if_axe.c revision 1.126 1 /* $NetBSD: if_axe.c,v 1.126 2020/02/29 04:27:53 nisimura Exp $ */
2 /* $OpenBSD: if_axe.c,v 1.137 2016/04/13 11:03:37 mpi Exp $ */
3
4 /*
5 * Copyright (c) 2005, 2006, 2007 Jonathan Gray <jsg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Copyright (c) 1997, 1998, 1999, 2000-2003
22 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
23 *
24 * Redistribution and use in source and binary forms, with or without
25 * modification, are permitted provided that the following conditions
26 * are met:
27 * 1. Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * 2. Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in the
31 * documentation and/or other materials provided with the distribution.
32 * 3. All advertising materials mentioning features or use of this software
33 * must display the following acknowledgement:
34 * This product includes software developed by Bill Paul.
35 * 4. Neither the name of the author nor the names of any co-contributors
36 * may be used to endorse or promote products derived from this software
37 * without specific prior written permission.
38 *
39 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
40 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
43 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
47 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
49 * THE POSSIBILITY OF SUCH DAMAGE.
50 */
51
52 /*
53 * ASIX Electronics AX88172/AX88178/AX88778 USB 2.0 ethernet driver.
54 * Used in the LinkSys USB200M and various other adapters.
55 *
56 * Written by Bill Paul <wpaul (at) windriver.com>
57 * Senior Engineer
58 * Wind River Systems
59 */
60
61 /*
62 * The AX88172 provides USB ethernet supports at 10 and 100Mbps.
63 * It uses an external PHY (reference designs use a RealTek chip),
64 * and has a 64-bit multicast hash filter. There is some information
65 * missing from the manual which one needs to know in order to make
66 * the chip function:
67 *
68 * - You must set bit 7 in the RX control register, otherwise the
69 * chip won't receive any packets.
70 * - You must initialize all 3 IPG registers, or you won't be able
71 * to send any packets.
72 *
73 * Note that this device appears to only support loading the station
74 * address via autoload from the EEPROM (i.e. there's no way to manually
75 * set it).
76 *
77 * (Adam Weinberger wanted me to name this driver if_gir.c.)
78 */
79
80 /*
81 * Ax88178 and Ax88772 support backported from the OpenBSD driver.
82 * 2007/02/12, J.R. Oldroyd, fbsd (at) opal.com
83 *
84 * Manual here:
85 * http://www.asix.com.tw/FrootAttach/datasheet/AX88178_datasheet_Rev10.pdf
86 * http://www.asix.com.tw/FrootAttach/datasheet/AX88772_datasheet_Rev10.pdf
87 */
88
89 #include <sys/cdefs.h>
90 __KERNEL_RCSID(0, "$NetBSD: if_axe.c,v 1.126 2020/02/29 04:27:53 nisimura Exp $");
91
92 #ifdef _KERNEL_OPT
93 #include "opt_usb.h"
94 #include "opt_net_mpsafe.h"
95 #endif
96
97 #include <sys/param.h>
98
99 #include <dev/usb/usbnet.h>
100 #include <dev/usb/usbhist.h>
101 #include <dev/usb/if_axereg.h>
102
103 struct axe_type {
104 struct usb_devno axe_dev;
105 uint16_t axe_flags;
106 };
107
108 struct axe_softc {
109 struct usbnet axe_un;
110
111 /* usbnet:un_flags values */
112 #define AX178 __BIT(0) /* AX88178 */
113 #define AX772 __BIT(1) /* AX88772 */
114 #define AX772A __BIT(2) /* AX88772A */
115 #define AX772B __BIT(3) /* AX88772B */
116 #define AXSTD_FRAME __BIT(12)
117 #define AXCSUM_FRAME __BIT(13)
118
119 uint8_t axe_ipgs[3];
120 uint8_t axe_phyaddrs[2];
121 uint16_t sc_pwrcfg;
122 uint16_t sc_lenmask;
123
124 };
125
126 #define AXE_IS_178_FAMILY(un) \
127 ((un)->un_flags & (AX772 | AX772A | AX772B | AX178))
128
129 #define AXE_IS_772(un) \
130 ((un)->un_flags & (AX772 | AX772A | AX772B))
131
132 #define AX_RXCSUM \
133 (IFCAP_CSUM_IPv4_Rx | \
134 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx | \
135 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)
136
137 #define AX_TXCSUM \
138 (IFCAP_CSUM_IPv4_Tx | \
139 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx | \
140 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)
141
142 /*
143 * AXE_178_MAX_FRAME_BURST
144 * max frame burst size for Ax88178 and Ax88772
145 * 0 2048 bytes
146 * 1 4096 bytes
147 * 2 8192 bytes
148 * 3 16384 bytes
149 * use the largest your system can handle without USB stalling.
150 *
151 * NB: 88772 parts appear to generate lots of input errors with
152 * a 2K rx buffer and 8K is only slightly faster than 4K on an
153 * EHCI port on a T42 so change at your own risk.
154 */
155 #define AXE_178_MAX_FRAME_BURST 1
156
157
158 #ifdef USB_DEBUG
159 #ifndef AXE_DEBUG
160 #define axedebug 0
161 #else
162 static int axedebug = 0;
163
164 SYSCTL_SETUP(sysctl_hw_axe_setup, "sysctl hw.axe setup")
165 {
166 int err;
167 const struct sysctlnode *rnode;
168 const struct sysctlnode *cnode;
169
170 err = sysctl_createv(clog, 0, NULL, &rnode,
171 CTLFLAG_PERMANENT, CTLTYPE_NODE, "axe",
172 SYSCTL_DESCR("axe global controls"),
173 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
174
175 if (err)
176 goto fail;
177
178 /* control debugging printfs */
179 err = sysctl_createv(clog, 0, &rnode, &cnode,
180 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
181 "debug", SYSCTL_DESCR("Enable debugging output"),
182 NULL, 0, &axedebug, sizeof(axedebug), CTL_CREATE, CTL_EOL);
183 if (err)
184 goto fail;
185
186 return;
187 fail:
188 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
189 }
190
191 #endif /* AXE_DEBUG */
192 #endif /* USB_DEBUG */
193
194 #define DPRINTF(FMT,A,B,C,D) USBHIST_LOGN(axedebug,1,FMT,A,B,C,D)
195 #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(axedebug,N,FMT,A,B,C,D)
196 #define AXEHIST_FUNC() USBHIST_FUNC()
197 #define AXEHIST_CALLED(name) USBHIST_CALLED(axedebug)
198
199 /*
200 * Various supported device vendors/products.
