if_axe.c revision 1.120 1 /* $NetBSD: if_axe.c,v 1.120 2019/08/26 17:26:33 rin Exp $ */
2 /* $OpenBSD: if_axe.c,v 1.137 2016/04/13 11:03:37 mpi Exp $ */
3
4 /*
5 * Copyright (c) 2005, 2006, 2007 Jonathan Gray <jsg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Copyright (c) 1997, 1998, 1999, 2000-2003
22 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
23 *
24 * Redistribution and use in source and binary forms, with or without
25 * modification, are permitted provided that the following conditions
26 * are met:
27 * 1. Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * 2. Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in the
31 * documentation and/or other materials provided with the distribution.
32 * 3. All advertising materials mentioning features or use of this software
33 * must display the following acknowledgement:
34 * This product includes software developed by Bill Paul.
35 * 4. Neither the name of the author nor the names of any co-contributors
36 * may be used to endorse or promote products derived from this software
37 * without specific prior written permission.
38 *
39 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
40 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
43 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
47 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
49 * THE POSSIBILITY OF SUCH DAMAGE.
50 */
51
52 /*
53 * ASIX Electronics AX88172/AX88178/AX88778 USB 2.0 ethernet driver.
54 * Used in the LinkSys USB200M and various other adapters.
55 *
56 * Written by Bill Paul <wpaul (at) windriver.com>
57 * Senior Engineer
58 * Wind River Systems
59 */
60
61 /*
62 * The AX88172 provides USB ethernet supports at 10 and 100Mbps.
63 * It uses an external PHY (reference designs use a RealTek chip),
64 * and has a 64-bit multicast hash filter. There is some information
65 * missing from the manual which one needs to know in order to make
66 * the chip function:
67 *
68 * - You must set bit 7 in the RX control register, otherwise the
69 * chip won't receive any packets.
70 * - You must initialize all 3 IPG registers, or you won't be able
71 * to send any packets.
72 *
73 * Note that this device appears to only support loading the station
74 * address via autoload from the EEPROM (i.e. there's no way to manually
75 * set it).
76 *
77 * (Adam Weinberger wanted me to name this driver if_gir.c.)
78 */
79
80 /*
81 * Ax88178 and Ax88772 support backported from the OpenBSD driver.
82 * 2007/02/12, J.R. Oldroyd, fbsd (at) opal.com
83 *
84 * Manual here:
85 * http://www.asix.com.tw/FrootAttach/datasheet/AX88178_datasheet_Rev10.pdf
86 * http://www.asix.com.tw/FrootAttach/datasheet/AX88772_datasheet_Rev10.pdf
87 */
88
89 #include <sys/cdefs.h>
90 __KERNEL_RCSID(0, "$NetBSD: if_axe.c,v 1.120 2019/08/26 17:26:33 rin Exp $");
91
92 #ifdef _KERNEL_OPT
93 #include "opt_usb.h"
94 #include "opt_net_mpsafe.h"
95 #endif
96
97 #include <sys/param.h>
98
99 #include <dev/usb/usbnet.h>
100 #include <dev/usb/usbhist.h>
101 #include <dev/usb/if_axereg.h>
102
103 struct axe_type {
104 struct usb_devno axe_dev;
105 uint16_t axe_flags;
106 };
107
108 struct axe_softc {
109 struct usbnet axe_un;
110
111 /* usbnet:un_flags values */
112 #define AX178 __BIT(0) /* AX88178 */
113 #define AX772 __BIT(1) /* AX88772 */
114 #define AX772A __BIT(2) /* AX88772A */
115 #define AX772B __BIT(3) /* AX88772B */
116 #define AXSTD_FRAME __BIT(12)
117 #define AXCSUM_FRAME __BIT(13)
118
119 uint8_t axe_ipgs[3];
120 uint8_t axe_phyaddrs[2];
121 uint16_t sc_pwrcfg;
122 uint16_t sc_lenmask;
123
124 };
125
126 #define AXE_IS_178_FAMILY(un) \
127 ((un)->un_flags & (AX772 | AX772A | AX772B | AX178))
128
129 #define AXE_IS_772(un) \
130 ((un)->un_flags & (AX772 | AX772A | AX772B))
131
132 #define AX_RXCSUM \
133 (IFCAP_CSUM_IPv4_Rx | \
134 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx | \
135 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)
136
137 #define AX_TXCSUM \
138 (IFCAP_CSUM_IPv4_Tx | \
139 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx | \
140 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)
141
142 /*
143 * AXE_178_MAX_FRAME_BURST
144 * max frame burst size for Ax88178 and Ax88772
145 * 0 2048 bytes
146 * 1 4096 bytes
147 * 2 8192 bytes
148 * 3 16384 bytes
149 * use the largest your system can handle without USB stalling.
150 *
151 * NB: 88772 parts appear to generate lots of input errors with
152 * a 2K rx buffer and 8K is only slightly faster than 4K on an
153 * EHCI port on a T42 so change at your own risk.
154 */
155 #define AXE_178_MAX_FRAME_BURST 1
156
157
158 #ifdef USB_DEBUG
159 #ifndef AXE_DEBUG
160 #define axedebug 0
161 #else
162 static int axedebug = 0;
163
164 SYSCTL_SETUP(sysctl_hw_axe_setup, "sysctl hw.axe setup")
165 {
166 int err;
167 const struct sysctlnode *rnode;
168 const struct sysctlnode *cnode;
169
170 err = sysctl_createv(clog, 0, NULL, &rnode,
171 CTLFLAG_PERMANENT, CTLTYPE_NODE, "axe",
172 SYSCTL_DESCR("axe global controls"),
173 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
174
175 if (err)
176 goto fail;
177
178 /* control debugging printfs */
179 err = sysctl_createv(clog, 0, &rnode, &cnode,
180 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
181 "debug", SYSCTL_DESCR("Enable debugging output"),
182 NULL, 0, &axedebug, sizeof(axedebug), CTL_CREATE, CTL_EOL);
183 if (err)
184 goto fail;
185
186 return;
187 fail:
188 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
189 }
190
191 #endif /* AXE_DEBUG */
192 #endif /* USB_DEBUG */
193
194 #define DPRINTF(FMT,A,B,C,D) USBHIST_LOGN(axedebug,1,FMT,A,B,C,D)
195 #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(axedebug,N,FMT,A,B,C,D)
196 #define AXEHIST_FUNC() USBHIST_FUNC()
197 #define AXEHIST_CALLED(name) USBHIST_CALLED(axedebug)
198
199 /*
200 * Various supported device vendors/products.
