Home | History | Annotate | Line # | Download | only in usb
if_axe.c revision 1.130
      1 /*	$NetBSD: if_axe.c,v 1.130 2020/03/15 23:04:50 thorpej Exp $	*/
      2 /*	$OpenBSD: if_axe.c,v 1.137 2016/04/13 11:03:37 mpi Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2005, 2006, 2007 Jonathan Gray <jsg (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Copyright (c) 1997, 1998, 1999, 2000-2003
     22  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
     23  *
     24  * Redistribution and use in source and binary forms, with or without
     25  * modification, are permitted provided that the following conditions
     26  * are met:
     27  * 1. Redistributions of source code must retain the above copyright
     28  *    notice, this list of conditions and the following disclaimer.
     29  * 2. Redistributions in binary form must reproduce the above copyright
     30  *    notice, this list of conditions and the following disclaimer in the
     31  *    documentation and/or other materials provided with the distribution.
     32  * 3. All advertising materials mentioning features or use of this software
     33  *    must display the following acknowledgement:
     34  *	This product includes software developed by Bill Paul.
     35  * 4. Neither the name of the author nor the names of any co-contributors
     36  *    may be used to endorse or promote products derived from this software
     37  *    without specific prior written permission.
     38  *
     39  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     40  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     42  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     43  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     44  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     45  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     46  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     47  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     48  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     49  * THE POSSIBILITY OF SUCH DAMAGE.
     50  */
     51 
     52 /*
     53  * ASIX Electronics AX88172/AX88178/AX88778 USB 2.0 ethernet driver.
     54  * Used in the LinkSys USB200M and various other adapters.
     55  *
     56  * Written by Bill Paul <wpaul (at) windriver.com>
     57  * Senior Engineer
     58  * Wind River Systems
     59  */
     60 
     61 /*
     62  * The AX88172 provides USB ethernet supports at 10 and 100Mbps.
     63  * It uses an external PHY (reference designs use a RealTek chip),
     64  * and has a 64-bit multicast hash filter. There is some information
     65  * missing from the manual which one needs to know in order to make
     66  * the chip function:
     67  *
     68  * - You must set bit 7 in the RX control register, otherwise the
     69  *   chip won't receive any packets.
     70  * - You must initialize all 3 IPG registers, or you won't be able
     71  *   to send any packets.
     72  *
     73  * Note that this device appears to only support loading the station
     74  * address via autoload from the EEPROM (i.e. there's no way to manually
     75  * set it).
     76  *
     77  * (Adam Weinberger wanted me to name this driver if_gir.c.)
     78  */
     79 
     80 /*
     81  * Ax88178 and Ax88772 support backported from the OpenBSD driver.
     82  * 2007/02/12, J.R. Oldroyd, fbsd (at) opal.com
     83  *
     84  * Manual here:
     85  * http://www.asix.com.tw/FrootAttach/datasheet/AX88178_datasheet_Rev10.pdf
     86  * http://www.asix.com.tw/FrootAttach/datasheet/AX88772_datasheet_Rev10.pdf
     87  */
     88 
     89 #include <sys/cdefs.h>
     90 __KERNEL_RCSID(0, "$NetBSD: if_axe.c,v 1.130 2020/03/15 23:04:50 thorpej Exp $");
     91 
     92 #ifdef _KERNEL_OPT
     93 #include "opt_usb.h"
     94 #include "opt_net_mpsafe.h"
     95 #endif
     96 
     97 #include <sys/param.h>
     98 
     99 #include <dev/usb/usbnet.h>
    100 #include <dev/usb/usbhist.h>
    101 #include <dev/usb/if_axereg.h>
    102 
    103 struct axe_type {
    104 	struct usb_devno	axe_dev;
    105 	uint16_t		axe_flags;
    106 };
    107 
    108 struct axe_softc {
    109 	struct usbnet		axe_un;
    110 
    111 	/* usbnet:un_flags values */
    112 #define AX178		__BIT(0)	/* AX88178 */
    113 #define AX772		__BIT(1)	/* AX88772 */
    114 #define AX772A		__BIT(2)	/* AX88772A */
    115 #define AX772B		__BIT(3)	/* AX88772B */
    116 #define	AXSTD_FRAME	__BIT(12)
    117 #define	AXCSUM_FRAME	__BIT(13)
    118 
    119 	uint8_t			axe_ipgs[3];
    120 	uint8_t 		axe_phyaddrs[2];
    121 	uint16_t		sc_pwrcfg;
    122 	uint16_t		sc_lenmask;
    123 
    124 };
    125 
    126 #define AXE_IS_178_FAMILY(un)				\
    127 	((un)->un_flags & (AX178 | AX772 | AX772A | AX772B))
    128 
    129 #define AXE_IS_772(un)					\
    130 	((un)->un_flags & (AX772 | AX772A | AX772B))
    131 
    132 #define AXE_IS_172(un) (AXE_IS_178_FAMILY(un) == 0)
    133 
    134 #define AX_RXCSUM					\
    135     (IFCAP_CSUM_IPv4_Rx | 				\
    136      IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |	\
    137      IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)
    138 
    139 #define AX_TXCSUM					\
    140     (IFCAP_CSUM_IPv4_Tx | 				\
    141      IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |	\
    142      IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)
    143 
    144 /*
    145  * AXE_178_MAX_FRAME_BURST
    146  * max frame burst size for Ax88178 and Ax88772
    147  *	0	2048 bytes
    148  *	1	4096 bytes
    149  *	2	8192 bytes
    150  *	3	16384 bytes
    151  * use the largest your system can handle without USB stalling.
    152  *
    153  * NB: 88772 parts appear to generate lots of input errors with
    154  * a 2K rx buffer and 8K is only slightly faster than 4K on an
    155  * EHCI port on a T42 so change at your own risk.