201 */
202 static const struct axe_type axe_devs[] = {
203 { { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_UFE2000}, 0 },
204 { { USB_VENDOR_ACERCM, USB_PRODUCT_ACERCM_EP1427X2}, 0 },
205 { { USB_VENDOR_APPLE, USB_PRODUCT_APPLE_ETHERNET }, AX772 },
206 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88172}, 0 },
207 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772}, AX772 },
208 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772A}, AX772 },
209 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772B}, AX772B },
210 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772B_1}, AX772B },
211 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88178}, AX178 },
212 { { USB_VENDOR_ATEN, USB_PRODUCT_ATEN_UC210T}, 0 },
213 { { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D5055 }, AX178 },
214 { { USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USB2AR}, 0},
215 { { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_USB200MV2}, AX772A },
216 { { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_FETHER_USB2_TX }, 0},
217 { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100}, 0 },
218 { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100B1 }, AX772 },
219 { { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DUBE100B1 }, AX772 },
220 { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100C1 }, AX772B },
221 { { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_GWUSB2E}, 0 },
222 { { USB_VENDOR_IODATA, USB_PRODUCT_IODATA_ETGUS2 }, AX178 },
223 { { USB_VENDOR_JVC, USB_PRODUCT_JVC_MP_PRX1}, 0 },
224 { { USB_VENDOR_LENOVO, USB_PRODUCT_LENOVO_ETHERNET }, AX772B },
225 { { USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_HG20F9}, AX772B },
226 { { USB_VENDOR_LINKSYS2, USB_PRODUCT_LINKSYS2_USB200M}, 0 },
227 { { USB_VENDOR_LINKSYS4, USB_PRODUCT_LINKSYS4_USB1000 }, AX178 },
228 { { USB_VENDOR_LOGITEC, USB_PRODUCT_LOGITEC_LAN_GTJU2}, AX178 },
229 { { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUAU2GT}, AX178 },
230 { { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUAU2KTX}, 0 },
231 { { USB_VENDOR_MSI, USB_PRODUCT_MSI_AX88772A}, AX772 },
232 { { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_FA120}, 0 },
233 { { USB_VENDOR_OQO, USB_PRODUCT_OQO_ETHER01PLUS }, AX772 },
234 { { USB_VENDOR_PLANEX3, USB_PRODUCT_PLANEX3_GU1000T }, AX178 },
235 { { USB_VENDOR_SITECOM, USB_PRODUCT_SITECOM_LN029}, 0 },
236 { { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_LN028 }, AX178 },
237 { { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_LN031 }, AX178 },
238 { { USB_VENDOR_SYSTEMTALKS, USB_PRODUCT_SYSTEMTALKS_SGCX2UL}, 0 },
239 };
240 #define axe_lookup(v, p) ((const struct axe_type *)usb_lookup(axe_devs, v, p))
241
242 static const struct ax88772b_mfb ax88772b_mfb_table[] = {
243 { 0x8000, 0x8001, 2048 },
244 { 0x8100, 0x8147, 4096 },
245 { 0x8200, 0x81EB, 6144 },
246 { 0x8300, 0x83D7, 8192 },
247 { 0x8400, 0x851E, 16384 },
248 { 0x8500, 0x8666, 20480 },
249 { 0x8600, 0x87AE, 24576 },
250 { 0x8700, 0x8A3D, 32768 }
251 };
252
253 static int axe_match(device_t, cfdata_t, void *);
254 static void axe_attach(device_t, device_t, void *);
255
256 CFATTACH_DECL_NEW(axe, sizeof(struct axe_softc),
257 axe_match, axe_attach, usbnet_detach, usbnet_activate);
258
259 static void axe_stop(struct ifnet *, int);
260 static int axe_ioctl(struct ifnet *, u_long, void *);
261 static int axe_init(struct ifnet *);
262 static int axe_mii_read_reg(struct usbnet *, int, int, uint16_t *);
263 static int axe_mii_write_reg(struct usbnet *, int, int, uint16_t);
264 static void axe_mii_statchg(struct ifnet *);
265 static void axe_rx_loop(struct usbnet *, struct usbnet_chain *, uint32_t);
266 static unsigned axe_tx_prepare(struct usbnet *, struct mbuf *,
267 struct usbnet_chain *);
268
269 static void axe_ax88178_init(struct axe_softc *);
270 static void axe_ax88772_init(struct axe_softc *);
271 static void axe_ax88772a_init(struct axe_softc *);
272 static void axe_ax88772b_init(struct axe_softc *);
273
274 static const struct usbnet_ops axe_ops = {
275 .uno_stop = axe_stop,
276 .uno_ioctl = axe_ioctl,
277 .uno_read_reg = axe_mii_read_reg,
278 .uno_write_reg = axe_mii_write_reg,
279 .uno_statchg = axe_mii_statchg,
280 .uno_tx_prepare = axe_tx_prepare,
281 .uno_rx_loop = axe_rx_loop,
282 .uno_init = axe_init,
283 };
284
285 static usbd_status
286 axe_cmd(struct axe_softc *sc, int cmd, int index, int val, void *buf)
287 {
288 AXEHIST_FUNC(); AXEHIST_CALLED();
289 struct usbnet * const un = &sc->axe_un;
290 usb_device_request_t req;
291 usbd_status err;
292
293 usbnet_isowned_mii(un);
294
295 if (usbnet_isdying(un))
296 return -1;
297
298 DPRINTFN(20, "cmd %#jx index %#jx val %#jx", cmd, index, val, 0);
299
300 if (AXE_CMD_DIR(cmd))
301 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
302 else
303 req.bmRequestType = UT_READ_VENDOR_DEVICE;
304 req.bRequest = AXE_CMD_CMD(cmd);
305 USETW(req.wValue, val);
306 USETW(req.wIndex, index);
307 USETW(req.wLength, AXE_CMD_LEN(cmd));
308
309 err = usbd_do_request(un->un_udev, &req, buf);
310 if (err)
311 DPRINTF("cmd %jd err %jd", cmd, err, 0, 0);
312
313 return err;
314 }
315
316 static int
317 axe_mii_read_reg(struct usbnet *un, int phy, int reg, uint16_t *val)
318 {
319 AXEHIST_FUNC(); AXEHIST_CALLED();
320 struct axe_softc * const sc = usbnet_softc(un);
321 usbd_status err;
322 uint16_t data;
323
324 DPRINTFN(30, "phy %#jx reg %#jx\n", phy, reg, 0, 0);
325
326 if (un->un_phyno != phy)
327 return EINVAL;
328
329 axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
330
331 err = axe_cmd(sc, AXE_CMD_MII_READ_REG, reg, phy, &data);
332 axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
333
334 if (err) {
335 aprint_error_dev(un->un_dev, "read PHY failed\n");
336 return EIO;
337 }
338
339 *val = le16toh(data);
340 if (AXE_IS_772(un) && reg == MII_BMSR) {
341 /*
342 * BMSR of AX88772 indicates that it supports extended
343 * capability but the extended status register is
344 * reserved for embedded ethernet PHY. So clear the
345 * extended capability bit of BMSR.