201 */
202 static const struct axe_type axe_devs[] = {
203 { { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_UFE2000}, 0 },
204 { { USB_VENDOR_ACERCM, USB_PRODUCT_ACERCM_EP1427X2}, 0 },
205 { { USB_VENDOR_APPLE, USB_PRODUCT_APPLE_ETHERNET }, AX772 },
206 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88172}, 0 },
207 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772}, AX772 },
208 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772A}, AX772 },
209 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772B}, AX772B },
210 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772B_1}, AX772B },
211 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88178}, AX178 },
212 { { USB_VENDOR_ATEN, USB_PRODUCT_ATEN_UC210T}, 0 },
213 { { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D5055 }, AX178 },
214 { { USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USB2AR}, 0},
215 { { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_USB200MV2}, AX772A },
216 { { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_FETHER_USB2_TX }, 0},
217 { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100}, 0 },
218 { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100B1 }, AX772 },
219 { { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DUBE100B1 }, AX772 },
220 { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100C1 }, AX772B },
221 { { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_GWUSB2E}, 0 },
222 { { USB_VENDOR_IODATA, USB_PRODUCT_IODATA_ETGUS2 }, AX178 },
223 { { USB_VENDOR_JVC, USB_PRODUCT_JVC_MP_PRX1}, 0 },
224 { { USB_VENDOR_LENOVO, USB_PRODUCT_LENOVO_ETHERNET }, AX772B },
225 { { USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_HG20F9}, AX772B },
226 { { USB_VENDOR_LINKSYS2, USB_PRODUCT_LINKSYS2_USB200M}, 0 },
227 { { USB_VENDOR_LINKSYS4, USB_PRODUCT_LINKSYS4_USB1000 }, AX178 },
228 { { USB_VENDOR_LOGITEC, USB_PRODUCT_LOGITEC_LAN_GTJU2}, AX178 },
229 { { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUAU2GT}, AX178 },
230 { { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUAU2KTX}, 0 },
231 { { USB_VENDOR_MSI, USB_PRODUCT_MSI_AX88772A}, AX772 },
232 { { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_FA120}, 0 },
233 { { USB_VENDOR_OQO, USB_PRODUCT_OQO_ETHER01PLUS }, AX772 },
234 { { USB_VENDOR_PLANEX3, USB_PRODUCT_PLANEX3_GU1000T }, AX178 },
235 { { USB_VENDOR_SITECOM, USB_PRODUCT_SITECOM_LN029}, 0 },
236 { { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_LN028 }, AX178 },
237 { { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_LN031 }, AX178 },
238 { { USB_VENDOR_SYSTEMTALKS, USB_PRODUCT_SYSTEMTALKS_SGCX2UL}, 0 },
239 };
240 #define axe_lookup(v, p) ((const struct axe_type *)usb_lookup(axe_devs, v, p))
241
242 static const struct ax88772b_mfb ax88772b_mfb_table[] = {
243 { 0x8000, 0x8001, 2048 },
244 { 0x8100, 0x8147, 4096 },
245 { 0x8200, 0x81EB, 6144 },
246 { 0x8300, 0x83D7, 8192 },
247 { 0x8400, 0x851E, 16384 },
248 { 0x8500, 0x8666, 20480 },
249 { 0x8600, 0x87AE, 24576 },
250 { 0x8700, 0x8A3D, 32768 }
251 };
252
253 int axe_match(device_t, cfdata_t, void *);
254 void axe_attach(device_t, device_t, void *);
255
256 CFATTACH_DECL_NEW(axe, sizeof(struct axe_softc),
257 axe_match, axe_attach, usbnet_detach, usbnet_activate);
258
259 static void axe_stop(struct ifnet *, int);
260 static int axe_ioctl(struct ifnet *, u_long, void *);
261 static int axe_init(struct ifnet *);
262 static int axe_mii_read_reg(struct usbnet *, int, int, uint16_t *);
263 static int axe_mii_write_reg(struct usbnet *, int, int, uint16_t);
264 static void axe_mii_statchg(struct ifnet *);
265 static void axe_rx_loop(struct usbnet *, struct usbnet_chain *, uint32_t);
266 static unsigned axe_tx_prepare(struct usbnet *, struct mbuf *,
267 struct usbnet_chain *);
268
269 static void axe_ax88178_init(struct axe_softc *);
270 static void axe_ax88772_init(struct axe_softc *);
271 static void axe_ax88772a_init(struct axe_softc *);
272 static void axe_ax88772b_init(struct axe_softc *);
273
274 static struct usbnet_ops axe_ops = {
275 .uno_stop = axe_stop,
276 .uno_ioctl = axe_ioctl,
277 .uno_read_reg = axe_mii_read_reg,
278 .uno_write_reg = axe_mii_write_reg,
279 .uno_statchg = axe_mii_statchg,
280 .uno_tx_prepare = axe_tx_prepare,
281 .uno_rx_loop = axe_rx_loop,
282 .uno_init = axe_init,
283 };
284
285 static usbd_status
286 axe_cmd(struct axe_softc *sc, int cmd, int index, int val, void *buf)
287 {
288 AXEHIST_FUNC(); AXEHIST_CALLED();
289 struct usbnet * const un = &sc->axe_un;
290 usb_device_request_t req;
291 usbd_status err;
292
293 usbnet_isowned_mii(un);
294
295 if (usbnet_isdying(un))
296 return -1;
297
298 DPRINTFN(20, "cmd %#jx index %#jx val %#jx", cmd, index, val, 0);
299
300 if (AXE_CMD_DIR(cmd))
301 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
302 else
303 req.bmRequestType = UT_READ_VENDOR_DEVICE;
304 req.bRequest = AXE_CMD_CMD(cmd);
305 USETW(req.wValue, val);
306 USETW(req.wIndex, index);
307 USETW(req.wLength, AXE_CMD_LEN(cmd));
308
309 err = usbd_do_request(un->un_udev, &req, buf);
310 if (err)
311 DPRINTF("cmd %jd err %jd", cmd, err, 0, 0);
312
313 return err;
314 }
315
316 static int
317 axe_mii_read_reg(struct usbnet *un, int phy, int reg, uint16_t *val)
318 {
319 AXEHIST_FUNC(); AXEHIST_CALLED();
320 struct axe_softc * const sc = usbnet_softc(un);
321 usbd_status err;
322 uint16_t data;
323
324 DPRINTFN(30, "phy 0x%jx reg 0x%jx\n", phy, reg, 0, 0);
325
326 if (un->un_phyno != phy)
327 return EINVAL;
328
329 axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
330
331 err = axe_cmd(sc, AXE_CMD_MII_READ_REG, reg, phy, &data);
332 axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
333
334 if (err) {
335 aprint_error_dev(un->un_dev, "read PHY failed\n");
336 return EIO;
337 }
338
339 *val = le16toh(data);
340 if (AXE_IS_772(un) && reg == MII_BMSR) {
341 /*
342 * BMSR of AX88772 indicates that it supports extended
343 * capability but the extended status register is
344 * reserved for embedded ethernet PHY. So clear the
345 * extended capability bit of BMSR.
