_VENDOR_LENOVO,		USB_PRODUCT_LENOVO_ETHERNET }, AX772B },
    225 	{ { USB_VENDOR_LINKSYS,		USB_PRODUCT_LINKSYS_HG20F9}, AX772B },
    226 	{ { USB_VENDOR_LINKSYS2,	USB_PRODUCT_LINKSYS2_USB200M}, 0 },
    227 	{ { USB_VENDOR_LINKSYS4,	USB_PRODUCT_LINKSYS4_USB1000 }, AX178 },
    228 	{ { USB_VENDOR_LOGITEC,		USB_PRODUCT_LOGITEC_LAN_GTJU2}, AX178 },
    229 	{ { USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_LUAU2GT}, AX178 },
    230 	{ { USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_LUAU2KTX}, 0 },
    231 	{ { USB_VENDOR_MSI,		USB_PRODUCT_MSI_AX88772A}, AX772 },
    232 	{ { USB_VENDOR_NETGEAR,		USB_PRODUCT_NETGEAR_FA120}, 0 },
    233 	{ { USB_VENDOR_OQO,		USB_PRODUCT_OQO_ETHER01PLUS }, AX772 },
    234 	{ { USB_VENDOR_PLANEX3,		USB_PRODUCT_PLANEX3_GU1000T }, AX178 },
    235 	{ { USB_VENDOR_SITECOM,		USB_PRODUCT_SITECOM_LN029}, 0 },
    236 	{ { USB_VENDOR_SITECOMEU,	USB_PRODUCT_SITECOMEU_LN028 }, AX178 },
    237 	{ { USB_VENDOR_SITECOMEU,	USB_PRODUCT_SITECOMEU_LN031 }, AX178 },
    238 	{ { USB_VENDOR_SYSTEMTALKS,	USB_PRODUCT_SYSTEMTALKS_SGCX2UL}, 0 },
    239 };
    240 #define axe_lookup(v, p) ((const struct axe_type *)usb_lookup(axe_devs, v, p))
    241 
    242 static const struct ax88772b_mfb ax88772b_mfb_table[] = {
    243 	{ 0x8000, 0x8001, 2048 },
    244 	{ 0x8100, 0x8147, 4096 },
    245 	{ 0x8200, 0x81EB, 6144 },
    246 	{ 0x8300, 0x83D7, 8192 },
    247 	{ 0x8400, 0x851E, 16384 },
    248 	{ 0x8500, 0x8666, 20480 },
    249 	{ 0x8600, 0x87AE, 24576 },
    250 	{ 0x8700, 0x8A3D, 32768 }
    251 };
    252 
    253 int	axe_match(device_t, cfdata_t, void *);
    254 void	axe_attach(device_t, device_t, void *);
    255 
    256 CFATTACH_DECL_NEW(axe, sizeof(struct axe_softc),
    257 	axe_match, axe_attach, usbnet_detach, usbnet_activate);
    258 
    259 static void	axe_stop(struct ifnet *, int);
    260 static int	axe_ioctl(struct ifnet *, u_long, void *);
    261 static int	axe_init(struct ifnet *);
    262 static usbd_status axe_mii_read_reg(struct usbnet *, int, int, uint16_t *);
    263 static usbd_status axe_mii_write_reg(struct usbnet *, int, int, uint16_t);
    264 static void	axe_mii_statchg(struct ifnet *);
    265 static void	axe_rx_loop(struct usbnet *, struct usbnet_chain *, uint32_t);
    266 static unsigned axe_tx_prepare(struct usbnet *, struct mbuf *,
    267 			       struct usbnet_chain *);
    268 
    269 static void	axe_ax88178_init(struct axe_softc *);
    270 static void	axe_ax88772_init(struct axe_softc *);
    271 static void	axe_ax88772a_init(struct axe_softc *);
    272 static void	axe_ax88772b_init(struct axe_softc *);
    273 
    274 static struct usbnet_ops axe_ops = {
    275 	.uno_stop = axe_stop,
    276 	.uno_ioctl = axe_ioctl,
    277 	.uno_read_reg = axe_mii_read_reg,
    278 	.uno_write_reg = axe_mii_write_reg,
    279 	.uno_statchg = axe_mii_statchg,
    280 	.uno_tx_prepare = axe_tx_prepare,
    281 	.uno_rx_loop = axe_rx_loop,
    282 	.uno_init = axe_init,
    283 };
    284 
    285 static usbd_status
    286 axe_cmd(struct axe_softc *sc, int cmd, int index, int val, void *buf)
    287 {
    288 	AXEHIST_FUNC(); AXEHIST_CALLED();
    289 	struct usbnet * const un = &sc->axe_un;
    290 	usb_device_request_t req;
    291 	usbd_status err;
    292 
    293 	usbnet_isowned_mii(un);
    294 
    295 	if (usbnet_isdying(un))
    296 		return -1;
    297 
    298 	DPRINTFN(20, "cmd %#jx index %#jx val %#jx", cmd, index, val, 0);
    299 
    300 	if (AXE_CMD_DIR(cmd))
    301 		req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
    302 	else
    303 		req.bmRequestType = UT_READ_VENDOR_DEVICE;
    304 	req.bRequest = AXE_CMD_CMD(cmd);
    305 	USETW(req.wValue, val);
    306 	USETW(req.wIndex, index);
    307 	USETW(req.wLength, AXE_CMD_LEN(cmd));
    308 
    309 	err = usbd_do_request(un->un_udev, &req, buf);
    310 	if (err)
    311 		DPRINTF("cmd %jd err %jd", cmd, err, 0, 0);
    312 
    313 	return err;
    314 }
    315 
    316 static usbd_status
    317 axe_mii_read_reg(struct usbnet *un, int phy, int reg, uint16_t *val)
    318 {
    319 	AXEHIST_FUNC(); AXEHIST_CALLED();
    320 	struct axe_softc * const sc = usbnet_softc(un);
    321 	usbd_status err;
    322 	uint16_t data;
    323 
    324 	DPRINTFN(30, "phy 0x%jx reg 0x%jx\n", phy, reg, 0, 0);
    325 
    326 	if (un->un_phyno != phy)
    327 		return USBD_INVAL;
    328 
    329 	axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
    330 
    331 	err = axe_cmd(sc, AXE_CMD_MII_READ_REG, reg, phy, &data);
    332 	axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
    333 
    334 	if (err) {
    335 		aprint_error_dev(un->un_dev, "read PHY failed\n");
    336 		return err;
    337 	}
    338 
    339 	*val = le16toh(data);
    340 	if (AXE_IS_772(un) && reg == MII_BMSR) {
    341 		/*
    342 		 * BMSR of AX88772 indicates that it supports extended
    343 		 * capability but the extended status register is
    344 		 * reserved for embedded ethernet PHY. So clear the
    345 		 * extended capability bit of BMSR.