346 */
347 *val &= ~BMSR_EXTCAP;
348 }
349
350 DPRINTFN(30, "phy %#jx reg %#jx val %#jx", phy, reg, *val, 0);
351
352 return 0;
353 }
354
355 static int
356 axe_mii_write_reg(struct usbnet *un, int phy, int reg, uint16_t val)
357 {
358 struct axe_softc * const sc = usbnet_softc(un);
359 usbd_status err;
360 uint16_t aval;
361
362 if (un->un_phyno != phy)
363 return EINVAL;
364
365 aval = htole16(val);
366
367 axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
368 err = axe_cmd(sc, AXE_CMD_MII_WRITE_REG, reg, phy, &aval);
369 axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
370
371 if (err)
372 return EIO;
373 return 0;
374 }
375
376 static void
377 axe_mii_statchg(struct ifnet *ifp)
378 {
379 AXEHIST_FUNC(); AXEHIST_CALLED();
380
381 struct usbnet * const un = ifp->if_softc;
382 struct axe_softc * const sc = usbnet_softc(un);
383 struct mii_data *mii = usbnet_mii(un);
384 int val, err;
385
386 if (usbnet_isdying(un))
387 return;
388
389 val = 0;
390 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
391 val |= AXE_MEDIA_FULL_DUPLEX;
392 if (AXE_IS_178_FAMILY(un)) {
393 if ((IFM_OPTIONS(mii->mii_media_active) &
394 IFM_ETH_TXPAUSE) != 0)
395 val |= AXE_178_MEDIA_TXFLOW_CONTROL_EN;
396 if ((IFM_OPTIONS(mii->mii_media_active) &
397 IFM_ETH_RXPAUSE) != 0)
398 val |= AXE_178_MEDIA_RXFLOW_CONTROL_EN;
399 }
400 }
401 if (AXE_IS_178_FAMILY(un)) {
402 val |= AXE_178_MEDIA_RX_EN | AXE_178_MEDIA_MAGIC;
403 if (un->un_flags & AX178)
404 val |= AXE_178_MEDIA_ENCK;
405 switch (IFM_SUBTYPE(mii->mii_media_active)) {
406 case IFM_1000_T:
407 val |= AXE_178_MEDIA_GMII | AXE_178_MEDIA_ENCK;
408 usbnet_set_link(un, true);
409 break;
410 case IFM_100_TX:
411 val |= AXE_178_MEDIA_100TX;
412 usbnet_set_link(un, true);
413 break;
414 case IFM_10_T:
415 usbnet_set_link(un, true);
416 break;
417 }
418 }
419
420 DPRINTF("val=%#jx", val, 0, 0, 0);
421 usbnet_lock_mii(un);
422 err = axe_cmd(sc, AXE_CMD_WRITE_MEDIA, 0, val, NULL);
423 usbnet_unlock_mii(un);
424 if (err)
425 aprint_error_dev(un->un_dev, "media change failed\n");
426 }
427
428 static void
429 axe_setiff_locked(struct usbnet *un)
430 {
431 AXEHIST_FUNC(); AXEHIST_CALLED();
432 struct axe_softc * const sc = usbnet_softc(un);
433 struct ifnet * const ifp = usbnet_ifp(un);
434 struct ethercom *ec = usbnet_ec(un);
435 struct ether_multi *enm;
436 struct ether_multistep step;
437 uint32_t h = 0;
438 uint16_t rxmode;
439 uint8_t hashtbl[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
440
441 usbnet_isowned_mii(un);
442
443 if (usbnet_isdying(un))
444 return;
445
446 if (axe_cmd(sc, AXE_CMD_RXCTL_READ, 0, 0, &rxmode)) {
447 aprint_error_dev(un->un_dev, "can't read rxmode");
448 return;
449 }
450 rxmode = le16toh(rxmode);
451
452 rxmode &=
453 ~(AXE_RXCMD_ALLMULTI | AXE_RXCMD_PROMISC | AXE_RXCMD_MULTICAST);
454
455 if (ifp->if_flags & IFF_PROMISC) {
456 ifp->if_flags |= IFF_ALLMULTI;
457 goto allmulti;
458 }
459 ifp->if_flags &= ~IFF_ALLMULTI;
460
461 /* Now program new ones */
462 ETHER_LOCK(ec);
463 ETHER_FIRST_MULTI(step, ec, enm);
464 while (enm != NULL) {
465 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
466 ETHER_ADDR_LEN) != 0) {
467 ETHER_UNLOCK(ec);
468 ifp->if_flags |= IFF_ALLMULTI;
469 goto allmulti;
470 }
471
472 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
473 hashtbl[h >> 3] |= 1U << (h & 7);
474 ETHER_NEXT_MULTI(step, enm);
475 }
476 ETHER_UNLOCK(ec);
477
478 rxmode |= AXE_RXCMD_MULTICAST; /* activate mcast hash filter */
479 axe_cmd(sc, AXE_CMD_WRITE_MCAST, 0, 0, hashtbl);
480 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
481 return;
482
483 allmulti:
484 if (ifp->if_flags & IFF_PROMISC)
485 rxmode |= AXE_RXCMD_PROMISC; /* run promisc. mode */
486 rxmode |= AXE_RXCMD_ALLMULTI; /* accept all mcast frames */
487 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
488 }
489
490 static void
491 axe_setiff(struct usbnet *un)
492 {
493 usbnet_lock_mii(un);
494 axe_setiff_locked(un);
495 usbnet_unlock_mii(un);
496 }
497
498 static void
499 axe_ax_init(struct usbnet *un)
500 {
501 struct axe_softc * const sc = usbnet_softc(un);
502
503 int cmd = AXE_178_CMD_READ_NODEID;
504
505 if (un->un_flags & AX178) {
506 axe_ax88178_init(sc);
507 } else if (un->un_flags & AX772) {
508 axe_ax88772_init(sc);
509 } else if (un->un_flags & AX772A) {
510 axe_ax88772a_init(sc);
511 } else if (un->un_flags & AX772B) {
512 axe_ax88772b_init(sc);
513 return;
514 } else {
515 cmd = AXE_172_CMD_READ_NODEID;
516 }
517
518 if (axe_cmd(sc, cmd, 0, 0, un->un_eaddr)) {
519 aprint_error_dev(un->un_dev,
520 "failed to read ethernet address\n");
521 }
522 }
523
524
525 static void
526 axe_reset(struct usbnet *un)
527 {
528
529 usbnet_isowned_mii(un);
530
531 if (usbnet_isdying(un))
532 return;
533
534 /*
535 * softnet_lock can be taken when NET_MPAFE is not defined when calling
536 * if_addr_init -> if_init. This doesn't mix well with the
537 * usbd_delay_ms calls in the init routines as things like nd6_slowtimo
538 * can fire during the wait and attempt to take softnet_lock and then
539 * block the softclk thread meaning the wait never ends.