    156  */
    157 #define AXE_178_MAX_FRAME_BURST	1
    158 
    159 
    160 #ifdef USB_DEBUG
    161 #ifndef AXE_DEBUG
    162 #define axedebug 0
    163 #else
    164 static int axedebug = 0;
    165 
    166 SYSCTL_SETUP(sysctl_hw_axe_setup, "sysctl hw.axe setup")
    167 {
    168 	int err;
    169 	const struct sysctlnode *rnode;
    170 	const struct sysctlnode *cnode;
    171 
    172 	err = sysctl_createv(clog, 0, NULL, &rnode,
    173 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "axe",
    174 	    SYSCTL_DESCR("axe global controls"),
    175 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
    176 
    177 	if (err)
    178 		goto fail;
    179 
    180 	/* control debugging printfs */
    181 	err = sysctl_createv(clog, 0, &rnode, &cnode,
    182 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
    183 	    "debug", SYSCTL_DESCR("Enable debugging output"),
    184 	    NULL, 0, &axedebug, sizeof(axedebug), CTL_CREATE, CTL_EOL);
    185 	if (err)
    186 		goto fail;
    187 
    188 	return;
    189 fail:
    190 	aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
    191 }
    192 
    193 #endif /* AXE_DEBUG */
    194 #endif /* USB_DEBUG */
    195 
    196 #define DPRINTF(FMT,A,B,C,D)	USBHIST_LOGN(axedebug,1,FMT,A,B,C,D)
    197 #define DPRINTFN(N,FMT,A,B,C,D)	USBHIST_LOGN(axedebug,N,FMT,A,B,C,D)
    198 #define AXEHIST_FUNC()		USBHIST_FUNC()
    199 #define AXEHIST_CALLED(name)	USBHIST_CALLED(axedebug)
    200 
    201 /*
    202  * Various supported device vendors/products.
    203  */
    204 static const struct axe_type axe_devs[] = {
    205 	{ { USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_UFE2000 }, 0 },
    206 	{ { USB_VENDOR_ACERCM,		USB_PRODUCT_ACERCM_EP1427X2 }, 0 },
    207 	{ { USB_VENDOR_APPLE,		USB_PRODUCT_APPLE_ETHERNET }, AX772 },
    208 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88172 }, 0 },
    209 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772 }, AX772 },
    210 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772A }, AX772 },
    211 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772B }, AX772B },
    212 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772B_1 }, AX772B },
    213 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88178 }, AX178 },
    214 	{ { USB_VENDOR_ATEN,		USB_PRODUCT_ATEN_UC210T }, 0 },
    215 	{ { USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D5055 }, AX178 },
    216 	{ { USB_VENDOR_BILLIONTON,	USB_PRODUCT_BILLIONTON_USB2AR }, 0},
    217 	{ { USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_USB200MV2 }, AX772A },
    218 	{ { USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_FETHER_USB2_TX }, 0 },
    219 	{ { USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DUBE100 }, 0 },
    220 	{ { USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DUBE100B1 }, AX772 },
    221 	{ { USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DUBE100B1 }, AX772 },
    222 	{ { USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DUBE100C1 }, AX772B },
    223 	{ { USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_GWUSB2E }, 0 },
    224 	{ { USB_VENDOR_IODATA,		USB_PRODUCT_IODATA_ETGUS2 }, AX178 },
    225 	{ { USB_VENDOR_JVC,		USB_PRODUCT_JVC_MP_PRX1 }, 0 },
    226 	{ { USB_VENDOR_LENOVO,		USB_PRODUCT_LENOVO_ETHERNET }, AX772B },
    227 	{ { USB_VENDOR_LINKSYS,		USB_PRODUCT_LINKSYS_HG20F9 }, AX772B },
    228 	{ { USB_VENDOR_LINKSYS2,	USB_PRODUCT_LINKSYS2_USB200M }, 0 },
    229 	{ { USB_VENDOR_LINKSYS4,	USB_PRODUCT_LINKSYS4_USB1000 }, AX178 },
    230 	{ { USB_VENDOR_LOGITEC,		USB_PRODUCT_LOGITEC_LAN_GTJU2 }, AX178 },
    231 	{ { USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_LUAU2GT }, AX178 },
    232 	{ { USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_LUAU2KTX }, 0 },
    233 	{ { USB_VENDOR_MSI,		USB_PRODUCT_MSI_AX88772A }, AX772 },
    234 	{ { USB_VENDOR_NETGEAR,		USB_PRODUCT_NETGEAR_FA120 }, 0 },
    235 	{ { USB_VENDOR_OQO,		USB_PRODUCT_OQO_ETHER01PLUS }, AX772 },
    236 	{ { USB_VENDOR_PLANEX3,		USB_PRODUCT_PLANEX3_GU1000T }, AX178 },
    237 	{ { USB_VENDOR_SITECOM,		USB_PRODUCT_SITECOM_LN029 }, 0 },
    238 	{ { USB_VENDOR_SITECOMEU,	USB_PRODUCT_SITECOMEU_LN028 }, AX178 },