    346 		 */
    347 		*val &= ~BMSR_EXTCAP;
    348 	}
    349 
    350 	DPRINTFN(30, "phy 0x%jx reg 0x%jx val %#jx", phy, reg, *val, 0);
    351 
    352 	return USBD_NORMAL_COMPLETION;
    353 }
    354 
    355 static usbd_status
    356 axe_mii_write_reg(struct usbnet *un, int phy, int reg, uint16_t val)
    357 {
    358 	struct axe_softc * const sc = usbnet_softc(un);
    359 	usbd_status err;
    360 	uint16_t aval;
    361 
    362 	if (un->un_phyno != phy)
    363 		return USBD_INVAL;
    364 
    365 	aval = htole16(val);
    366 
    367 	axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
    368 	err = axe_cmd(sc, AXE_CMD_MII_WRITE_REG, reg, phy, &aval);
    369 	axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
    370 
    371 	return err;
    372 }
    373 
    374 static void
    375 axe_mii_statchg(struct ifnet *ifp)
    376 {
    377 	AXEHIST_FUNC(); AXEHIST_CALLED();
    378 
    379 	struct usbnet * const un = ifp->if_softc;
    380 	struct axe_softc * const sc = usbnet_softc(un);
    381 	struct mii_data *mii = usbnet_mii(un);
    382 	int val, err;
    383 
    384 	if (usbnet_isdying(un))
    385 		return;
    386 
    387 	val = 0;
    388 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
    389 		val |= AXE_MEDIA_FULL_DUPLEX;
    390 		if (AXE_IS_178_FAMILY(un)) {
    391 			if ((IFM_OPTIONS(mii->mii_media_active) &
    392 			    IFM_ETH_TXPAUSE) != 0)
    393 				val |= AXE_178_MEDIA_TXFLOW_CONTROL_EN;
    394 			if ((IFM_OPTIONS(mii->mii_media_active) &
    395 			    IFM_ETH_RXPAUSE) != 0)
    396 				val |= AXE_178_MEDIA_RXFLOW_CONTROL_EN;
    397 		}
    398 	}
    399 	if (AXE_IS_178_FAMILY(un)) {
    400 		val |= AXE_178_MEDIA_RX_EN | AXE_178_MEDIA_MAGIC;
    401 		if (un->un_flags & AX178)
    402 			val |= AXE_178_MEDIA_ENCK;
    403 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
    404 		case IFM_1000_T:
    405 			val |= AXE_178_MEDIA_GMII | AXE_178_MEDIA_ENCK;
    406 			usbnet_set_link(un, true);
    407 			break;
    408 		case IFM_100_TX:
    409 			val |= AXE_178_MEDIA_100TX;
    410 			usbnet_set_link(un, true);
    411 			break;
    412 		case IFM_10_T:
    413 			usbnet_set_link(un, true);
    414 			break;
    415 		}
    416 	}
    417 
    418 	DPRINTF("val=0x%jx", val, 0, 0, 0);
    419 	usbnet_lock_mii(un);
    420 	err = axe_cmd(sc, AXE_CMD_WRITE_MEDIA, 0, val, NULL);
    421 	usbnet_unlock_mii(un);
    422 	if (err)
    423 		aprint_error_dev(un->un_dev, "media change failed\n");
    424 }
    425 
    426 static void
    427 axe_setiff_locked(struct usbnet *un)
    428 {
    429 	AXEHIST_FUNC(); AXEHIST_CALLED();
    430 	struct axe_softc * const sc = usbnet_softc(un);
    431 	struct ifnet * const ifp = usbnet_ifp(un);
    432 	struct ethercom *ec = usbnet_ec(un);
    433 	struct ether_multi *enm;
    434 	struct ether_multistep step;
    435 	uint32_t h = 0;
    436 	uint16_t rxmode;
    437 	uint8_t hashtbl[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
    438 
    439 	usbnet_isowned_mii(un);
    440 
    441 	if (usbnet_isdying(un))
    442 		return;
    443 
    444 	if (axe_cmd(sc, AXE_CMD_RXCTL_READ, 0, 0, &rxmode)) {
    445 		aprint_error_dev(un->un_dev, "can't read rxmode");
    446 		return;
    447 	}
    448 	rxmode = le16toh(rxmode);
    449 
    450 	rxmode &=
    451 	    ~(AXE_RXCMD_ALLMULTI | AXE_RXCMD_PROMISC |
    452 	    AXE_RXCMD_BROADCAST | AXE_RXCMD_MULTICAST);
    453 
    454 	rxmode |=
    455 	    (ifp->if_flags & IFF_BROADCAST) ? AXE_RXCMD_BROADCAST : 0;
    456 
    457 	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
    458 		if (ifp->if_flags & IFF_PROMISC)
    459 			rxmode |= AXE_RXCMD_PROMISC;
    460 		goto allmulti;
    461 	}
    462 
    463 	/* Now program new ones */
    464 	ETHER_LOCK(ec);
    465 	ETHER_FIRST_MULTI(step, ec, enm);
    466 	while (enm != NULL) {
    467 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    468 		    ETHER_ADDR_LEN) != 0) {
    469 			ETHER_UNLOCK(ec);
    470 			goto allmulti;
    471 		}
    472 
    473 		h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
    474 		hashtbl[h >> 3] |= 1U << (h & 7);
    475 		ETHER_NEXT_MULTI(step, enm);
    476 	}
    477 	ETHER_UNLOCK(ec);
    478 	ifp->if_flags &= ~IFF_ALLMULTI;
    479 	rxmode |= AXE_RXCMD_MULTICAST;
    480 
    481 	axe_cmd(sc, AXE_CMD_WRITE_MCAST, 0, 0, hashtbl);
    482 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
    483 	return;
    484 
    485  allmulti:
    486 	ifp->if_flags |= IFF_ALLMULTI;
    487 	rxmode |= AXE_RXCMD_ALLMULTI;
    488 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
    489 }
    490 
    491 static void
    492 axe_setiff(struct usbnet *un)
    493 {
    494 	usbnet_lock_mii(un);
    495 	axe_setiff_locked(un);
    496 	usbnet_unlock_mii(un);
    497 }
    498 
    499 static void
    500 axe_ax_init(struct usbnet *un)
    501 {
    502 	struct axe_softc * const sc = usbnet_softc(un);
    503 
    504 	int cmd = AXE_178_CMD_READ_NODEID;
    505 
    506 	if (un->un_flags & AX178) {
    507 		axe_ax88178_init(sc);
    508 	} else if (un->un_flags & AX772) {
    509 		axe_ax88772_init(sc);
    510 	} else if (un->un_flags & AX772A) {
    511 		axe_ax88772a_init(sc);
    512 	} else if (un->un_flags & AX772B) {
    513 		axe_ax88772b_init(sc);
    514 		return;
    515 	} else {
    516 		cmd = AXE_172_CMD_READ_NODEID;
    517 	}
    518 
    519 	if (axe_cmd(sc, cmd, 0, 0, un->un_eaddr)) {
    520 		aprint_error_dev(un->un_dev,
    521 		    "failed to read ethernet address\n");
    522 	}
    523 }
    524 
    525 
    526 static void
    527 axe_reset(struct usbnet *un)
    528 {
    529 
    530 	usbnet_isowned_mii(un);
    531 
    532 	if (usbnet_isdying(un))
    533 		return;
    534 
    535 	/*
    536 	 * softnet_lock can be taken when NET_MPAFE is not defined when calling
    537 	 * if_addr_init -> if_init.  This doesn't mix well with the
    538 	 * usbd_delay_ms calls in the init routines as things like nd6_slowtimo
    539 	 * can fire during the wait and attempt to take softnet_lock and then
    540 	 * block the softclk thread meaning the wait never ends.