540 */
541 #ifndef NET_MPSAFE
542 /* XXX What to reset? */
543
544 /* Wait a little while for the chip to get its brains in order. */
545 DELAY(1000);
546 #else
547 axe_ax_init(un);
548 #endif
549 }
550
551 static int
552 axe_get_phyno(struct axe_softc *sc, int sel)
553 {
554 int phyno;
555
556 switch (AXE_PHY_TYPE(sc->axe_phyaddrs[sel])) {
557 case PHY_TYPE_100_HOME:
558 /* FALLTHROUGH */
559 case PHY_TYPE_GIG:
560 phyno = AXE_PHY_NO(sc->axe_phyaddrs[sel]);
561 break;
562 case PHY_TYPE_SPECIAL:
563 /* FALLTHROUGH */
564 case PHY_TYPE_RSVD:
565 /* FALLTHROUGH */
566 case PHY_TYPE_NON_SUP:
567 /* FALLTHROUGH */
568 default:
569 phyno = -1;
570 break;
571 }
572
573 return phyno;
574 }
575
576 #define AXE_GPIO_WRITE(x, y) do { \
577 axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, (x), NULL); \
578 usbd_delay_ms(sc->axe_un.un_udev, hztoms(y)); \
579 } while (0)
580
581 static void
582 axe_ax88178_init(struct axe_softc *sc)
583 {
584 AXEHIST_FUNC(); AXEHIST_CALLED();
585 struct usbnet * const un = &sc->axe_un;
586 int gpio0, ledmode, phymode;
587 uint16_t eeprom, val;
588
589 axe_cmd(sc, AXE_CMD_SROM_WR_ENABLE, 0, 0, NULL);
590 /* XXX magic */
591 if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, 0x0017, &eeprom) != 0)
592 eeprom = 0xffff;
593 axe_cmd(sc, AXE_CMD_SROM_WR_DISABLE, 0, 0, NULL);
594
595 eeprom = le16toh(eeprom);
596
597 DPRINTF("EEPROM is %#jx", eeprom, 0, 0, 0);
598
599 /* if EEPROM is invalid we have to use to GPIO0 */
600 if (eeprom == 0xffff) {
601 phymode = AXE_PHY_MODE_MARVELL;
602 gpio0 = 1;
603 ledmode = 0;
604 } else {
605 phymode = eeprom & 0x7f;
606 gpio0 = (eeprom & 0x80) ? 0 : 1;
607 ledmode = eeprom >> 8;
608 }
609
610 DPRINTF("use gpio0: %jd, phymode %jd", gpio0, phymode, 0, 0);
611
612 /* Program GPIOs depending on PHY hardware. */
613 switch (phymode) {
614 case AXE_PHY_MODE_MARVELL:
615 if (gpio0 == 1) {
616 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0_EN,
617 hz / 32);
618 AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
619 hz / 32);
620 AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2_EN, hz / 4);
621 AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
622 hz / 32);
623 } else {
624 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
625 AXE_GPIO1_EN, hz / 3);
626 if (ledmode == 1) {
627 AXE_GPIO_WRITE(AXE_GPIO1_EN, hz / 3);
628 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN,
629 hz / 3);
630 } else {
631 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
632 AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
633 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
634 AXE_GPIO2_EN, hz / 4);
635 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
636 AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
637 }
638 }
639 break;
640 case AXE_PHY_MODE_CICADA:
641 case AXE_PHY_MODE_CICADA_V2:
642 case AXE_PHY_MODE_CICADA_V2_ASIX:
643 if (gpio0 == 1)
644 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0 |
645 AXE_GPIO0_EN, hz / 32);
646 else
647 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
648 AXE_GPIO1_EN, hz / 32);
649 break;
650 case AXE_PHY_MODE_AGERE:
651 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
652 AXE_GPIO1_EN, hz / 32);
653 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
654 AXE_GPIO2_EN, hz / 32);
655 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2_EN, hz / 4);
656 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
657 AXE_GPIO2_EN, hz / 32);
658 break;
659 case AXE_PHY_MODE_REALTEK_8211CL:
660 case AXE_PHY_MODE_REALTEK_8211BN:
661 case AXE_PHY_MODE_REALTEK_8251CL:
662 val = gpio0 == 1 ? AXE_GPIO0 | AXE_GPIO0_EN :
663 AXE_GPIO1 | AXE_GPIO1_EN;
664 AXE_GPIO_WRITE(val, hz / 32);
665 AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
666 AXE_GPIO_WRITE(val | AXE_GPIO2_EN, hz / 4);
667 AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
668 if (phymode == AXE_PHY_MODE_REALTEK_8211CL) {
669 axe_mii_write_reg(un, un->un_phyno, 0x1F, 0x0005);
670 axe_mii_write_reg(un, un->un_phyno, 0x0C, 0x0000);
671 axe_mii_read_reg(un, un->un_phyno, 0x0001, &val);
672 axe_mii_write_reg(un, un->un_phyno, 0x01, val | 0x0080);
673 axe_mii_write_reg(un, un->un_phyno, 0x1F, 0x0000);
674 }
675 break;
676 default:
677 /* Unknown PHY model or no need to program GPIOs. */
678 break;
679 }
680
681 /* soft reset */
682 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
683 usbd_delay_ms(un->un_udev, 150);
684 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
685 AXE_SW_RESET_PRL | AXE_178_RESET_MAGIC, NULL);
686 usbd_delay_ms(un->un_udev, 150);
687 /* Enable MII/GMII/RGMII interface to work with external PHY. */
688 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0, NULL);
689 usbd_delay_ms(un->un_udev, 10);
690 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
691 }
692
693 static void
694 axe_ax88772_init(struct axe_softc *sc)
695 {
696 AXEHIST_FUNC(); AXEHIST_CALLED();
697 struct usbnet * const un = &sc->axe_un;
698
699 axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x00b0, NULL);
700 usbd_delay_ms(un->un_udev, 40);
701
702 if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
703 /* ask for the embedded PHY */
704 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
705 AXE_SW_PHY_SELECT_EMBEDDED, NULL);
706 usbd_delay_ms(un->un_udev, 10);
707
708 /* power down and reset state, pin reset state */
709 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
710 usbd_delay_ms(un->un_udev, 60);
711
712 /* power down/reset state, pin operating state */
713 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
714 AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
715 usbd_delay_ms(un->un_udev, 150);
716
717 /* power up, reset */
718 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRL, NULL);
719
720 /* power up, operating */
721 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
722 AXE_SW_RESET_IPRL | AXE_SW_RESET_PRL, NULL);
723 } else {
724 /* ask for external PHY */
725 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_EXT,
726 NULL);
727 usbd_delay_ms(un->un_udev, 10);
728
729 /* power down internal PHY */
730 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
731 AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
732 }
733
734 usbd_delay_ms(un->un_udev, 150);
735 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
736 }
737
738 static void
739 axe_ax88772_phywake(struct axe_softc *sc)
740 {
741 AXEHIST_FUNC(); AXEHIST_CALLED();
742 struct usbnet * const un = &sc->axe_un;
743
744 if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
745 /* Manually select internal(embedded) PHY - MAC mode. */
746 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
747 AXE_SW_PHY_SELECT_EMBEDDED, NULL);
748 usbd_delay_ms(un->un_udev, hztoms(hz / 32));
749 } else {
750 /*
751 * Manually select external PHY - MAC mode.