    239 	{ { USB_VENDOR_SITECOMEU,	USB_PRODUCT_SITECOMEU_LN031 }, AX178 },
    240 	{ { USB_VENDOR_SYSTEMTALKS,	USB_PRODUCT_SYSTEMTALKS_SGCX2UL }, 0 },
    241 };
    242 #define axe_lookup(v, p) ((const struct axe_type *)usb_lookup(axe_devs, v, p))
    243 
    244 static const struct ax88772b_mfb ax88772b_mfb_table[] = {
    245 	{ 0x8000, 0x8001, 2048 },
    246 	{ 0x8100, 0x8147, 4096 },
    247 	{ 0x8200, 0x81EB, 6144 },
    248 	{ 0x8300, 0x83D7, 8192 },
    249 	{ 0x8400, 0x851E, 16384 },
    250 	{ 0x8500, 0x8666, 20480 },
    251 	{ 0x8600, 0x87AE, 24576 },
    252 	{ 0x8700, 0x8A3D, 32768 }
    253 };
    254 
    255 static int	axe_match(device_t, cfdata_t, void *);
    256 static void	axe_attach(device_t, device_t, void *);
    257 
    258 CFATTACH_DECL_NEW(axe, sizeof(struct axe_softc),
    259 	axe_match, axe_attach, usbnet_detach, usbnet_activate);
    260 
    261 static void	axe_uno_stop(struct ifnet *, int);
    262 static int	axe_uno_ioctl(struct ifnet *, u_long, void *);
    263 static int	axe_uno_init(struct ifnet *);
    264 static int	axe_uno_mii_read_reg(struct usbnet *, int, int, uint16_t *);
    265 static int	axe_uno_mii_write_reg(struct usbnet *, int, int, uint16_t);
    266 static void	axe_uno_mii_statchg(struct ifnet *);
    267 static void	axe_uno_rx_loop(struct usbnet *, struct usbnet_chain *,
    268 				uint32_t);
    269 static unsigned axe_uno_tx_prepare(struct usbnet *, struct mbuf *,
    270 				   struct usbnet_chain *);
    271 
    272 static void	axe_ax88178_init(struct axe_softc *);
    273 static void	axe_ax88772_init(struct axe_softc *);
    274 static void	axe_ax88772a_init(struct axe_softc *);
    275 static void	axe_ax88772b_init(struct axe_softc *);
    276 
    277 static const struct usbnet_ops axe_ops = {
    278 	.uno_stop = axe_uno_stop,
    279 	.uno_ioctl = axe_uno_ioctl,
    280 	.uno_read_reg = axe_uno_mii_read_reg,
    281 	.uno_write_reg = axe_uno_mii_write_reg,
    282 	.uno_statchg = axe_uno_mii_statchg,
    283 	.uno_tx_prepare = axe_uno_tx_prepare,
    284 	.uno_rx_loop = axe_uno_rx_loop,
    285 	.uno_init = axe_uno_init,
    286 };
    287 
    288 static usbd_status
    289 axe_cmd(struct axe_softc *sc, int cmd, int index, int val, void *buf)
    290 {
    291 	AXEHIST_FUNC(); AXEHIST_CALLED();
    292 	struct usbnet * const un = &sc->axe_un;
    293 	usb_device_request_t req;
    294 	usbd_status err;
    295 
    296 	usbnet_isowned_core(un);
    297 
    298 	if (usbnet_isdying(un))
    299 		return -1;
    300 
    301 	DPRINTFN(20, "cmd %#jx index %#jx val %#jx", cmd, index, val, 0);
    302 
    303 	if (AXE_CMD_DIR(cmd))
    304 		req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
    305 	else
    306 		req.bmRequestType = UT_READ_VENDOR_DEVICE;
    307 	req.bRequest = AXE_CMD_CMD(cmd);
    308 	USETW(req.wValue, val);
    309 	USETW(req.wIndex, index);
    310 	USETW(req.wLength, AXE_CMD_LEN(cmd));
    311 
    312 	err = usbd_do_request(un->un_udev, &req, buf);
    313 	if (err)
    314 		DPRINTF("cmd %jd err %jd", cmd, err, 0, 0);
    315 
    316 	return err;
    317 }
    318 
    319 static int
    320 axe_uno_mii_read_reg(struct usbnet *un, int phy, int reg, uint16_t *val)
    321 {
    322 	AXEHIST_FUNC(); AXEHIST_CALLED();
    323 	struct axe_softc * const sc = usbnet_softc(un);
    324 	usbd_status err;
    325 	uint16_t data;
    326 
    327 	DPRINTFN(30, "phy %#jx reg %#jx\n", phy, reg, 0, 0);
    328 
    329 	if (un->un_phyno != phy)
    330 		return EINVAL;
    331 
    332 	axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
    333 
    334 	err = axe_cmd(sc, AXE_CMD_MII_READ_REG, reg, phy, &data);
    335 	axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
    336 
    337 	if (err) {
    338 		aprint_error_dev(un->un_dev, "read PHY failed\n");
    339 		return EIO;
    340 	}
    341 
    342 	*val = le16toh(data);
    343 	if (AXE_IS_772(un) && reg == MII_BMSR) {
    344 		/*
    345 		 * BMSR of AX88772 indicates that it supports extended
    346 		 * capability but the extended status register is
    347 		 * reserved for embedded ethernet PHY. So clear the
    348 		 * extended capability bit of BMSR.