    541 	 */
    542 #ifndef NET_MPSAFE
    543 	/* XXX What to reset? */
    544 
    545 	/* Wait a little while for the chip to get its brains in order. */
    546 	DELAY(1000);
    547 #else
    548 	axe_ax_init(un);
    549 #endif
    550 }
    551 
    552 static int
    553 axe_get_phyno(struct axe_softc *sc, int sel)
    554 {
    555 	int phyno;
    556 
    557 	switch (AXE_PHY_TYPE(sc->axe_phyaddrs[sel])) {
    558 	case PHY_TYPE_100_HOME:
    559 		/* FALLTHROUGH */
    560 	case PHY_TYPE_GIG:
    561 		phyno = AXE_PHY_NO(sc->axe_phyaddrs[sel]);
    562 		break;
    563 	case PHY_TYPE_SPECIAL:
    564 		/* FALLTHROUGH */
    565 	case PHY_TYPE_RSVD:
    566 		/* FALLTHROUGH */
    567 	case PHY_TYPE_NON_SUP:
    568 		/* FALLTHROUGH */
    569 	default:
    570 		phyno = -1;
    571 		break;
    572 	}
    573 
    574 	return phyno;
    575 }
    576 
    577 #define	AXE_GPIO_WRITE(x, y)	do {				\
    578 	axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, (x), NULL);		\
    579 	usbd_delay_ms(sc->axe_un.un_udev, hztoms(y));		\
    580 } while (0)
    581 
    582 static void
    583 axe_ax88178_init(struct axe_softc *sc)
    584 {
    585 	AXEHIST_FUNC(); AXEHIST_CALLED();
    586 	struct usbnet * const un = &sc->axe_un;
    587 	int gpio0, ledmode, phymode;
    588 	uint16_t eeprom, val;
    589 
    590 	axe_cmd(sc, AXE_CMD_SROM_WR_ENABLE, 0, 0, NULL);
    591 	/* XXX magic */
    592 	if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, 0x0017, &eeprom) != 0)
    593 		eeprom = 0xffff;
    594 	axe_cmd(sc, AXE_CMD_SROM_WR_DISABLE, 0, 0, NULL);
    595 
    596 	eeprom = le16toh(eeprom);
    597 
    598 	DPRINTF("EEPROM is 0x%jx", eeprom, 0, 0, 0);
    599 
    600 	/* if EEPROM is invalid we have to use to GPIO0 */
    601 	if (eeprom == 0xffff) {
    602 		phymode = AXE_PHY_MODE_MARVELL;
    603 		gpio0 = 1;
    604 		ledmode = 0;
    605 	} else {
    606 		phymode = eeprom & 0x7f;
    607 		gpio0 = (eeprom & 0x80) ? 0 : 1;
    608 		ledmode = eeprom >> 8;
    609 	}
    610 
    611 	DPRINTF("use gpio0: %jd, phymode %jd", gpio0, phymode, 0, 0);
    612 
    613 	/* Program GPIOs depending on PHY hardware. */
    614 	switch (phymode) {
    615 	case AXE_PHY_MODE_MARVELL:
    616 		if (gpio0 == 1) {
    617 			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0_EN,
    618 			    hz / 32);
    619 			AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
    620 			    hz / 32);
    621 			AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2_EN, hz / 4);
    622 			AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
    623 			    hz / 32);
    624 		} else {
    625 			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
    626 			    AXE_GPIO1_EN, hz / 3);
    627 			if (ledmode == 1) {
    628 				AXE_GPIO_WRITE(AXE_GPIO1_EN, hz / 3);
    629 				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN,
    630 				    hz / 3);
    631 			} else {
    632 				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
    633 				    AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
    634 				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
    635 				    AXE_GPIO2_EN, hz / 4);
    636 				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
    637 				    AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
    638 			}
    639 		}
    640 		break;
    641 	case AXE_PHY_MODE_CICADA:
    642 	case AXE_PHY_MODE_CICADA_V2:
    643 	case AXE_PHY_MODE_CICADA_V2_ASIX:
    644 		if (gpio0 == 1)
    645 			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0 |
    646 			    AXE_GPIO0_EN, hz / 32);
    647 		else
    648 			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
    649 			    AXE_GPIO1_EN, hz / 32);
    650 		break;
    651 	case AXE_PHY_MODE_AGERE:
    652 		AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
    653 		    AXE_GPIO1_EN, hz / 32);
    654 		AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
    655 		    AXE_GPIO2_EN, hz / 32);
    656 		AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2_EN, hz / 4);
    657 		AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
    658 		    AXE_GPIO2_EN, hz / 32);
    659 		break;
    660 	case AXE_PHY_MODE_REALTEK_8211CL:
    661 	case AXE_PHY_MODE_REALTEK_8211BN:
    662 	case AXE_PHY_MODE_REALTEK_8251CL:
    663 		val = gpio0 == 1 ? AXE_GPIO0 | AXE_GPIO0_EN :
    664 		    AXE_GPIO1 | AXE_GPIO1_EN;
    665 		AXE_GPIO_WRITE(val, hz / 32);
    666 		AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
    667 		AXE_GPIO_WRITE(val | AXE_GPIO2_EN, hz / 4);
    668 		AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
    669 		if (phymode == AXE_PHY_MODE_REALTEK_8211CL) {
    670 			axe_mii_write_reg(un, un->un_phyno, 0x1F, 0x0005);
    671 			axe_mii_write_reg(un, un->un_phyno, 0x0C, 0x0000);
    672 			axe_mii_read_reg(un, un->un_phyno, 0x0001, &val);
    673 			axe_mii_write_reg(un, un->un_phyno, 0x01, val | 0x0080);
    674 			axe_mii_write_reg(un, un->un_phyno, 0x1F, 0x0000);
    675 		}
    676 		break;
    677 	default:
    678 		/* Unknown PHY model or no need to program GPIOs. */
    679 		break;
    680 	}
    681 
    682 	/* soft reset */
    683 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
    684 	usbd_delay_ms(un->un_udev, 150);