752 * Reverse MII/RMII is for AX88772A PHY mode.
753 */
754 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_SS_ENB |
755 AXE_SW_PHY_SELECT_EXT | AXE_SW_PHY_SELECT_SS_MII, NULL);
756 usbd_delay_ms(un->un_udev, hztoms(hz / 32));
757 }
758
759 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPPD |
760 AXE_SW_RESET_IPRL, NULL);
761
762 /* T1 = min 500ns everywhere */
763 usbd_delay_ms(un->un_udev, 150);
764
765 /* Take PHY out of power down. */
766 if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
767 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
768 } else {
769 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRTE, NULL);
770 }
771
772 /* 772 T2 is 60ms. 772A T2 is 160ms, 772B T2 is 600ms */
773 usbd_delay_ms(un->un_udev, 600);
774
775 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
776
777 /* T3 = 500ns everywhere */
778 usbd_delay_ms(un->un_udev, hztoms(hz / 32));
779 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
780 usbd_delay_ms(un->un_udev, hztoms(hz / 32));
781 }
782
783 static void
784 axe_ax88772a_init(struct axe_softc *sc)
785 {
786 AXEHIST_FUNC(); AXEHIST_CALLED();
787
788 /* Reload EEPROM. */
789 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM, hz / 32);
790 axe_ax88772_phywake(sc);
791 /* Stop MAC. */
792 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
793 }
794
795 static void
796 axe_ax88772b_init(struct axe_softc *sc)
797 {
798 AXEHIST_FUNC(); AXEHIST_CALLED();
799 struct usbnet * const un = &sc->axe_un;
800 uint16_t eeprom;
801 int i;
802
803 /* Reload EEPROM. */
804 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM , hz / 32);
805
806 /*
807 * Save PHY power saving configuration(high byte) and
808 * clear EEPROM checksum value(low byte).
809 */
810 if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, AXE_EEPROM_772B_PHY_PWRCFG,
811 &eeprom)) {
812 aprint_error_dev(un->un_dev, "failed to read eeprom\n");
813 return;
814 }
815
816 sc->sc_pwrcfg = le16toh(eeprom) & 0xFF00;
817
818 /*
819 * Auto-loaded default station address from internal ROM is
820 * 00:00:00:00:00:00 such that an explicit access to EEPROM
821 * is required to get real station address.
822 */
823 uint8_t *eaddr = un->un_eaddr;
824 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
825 if (axe_cmd(sc, AXE_CMD_SROM_READ, 0,
826 AXE_EEPROM_772B_NODE_ID + i, &eeprom)) {
827 aprint_error_dev(un->un_dev,
828 "failed to read eeprom\n");
829 eeprom = 0;
830 }
831 eeprom = le16toh(eeprom);
832 *eaddr++ = (uint8_t)(eeprom & 0xFF);
833 *eaddr++ = (uint8_t)((eeprom >> 8) & 0xFF);
834 }
835 /* Wakeup PHY. */
836 axe_ax88772_phywake(sc);
837 /* Stop MAC. */
838 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
839 }
840
841 #undef AXE_GPIO_WRITE
842
843 /*
844 * Probe for a AX88172 chip.
845 */
846 static int
847 axe_match(device_t parent, cfdata_t match, void *aux)
848 {
849 struct usb_attach_arg *uaa = aux;
850
851 return axe_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL ?
852 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
853 }
854
855 /*
856 * Attach the interface. Allocate softc structures, do ifmedia
857 * setup and ethernet/BPF attach.
858 */
859 static void
860 axe_attach(device_t parent, device_t self, void *aux)
861 {
862 AXEHIST_FUNC(); AXEHIST_CALLED();
863 USBNET_MII_DECL_DEFAULT(unm);
864 struct axe_softc *sc = device_private(self);
865 struct usbnet * const un = &sc->axe_un;
866 struct usb_attach_arg *uaa = aux;
867 struct usbd_device *dev = uaa->uaa_device;
868 usbd_status err;
869 usb_interface_descriptor_t *id;
870 usb_endpoint_descriptor_t *ed;
871 char *devinfop;
872 unsigned bufsz;
873 int i;
874
875 KASSERT((void *)sc == un);
876
877 aprint_naive("\n");
878 aprint_normal("\n");
879 devinfop = usbd_devinfo_alloc(dev, 0);
880 aprint_normal_dev(self, "%s\n", devinfop);
881 usbd_devinfo_free(devinfop);
882
883 un->un_dev = self;
884 un->un_udev = dev;
885 un->un_sc = sc;
886 un->un_ops = &axe_ops;
887 un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
888 un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
889 un->un_rx_list_cnt = AXE_RX_LIST_CNT;
890 un->un_tx_list_cnt = AXE_TX_LIST_CNT;
891
892 err = usbd_set_config_no(dev, AXE_CONFIG_NO, 1);
893 if (err) {
894 aprint_error_dev(self, "failed to set configuration"
895 ", err=%s\n", usbd_errstr(err));
896 return;
897 }
898
899 un->un_flags = axe_lookup(uaa->uaa_vendor, uaa->uaa_product)->axe_flags;
900
901 err = usbd_device2interface_handle(dev, AXE_IFACE_IDX, &un->un_iface);
902 if (err) {
903 aprint_error_dev(self, "getting interface handle failed\n");
904 return;
905 }
906
907 id = usbd_get_interface_descriptor(un->un_iface);
908
909 /* decide on what our bufsize will be */
910 if (AXE_IS_178_FAMILY(un))
911 bufsz = (un->un_udev->ud_speed == USB_SPEED_HIGH) ?