    349 		 */
    350 		*val &= ~BMSR_EXTCAP;
    351 	}
    352 
    353 	DPRINTFN(30, "phy %#jx reg %#jx val %#jx", phy, reg, *val, 0);
    354 
    355 	return 0;
    356 }
    357 
    358 static int
    359 axe_uno_mii_write_reg(struct usbnet *un, int phy, int reg, uint16_t val)
    360 {
    361 	struct axe_softc * const sc = usbnet_softc(un);
    362 	usbd_status err;
    363 	uint16_t aval;
    364 
    365 	if (un->un_phyno != phy)
    366 		return EINVAL;
    367 
    368 	aval = htole16(val);
    369 
    370 	axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
    371 	err = axe_cmd(sc, AXE_CMD_MII_WRITE_REG, reg, phy, &aval);
    372 	axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
    373 
    374 	if (err)
    375 		return EIO;
    376 	return 0;
    377 }
    378 
    379 static void
    380 axe_uno_mii_statchg(struct ifnet *ifp)
    381 {
    382 	AXEHIST_FUNC(); AXEHIST_CALLED();
    383 
    384 	struct usbnet * const un = ifp->if_softc;
    385 	struct axe_softc * const sc = usbnet_softc(un);
    386 	struct mii_data *mii = usbnet_mii(un);
    387 	int val, err;
    388 
    389 	if (usbnet_isdying(un))
    390 		return;
    391 
    392 	val = 0;
    393 	if (AXE_IS_172(un)) {
    394 		if (mii->mii_media_active & IFM_FDX)
    395 			val |= AXE_MEDIA_FULL_DUPLEX;
    396 	} else {
    397 		if (mii->mii_media_active & IFM_FDX) {
    398 			val |= AXE_MEDIA_FULL_DUPLEX;
    399 			if (mii->mii_media_active & IFM_ETH_TXPAUSE)
    400 				val |= AXE_178_MEDIA_TXFLOW_CONTROL_EN;
    401 			if (mii->mii_media_active & IFM_ETH_RXPAUSE)
    402 				val |= AXE_178_MEDIA_RXFLOW_CONTROL_EN;
    403 		}
    404 		val |= AXE_178_MEDIA_RX_EN | AXE_178_MEDIA_MAGIC;
    405 		if (un->un_flags & AX178)
    406 			val |= AXE_178_MEDIA_ENCK;
    407 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
    408 		case IFM_1000_T:
    409 			val |= AXE_178_MEDIA_GMII | AXE_178_MEDIA_ENCK;
    410 			usbnet_set_link(un, true);
    411 			break;
    412 		case IFM_100_TX:
    413 			val |= AXE_178_MEDIA_100TX;
    414 			usbnet_set_link(un, true);
    415 			break;
    416 		case IFM_10_T:
    417 			usbnet_set_link(un, true);
    418 			break;
    419 		}
    420 	}
    421 
    422 	DPRINTF("val=%#jx", val, 0, 0, 0);
    423 	err = axe_cmd(sc, AXE_CMD_WRITE_MEDIA, 0, val, NULL);
    424 	if (err)
    425 		aprint_error_dev(un->un_dev, "media change failed\n");
    426 }
    427 
    428 static void
    429 axe_setiff_locked(struct usbnet *un)
    430 {
    431 	AXEHIST_FUNC(); AXEHIST_CALLED();
    432 	struct axe_softc * const sc = usbnet_softc(un);
    433 	struct ifnet * const ifp = usbnet_ifp(un);
    434 	struct ethercom *ec = usbnet_ec(un);
    435 	struct ether_multi *enm;
    436 	struct ether_multistep step;
    437 	uint32_t h = 0;
    438 	uint16_t rxmode;
    439 	uint8_t hashtbl[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
    440 
    441 	if (usbnet_isdying(un))
    442 		return;
    443 
    444 	if (axe_cmd(sc, AXE_CMD_RXCTL_READ, 0, 0, &rxmode)) {
    445 		aprint_error_dev(un->un_dev, "can't read rxmode");
    446 		return;
    447 	}
    448 	rxmode = le16toh(rxmode);
    449 
    450 	rxmode &=
    451 	    ~(AXE_RXCMD_ALLMULTI | AXE_RXCMD_PROMISC | AXE_RXCMD_MULTICAST);
    452 
    453 	if (ifp->if_flags & IFF_PROMISC) {
    454 		ifp->if_flags |= IFF_ALLMULTI;
    455 		goto allmulti;
    456 	}
    457 	ifp->if_flags &= ~IFF_ALLMULTI;
    458 
    459 	/* Now program new ones */
    460 	ETHER_LOCK(ec);
    461 	ETHER_FIRST_MULTI(step, ec, enm);
    462 	while (enm != NULL) {
    463 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    464 		    ETHER_ADDR_LEN) != 0) {
    465 			ETHER_UNLOCK(ec);
    466 			ifp->if_flags |= IFF_ALLMULTI;
    467 			goto allmulti;
    468 		}
    469 
    470 		h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
    471 		hashtbl[h >> 3] |= 1U << (h & 7);
    472 		ETHER_NEXT_MULTI(step, enm);
    473 	}
    474 	ETHER_UNLOCK(ec);
    475 
    476 	rxmode |= AXE_RXCMD_MULTICAST;	/* activate mcast hash filter */
    477 	axe_cmd(sc, AXE_CMD_WRITE_MCAST, 0, 0, hashtbl);
    478 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
    479 	return;
    480 
    481  allmulti:
    482 	if (ifp->if_flags & IFF_PROMISC)
    483 		rxmode |= AXE_RXCMD_PROMISC; /* run promisc. mode */
    484 	rxmode |= AXE_RXCMD_ALLMULTI;	/* accept all mcast frames */
    485 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
    486 }
    487 
    488 static void
    489 axe_ax_init(struct usbnet *un)
    490 {
    491 	struct axe_softc * const sc = usbnet_softc(un);
    492 
    493 	int cmd = AXE_178_CMD_READ_NODEID;
    494 
    495 	if (un->un_flags & AX178) {
    496 		axe_ax88178_init(sc);
    497 	} else if (un->un_flags & AX772) {
    498 		axe_ax88772_init(sc);
    499 	} else if (un->un_flags & AX772A) {
    500 		axe_ax88772a_init(sc);
    501 	} else if (un->un_flags & AX772B) {
    502 		axe_ax88772b_init(sc);
    503 		return;
    504 	} else {
    505 		cmd = AXE_172_CMD_READ_NODEID;
    506 	}
    507 
    508 	if (axe_cmd(sc, cmd, 0, 0, un->un_eaddr)) {
    509 		aprint_error_dev(un->un_dev,
    510 		    "failed to read ethernet address\n");
    511 	}
    512 }
    513 
    514 
    515 static void
    516 axe_reset(struct usbnet *un)
    517 {
    518 
    519 	usbnet_isowned_core(un);
    520 
    521 	if (usbnet_isdying(un))
    522 		return;
    523 
    524 	/*
    525 	 * softnet_lock can be taken when NET_MPAFE is not defined when calling
    526 	 * if_addr_init -> if_init.  This doesn't mix well with the
    527 	 * usbd_delay_ms calls in the init routines as things like nd6_slowtimo
    528 	 * can fire during the wait and attempt to take softnet_lock and then
    529 	 * block the softclk thread meaning the wait never ends.