346 */
347 *val &= ~BMSR_EXTCAP;
348 }
349
350 DPRINTFN(30, "phy 0x%jx reg 0x%jx val %#jx", phy, reg, *val, 0);
351
352 return 0;
353 }
354
355 static int
356 axe_mii_write_reg(struct usbnet *un, int phy, int reg, uint16_t val)
357 {
358 struct axe_softc * const sc = usbnet_softc(un);
359 usbd_status err;
360 uint16_t aval;
361
362 if (un->un_phyno != phy)
363 return EINVAL;
364
365 aval = htole16(val);
366
367 axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
368 err = axe_cmd(sc, AXE_CMD_MII_WRITE_REG, reg, phy, &aval);
369 axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
370
371 if (err)
372 return EIO;
373 return 0;
374 }
375
376 static void
377 axe_mii_statchg(struct ifnet *ifp)
378 {
379 AXEHIST_FUNC(); AXEHIST_CALLED();
380
381 struct usbnet * const un = ifp->if_softc;
382 struct axe_softc * const sc = usbnet_softc(un);
383 struct mii_data *mii = usbnet_mii(un);
384 int val, err;
385
386 if (usbnet_isdying(un))
387 return;
388
389 val = 0;
390 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
391 val |= AXE_MEDIA_FULL_DUPLEX;
392 if (AXE_IS_178_FAMILY(un)) {
393 if ((IFM_OPTIONS(mii->mii_media_active) &
394 IFM_ETH_TXPAUSE) != 0)
395 val |= AXE_178_MEDIA_TXFLOW_CONTROL_EN;
396 if ((IFM_OPTIONS(mii->mii_media_active) &
397 IFM_ETH_RXPAUSE) != 0)
398 val |= AXE_178_MEDIA_RXFLOW_CONTROL_EN;
399 }
400 }
401 if (AXE_IS_178_FAMILY(un)) {
402 val |= AXE_178_MEDIA_RX_EN | AXE_178_MEDIA_MAGIC;
403 if (un->un_flags & AX178)
404 val |= AXE_178_MEDIA_ENCK;
405 switch (IFM_SUBTYPE(mii->mii_media_active)) {
406 case IFM_1000_T:
407 val |= AXE_178_MEDIA_GMII | AXE_178_MEDIA_ENCK;
408 usbnet_set_link(un, true);
409 break;
410 case IFM_100_TX:
411 val |= AXE_178_MEDIA_100TX;
412 usbnet_set_link(un, true);
413 break;
414 case IFM_10_T:
415 usbnet_set_link(un, true);
416 break;
417 }
418 }
419
420 DPRINTF("val=0x%jx", val, 0, 0, 0);
421 usbnet_lock_mii(un);
422 err = axe_cmd(sc, AXE_CMD_WRITE_MEDIA, 0, val, NULL);
423 usbnet_unlock_mii(un);
424 if (err)
425 aprint_error_dev(un->un_dev, "media change failed\n");
426 }
427
428 static void
429 axe_setiff_locked(struct usbnet *un)
430 {
431 AXEHIST_FUNC(); AXEHIST_CALLED();
432 struct axe_softc * const sc = usbnet_softc(un);
433 struct ifnet * const ifp = usbnet_ifp(un);
434 struct ethercom *ec = usbnet_ec(un);
435 struct ether_multi *enm;
436 struct ether_multistep step;
437 uint32_t h = 0;
438 uint16_t rxmode;
439 uint8_t hashtbl[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
440
441 usbnet_isowned_mii(un);
442
443 if (usbnet_isdying(un))
444 return;
445
446 if (axe_cmd(sc, AXE_CMD_RXCTL_READ, 0, 0, &rxmode)) {
447 aprint_error_dev(un->un_dev, "can't read rxmode");
448 return;
449 }
450 rxmode = le16toh(rxmode);
451
452 rxmode &=
453 ~(AXE_RXCMD_ALLMULTI | AXE_RXCMD_PROMISC |
454 AXE_RXCMD_BROADCAST | AXE_RXCMD_MULTICAST);
455
456 rxmode |=
457 (ifp->if_flags & IFF_BROADCAST) ? AXE_RXCMD_BROADCAST : 0;
458
459 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
460 if (ifp->if_flags & IFF_PROMISC)
461 rxmode |= AXE_RXCMD_PROMISC;
462 goto allmulti;
463 }
464
465 /* Now program new ones */
466 ETHER_LOCK(ec);
467 ETHER_FIRST_MULTI(step, ec, enm);
468 while (enm != NULL) {
469 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
470 ETHER_ADDR_LEN) != 0) {
471 ETHER_UNLOCK(ec);
472 goto allmulti;
473 }
474
475 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
476 hashtbl[h >> 3] |= 1U << (h & 7);
477 ETHER_NEXT_MULTI(step, enm);
478 }
479 ETHER_UNLOCK(ec);
480 ifp->if_flags &= ~IFF_ALLMULTI;
481 rxmode |= AXE_RXCMD_MULTICAST;
482
483 axe_cmd(sc, AXE_CMD_WRITE_MCAST, 0, 0, hashtbl);
484 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
485 return;
486
487 allmulti:
488 ifp->if_flags |= IFF_ALLMULTI;
489 rxmode |= AXE_RXCMD_ALLMULTI;
490 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
491 }
492
493 static void
494 axe_setiff(struct usbnet *un)
495 {
496 usbnet_lock_mii(un);
497 axe_setiff_locked(un);
498 usbnet_unlock_mii(un);
499 }
500
501 static void
502 axe_ax_init(struct usbnet *un)
503 {
504 struct axe_softc * const sc = usbnet_softc(un);
505
506 int cmd = AXE_178_CMD_READ_NODEID;
507
508 if (un->un_flags & AX178) {
509 axe_ax88178_init(sc);
510 } else if (un->un_flags & AX772) {
511 axe_ax88772_init(sc);
512 } else if (un->un_flags & AX772A) {
513 axe_ax88772a_init(sc);
514 } else if (un->un_flags & AX772B) {
515 axe_ax88772b_init(sc);
516 return;
517 } else {
518 cmd = AXE_172_CMD_READ_NODEID;
519 }
520
521 if (axe_cmd(sc, cmd, 0, 0, un->un_eaddr)) {
522 aprint_error_dev(un->un_dev,
523 "failed to read ethernet address\n");
524 }
525 }
526
527
528 static void
529 axe_reset(struct usbnet *un)
530 {
531
532 usbnet_isowned_mii(un);
533
534 if (usbnet_isdying(un))
535 return;
536
537 /*
538 * softnet_lock can be taken when NET_MPAFE is not defined when calling
539 * if_addr_init -> if_init. This doesn't mix well with the
540 * usbd_delay_ms calls in the init routines as things like nd6_slowtimo
541 * can fire during the wait and attempt to take softnet_lock and then
542 * block the softclk thread meaning the wait never ends.