912 AXE_178_MAX_BUFSZ : AXE_178_MIN_BUFSZ;
913 else
914 bufsz = AXE_172_BUFSZ;
915 un->un_rx_bufsz = un->un_tx_bufsz = bufsz;
916
917 un->un_ed[USBNET_ENDPT_RX] = 0;
918 un->un_ed[USBNET_ENDPT_TX] = 0;
919 un->un_ed[USBNET_ENDPT_INTR] = 0;
920
921 /* Find endpoints. */
922 for (i = 0; i < id->bNumEndpoints; i++) {
923 ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
924 if (ed == NULL) {
925 aprint_error_dev(self, "couldn't get ep %d\n", i);
926 return;
927 }
928 const uint8_t xt = UE_GET_XFERTYPE(ed->bmAttributes);
929 const uint8_t dir = UE_GET_DIR(ed->bEndpointAddress);
930
931 if (dir == UE_DIR_IN && xt == UE_BULK &&
932 un->un_ed[USBNET_ENDPT_RX] == 0) {
933 un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
934 } else if (dir == UE_DIR_OUT && xt == UE_BULK &&
935 un->un_ed[USBNET_ENDPT_TX] == 0) {
936 un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
937 } else if (dir == UE_DIR_IN && xt == UE_INTERRUPT) {
938 un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress;
939 }
940 }
941
942 /* Set these up now for axe_cmd(). */
943 usbnet_attach(un, "axedet");
944
945 /* We need the PHYID for init dance in some cases */
946 usbnet_lock_mii(un);
947 if (axe_cmd(sc, AXE_CMD_READ_PHYID, 0, 0, &sc->axe_phyaddrs)) {
948 aprint_error_dev(self, "failed to read phyaddrs\n");
949
950 return;
951 }
952
953 DPRINTF(" phyaddrs[0]: %jx phyaddrs[1]: %jx",
954 sc->axe_phyaddrs[0], sc->axe_phyaddrs[1], 0, 0);
955 un->un_phyno = axe_get_phyno(sc, AXE_PHY_SEL_PRI);
956 if (un->un_phyno == -1)
957 un->un_phyno = axe_get_phyno(sc, AXE_PHY_SEL_SEC);
958 if (un->un_phyno == -1) {
959 DPRINTF(" no valid PHY address found, assuming PHY address 0",
960 0, 0, 0, 0);
961 un->un_phyno = 0;
962 }
963
964 /* Initialize controller and get station address. */
965
966 axe_ax_init(un);
967
968 /*
969 * Fetch IPG values.
970 */
971 if (un->un_flags & (AX772A | AX772B)) {
972 /* Set IPG values. */
973 sc->axe_ipgs[0] = AXE_IPG0_DEFAULT;
974 sc->axe_ipgs[1] = AXE_IPG1_DEFAULT;
975 sc->axe_ipgs[2] = AXE_IPG2_DEFAULT;
976 } else {
977 if (axe_cmd(sc, AXE_CMD_READ_IPG012, 0, 0, sc->axe_ipgs)) {
978 aprint_error_dev(self, "failed to read ipg\n");
979 usbnet_unlock_mii(un);
980 return;
981 }
982 }
983
984 usbnet_unlock_mii(un);
985
986 if (AXE_IS_178_FAMILY(un))
987 usbnet_ec(un)->ec_capabilities = ETHERCAP_VLAN_MTU;
988 if (un->un_flags & AX772B) {
989 struct ifnet *ifp = usbnet_ifp(un);
990
991 ifp->if_capabilities =
992 IFCAP_CSUM_IPv4_Rx |
993 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
994 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
995 /*
996 * Checksum offloading of AX88772B also works with VLAN
997 * tagged frames but there is no way to take advantage
998 * of the feature because vlan(4) assumes
999 * IFCAP_VLAN_HWTAGGING is prerequisite condition to
1000 * support checksum offloading with VLAN. VLAN hardware
1001 * tagging support of AX88772B is very limited so it's
1002 * not possible to announce IFCAP_VLAN_HWTAGGING.
1003 */
1004 }
1005 u_int adv_pause;
1006 if (un->un_flags & (AX772A | AX772B | AX178))
1007 adv_pause = MIIF_DOPAUSE;
1008 else
1009 adv_pause = 0;
1010 adv_pause = 0;
1011
1012 unm.un_mii_flags = adv_pause;
1013 usbnet_attach_ifp(un, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
1014 0, &unm);
1015 }
1016
1017 static void
1018 axe_rx_loop(struct usbnet * un, struct usbnet_chain *c, uint32_t total_len)
1019 {
1020 AXEHIST_FUNC(); AXEHIST_CALLED();
1021 struct axe_softc * const sc = usbnet_softc(un);
1022 struct ifnet *ifp = usbnet_ifp(un);
1023 uint8_t *buf = c->unc_buf;
1024
1025 do {
1026 u_int pktlen = 0;
1027 u_int rxlen = 0;
1028 int flags = 0;
1029
1030 if ((un->un_flags & AXSTD_FRAME) != 0) {
1031 struct axe_sframe_hdr hdr;
1032
1033 if (total_len < sizeof(hdr)) {
1034 if_statinc(ifp, if_ierrors);
1035 break;
1036 }
1037
1038 memcpy(&hdr, buf, sizeof(hdr));
1039
1040 DPRINTFN(20, "total_len %#jx len %#jx ilen %#jx",
1041 total_len,
1042 (le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK),
1043 (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK), 0);
1044
1045 total_len -= sizeof(hdr);
1046 buf += sizeof(hdr);
1047
1048 if (((le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK) ^
1049 (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK)) !=
1050 AXE_RH1M_RXLEN_MASK) {
1051 if_statinc(ifp, if_ierrors);
1052 break;
1053 }
1054
1055 rxlen = le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK;
1056 if (total_len < rxlen) {
1057 pktlen = total_len;
1058 total_len = 0;
1059 } else {
1060 pktlen = rxlen;
1061 rxlen = roundup2(rxlen, 2);
1062 total_len -= rxlen;
1063 }
1064
1065 } else if ((un->un_flags & AXCSUM_FRAME) != 0) {
1066 struct axe_csum_hdr csum_hdr;
1067
1068 if (total_len < sizeof(csum_hdr)) {
1069 if_statinc(ifp, if_ierrors);
1070 break;
1071 }
1072
1073 memcpy(&csum_hdr, buf, sizeof(csum_hdr));
1074
1075 csum_hdr.len = le16toh(csum_hdr.len);
1076 csum_hdr.ilen = le16toh(csum_hdr.ilen);
1077 csum_hdr.cstatus = le16toh(csum_hdr.cstatus);
1078
1079 DPRINTFN(20, "total_len %#jx len %#jx ilen %#jx"
1080 " cstatus %#jx", total_len,
1081 csum_hdr.len, csum_hdr.ilen, csum_hdr.cstatus);
1082
1083 if ((AXE_CSUM_RXBYTES(csum_hdr.len) ^
1084 AXE_CSUM_RXBYTES(csum_hdr.ilen)) !=
1085 sc->sc_lenmask) {
1086 /* we lost sync */
1087 if_statinc(ifp, if_ierrors);
1088 DPRINTFN(20, "len %#jx ilen %#jx lenmask %#jx "
1089 "err",
1090 AXE_CSUM_RXBYTES(csum_hdr.len),
1091 AXE_CSUM_RXBYTES(csum_hdr.ilen),
1092 sc->sc_lenmask, 0);
1093 break;
1094 }
1095 /*
1096 * Get total transferred frame length including
1097 * checksum header. The length should be multiple
1098 * of 4.