    685 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
    686 	    AXE_SW_RESET_PRL | AXE_178_RESET_MAGIC, NULL);
    687 	usbd_delay_ms(un->un_udev, 150);
    688 	/* Enable MII/GMII/RGMII interface to work with external PHY. */
    689 	axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0, NULL);
    690 	usbd_delay_ms(un->un_udev, 10);
    691 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
    692 }
    693 
    694 static void
    695 axe_ax88772_init(struct axe_softc *sc)
    696 {
    697 	AXEHIST_FUNC(); AXEHIST_CALLED();
    698 	struct usbnet * const un = &sc->axe_un;
    699 
    700 	axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x00b0, NULL);
    701 	usbd_delay_ms(un->un_udev, 40);
    702 
    703 	if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
    704 		/* ask for the embedded PHY */
    705 		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
    706 		    AXE_SW_PHY_SELECT_EMBEDDED, NULL);
    707 		usbd_delay_ms(un->un_udev, 10);
    708 
    709 		/* power down and reset state, pin reset state */
    710 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
    711 		usbd_delay_ms(un->un_udev, 60);
    712 
    713 		/* power down/reset state, pin operating state */
    714 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
    715 		    AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
    716 		usbd_delay_ms(un->un_udev, 150);
    717 
    718 		/* power up, reset */
    719 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRL, NULL);
    720 
    721 		/* power up, operating */
    722 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
    723 		    AXE_SW_RESET_IPRL | AXE_SW_RESET_PRL, NULL);
    724 	} else {
    725 		/* ask for external PHY */
    726 		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_EXT,
    727 		    NULL);
    728 		usbd_delay_ms(un->un_udev, 10);
    729 
    730 		/* power down internal PHY */
    731 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
    732 		    AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
    733 	}
    734 
    735 	usbd_delay_ms(un->un_udev, 150);
    736 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
    737 }
    738 
    739 static void
    740 axe_ax88772_phywake(struct axe_softc *sc)
    741 {
    742 	AXEHIST_FUNC(); AXEHIST_CALLED();
    743 	struct usbnet * const un = &sc->axe_un;
    744 
    745 	if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
    746 		/* Manually select internal(embedded) PHY - MAC mode. */
    747 		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
    748 		    AXE_SW_PHY_SELECT_EMBEDDED, NULL);
    749 		usbd_delay_ms(un->un_udev, hztoms(hz / 32));
    750 	} else {
    751 		/*
    752 		 * Manually select external PHY - MAC mode.
    753 		 * Reverse MII/RMII is for AX88772A PHY mode.
    754 		 */
    755 		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_SS_ENB |
    756 		    AXE_SW_PHY_SELECT_EXT | AXE_SW_PHY_SELECT_SS_MII, NULL);
    757 		usbd_delay_ms(un->un_udev, hztoms(hz / 32));
    758 	}
    759 
    760 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPPD |
    761 	    AXE_SW_RESET_IPRL, NULL);
    762 
    763 	/* T1 = min 500ns everywhere */
    764 	usbd_delay_ms(un->un_udev, 150);
    765 
    766 	/* Take PHY out of power down. */
    767 	if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
    768 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
    769 	} else {
    770 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRTE, NULL);
    771 	}
    772 
    773 	/* 772 T2 is 60ms. 772A T2 is 160ms, 772B T2 is 600ms */
    774 	usbd_delay_ms(un->un_udev, 600);
    775 
    776 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
    777 
    778 	/* T3 = 500ns everywhere */
    779 	usbd_delay_ms(un->un_udev, hztoms(hz / 32));
    780 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
    781 	usbd_delay_ms(un->un_udev, hztoms(hz / 32));
    782 }
    783 
    784 static void
    785 axe_ax88772a_init(struct axe_softc *sc)
    786 {
    787 	AXEHIST_FUNC(); AXEHIST_CALLED();
    788 
    789 	/* Reload EEPROM. */
    790 	AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM, hz / 32);
    791 	axe_ax88772_phywake(sc);
    792 	/* Stop MAC. */
    793 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
    794 }
    795 
    796 static void
    797 axe_ax88772b_init(struct axe_softc *sc)
    798 {
    799 	AXEHIST_FUNC(); AXEHIST_CALLED();
    800 	struct usbnet * const un = &sc->axe_un;
    801 	uint16_t eeprom;
    802 	int i;
    803 
    804 	/* Reload EEPROM. */
    805 	AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM , hz / 32);
    806 
    807 	/*
    808 	 * Save PHY power saving configuration(high byte) and
    809 	 * clear EEPROM checksum value(low byte).
    810 	 */
    811 	if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, AXE_EEPROM_772B_PHY_PWRCFG,
    812 	    &eeprom)) {
    813 		aprint_error_dev(un->un_dev, "failed to read eeprom\n");
    814 		return;
    815 	}
    816 
    817 	sc->sc_pwrcfg = le16toh(eeprom) & 0xFF00;
    818 
    819 	/*
    820 	 * Auto-loaded default station address from internal ROM is
    821 	 * 00:00:00:00:00:00 such that an explicit access to EEPROM
    822 	 * is required to get real station address.