543 */
544 #ifndef NET_MPSAFE
545 /* XXX What to reset? */
546
547 /* Wait a little while for the chip to get its brains in order. */
548 DELAY(1000);
549 #else
550 axe_ax_init(un);
551 #endif
552 }
553
554 static int
555 axe_get_phyno(struct axe_softc *sc, int sel)
556 {
557 int phyno;
558
559 switch (AXE_PHY_TYPE(sc->axe_phyaddrs[sel])) {
560 case PHY_TYPE_100_HOME:
561 /* FALLTHROUGH */
562 case PHY_TYPE_GIG:
563 phyno = AXE_PHY_NO(sc->axe_phyaddrs[sel]);
564 break;
565 case PHY_TYPE_SPECIAL:
566 /* FALLTHROUGH */
567 case PHY_TYPE_RSVD:
568 /* FALLTHROUGH */
569 case PHY_TYPE_NON_SUP:
570 /* FALLTHROUGH */
571 default:
572 phyno = -1;
573 break;
574 }
575
576 return phyno;
577 }
578
579 #define AXE_GPIO_WRITE(x, y) do { \
580 axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, (x), NULL); \
581 usbd_delay_ms(sc->axe_un.un_udev, hztoms(y)); \
582 } while (0)
583
584 static void
585 axe_ax88178_init(struct axe_softc *sc)
586 {
587 AXEHIST_FUNC(); AXEHIST_CALLED();
588 struct usbnet * const un = &sc->axe_un;
589 int gpio0, ledmode, phymode;
590 uint16_t eeprom, val;
591
592 axe_cmd(sc, AXE_CMD_SROM_WR_ENABLE, 0, 0, NULL);
593 /* XXX magic */
594 if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, 0x0017, &eeprom) != 0)
595 eeprom = 0xffff;
596 axe_cmd(sc, AXE_CMD_SROM_WR_DISABLE, 0, 0, NULL);
597
598 eeprom = le16toh(eeprom);
599
600 DPRINTF("EEPROM is 0x%jx", eeprom, 0, 0, 0);
601
602 /* if EEPROM is invalid we have to use to GPIO0 */
603 if (eeprom == 0xffff) {
604 phymode = AXE_PHY_MODE_MARVELL;
605 gpio0 = 1;
606 ledmode = 0;
607 } else {
608 phymode = eeprom & 0x7f;
609 gpio0 = (eeprom & 0x80) ? 0 : 1;
610 ledmode = eeprom >> 8;
611 }
612
613 DPRINTF("use gpio0: %jd, phymode %jd", gpio0, phymode, 0, 0);
614
615 /* Program GPIOs depending on PHY hardware. */
616 switch (phymode) {
617 case AXE_PHY_MODE_MARVELL:
618 if (gpio0 == 1) {
619 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0_EN,
620 hz / 32);
621 AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
622 hz / 32);
623 AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2_EN, hz / 4);
624 AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
625 hz / 32);
626 } else {
627 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
628 AXE_GPIO1_EN, hz / 3);
629 if (ledmode == 1) {
630 AXE_GPIO_WRITE(AXE_GPIO1_EN, hz / 3);
631 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN,
632 hz / 3);
633 } else {
634 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
635 AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
636 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
637 AXE_GPIO2_EN, hz / 4);
638 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
639 AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
640 }
641 }
642 break;
643 case AXE_PHY_MODE_CICADA:
644 case AXE_PHY_MODE_CICADA_V2:
645 case AXE_PHY_MODE_CICADA_V2_ASIX:
646 if (gpio0 == 1)
647 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0 |
648 AXE_GPIO0_EN, hz / 32);
649 else
650 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
651 AXE_GPIO1_EN, hz / 32);
652 break;
653 case AXE_PHY_MODE_AGERE:
654 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
655 AXE_GPIO1_EN, hz / 32);
656 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
657 AXE_GPIO2_EN, hz / 32);
658 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2_EN, hz / 4);
659 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
660 AXE_GPIO2_EN, hz / 32);
661 break;
662 case AXE_PHY_MODE_REALTEK_8211CL:
663 case AXE_PHY_MODE_REALTEK_8211BN:
664 case AXE_PHY_MODE_REALTEK_8251CL:
665 val = gpio0 == 1 ? AXE_GPIO0 | AXE_GPIO0_EN :
666 AXE_GPIO1 | AXE_GPIO1_EN;
667 AXE_GPIO_WRITE(val, hz / 32);
668 AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
669 AXE_GPIO_WRITE(val | AXE_GPIO2_EN, hz / 4);
670 AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
671 if (phymode == AXE_PHY_MODE_REALTEK_8211CL) {
672 axe_mii_write_reg(un, un->un_phyno, 0x1F, 0x0005);
673 axe_mii_write_reg(un, un->un_phyno, 0x0C, 0x0000);
674 axe_mii_read_reg(un, un->un_phyno, 0x0001, &val);
675 axe_mii_write_reg(un, un->un_phyno, 0x01, val | 0x0080);
676 axe_mii_write_reg(un, un->un_phyno, 0x1F, 0x0000);
677 }
678 break;
679 default:
680 /* Unknown PHY model or no need to program GPIOs. */
681 break;
682 }
683
684 /* soft reset */
685 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
686 usbd_delay_ms(un->un_udev, 150);
687 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
688 AXE_SW_RESET_PRL | AXE_178_RESET_MAGIC, NULL);
689 usbd_delay_ms(un->un_udev, 150);
690 /* Enable MII/GMII/RGMII interface to work with external PHY. */
691 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0, NULL);
692 usbd_delay_ms(un->un_udev, 10);
693 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
694 }
695
696 static void
697 axe_ax88772_init(struct axe_softc *sc)
698 {
699 AXEHIST_FUNC(); AXEHIST_CALLED();
700 struct usbnet * const un = &sc->axe_un;
701
702 axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x00b0, NULL);
703 usbd_delay_ms(un->un_udev, 40);
704
705 if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
706 /* ask for the embedded PHY */
707 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
708 AXE_SW_PHY_SELECT_EMBEDDED, NULL);
709 usbd_delay_ms(un->un_udev, 10);
710
711 /* power down and reset state, pin reset state */
712 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
713 usbd_delay_ms(un->un_udev, 60);
714
715 /* power down/reset state, pin operating state */
716 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
717 AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
718 usbd_delay_ms(un->un_udev, 150);
719
720 /* power up, reset */
721 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRL, NULL);
722
723 /* power up, operating */
724 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
725 AXE_SW_RESET_IPRL | AXE_SW_RESET_PRL, NULL);
726 } else {
727 /* ask for external PHY */
728 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_EXT,
729 NULL);
730 usbd_delay_ms(un->un_udev, 10);
731
732 /* power down internal PHY */
733 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
734 AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
735 }
736
737 usbd_delay_ms(un->un_udev, 150);
738 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
739 }
740
741 static void
742 axe_ax88772_phywake(struct axe_softc *sc)
743 {
744 AXEHIST_FUNC(); AXEHIST_CALLED();
745 struct usbnet * const un = &sc->axe_un;
746
747 if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
748 /* Manually select internal(embedded) PHY - MAC mode. */
749 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
750 AXE_SW_PHY_SELECT_EMBEDDED, NULL);
751 usbd_delay_ms(un->un_udev, hztoms(hz / 32));
752 } else {
753 /*
754 * Manually select external PHY - MAC mode.