1099 */
1100 pktlen = AXE_CSUM_RXBYTES(csum_hdr.len);
1101 u_int len = sizeof(csum_hdr) + pktlen;
1102 len = (len + 3) & ~3;
1103 if (total_len < len) {
1104 DPRINTFN(20, "total_len %#jx < len %#jx",
1105 total_len, len, 0, 0);
1106 /* invalid length */
1107 if_statinc(ifp, if_ierrors);
1108 break;
1109 }
1110 buf += sizeof(csum_hdr);
1111
1112 const uint16_t cstatus = csum_hdr.cstatus;
1113
1114 if (cstatus & AXE_CSUM_HDR_L3_TYPE_IPV4) {
1115 if (cstatus & AXE_CSUM_HDR_L4_CSUM_ERR)
1116 flags |= M_CSUM_TCP_UDP_BAD;
1117 if (cstatus & AXE_CSUM_HDR_L3_CSUM_ERR)
1118 flags |= M_CSUM_IPv4_BAD;
1119
1120 const uint16_t l4type =
1121 cstatus & AXE_CSUM_HDR_L4_TYPE_MASK;
1122
1123 if (l4type == AXE_CSUM_HDR_L4_TYPE_TCP)
1124 flags |= M_CSUM_TCPv4;
1125 if (l4type == AXE_CSUM_HDR_L4_TYPE_UDP)
1126 flags |= M_CSUM_UDPv4;
1127 }
1128 if (total_len < len) {
1129 pktlen = total_len;
1130 total_len = 0;
1131 } else {
1132 total_len -= len;
1133 rxlen = len - sizeof(csum_hdr);
1134 }
1135 DPRINTFN(20, "total_len %#jx len %#jx pktlen %#jx"
1136 " rxlen %#jx", total_len, len, pktlen, rxlen);
1137 } else { /* AX172 */
1138 pktlen = rxlen = total_len;
1139 total_len = 0;
1140 }
1141
1142 usbnet_enqueue(un, buf, pktlen, flags, 0, 0);
1143 buf += rxlen;
1144
1145 } while (total_len > 0);
1146
1147 DPRINTFN(10, "start rx", 0, 0, 0, 0);
1148 }
1149
1150 static unsigned
1151 axe_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
1152 {
1153 AXEHIST_FUNC(); AXEHIST_CALLED();
1154 struct axe_sframe_hdr hdr, tlr;
1155 size_t hdr_len = 0, tlr_len = 0;
1156 int length, boundary;
1157
1158 usbnet_isowned_tx(un);
1159
1160 if (AXE_IS_178_FAMILY(un)) {
1161 /*
1162 * Copy the mbuf data into a contiguous buffer, leaving two
1163 * bytes at the beginning to hold the frame length.
1164 */
1165 boundary = (un->un_udev->ud_speed == USB_SPEED_HIGH) ? 512 : 64;
1166
1167 hdr.len = htole16(m->m_pkthdr.len);
1168 hdr.ilen = ~hdr.len;
1169 hdr_len = sizeof(hdr);
1170
1171 length = hdr_len + m->m_pkthdr.len;
1172
1173 if ((length % boundary) == 0) {
1174 tlr.len = 0x0000;
1175 tlr.ilen = 0xffff;
1176 tlr_len = sizeof(tlr);
1177 }
1178 DPRINTFN(20, "length %jx m_pkthdr.len %jx hdrsize %#jx",
1179 length, m->m_pkthdr.len, sizeof(hdr), 0);
1180 }
1181
1182 if ((unsigned)m->m_pkthdr.len > un->un_tx_bufsz - hdr_len - tlr_len)
1183 return 0;
1184 length = hdr_len + m->m_pkthdr.len + tlr_len;
1185
1186 if (hdr_len)
1187 memcpy(c->unc_buf, &hdr, hdr_len);
1188 m_copydata(m, 0, m->m_pkthdr.len, c->unc_buf + hdr_len);
1189 if (tlr_len)
1190 memcpy(c->unc_buf + length - tlr_len, &tlr, tlr_len);
1191
1192 return length;
1193 }
1194
1195 static void
1196 axe_csum_cfg(struct axe_softc *sc)
1197 {
1198 struct usbnet * const un = &sc->axe_un;
1199 struct ifnet * const ifp = usbnet_ifp(un);
1200 uint16_t csum1, csum2;
1201
1202 if ((un->un_flags & AX772B) != 0) {
1203 csum1 = 0;
1204 csum2 = 0;
1205 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) != 0)
1206 csum1 |= AXE_TXCSUM_IP;
1207 if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) != 0)
1208 csum1 |= AXE_TXCSUM_TCP;
1209 if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) != 0)
1210 csum1 |= AXE_TXCSUM_UDP;
1211 if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) != 0)
1212 csum1 |= AXE_TXCSUM_TCPV6;
1213 if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) != 0)
1214 csum1 |= AXE_TXCSUM_UDPV6;
1215 axe_cmd(sc, AXE_772B_CMD_WRITE_TXCSUM, csum2, csum1, NULL);
1216 csum1 = 0;
1217 csum2 = 0;
1218
1219 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0)
1220 csum1 |= AXE_RXCSUM_IP;
1221 if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0)
1222 csum1 |= AXE_RXCSUM_TCP;
1223 if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0)
1224 csum1 |= AXE_RXCSUM_UDP;
1225 if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0)
1226 csum1 |= AXE_RXCSUM_TCPV6;
1227 if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)
1228 csum1 |= AXE_RXCSUM_UDPV6;
1229 axe_cmd(sc, AXE_772B_CMD_WRITE_RXCSUM, csum2, csum1, NULL);
1230 }
1231 }
1232