    530 	 */
    531 #ifndef NET_MPSAFE
    532 	/* XXX What to reset? */
    533 
    534 	/* Wait a little while for the chip to get its brains in order. */
    535 	DELAY(1000);
    536 #else
    537 	axe_ax_init(un);
    538 #endif
    539 }
    540 
    541 static int
    542 axe_get_phyno(struct axe_softc *sc, int sel)
    543 {
    544 	int phyno;
    545 
    546 	switch (AXE_PHY_TYPE(sc->axe_phyaddrs[sel])) {
    547 	case PHY_TYPE_100_HOME:
    548 		/* FALLTHROUGH */
    549 	case PHY_TYPE_GIG:
    550 		phyno = AXE_PHY_NO(sc->axe_phyaddrs[sel]);
    551 		break;
    552 	case PHY_TYPE_SPECIAL:
    553 		/* FALLTHROUGH */
    554 	case PHY_TYPE_RSVD:
    555 		/* FALLTHROUGH */
    556 	case PHY_TYPE_NON_SUP:
    557 		/* FALLTHROUGH */
    558 	default:
    559 		phyno = -1;
    560 		break;
    561 	}
    562 
    563 	return phyno;
    564 }
    565 
    566 #define	AXE_GPIO_WRITE(x, y)	do {				\
    567 	axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, (x), NULL);		\
    568 	usbd_delay_ms(sc->axe_un.un_udev, hztoms(y));		\
    569 } while (0)
    570 
    571 static void
    572 axe_ax88178_init(struct axe_softc *sc)
    573 {
    574 	AXEHIST_FUNC(); AXEHIST_CALLED();
    575 	struct usbnet * const un = &sc->axe_un;
    576 	int gpio0, ledmode, phymode;
    577 	uint16_t eeprom, val;
    578 
    579 	axe_cmd(sc, AXE_CMD_SROM_WR_ENABLE, 0, 0, NULL);
    580 	/* XXX magic */
    581 	if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, 0x0017, &eeprom) != 0)
    582 		eeprom = 0xffff;
    583 	axe_cmd(sc, AXE_CMD_SROM_WR_DISABLE, 0, 0, NULL);
    584 
    585 	eeprom = le16toh(eeprom);
    586 
    587 	DPRINTF("EEPROM is %#jx", eeprom, 0, 0, 0);
    588 
    589 	/* if EEPROM is invalid we have to use to GPIO0 */
    590 	if (eeprom == 0xffff) {
    591 		phymode = AXE_PHY_MODE_MARVELL;
    592 		gpio0 = 1;
    593 		ledmode = 0;
    594 	} else {
    595 		phymode = eeprom & 0x7f;
    596 		gpio0 = (eeprom & 0x80) ? 0 : 1;
    597 		ledmode = eeprom >> 8;
    598 	}
    599 
    600 	DPRINTF("use gpio0: %jd, phymode %jd", gpio0, phymode, 0, 0);
    601 
    602 	/* Program GPIOs depending on PHY hardware. */
    603 	switch (phymode) {
    604 	case AXE_PHY_MODE_MARVELL:
    605 		if (gpio0 == 1) {
    606 			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0_EN,
    607 			    hz / 32);
    608 			AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
    609 			    hz / 32);
    610 			AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2_EN, hz / 4);
    611 			AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
    612 			    hz / 32);
    613 		} else {
    614 			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
    615 			    AXE_GPIO1_EN, hz / 3);
    616 			if (ledmode == 1) {
    617 				AXE_GPIO_WRITE(AXE_GPIO1_EN, hz / 3);
    618 				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN,
    619 				    hz / 3);
    620 			} else {
    621 				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
    622 				    AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
    623 				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
    624 				    AXE_GPIO2_EN, hz / 4);
    625 				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
    626 				    AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
    627 			}
    628 		}
    629 		break;
    630 	case AXE_PHY_MODE_CICADA:
    631 	case AXE_PHY_MODE_CICADA_V2:
    632 	case AXE_PHY_MODE_CICADA_V2_ASIX:
    633 		if (gpio0 == 1)
    634 			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0 |
    635 			    AXE_GPIO0_EN, hz / 32);
    636 		else
    637 			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
    638 			    AXE_GPIO1_EN, hz / 32);
    639 		break;
    640 	case AXE_PHY_MODE_AGERE:
    641 		AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
    642 		    AXE_GPIO1_EN, hz / 32);
    643 		AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
    644 		    AXE_GPIO2_EN, hz / 32);
    645 		AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2_EN, hz / 4);
    646 		AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
    647 		    AXE_GPIO2_EN, hz / 32);
    648 		break;
    649 	case AXE_PHY_MODE_REALTEK_8211CL:
    650 	case AXE_PHY_MODE_REALTEK_8211BN:
    651 	case AXE_PHY_MODE_REALTEK_8251CL:
    652 		val = gpio0 == 1 ? AXE_GPIO0 | AXE_GPIO0_EN :
    653 		    AXE_GPIO1 | AXE_GPIO1_EN;
    654 		AXE_GPIO_WRITE(val, hz / 32);
    655 		AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
    656 		AXE_GPIO_WRITE(val | AXE_GPIO2_EN, hz / 4);
    657 		AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
    658 		if (phymode == AXE_PHY_MODE_REALTEK_8211CL) {
    659 			axe_uno_mii_write_reg(un, un->un_phyno, 0x1F, 0x0005);
    660 			axe_uno_mii_write_reg(un, un->un_phyno, 0x0C, 0x0000);
    661 			axe_uno_mii_read_reg(un, un->un_phyno, 0x0001, &val);
    662 			axe_uno_mii_write_reg(un, un->un_phyno, 0x01, val | 0x0080);
    663 			axe_uno_mii_write_reg(un, un->un_phyno, 0x1F, 0x0000);
    664 		}
    665 		break;