755 * Reverse MII/RMII is for AX88772A PHY mode.
756 */
757 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_SS_ENB |
758 AXE_SW_PHY_SELECT_EXT | AXE_SW_PHY_SELECT_SS_MII, NULL);
759 usbd_delay_ms(un->un_udev, hztoms(hz / 32));
760 }
761
762 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPPD |
763 AXE_SW_RESET_IPRL, NULL);
764
765 /* T1 = min 500ns everywhere */
766 usbd_delay_ms(un->un_udev, 150);
767
768 /* Take PHY out of power down. */
769 if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
770 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
771 } else {
772 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRTE, NULL);
773 }
774
775 /* 772 T2 is 60ms. 772A T2 is 160ms, 772B T2 is 600ms */
776 usbd_delay_ms(un->un_udev, 600);
777
778 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
779
780 /* T3 = 500ns everywhere */
781 usbd_delay_ms(un->un_udev, hztoms(hz / 32));
782 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
783 usbd_delay_ms(un->un_udev, hztoms(hz / 32));
784 }
785
786 static void
787 axe_ax88772a_init(struct axe_softc *sc)
788 {
789 AXEHIST_FUNC(); AXEHIST_CALLED();
790
791 /* Reload EEPROM. */
792 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM, hz / 32);
793 axe_ax88772_phywake(sc);
794 /* Stop MAC. */
795 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
796 }
797
798 static void
799 axe_ax88772b_init(struct axe_softc *sc)
800 {
801 AXEHIST_FUNC(); AXEHIST_CALLED();
802 struct usbnet * const un = &sc->axe_un;
803 uint16_t eeprom;
804 int i;
805
806 /* Reload EEPROM. */
807 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM , hz / 32);
808
809 /*
810 * Save PHY power saving configuration(high byte) and
811 * clear EEPROM checksum value(low byte).
812 */
813 if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, AXE_EEPROM_772B_PHY_PWRCFG,
814 &eeprom)) {
815 aprint_error_dev(un->un_dev, "failed to read eeprom\n");
816 return;
817 }
818
819 sc->sc_pwrcfg = le16toh(eeprom) & 0xFF00;
820
821 /*
822 * Auto-loaded default station address from internal ROM is
823 * 00:00:00:00:00:00 such that an explicit access to EEPROM
824 * is required to get real station address.
825 */
826 uint8_t *eaddr = un->un_eaddr;
827 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
828 if (axe_cmd(sc, AXE_CMD_SROM_READ, 0,
829 AXE_EEPROM_772B_NODE_ID + i, &eeprom)) {
830 aprint_error_dev(un->un_dev,
831 "failed to read eeprom\n");
832 eeprom = 0;
833 }
834 eeprom = le16toh(eeprom);
835 *eaddr++ = (uint8_t)(eeprom & 0xFF);
836 *eaddr++ = (uint8_t)((eeprom >> 8) & 0xFF);
837 }
838 /* Wakeup PHY. */
839 axe_ax88772_phywake(sc);
840 /* Stop MAC. */
841 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
842 }
843
844 #undef AXE_GPIO_WRITE
845
846 /*
847 * Probe for a AX88172 chip.
848 */
849 int
850 axe_match(device_t parent, cfdata_t match, void *aux)
851 {
852 struct usb_attach_arg *uaa = aux;
853
854 return axe_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL ?
855 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
856 }
857
858 /*
859 * Attach the interface. Allocate softc structures, do ifmedia
860 * setup and ethernet/BPF attach.
861 */
862 void
863 axe_attach(device_t parent, device_t self, void *aux)
864 {
865 AXEHIST_FUNC(); AXEHIST_CALLED();
866 USBNET_MII_DECL_DEFAULT(unm);
867 struct axe_softc *sc = device_private(self);
868 struct usbnet * const un = &sc->axe_un;
869 struct usb_attach_arg *uaa = aux;
870 struct usbd_device *dev = uaa->uaa_device;
871 usbd_status err;
872 usb_interface_descriptor_t *id;
873 usb_endpoint_descriptor_t *ed;
874 char *devinfop;
875 unsigned bufsz;
876 int i;
877
878 KASSERT((void *)sc == un);
879
880 aprint_naive("\n");
881 aprint_normal("\n");
882 devinfop = usbd_devinfo_alloc(dev, 0);
883 aprint_normal_dev(self, "%s\n", devinfop);
884 usbd_devinfo_free(devinfop);
885
886 un->un_dev = self;
887 un->un_udev = dev;
888 un->un_sc = sc;
889 un->un_ops = &axe_ops;
890 un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
891 un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
892 un->un_rx_list_cnt = AXE_RX_LIST_CNT;
893 un->un_tx_list_cnt = AXE_TX_LIST_CNT;
894
895 err = usbd_set_config_no(dev, AXE_CONFIG_NO, 1);
896 if (err) {
897 aprint_error_dev(self, "failed to set configuration"
898 ", err=%s\n", usbd_errstr(err));
899 return;
900 }
901
902 un->un_flags = axe_lookup(uaa->uaa_vendor, uaa->uaa_product)->axe_flags;
903
904 err = usbd_device2interface_handle(dev, AXE_IFACE_IDX, &un->un_iface);
905 if (err) {
906 aprint_error_dev(self, "getting interface handle failed\n");
907 return;
908 }
909
910 id = usbd_get_interface_descriptor(un->un_iface);
911
912 /* decide on what our bufsize will be */
913 if (AXE_IS_178_FAMILY(un))
914 bufsz = (un->un_udev->ud_speed == USB_SPEED_HIGH) ?