1233 static int
1234 axe_init_locked(struct ifnet *ifp)
1235 {
1236 AXEHIST_FUNC(); AXEHIST_CALLED();
1237 struct usbnet * const un = ifp->if_softc;
1238 struct axe_softc * const sc = usbnet_softc(un);
1239 int rxmode;
1240
1241 usbnet_isowned(un);
1242
1243 if (usbnet_isdying(un))
1244 return EIO;
1245
1246 /* Cancel pending I/O */
1247 usbnet_stop(un, ifp, 1);
1248
1249 usbnet_lock_mii_un_locked(un);
1250
1251 /* Reset the ethernet interface. */
1252 axe_reset(un);
1253
1254 #if 0
1255 ret = asix_write_gpio(dev, AX_GPIO_RSE | AX_GPIO_GPO_2 |
1256 AX_GPIO_GPO2EN, 5, in_pm);
1257 #endif
1258 /* Set MAC address and transmitter IPG values. */
1259 if (AXE_IS_178_FAMILY(un)) {
1260 axe_cmd(sc, AXE_178_CMD_WRITE_NODEID, 0, 0, un->un_eaddr);
1261 axe_cmd(sc, AXE_178_CMD_WRITE_IPG012, sc->axe_ipgs[2],
1262 (sc->axe_ipgs[1] << 8) | (sc->axe_ipgs[0]), NULL);
1263 } else {
1264 axe_cmd(sc, AXE_172_CMD_WRITE_NODEID, 0, 0, un->un_eaddr);
1265 axe_cmd(sc, AXE_172_CMD_WRITE_IPG0, 0, sc->axe_ipgs[0], NULL);
1266 axe_cmd(sc, AXE_172_CMD_WRITE_IPG1, 0, sc->axe_ipgs[1], NULL);
1267 axe_cmd(sc, AXE_172_CMD_WRITE_IPG2, 0, sc->axe_ipgs[2], NULL);
1268 }
1269 if (AXE_IS_178_FAMILY(un)) {
1270 un->un_flags &= ~(AXSTD_FRAME | AXCSUM_FRAME);
1271 if ((un->un_flags & AX772B) != 0 &&
1272 (ifp->if_capenable & AX_RXCSUM) != 0) {
1273 sc->sc_lenmask = AXE_CSUM_HDR_LEN_MASK;
1274 un->un_flags |= AXCSUM_FRAME;
1275 } else {
1276 sc->sc_lenmask = AXE_HDR_LEN_MASK;
1277 un->un_flags |= AXSTD_FRAME;
1278 }
1279 }
1280
1281 /* Configure TX/RX checksum offloading. */
1282 axe_csum_cfg(sc);
1283
1284 if (un->un_flags & AX772B) {
1285 /* AX88772B uses different maximum frame burst configuration. */
1286 axe_cmd(sc, AXE_772B_CMD_RXCTL_WRITE_CFG,
1287 ax88772b_mfb_table[AX88772B_MFB_16K].threshold,
1288 ax88772b_mfb_table[AX88772B_MFB_16K].byte_cnt, NULL);
1289 }
1290 /* Enable receiver, set RX mode */
1291 rxmode = (AXE_RXCMD_BROADCAST | AXE_RXCMD_MULTICAST | AXE_RXCMD_ENABLE);
1292 if (AXE_IS_178_FAMILY(un)) {
1293 if (un->un_flags & AX772B) {
1294 /*
1295 * Select RX header format type 1. Aligning IP
1296 * header on 4 byte boundary is not needed when
1297 * checksum offloading feature is not used
1298 * because we always copy the received frame in
1299 * RX handler. When RX checksum offloading is
1300 * active, aligning IP header is required to
1301 * reflect actual frame length including RX
1302 * header size.
1303 */
1304 rxmode |= AXE_772B_RXCMD_HDR_TYPE_1;
1305 if (un->un_flags & AXCSUM_FRAME)
1306 rxmode |= AXE_772B_RXCMD_IPHDR_ALIGN;
1307 } else {
1308 /*
1309 * Default Rx buffer size is too small to get
1310 * maximum performance.
1311 */
1312 #if 0
1313 if (un->un_udev->ud_speed == USB_SPEED_HIGH) {
1314 /* Largest possible USB buffer size for AX88178 */
1315 }
1316 #endif
1317 rxmode |= AXE_178_RXCMD_MFB_16384;
1318 }
1319 } else {
1320 rxmode |= AXE_172_RXCMD_UNICAST;
1321 }
1322
1323 DPRINTF("rxmode %#jx", rxmode, 0, 0, 0);
1324
1325 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
1326
1327 /* Accept multicast frame or run promisc. */
1328 axe_setiff_locked(un);
1329
1330 usbnet_unlock_mii_un_locked(un);
1331
1332 return usbnet_init_rx_tx(un);
1333 }
1334
1335 static int
1336 axe_init(struct ifnet *ifp)
1337 {
1338 struct usbnet * const un = ifp->if_softc;
1339
1340 usbnet_lock(un);
1341 int ret = axe_init_locked(ifp);
1342 usbnet_unlock(un);
1343
1344 return ret;
1345 }
1346
1347 static int
1348 axe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1349 {
1350 struct usbnet * const un = ifp->if_softc;
1351
1352 switch (cmd) {
1353 case SIOCADDMULTI:
1354 case SIOCDELMULTI:
1355 axe_setiff(un);
1356 break;
1357 default:
1358 break;
1359 }
1360
1361 return 0;
1362 }
1363
1364 static void
1365 axe_stop(struct ifnet *ifp, int disable)
1366 {
1367 struct usbnet * const un = ifp->if_softc;
1368
1369 usbnet_lock_mii_un_locked(un);
1370 axe_reset(un);
1371 usbnet_unlock_mii_un_locked(un);
1372 }
1373
1374 #ifdef _MODULE
1375 #include "ioconf.c"
1376 #endif
1377
1378 USBNET_MODULE(axe)
1379