    666 	default:
    667 		/* Unknown PHY model or no need to program GPIOs. */
    668 		break;
    669 	}
    670 
    671 	/* soft reset */
    672 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
    673 	usbd_delay_ms(un->un_udev, 150);
    674 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
    675 	    AXE_SW_RESET_PRL | AXE_178_RESET_MAGIC, NULL);
    676 	usbd_delay_ms(un->un_udev, 150);
    677 	/* Enable MII/GMII/RGMII interface to work with external PHY. */
    678 	axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0, NULL);
    679 	usbd_delay_ms(un->un_udev, 10);
    680 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
    681 }
    682 
    683 static void
    684 axe_ax88772_init(struct axe_softc *sc)
    685 {
    686 	AXEHIST_FUNC(); AXEHIST_CALLED();
    687 	struct usbnet * const un = &sc->axe_un;
    688 
    689 	axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x00b0, NULL);
    690 	usbd_delay_ms(un->un_udev, 40);
    691 
    692 	if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
    693 		/* ask for the embedded PHY */
    694 		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
    695 		    AXE_SW_PHY_SELECT_EMBEDDED, NULL);
    696 		usbd_delay_ms(un->un_udev, 10);
    697 
    698 		/* power down and reset state, pin reset state */
    699 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
    700 		usbd_delay_ms(un->un_udev, 60);
    701 
    702 		/* power down/reset state, pin operating state */
    703 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
    704 		    AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
    705 		usbd_delay_ms(un->un_udev, 150);
    706 
    707 		/* power up, reset */
    708 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRL, NULL);
    709 
    710 		/* power up, operating */
    711 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
    712 		    AXE_SW_RESET_IPRL | AXE_SW_RESET_PRL, NULL);
    713 	} else {
    714 		/* ask for external PHY */
    715 		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_EXT,
    716 		    NULL);
    717 		usbd_delay_ms(un->un_udev, 10);
    718 
    719 		/* power down internal PHY */
    720 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
    721 		    AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
    722 	}
    723 
    724 	usbd_delay_ms(un->un_udev, 150);
    725 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
    726 }
    727 
    728 static void
    729 axe_ax88772_phywake(struct axe_softc *sc)
    730 {
    731 	AXEHIST_FUNC(); AXEHIST_CALLED();
    732 	struct usbnet * const un = &sc->axe_un;
    733 
    734 	if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
    735 		/* Manually select internal(embedded) PHY - MAC mode. */
    736 		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
    737 		    AXE_SW_PHY_SELECT_EMBEDDED, NULL);
    738 		usbd_delay_ms(un->un_udev, hztoms(hz / 32));
    739 	} else {
    740 		/*
    741 		 * Manually select external PHY - MAC mode.
    742 		 * Reverse MII/RMII is for AX88772A PHY mode.
    743 		 */
    744 		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_SS_ENB |
    745 		    AXE_SW_PHY_SELECT_EXT | AXE_SW_PHY_SELECT_SS_MII, NULL);
    746 		usbd_delay_ms(un->un_udev, hztoms(hz / 32));
    747 	}
    748 
    749 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPPD |
    750 	    AXE_SW_RESET_IPRL, NULL);
    751 
    752 	/* T1 = min 500ns everywhere */
    753 	usbd_delay_ms(un->un_udev, 150);
    754 
    755 	/* Take PHY out of power down. */
    756 	if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
    757 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
    758 	} else {
    759 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRTE, NULL);
    760 	}
    761 
    762 	/* 772 T2 is 60ms. 772A T2 is 160ms, 772B T2 is 600ms */
    763 	usbd_delay_ms(un->un_udev, 600);
    764 
    765 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
    766 
    767 	/* T3 = 500ns everywhere */
    768 	usbd_delay_ms(un->un_udev, hztoms(hz / 32));
    769 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
    770 	usbd_delay_ms(un->un_udev, hztoms(hz / 32));
    771 }
    772 
    773 static void
    774 axe_ax88772a_init(struct axe_softc *sc)
    775 {
    776 	AXEHIST_FUNC(); AXEHIST_CALLED();
    777 
    778 	/* Reload EEPROM. */
    779 	AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM, hz / 32);
    780 	axe_ax88772_phywake(sc);
    781 	/* Stop MAC. */
    782 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
    783 }
    784 
    785 static void
    786 axe_ax88772b_init(struct axe_softc *sc)
    787 {
    788 	AXEHIST_FUNC(); AXEHIST_CALLED();
    789 	struct usbnet * const un = &sc->axe_un;
    790 	uint16_t eeprom;
    791 	int i;
    792 
    793 	/* Reload EEPROM. */
    794 	AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM , hz / 32);
    795 
    796 	/*
    797 	 * Save PHY power saving configuration(high byte) and
    798 	 * clear EEPROM checksum value(low byte).