915 AXE_178_MAX_BUFSZ : AXE_178_MIN_BUFSZ;
916 else
917 bufsz = AXE_172_BUFSZ;
918 un->un_rx_bufsz = un->un_tx_bufsz = bufsz;
919
920 un->un_ed[USBNET_ENDPT_RX] = 0;
921 un->un_ed[USBNET_ENDPT_TX] = 0;
922 un->un_ed[USBNET_ENDPT_INTR] = 0;
923
924 /* Find endpoints. */
925 for (i = 0; i < id->bNumEndpoints; i++) {
926 ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
927 if (ed == NULL) {
928 aprint_error_dev(self, "couldn't get ep %d\n", i);
929 return;
930 }
931 const uint8_t xt = UE_GET_XFERTYPE(ed->bmAttributes);
932 const uint8_t dir = UE_GET_DIR(ed->bEndpointAddress);
933
934 if (dir == UE_DIR_IN && xt == UE_BULK &&
935 un->un_ed[USBNET_ENDPT_RX] == 0) {
936 un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
937 } else if (dir == UE_DIR_OUT && xt == UE_BULK &&
938 un->un_ed[USBNET_ENDPT_TX] == 0) {
939 un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
940 } else if (dir == UE_DIR_IN && xt == UE_INTERRUPT) {
941 un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress;
942 }
943 }
944
945 /* Set these up now for axe_cmd(). */
946 usbnet_attach(un, "axedet");
947
948 /* We need the PHYID for init dance in some cases */
949 usbnet_lock_mii(un);
950 if (axe_cmd(sc, AXE_CMD_READ_PHYID, 0, 0, &sc->axe_phyaddrs)) {
951 aprint_error_dev(self, "failed to read phyaddrs\n");
952
953 return;
954 }
955
956 DPRINTF(" phyaddrs[0]: %jx phyaddrs[1]: %jx",
957 sc->axe_phyaddrs[0], sc->axe_phyaddrs[1], 0, 0);
958 un->un_phyno = axe_get_phyno(sc, AXE_PHY_SEL_PRI);
959 if (un->un_phyno == -1)
960 un->un_phyno = axe_get_phyno(sc, AXE_PHY_SEL_SEC);
961 if (un->un_phyno == -1) {
962 DPRINTF(" no valid PHY address found, assuming PHY address 0",
963 0, 0, 0, 0);
964 un->un_phyno = 0;
965 }
966
967 /* Initialize controller and get station address. */
968
969 axe_ax_init(un);
970
971 /*
972 * Fetch IPG values.
973 */
974 if (un->un_flags & (AX772A | AX772B)) {
975 /* Set IPG values. */
976 sc->axe_ipgs[0] = AXE_IPG0_DEFAULT;
977 sc->axe_ipgs[1] = AXE_IPG1_DEFAULT;
978 sc->axe_ipgs[2] = AXE_IPG2_DEFAULT;
979 } else {
980 if (axe_cmd(sc, AXE_CMD_READ_IPG012, 0, 0, sc->axe_ipgs)) {
981 aprint_error_dev(self, "failed to read ipg\n");
982 usbnet_unlock_mii(un);
983 return;
984 }
985 }
986
987 usbnet_unlock_mii(un);
988
989 if (AXE_IS_178_FAMILY(un))
990 usbnet_ec(un)->ec_capabilities = ETHERCAP_VLAN_MTU;
991 if (un->un_flags & AX772B) {
992 struct ifnet *ifp = usbnet_ifp(un);
993
994 ifp->if_capabilities =
995 IFCAP_CSUM_IPv4_Rx |
996 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
997 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
998 /*
999 * Checksum offloading of AX88772B also works with VLAN
1000 * tagged frames but there is no way to take advantage
1001 * of the feature because vlan(4) assumes
1002 * IFCAP_VLAN_HWTAGGING is prerequisite condition to
1003 * support checksum offloading with VLAN. VLAN hardware
1004 * tagging support of AX88772B is very limited so it's
1005 * not possible to announce IFCAP_VLAN_HWTAGGING.
1006 */
1007 }
1008 u_int adv_pause;
1009 if (un->un_flags & (AX772A | AX772B | AX178))
1010 adv_pause = MIIF_DOPAUSE;
1011 else
1012 adv_pause = 0;
1013 adv_pause = 0;
1014
1015 unm.un_mii_flags = adv_pause;
1016 usbnet_attach_ifp(un, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
1017 0, &unm);
1018 }
1019
1020 static void
1021 axe_rx_loop(struct usbnet * un, struct usbnet_chain *c, uint32_t total_len)
1022 {
1023 AXEHIST_FUNC(); AXEHIST_CALLED();
1024 struct axe_softc * const sc = usbnet_softc(un);
1025 struct ifnet *ifp = usbnet_ifp(un);
1026 uint8_t *buf = c->unc_buf;
1027
1028 do {
1029 u_int pktlen = 0;
1030 u_int rxlen = 0;
1031 int flags = 0;
1032
1033 if ((un->un_flags & AXSTD_FRAME) != 0) {
1034 struct axe_sframe_hdr hdr;
1035
1036 if (total_len < sizeof(hdr)) {
1037 ifp->if_ierrors++;
1038 break;
1039 }
1040
1041 memcpy(&hdr, buf, sizeof(hdr));
1042
1043 DPRINTFN(20, "total_len %#jx len %jx ilen %#jx",
1044 total_len,
1045 (le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK),
1046 (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK), 0);
1047
1048 total_len -= sizeof(hdr);
1049 buf += sizeof(hdr);
1050
1051 if (((le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK) ^
1052 (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK)) !=
1053 AXE_RH1M_RXLEN_MASK) {
1054 ifp->if_ierrors++;
1055 break;
1056 }
1057
1058 rxlen = le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK;
1059 if (total_len < rxlen) {
1060 pktlen = total_len;
1061 total_len = 0;
1062 } else {
1063 pktlen = rxlen;
1064 rxlen = roundup2(rxlen, 2);
1065 total_len -= rxlen;
1066 }
1067
1068 } else if ((un->un_flags & AXCSUM_FRAME) != 0) {
1069 struct axe_csum_hdr csum_hdr;
1070
1071 if (total_len < sizeof(csum_hdr)) {
1072 ifp->if_ierrors++;
1073 break;
1074 }
1075
1076 memcpy(&csum_hdr, buf, sizeof(csum_hdr));
1077
1078 csum_hdr.len = le16toh(csum_hdr.len);
1079 csum_hdr.ilen = le16toh(csum_hdr.ilen);
1080 csum_hdr.cstatus = le16toh(csum_hdr.cstatus);
1081
1082 DPRINTFN(20, "total_len %#jx len %#jx ilen %#jx"
1083 " cstatus %#jx", total_len,
1084 csum_hdr.len, csum_hdr.ilen, csum_hdr.cstatus);
1085
1086 if ((AXE_CSUM_RXBYTES(csum_hdr.len) ^
1087 AXE_CSUM_RXBYTES(csum_hdr.ilen)) !=
1088 sc->sc_lenmask) {
1089 /* we lost sync */
1090 ifp->if_ierrors++;
1091 DPRINTFN(20, "len %#jx ilen %#jx lenmask %#jx "
1092 "err",
1093 AXE_CSUM_RXBYTES(csum_hdr.len),
1094 AXE_CSUM_RXBYTES(csum_hdr.ilen),
1095 sc->sc_lenmask, 0);
1096 break;
1097 }
1098 /*
1099 * Get total transferred frame length including
1100 * checksum header. The length should be multiple
1101 * of 4.