    823 	 */
    824 	uint8_t *eaddr = un->un_eaddr;
    825 	for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
    826 		if (axe_cmd(sc, AXE_CMD_SROM_READ, 0,
    827 		    AXE_EEPROM_772B_NODE_ID + i, &eeprom)) {
    828 			aprint_error_dev(un->un_dev,
    829 			    "failed to read eeprom\n");
    830 		    eeprom = 0;
    831 		}
    832 		eeprom = le16toh(eeprom);
    833 		*eaddr++ = (uint8_t)(eeprom & 0xFF);
    834 		*eaddr++ = (uint8_t)((eeprom >> 8) & 0xFF);
    835 	}
    836 	/* Wakeup PHY. */
    837 	axe_ax88772_phywake(sc);
    838 	/* Stop MAC. */
    839 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
    840 }
    841 
    842 #undef	AXE_GPIO_WRITE
    843 
    844 /*
    845  * Probe for a AX88172 chip.
    846  */
    847 int
    848 axe_match(device_t parent, cfdata_t match, void *aux)
    849 {
    850 	struct usb_attach_arg *uaa = aux;
    851 
    852 	return axe_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL ?
    853 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
    854 }
    855 
    856 /*
    857  * Attach the interface. Allocate softc structures, do ifmedia
    858  * setup and ethernet/BPF attach.
    859  */
    860 void
    861 axe_attach(device_t parent, device_t self, void *aux)
    862 {
    863 	AXEHIST_FUNC(); AXEHIST_CALLED();
    864 	struct axe_softc *sc = device_private(self);
    865 	struct usbnet * const un = &sc->axe_un;
    866 	struct usb_attach_arg *uaa = aux;
    867 	struct usbd_device *dev = uaa->uaa_device;
    868 	usbd_status err;
    869 	usb_interface_descriptor_t *id;
    870 	usb_endpoint_descriptor_t *ed;
    871 	char *devinfop;
    872 	unsigned bufsz;
    873 	int i;
    874 
    875 	KASSERT((void *)sc == un);
    876 
    877 	aprint_naive("\n");
    878 	aprint_normal("\n");
    879 	devinfop = usbd_devinfo_alloc(dev, 0);
    880 	aprint_normal_dev(self, "%s\n", devinfop);
    881 	usbd_devinfo_free(devinfop);
    882 
    883 	un->un_dev = self;
    884 	un->un_udev = dev;
    885 	un->un_sc = sc;
    886 	un->un_ops = &axe_ops;
    887 	un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
    888 	un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
    889 	un->un_rx_list_cnt = AXE_RX_LIST_CNT;
    890 	un->un_tx_list_cnt = AXE_TX_LIST_CNT;
    891 
    892 	err = usbd_set_config_no(dev, AXE_CONFIG_NO, 1);
    893 	if (err) {
    894 		aprint_error_dev(self, "failed to set configuration"
    895 		    ", err=%s\n", usbd_errstr(err));
    896 		return;
    897 	}
    898 
    899 	un->un_flags = axe_lookup(uaa->uaa_vendor, uaa->uaa_product)->axe_flags;
    900 
    901 	err = usbd_device2interface_handle(dev, AXE_IFACE_IDX, &un->un_iface);
    902 	if (err) {
    903 		aprint_error_dev(self, "getting interface handle failed\n");
    904 		return;
    905 	}
    906 
    907 	id = usbd_get_interface_descriptor(un->un_iface);
    908 
    909 	/* decide on what our bufsize will be */
    910 	if (AXE_IS_178_FAMILY(un))
    911 		bufsz = (un->un_udev->ud_speed == USB_SPEED_HIGH) ?
    912 		    AXE_178_MAX_BUFSZ : AXE_178_MIN_BUFSZ;
    913 	else
    914 		bufsz = AXE_172_BUFSZ;
    915 	un->un_rx_bufsz = un->un_tx_bufsz = bufsz;
    916 
    917 	un->un_ed[USBNET_ENDPT_RX] = 0;
    918 	un->un_ed[USBNET_ENDPT_TX] = 0;
    919 	un->un_ed[USBNET_ENDPT_INTR] = 0;
    920 
    921 	/* Find endpoints. */
    922 	for (i = 0; i < id->bNumEndpoints; i++) {
    923 		ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
    924 		if (ed == NULL) {
    925 			aprint_error_dev(self, "couldn't get ep %d\n", i);
    926 			return;
    927 		}
    928 		const uint8_t xt = UE_GET_XFERTYPE(ed->bmAttributes);
    929 		const uint8_t dir = UE_GET_DIR(ed->bEndpointAddress);
    930 
    931 		if (dir == UE_DIR_IN && xt == UE_BULK &&
    932 		    un->un_ed[USBNET_ENDPT_RX] == 0) {
    933 			un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
    934 		} else if (dir == UE_DIR_OUT && xt == UE_BULK &&
    935 		    un->un_ed[USBNET_ENDPT_TX] == 0) {
    936 			un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
    937 		} else if (dir == UE_DIR_IN && xt == UE_INTERRUPT) {
    938 			un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress;
    939 		}
    940 	}
    941 
    942 	/* Set these up now for axe_cmd().  */
    943 	usbnet_attach(un, "axedet");
    944 
    945 	/* We need the PHYID for init dance in some cases */
    946 	usbnet_lock_mii(un);
    947 	if (axe_cmd(sc, AXE_CMD_READ_PHYID, 0, 0, &sc->axe_phyaddrs)) {
    948 		aprint_error_dev(self, "failed to read phyaddrs\n");
    949 
    950 		return;
    951 	}
    952 
    953 	DPRINTF(" phyaddrs[0]: %jx phyaddrs[1]: %jx",
    954 	    sc->axe_phyaddrs[0], sc->axe_phyaddrs[1], 0, 0);
    955 	un->un_phyno = axe_get_phyno(sc, AXE_PHY_SEL_PRI);
    956 	if (un->un_phyno == -1)
    957 		un->un_phyno = axe_get_phyno(sc, AXE_PHY_SEL_SEC);
    958 	if (un->un_phyno == -1) {
    959 		DPRINTF(" no valid PHY address found, assuming PHY address 0",
    960 		    0, 0, 0, 0);
    961 		un->un_phyno = 0;
    962 	}
    963 
    964 	/* Initialize controller and get station address. */
    965 
    966 	axe_ax_init(un);
    967 
    968 	/*
    969 	 * Fetch IPG values.