    799 	 */
    800 	if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, AXE_EEPROM_772B_PHY_PWRCFG,
    801 	    &eeprom)) {
    802 		aprint_error_dev(un->un_dev, "failed to read eeprom\n");
    803 		return;
    804 	}
    805 
    806 	sc->sc_pwrcfg = le16toh(eeprom) & 0xFF00;
    807 
    808 	/*
    809 	 * Auto-loaded default station address from internal ROM is
    810 	 * 00:00:00:00:00:00 such that an explicit access to EEPROM
    811 	 * is required to get real station address.
    812 	 */
    813 	uint8_t *eaddr = un->un_eaddr;
    814 	for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
    815 		if (axe_cmd(sc, AXE_CMD_SROM_READ, 0,
    816 		    AXE_EEPROM_772B_NODE_ID + i, &eeprom)) {
    817 			aprint_error_dev(un->un_dev,
    818 			    "failed to read eeprom\n");
    819 		    eeprom = 0;
    820 		}
    821 		eeprom = le16toh(eeprom);
    822 		*eaddr++ = (uint8_t)(eeprom & 0xFF);
    823 		*eaddr++ = (uint8_t)((eeprom >> 8) & 0xFF);
    824 	}
    825 	/* Wakeup PHY. */
    826 	axe_ax88772_phywake(sc);
    827 	/* Stop MAC. */
    828 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
    829 }
    830 
    831 #undef	AXE_GPIO_WRITE
    832 
    833 /*
    834  * Probe for a AX88172 chip.
    835  */
    836 static int
    837 axe_match(device_t parent, cfdata_t match, void *aux)
    838 {
    839 	struct usb_attach_arg *uaa = aux;
    840 
    841 	return axe_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL ?
    842 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
    843 }
    844 
    845 /*
    846  * Attach the interface. Allocate softc structures, do ifmedia
    847  * setup and ethernet/BPF attach.
    848  */
    849 static void
    850 axe_attach(device_t parent, device_t self, void *aux)
    851 {
    852 	AXEHIST_FUNC(); AXEHIST_CALLED();
    853 	USBNET_MII_DECL_DEFAULT(unm);
    854 	struct axe_softc *sc = device_private(self);
    855 	struct usbnet * const un = &sc->axe_un;
    856 	struct usb_attach_arg *uaa = aux;
    857 	struct usbd_device *dev = uaa->uaa_device;
    858 	usbd_status err;
    859 	usb_interface_descriptor_t *id;
    860 	usb_endpoint_descriptor_t *ed;
    861 	char *devinfop;
    862 	unsigned bufsz;
    863 	int i;
    864 
    865 	KASSERT((void *)sc == un);
    866 
    867 	aprint_naive("\n");
    868 	aprint_normal("\n");
    869 	devinfop = usbd_devinfo_alloc(dev, 0);
    870 	aprint_normal_dev(self, "%s\n", devinfop);
    871 	usbd_devinfo_free(devinfop);
    872 
    873 	un->un_dev = self;
    874 	un->un_udev = dev;
    875 	un->un_sc = sc;
    876 	un->un_ops = &axe_ops;
    877 	un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
    878 	un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
    879 	un->un_rx_list_cnt = AXE_RX_LIST_CNT;
    880 	un->un_tx_list_cnt = AXE_TX_LIST_CNT;
    881 
    882 	err = usbd_set_config_no(dev, AXE_CONFIG_NO, 1);
    883 	if (err) {
    884 		aprint_error_dev(self, "failed to set configuration"
    885 		    ", err=%s\n", usbd_errstr(err));
    886 		return;
    887 	}
    888 
    889 	un->un_flags = axe_lookup(uaa->uaa_vendor, uaa->uaa_product)->axe_flags;
    890 
    891 	err = usbd_device2interface_handle(dev, AXE_IFACE_IDX, &un->un_iface);
    892 	if (err) {
    893 		aprint_error_dev(self, "getting interface handle failed\n");
    894 		return;
    895 	}
    896 
    897 	id = usbd_get_interface_descriptor(un->un_iface);
    898 
    899 	/* decide on what our bufsize will be */
    900 	if (AXE_IS_172(un))
    901 		bufsz = AXE_172_BUFSZ;
    902 	else
    903 		bufsz = (un->un_udev->ud_speed == USB_SPEED_HIGH) ?