1102 */
1103 pktlen = AXE_CSUM_RXBYTES(csum_hdr.len);
1104 u_int len = sizeof(csum_hdr) + pktlen;
1105 len = (len + 3) & ~3;
1106 if (total_len < len) {
1107 DPRINTFN(20, "total_len %#jx < len %#jx",
1108 total_len, len, 0, 0);
1109 /* invalid length */
1110 ifp->if_ierrors++;
1111 break;
1112 }
1113 buf += sizeof(csum_hdr);
1114
1115 const uint16_t cstatus = csum_hdr.cstatus;
1116
1117 if (cstatus & AXE_CSUM_HDR_L3_TYPE_IPV4) {
1118 if (cstatus & AXE_CSUM_HDR_L4_CSUM_ERR)
1119 flags |= M_CSUM_TCP_UDP_BAD;
1120 if (cstatus & AXE_CSUM_HDR_L3_CSUM_ERR)
1121 flags |= M_CSUM_IPv4_BAD;
1122
1123 const uint16_t l4type =
1124 cstatus & AXE_CSUM_HDR_L4_TYPE_MASK;
1125
1126 if (l4type == AXE_CSUM_HDR_L4_TYPE_TCP)
1127 flags |= M_CSUM_TCPv4;
1128 if (l4type == AXE_CSUM_HDR_L4_TYPE_UDP)
1129 flags |= M_CSUM_UDPv4;
1130 }
1131 if (total_len < len) {
1132 pktlen = total_len;
1133 total_len = 0;
1134 } else {
1135 total_len -= len;
1136 rxlen = len - sizeof(csum_hdr);
1137 }
1138 DPRINTFN(20, "total_len %#jx len %#jx pktlen %#jx"
1139 " rxlen %#jx", total_len, len, pktlen, rxlen);
1140 } else { /* AX172 */
1141 pktlen = rxlen = total_len;
1142 total_len = 0;
1143 }
1144
1145 usbnet_enqueue(un, buf, pktlen, flags, 0, 0);
1146 buf += rxlen;
1147
1148 } while (total_len > 0);
1149
1150 DPRINTFN(10, "start rx", 0, 0, 0, 0);
1151 }
1152
1153 static unsigned
1154 axe_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
1155 {
1156 AXEHIST_FUNC(); AXEHIST_CALLED();
1157 struct axe_sframe_hdr hdr, tlr;
1158 size_t hdr_len = 0, tlr_len = 0;
1159 int length, boundary;
1160
1161 usbnet_isowned_tx(un);
1162
1163 if (AXE_IS_178_FAMILY(un)) {
1164 /*
1165 * Copy the mbuf data into a contiguous buffer, leaving two
1166 * bytes at the beginning to hold the frame length.
1167 */
1168 boundary = (un->un_udev->ud_speed == USB_SPEED_HIGH) ? 512 : 64;
1169
1170 hdr.len = htole16(m->m_pkthdr.len);
1171 hdr.ilen = ~hdr.len;
1172 hdr_len = sizeof(hdr);
1173
1174 length = hdr_len + m->m_pkthdr.len;
1175
1176 if ((length % boundary) == 0) {
1177 tlr.len = 0x0000;
1178 tlr.ilen = 0xffff;
1179 tlr_len = sizeof(tlr);
1180 }
1181 DPRINTFN(20, "length %jx m_pkthdr.len %jx hdrsize %#jx",
1182 length, m->m_pkthdr.len, sizeof(hdr), 0);
1183 }
1184
1185 if ((unsigned)m->m_pkthdr.len > un->un_tx_bufsz - hdr_len - tlr_len)
1186 return 0;
1187 length = hdr_len + m->m_pkthdr.len + tlr_len;
1188
1189 if (hdr_len)
1190 memcpy(c->unc_buf, &hdr, hdr_len);
1191 m_copydata(m, 0, m->m_pkthdr.len, c->unc_buf + hdr_len);
1192 if (tlr_len)
1193 memcpy(c->unc_buf + length - tlr_len, &tlr, tlr_len);
1194
1195 return length;
1196 }
1197
1198 static void
1199 axe_csum_cfg(struct axe_softc *sc)
1200 {
1201 struct usbnet * const un = &sc->axe_un;
1202 struct ifnet * const ifp = usbnet_ifp(un);
1203 uint16_t csum1, csum2;
1204
1205 if ((un->un_flags & AX772B) != 0) {
1206 csum1 = 0;
1207 csum2 = 0;
1208 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) != 0)
1209 csum1 |= AXE_TXCSUM_IP;
1210 if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) != 0)
1211 csum1 |= AXE_TXCSUM_TCP;
1212 if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) != 0)
1213 csum1 |= AXE_TXCSUM_UDP;
1214 if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) != 0)
1215 csum1 |= AXE_TXCSUM_TCPV6;
1216 if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) != 0)
1217 csum1 |= AXE_TXCSUM_UDPV6;
1218 axe_cmd(sc, AXE_772B_CMD_WRITE_TXCSUM, csum2, csum1, NULL);
1219 csum1 = 0;
1220 csum2 = 0;
1221
1222 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0)
1223 csum1 |= AXE_RXCSUM_IP;
1224 if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0)
1225 csum1 |= AXE_RXCSUM_TCP;
1226 if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0)
1227 csum1 |= AXE_RXCSUM_UDP;
1228 if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0)
1229 csum1 |= AXE_RXCSUM_TCPV6;
1230 if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)
1231 csum1 |= AXE_RXCSUM_UDPV6;
1232 axe_cmd(sc, AXE_772B_CMD_WRITE_RXCSUM, csum2, csum1, NULL);
1233 }
1234 }
1235
1236 static int
1237 axe_init_locked(struct ifnet *ifp)
1238 {
1239 AXEHIST_FUNC(); AXEHIST_CALLED();