    970 	 */
    971 	if (un->un_flags & (AX772A | AX772B)) {
    972 		/* Set IPG values. */
    973 		sc->axe_ipgs[0] = AXE_IPG0_DEFAULT;
    974 		sc->axe_ipgs[1] = AXE_IPG1_DEFAULT;
    975 		sc->axe_ipgs[2] = AXE_IPG2_DEFAULT;
    976 	} else {
    977 		if (axe_cmd(sc, AXE_CMD_READ_IPG012, 0, 0, sc->axe_ipgs)) {
    978 			aprint_error_dev(self, "failed to read ipg\n");
    979 			usbnet_unlock_mii(un);
    980 			return;
    981 		}
    982 	}
    983 
    984 	usbnet_unlock_mii(un);
    985 
    986 	if (AXE_IS_178_FAMILY(un))
    987 		usbnet_ec(un)->ec_capabilities = ETHERCAP_VLAN_MTU;
    988 	if (un->un_flags & AX772B) {
    989 		struct ifnet *ifp = usbnet_ifp(un);
    990 
    991 		ifp->if_capabilities =
    992 		    IFCAP_CSUM_IPv4_Rx |
    993 		    IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
    994 		    IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
    995 		/*
    996 		 * Checksum offloading of AX88772B also works with VLAN
    997 		 * tagged frames but there is no way to take advantage
    998 		 * of the feature because vlan(4) assumes
    999 		 * IFCAP_VLAN_HWTAGGING is prerequisite condition to
   1000 		 * support checksum offloading with VLAN. VLAN hardware
   1001 		 * tagging support of AX88772B is very limited so it's
   1002 		 * not possible to announce IFCAP_VLAN_HWTAGGING.
   1003 		 */
   1004 	}
   1005 	u_int adv_pause;
   1006 	if (un->un_flags & (AX772A | AX772B | AX178))
   1007 		adv_pause = MIIF_DOPAUSE;
   1008 	else
   1009 		adv_pause = 0;
   1010 	adv_pause = 0;
   1011 
   1012 	usbnet_attach_ifp(un, true, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
   1013 	    0, adv_pause);
   1014 }
   1015 
   1016 static void
   1017 axe_rx_loop(struct usbnet * un, struct usbnet_chain *c, uint32_t total_len)
   1018 {
   1019 	AXEHIST_FUNC(); AXEHIST_CALLED();
   1020 	struct axe_softc * const sc = usbnet_softc(un);
   1021 	struct ifnet *ifp = usbnet_ifp(un);
   1022 	uint8_t *buf = c->unc_buf;
   1023 
   1024 	do {
   1025 		u_int pktlen = 0;
   1026 		u_int rxlen = 0;
   1027 		int flags = 0;
   1028 
   1029 		if ((un->un_flags & AXSTD_FRAME) != 0) {
   1030 			struct axe_sframe_hdr hdr;
   1031 
   1032 			if (total_len < sizeof(hdr)) {
   1033 				ifp->if_ierrors++;
   1034 				break;
   1035 			}
   1036 
   1037 #if !defined(__NO_STRICT_ALIGNMENT) && __GNUC_PREREQ__(6, 1)
   1038 			/*
   1039 			 * XXX hdr is 2-byte aligned in buf, not 4-byte.
   1040 			 * For some architectures, __builtin_memcpy() of
   1041 			 * GCC 6 attempts to copy sizeof(hdr) = 4 bytes
   1042 			 * at onece, which results in alignment error.
   1043 			 */
   1044 			hdr.len = *(uint16_t *)buf;
   1045 			hdr.ilen = *(uint16_t *)(buf + sizeof(uint16_t));
   1046 #else
   1047 			memcpy(&hdr, buf, sizeof(hdr));
   1048 #endif
   1049 
   1050 			DPRINTFN(20, "total_len %#jx len %jx ilen %#jx",
   1051 			    total_len,
   1052 			    (le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK),
   1053 			    (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK), 0);
   1054 
   1055 			total_len -= sizeof(hdr);
   1056 			buf += sizeof(hdr);
   1057 
   1058 			if (((le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK) ^
   1059 			    (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK)) !=
   1060 			    AXE_RH1M_RXLEN_MASK) {
   1061 				ifp->if_ierrors++;
   1062 				break;
   1063 			}
   1064 
   1065 			rxlen = le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK;
   1066 			if (total_len < rxlen) {
   1067 				pktlen = total_len;
   1068 				total_len = 0;
   1069 			} else {
   1070 				pktlen = rxlen;
   1071 				rxlen = roundup2(rxlen, 2);
   1072 				total_len -= rxlen;
   1073 			}
   1074 
   1075 		} else if ((un->un_flags & AXCSUM_FRAME) != 0) {
   1076 			struct axe_csum_hdr csum_hdr;
   1077 
   1078 			if (total_len <	sizeof(csum_hdr)) {
   1079 				ifp->if_ierrors++;
   1080 				break;
   1081 			}
   1082 
   1083 			memcpy(&csum_hdr, buf, sizeof(csum_hdr));
   1084 
   1085 			csum_hdr.len = le16toh(csum_hdr.len);
   1086 			csum_hdr.ilen = le16toh(csum_hdr.ilen);
   1087 			csum_hdr.cstatus = le16toh(csum_hdr.cstatus);
   1088 
   1089 			DPRINTFN(20, "total_len %#jx len %#jx ilen %#jx"
   1090 			    " cstatus %#jx", total_len,
   1091 			    csum_hdr.len, csum_hdr.ilen, csum_hdr.cstatus);
   1092 
   1093 			if ((AXE_CSUM_RXBYTES(csum_hdr.len) ^
   1094 			    AXE_CSUM_RXBYTES(csum_hdr.ilen)) !=
   1095 			    sc->sc_lenmask) {
   1096 				/* we lost sync */
   1097 				ifp->if_ierrors++;
   1098 				DPRINTFN(20, "len %#jx ilen %#jx lenmask %#jx "
   1099 				    "err",
   1100 				    AXE_CSUM_RXBYTES(csum_hdr.len),
   1101 				    AXE_CSUM_RXBYTES(csum_hdr.ilen),
   1102 				    sc->sc_lenmask, 0);
   1103 				break;
   1104 			}
   1105 			/*
   1106 			 * Get total transferred frame length including
   1107 			 * checksum header.  The length should be multiple
   1108 			 * of 4.
   1109 			 */
   1110 			pktlen = AXE_CSUM_RXBYTES(csum_hdr.len);
   1111 			u_int len = sizeof(csum_hdr) + pktlen;
   1112 			len = (len + 3) & ~3;
   1113 			if (total_len < len) {
   1114 				DPRINTFN(20, "total_len %#jx < len %#jx",
   1115 				    total_len, len, 0, 0);
   1116 				/* invalid length */
   1117 				ifp->if_ierrors++;
   1118 				break;
   1119 			}
   1120 			buf += sizeof(csum_hdr);
   1121 
   1122 			const uint16_t cstatus = csum_hdr.cstatus;
   1123 
   1124 			if (cstatus & AXE_CSUM_HDR_L3_TYPE_IPV4) {
   1125 				if (cstatus & AXE_CSUM_HDR_L4_CSUM_ERR)
   1126 					flags |= M_CSUM_TCP_UDP_BAD;
   1127 				if (cstatus & AXE_CSUM_HDR_L3_CSUM_ERR)
   1128 					flags |= M_CSUM_IPv4_BAD;
   1129 
   1130 				const uint16_t l4type =
   1131 				    cstatus & AXE_CSUM_HDR_L4_TYPE_MASK;
   1132 
   1133 				if (l4type == AXE_CSUM_HDR_L4_TYPE_TCP)
   1134 					flags |= M_CSUM_TCPv4;
   1135 				if (l4type == AXE_CSUM_HDR_L4_TYPE_UDP)
   1136 					flags |= M_CSUM_UDPv4;
   1137 			}
   1138 			if (total_len < len) {
   1139 				pktlen = total_len;
   1140 				total_len = 0;
   1141 			} else {
   1142 				total_len -= len;
   1143 				rxlen = len - sizeof(csum_hdr);
   1144 			}
   1145 			DPRINTFN(20, "total_len %#jx len %#jx pktlen %#jx"
   1146 			    " rxlen %#jx", total_len, len, pktlen, rxlen);
   1147 		} else { /* AX172 */
   1148 			pktlen = rxlen = total_len;
   1149 			total_len = 0;
   1150 		}
   1151 
   1152 		usbnet_enqueue(un, buf, pktlen, flags, 0, 0);
   1153 		buf += rxlen;
   1154 
   1155 	} while (total_len > 0);
   1156 
   1157 	DPRINTFN(10, "start rx", 0, 0, 0, 0);
   1158 }
   1159 
   1160 static unsigned
   1161 axe_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
   1162 {
   1163 	AXEHIST_FUNC(); AXEHIST_CALLED();
   1164 	struct axe_sframe_hdr hdr, tlr;
   1165 	size_t hdr_len = 0, tlr_len = 0;
   1166 	int length, boundary;
   1167 
   1168 	usbnet_isowned_tx(un);
   1169 
   1170 	if (AXE_IS_178_FAMILY(un)) {
   1171 		/*
   1172 		 * Copy the mbuf data into a contiguous buffer, leaving two
   1173 		 * bytes at the beginning to hold the frame length.
   1174 		 */
   1175 		boundary = (un->un_udev->ud_speed == USB_SPEED_HIGH) ? 512 : 64;
   1176 
   1177 		hdr.len = htole16(m->m_pkthdr.len);
   1178 		hdr.ilen = ~hdr.len;
   1179 		hdr_len = sizeof(hdr);
   1180 
   1181 		length = hdr_len + m->m_pkthdr.len;
   1182 
   1183 		if ((length % boundary) == 0) {
   1184 			tlr.len = 0x0000;
   1185 			tlr.ilen = 0xffff;
   1186 			tlr_len = sizeof(tlr);
   1187 		}
   1188 		DPRINTFN(20, "length %jx m_pkthdr.len %jx hdrsize %#jx",
   1189 			length, m->m_pkthdr.len, sizeof(hdr), 0);
   1190 	}
   1191 
   1192 	if ((unsigned)m->m_pkthdr.len > un->un_tx_bufsz - hdr_len - tlr_len)
   1193 		return 0;
   1194 	length = hdr_len + m->m_pkthdr.len + tlr_len;
   1195 
   1196 	if (hdr_len)
   1197 		memcpy(c->unc_buf, &hdr, hdr_len);
   1198 	m_copydata(m, 0, m->m_pkthdr.len, c->unc_buf + hdr_len);
   1199 	if (tlr_len)
   1200 		memcpy(c->unc_buf + length, &tlr, tlr_len);
   1201 
   1202 	return length;
   1203 }
   1204 
   1205 static void
   1206 axe_csum_cfg(struct axe_softc *sc)
   1207 {
   1208 	struct usbnet * const un = &sc->axe_un;
   1209 	struct ifnet * const ifp = usbnet_ifp(un);
   1210 	uint16_t csum1, csum2;
   1211 
   1212 	if ((un->un_flags & AX772B) != 0) {
   1213 		csum1 = 0;
   1214 		csum2 = 0;
   1215 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) != 0)
   1216 			csum1 |= AXE_TXCSUM_IP;
   1217 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) != 0)
   1218 			csum1 |= AXE_TXCSUM_TCP;
   1219 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) != 0)
   1220 			csum1 |= AXE_TXCSUM_UDP;
   1221 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) != 0)
   1222 			csum1 |= AXE_TXCSUM_TCPV6;
   1223 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) != 0)
   1224 			csum1 |= AXE_TXCSUM_UDPV6;
   1225 		axe_cmd(sc, AXE_772B_CMD_WRITE_TXCSUM, csum2, csum1, NULL);
   1226 		csum1 = 0;
   1227 		csum2 = 0;
   1228 
   1229 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0)
   1230 			csum1 |= AXE_RXCSUM_IP;
   1231 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0)
   1232 			csum1 |= AXE_RXCSUM_TCP;
   1233 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0)
   1234 			csum1 |= AXE_RXCSUM_UDP;
   1235 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0)
   1236 			csum1 |= AXE_RXCSUM_TCPV6;
   1237 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)
   1238 			csum1 |= AXE_RXCSUM_UDPV6;
   1239 		axe_cmd(sc, AXE_772B_CMD_WRITE_RXCSUM, csum2, csum1, NULL);
   1240 	}
   1241 }
   1242 
   1243 static int
   1244 axe_init_locked(struct ifnet *ifp)
   1245 {
   1246 	AXEHIST_FUNC(); AXEHIST_CALLED();