1240 struct usbnet * const un = ifp->if_softc;
1241 struct axe_softc * const sc = usbnet_softc(un);
1242 int rxmode;
1243
1244 usbnet_isowned(un);
1245
1246 if (usbnet_isdying(un))
1247 return EIO;
1248
1249 /* Cancel pending I/O */
1250 usbnet_stop(un, ifp, 1);
1251
1252 usbnet_lock_mii_un_locked(un);
1253
1254 /* Reset the ethernet interface. */
1255 axe_reset(un);
1256
1257 #if 0
1258 ret = asix_write_gpio(dev, AX_GPIO_RSE | AX_GPIO_GPO_2 |
1259 AX_GPIO_GPO2EN, 5, in_pm);
1260 #endif
1261 /* Set MAC address and transmitter IPG values. */
1262 if (AXE_IS_178_FAMILY(un)) {
1263 axe_cmd(sc, AXE_178_CMD_WRITE_NODEID, 0, 0, un->un_eaddr);
1264 axe_cmd(sc, AXE_178_CMD_WRITE_IPG012, sc->axe_ipgs[2],
1265 (sc->axe_ipgs[1] << 8) | (sc->axe_ipgs[0]), NULL);
1266 } else {
1267 axe_cmd(sc, AXE_172_CMD_WRITE_NODEID, 0, 0, un->un_eaddr);
1268 axe_cmd(sc, AXE_172_CMD_WRITE_IPG0, 0, sc->axe_ipgs[0], NULL);
1269 axe_cmd(sc, AXE_172_CMD_WRITE_IPG1, 0, sc->axe_ipgs[1], NULL);
1270 axe_cmd(sc, AXE_172_CMD_WRITE_IPG2, 0, sc->axe_ipgs[2], NULL);
1271 }
1272 if (AXE_IS_178_FAMILY(un)) {
1273 un->un_flags &= ~(AXSTD_FRAME | AXCSUM_FRAME);
1274 if ((un->un_flags & AX772B) != 0 &&
1275 (ifp->if_capenable & AX_RXCSUM) != 0) {
1276 sc->sc_lenmask = AXE_CSUM_HDR_LEN_MASK;
1277 un->un_flags |= AXCSUM_FRAME;
1278 } else {
1279 sc->sc_lenmask = AXE_HDR_LEN_MASK;
1280 un->un_flags |= AXSTD_FRAME;
1281 }
1282 }
1283
1284 /* Configure TX/RX checksum offloading. */
1285 axe_csum_cfg(sc);
1286
1287 if (un->un_flags & AX772B) {
1288 /* AX88772B uses different maximum frame burst configuration. */
1289 axe_cmd(sc, AXE_772B_CMD_RXCTL_WRITE_CFG,
1290 ax88772b_mfb_table[AX88772B_MFB_16K].threshold,
1291 ax88772b_mfb_table[AX88772B_MFB_16K].byte_cnt, NULL);
1292 }
1293 /* Enable receiver, set RX mode */
1294 rxmode = (AXE_RXCMD_MULTICAST | AXE_RXCMD_ENABLE);
1295 if (AXE_IS_178_FAMILY(un)) {
1296 if (un->un_flags & AX772B) {
1297 /*
1298 * Select RX header format type 1. Aligning IP
1299 * header on 4 byte boundary is not needed when
1300 * checksum offloading feature is not used
1301 * because we always copy the received frame in
1302 * RX handler. When RX checksum offloading is
1303 * active, aligning IP header is required to
1304 * reflect actual frame length including RX
1305 * header size.
1306 */
1307 rxmode |= AXE_772B_RXCMD_HDR_TYPE_1;
1308 if (un->un_flags & AXCSUM_FRAME)
1309 rxmode |= AXE_772B_RXCMD_IPHDR_ALIGN;
1310 } else {
1311 /*
1312 * Default Rx buffer size is too small to get
1313 * maximum performance.
1314 */
1315 #if 0
1316 if (un->un_udev->ud_speed == USB_SPEED_HIGH) {
1317 /* Largest possible USB buffer size for AX88178 */
1318 }
1319 #endif
1320 rxmode |= AXE_178_RXCMD_MFB_16384;
1321 }
1322 } else {
1323 rxmode |= AXE_172_RXCMD_UNICAST;
1324 }
1325
1326
1327 /* If we want promiscuous mode, set the allframes bit. */
1328 if (ifp->if_flags & IFF_PROMISC)
1329 rxmode |= AXE_RXCMD_PROMISC;
1330
1331 if (ifp->if_flags & IFF_BROADCAST)
1332 rxmode |= AXE_RXCMD_BROADCAST;
1333
1334 DPRINTF("rxmode 0x%#jx", rxmode, 0, 0, 0);
1335
1336 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
1337
1338 /* Load the multicast filter. */
1339 axe_setiff_locked(un);
1340
1341 usbnet_unlock_mii_un_locked(un);
1342
1343 return usbnet_init_rx_tx(un);
1344 }
1345
1346 static int
1347 axe_init(struct ifnet *ifp)
1348 {
1349 struct usbnet * const un = ifp->if_softc;
1350
1351 usbnet_lock(un);
1352 int ret = axe_init_locked(ifp);
1353 usbnet_unlock(un);
1354
1355 return ret;
1356 }
1357
1358 static int
1359 axe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1360 {
1361 struct usbnet * const un = ifp->if_softc;
1362
1363 switch (cmd) {
1364 case SIOCADDMULTI:
1365 case SIOCDELMULTI:
1366 axe_setiff(un);
1367 break;
1368 default:
1369 break;
1370 }
1371
1372 return 0;
1373 }
1374
1375 static void
1376 axe_stop(struct ifnet *ifp, int disable)
1377 {
1378 struct usbnet * const un = ifp->if_softc;
1379
1380 usbnet_lock_mii_un_locked(un);
1381 axe_reset(un);
1382 usbnet_unlock_mii_un_locked(un);
1383 }
1384
1385 #ifdef _MODULE
1386 #include "ioconf.c"
1387 #endif
1388
1389 USBNET_MODULE(axe)
1390