   1247 	struct usbnet * const un = ifp->if_softc;
   1248 	struct axe_softc * const sc = usbnet_softc(un);
   1249 	int rxmode;
   1250 
   1251 	usbnet_isowned(un);
   1252 
   1253 	if (usbnet_isdying(un))
   1254 		return EIO;
   1255 
   1256 	/* Cancel pending I/O */
   1257 	usbnet_stop(un, ifp, 1);
   1258 
   1259 	usbnet_lock_mii_un_locked(un);
   1260 
   1261 	/* Reset the ethernet interface. */
   1262 	axe_reset(un);
   1263 
   1264 #if 0
   1265 	ret = asix_write_gpio(dev, AX_GPIO_RSE | AX_GPIO_GPO_2 |
   1266 			      AX_GPIO_GPO2EN, 5, in_pm);
   1267 #endif
   1268 	/* Set MAC address and transmitter IPG values. */
   1269 	if (AXE_IS_178_FAMILY(un)) {
   1270 		axe_cmd(sc, AXE_178_CMD_WRITE_NODEID, 0, 0, un->un_eaddr);
   1271 		axe_cmd(sc, AXE_178_CMD_WRITE_IPG012, sc->axe_ipgs[2],
   1272 		    (sc->axe_ipgs[1] << 8) | (sc->axe_ipgs[0]), NULL);
   1273 	} else {
   1274 		axe_cmd(sc, AXE_172_CMD_WRITE_NODEID, 0, 0, un->un_eaddr);
   1275 		axe_cmd(sc, AXE_172_CMD_WRITE_IPG0, 0, sc->axe_ipgs[0], NULL);
   1276 		axe_cmd(sc, AXE_172_CMD_WRITE_IPG1, 0, sc->axe_ipgs[1], NULL);
   1277 		axe_cmd(sc, AXE_172_CMD_WRITE_IPG2, 0, sc->axe_ipgs[2], NULL);
   1278 	}
   1279 	if (AXE_IS_178_FAMILY(un)) {
   1280 		un->un_flags &= ~(AXSTD_FRAME | AXCSUM_FRAME);
   1281 		if ((un->un_flags & AX772B) != 0 &&
   1282 		    (ifp->if_capenable & AX_RXCSUM) != 0) {
   1283 			sc->sc_lenmask = AXE_CSUM_HDR_LEN_MASK;
   1284 			un->un_flags |= AXCSUM_FRAME;
   1285 		} else {
   1286 			sc->sc_lenmask = AXE_HDR_LEN_MASK;
   1287 			un->un_flags |= AXSTD_FRAME;
   1288 		}
   1289 	}
   1290 
   1291 	/* Configure TX/RX checksum offloading. */
   1292 	axe_csum_cfg(sc);
   1293 
   1294 	if (un->un_flags & AX772B) {
   1295 		/* AX88772B uses different maximum frame burst configuration. */
   1296 		axe_cmd(sc, AXE_772B_CMD_RXCTL_WRITE_CFG,
   1297 		    ax88772b_mfb_table[AX88772B_MFB_16K].threshold,
   1298 		    ax88772b_mfb_table[AX88772B_MFB_16K].byte_cnt, NULL);
   1299 	}
   1300 	/* Enable receiver, set RX mode */
   1301 	rxmode = (AXE_RXCMD_MULTICAST | AXE_RXCMD_ENABLE);
   1302 	if (AXE_IS_178_FAMILY(un)) {
   1303 		if (un->un_flags & AX772B) {
   1304 			/*
   1305 			 * Select RX header format type 1.  Aligning IP
   1306 			 * header on 4 byte boundary is not needed when
   1307 			 * checksum offloading feature is not used
   1308 			 * because we always copy the received frame in
   1309 			 * RX handler.  When RX checksum offloading is
   1310 			 * active, aligning IP header is required to
   1311 			 * reflect actual frame length including RX
   1312 			 * header size.
   1313 			 */
   1314 			rxmode |= AXE_772B_RXCMD_HDR_TYPE_1;
   1315 			if (un->un_flags & AXCSUM_FRAME)
   1316 				rxmode |= AXE_772B_RXCMD_IPHDR_ALIGN;
   1317 		} else {
   1318 			/*
   1319 			 * Default Rx buffer size is too small to get
   1320 			 * maximum performance.
   1321 			 */
   1322 #if 0
   1323 			if (un->un_udev->ud_speed == USB_SPEED_HIGH) {
   1324 				/* Largest possible USB buffer size for AX88178 */
   1325 			}
   1326 #endif
   1327 			rxmode |= AXE_178_RXCMD_MFB_16384;
   1328 		}
   1329 	} else {
   1330 		rxmode |= AXE_172_RXCMD_UNICAST;
   1331 	}
   1332 
   1333 
   1334 	/* If we want promiscuous mode, set the allframes bit. */
   1335 	if (ifp->if_flags & IFF_PROMISC)
   1336 		rxmode |= AXE_RXCMD_PROMISC;
   1337 
   1338 	if (ifp->if_flags & IFF_BROADCAST)
   1339 		rxmode |= AXE_RXCMD_BROADCAST;
   1340 
   1341 	DPRINTF("rxmode 0x%#jx", rxmode, 0, 0, 0);
   1342 
   1343 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
   1344 
   1345 	/* Load the multicast filter. */
   1346 	axe_setiff_locked(un);
   1347 
   1348 	usbnet_unlock_mii_un_locked(un);
   1349 
   1350 	return usbnet_init_rx_tx(un);
   1351 }
   1352 
   1353 static int
   1354 axe_init(struct ifnet *ifp)
   1355 {
   1356 	struct usbnet * const un = ifp->if_softc;
   1357 
   1358 	usbnet_lock(un);
   1359 	int ret = axe_init_locked(ifp);
   1360 	usbnet_unlock(un);
   1361 
   1362 	return ret;
   1363 }
   1364 
   1365 static int
   1366 axe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1367 {
   1368 	struct usbnet * const un = ifp->if_softc;
   1369 
   1370 	switch (cmd) {
   1371 	case SIOCADDMULTI:
   1372 	case SIOCDELMULTI:
   1373 		axe_setiff(un);
   1374 		break;
   1375 	default:
   1376 		break;
   1377 	}
   1378 
   1379 	return 0;
   1380 }
   1381 
   1382 static void
   1383 axe_stop(struct ifnet *ifp, int disable)
   1384 {
   1385 	struct usbnet * const un = ifp->if_softc;
   1386 
   1387 	usbnet_lock_mii_un_locked(un);
   1388 	axe_reset(un);
   1389 	usbnet_unlock_mii_un_locked(un);
   1390 }
   1391 
   1392 #ifdef _MODULE
   1393 #include "ioconf.c"
   1394 #endif
   1395 
   1396 USBNET_MODULE(axe)
   1397