    904 		    AXE_178_MAX_BUFSZ : AXE_178_MIN_BUFSZ;
    905 	un->un_rx_bufsz = un->un_tx_bufsz = bufsz;
    906 
    907 	un->un_ed[USBNET_ENDPT_RX] = 0;
    908 	un->un_ed[USBNET_ENDPT_TX] = 0;
    909 	un->un_ed[USBNET_ENDPT_INTR] = 0;
    910 
    911 	/* Find endpoints. */
    912 	for (i = 0; i < id->bNumEndpoints; i++) {
    913 		ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
    914 		if (ed == NULL) {
    915 			aprint_error_dev(self, "couldn't get ep %d\n", i);
    916 			return;
    917 		}
    918 		const uint8_t xt = UE_GET_XFERTYPE(ed->bmAttributes);
    919 		const uint8_t dir = UE_GET_DIR(ed->bEndpointAddress);
    920 
    921 		if (dir == UE_DIR_IN && xt == UE_BULK &&
    922 		    un->un_ed[USBNET_ENDPT_RX] == 0) {
    923 			un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
    924 		} else if (dir == UE_DIR_OUT && xt == UE_BULK &&
    925 		    un->un_ed[USBNET_ENDPT_TX] == 0) {
    926 			un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
    927 		} else if (dir == UE_DIR_IN && xt == UE_INTERRUPT) {
    928 			un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress;
    929 		}
    930 	}
    931 
    932 	/* Set these up now for axe_cmd().  */
    933 	usbnet_attach(un, "axedet");
    934 
    935 	/* We need the PHYID for init dance in some cases */
    936 	usbnet_lock_core(un);
    937 	usbnet_busy(un);
    938 	if (axe_cmd(sc, AXE_CMD_READ_PHYID, 0, 0, &sc->axe_phyaddrs)) {
    939 		aprint_error_dev(self, "failed to read phyaddrs\n");
    940 		usbnet_unbusy(un);
    941 		usbnet_unlock_core(un);
    942 		return;
    943 	}
    944 
    945 	DPRINTF(" phyaddrs[0]: %jx phyaddrs[1]: %jx",
    946 	    sc->axe_phyaddrs[0], sc->axe_phyaddrs[1], 0, 0);
    947 	un->un_phyno = axe_get_phyno(sc, AXE_PHY_SEL_PRI);
    948 	if (un->un_phyno == -1)
    949 		un->un_phyno = axe_get_phyno(sc, AXE_PHY_SEL_SEC);
    950 	if (un->un_phyno == -1) {
    951 		DPRINTF(" no valid PHY address found, assuming PHY address 0",
    952 		    0, 0, 0, 0);
    953 		un->un_phyno = 0;
    954 	}
    955 
    956 	/* Initialize controller and get station address. */
    957 
    958 	axe_ax_init(un);
    959 
    960 	/*
    961 	 * Fetch IPG values.
    962 	 */
    963 	if (un->un_flags & (AX772A | AX772B)) {
    964 		/* Set IPG values. */
    965 		sc->axe_ipgs[0] = AXE_IPG0_DEFAULT;
    966 		sc->axe_ipgs[1] = AXE_IPG1_DEFAULT;
    967 		sc->axe_ipgs[2] = AXE_IPG2_DEFAULT;
    968 	} else {
    969 		if (axe_cmd(sc, AXE_CMD_READ_IPG012, 0, 0, sc->axe_ipgs)) {
    970 			aprint_error_dev(self, "failed to read ipg\n");
    971 			usbnet_unbusy(un);
    972 			usbnet_unlock_core(un);
    973 			return;
    974 		}
    975 	}
    976 
    977 	usbnet_unbusy(un);
    978 	usbnet_unlock_core(un);
    979 
    980 	if (!AXE_IS_172(un))
    981 		usbnet_ec(un)->ec_capabilities = ETHERCAP_VLAN_MTU;
    982 	if (un->un_flags & AX772B) {
    983 		struct ifnet *ifp = usbnet_ifp(un);
    984 
    985 		ifp->if_capabilities =
    986 		    IFCAP_CSUM_IPv4_Rx |
    987 		    IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
    988 		    IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
    989 		/*
    990 		 * Checksum offloading of AX88772B also works with VLAN
    991 		 * tagged frames but there is no way to take advantage
    992 		 * of the feature because vlan(4) assumes
    993 		 * IFCAP_VLAN_HWTAGGING is prerequisite condition to
    994 		 * support checksum offloading with VLAN. VLAN hardware
    995 		 * tagging support of AX88772B is very limited so it's
    996 		 * not possible to announce IFCAP_VLAN_HWTAGGING.
    997 		 */
    998 	}
    999 	if (un->un_flags & (AX772A | AX772B | AX178))
   1000 		unm.un_mii_flags = MIIF_DOPAUSE;
   1001 
   1002 	usbnet_attach_ifp(un, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
   1003 	    0, &unm);
   1004 }
   1005 
   1006 static void
   1007 axe_uno_rx_loop(struct usbnet * un, struct usbnet_chain *c, uint32_t total_len)
   1008 {
   1009 	AXEHIST_FUNC(); AXEHIST_CALLED();
   1010 	struct axe_softc * const sc = usbnet_softc(un);
   1011 	struct ifnet *ifp = usbnet_ifp(un);
   1012 	uint8_t *buf = c->unc_buf;
   1013 
   1014 	do {
   1015 		u_int pktlen = 0;
   1016 		u_int rxlen = 0;
   1017 		int flags = 0;
   1018 
   1019 		if ((un->un_flags & AXSTD_FRAME) != 0) {
   1020 			struct axe_sframe_hdr hdr;
   1021 
   1022 			if (total_len < sizeof(hdr)) {
   1023 				if_statinc(ifp, if_ierrors);
   1024 				break;
   1025 			}
   1026 
   1027 			memcpy(&hdr, buf, sizeof(hdr));
   1028 
   1029 			DPRINTFN(20, "total_len %#jx len %#jx ilen %#jx",
   1030 			    total_len,
   1031 			    (le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK),
   1032 			    (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK), 0);
   1033 
   1034 			total_len -= sizeof(hdr);
   1035 			buf += sizeof(hdr);
   1036 
   1037 			if (((le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK) ^
   1038 			    (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK)) !=
   1039 			    AXE_RH1M_RXLEN_MASK) {
   1040 				if_statinc(ifp, if_ierrors);
   1041 				break;
   1042 			}
   1043 
   1044 			rxlen = le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK;
   1045 			if (total_len < rxlen) {
   1046 				pktlen = total_len;
   1047 				total_len = 0;
   1048 			} else {
   1049 				pktlen = rxlen;
   1050 				rxlen = roundup2(rxlen, 2);
   1051 				total_len -= rxlen;
   1052 			}
   1053 
   1054 		} else if ((un->un_flags & AXCSUM_FRAME) != 0) {
   1055 			struct axe_csum_hdr csum_hdr;
   1056 
   1057 			if (total_len <	sizeof(csum_hdr)) {
   1058 				if_statinc(ifp, if_ierrors);
   1059 				break;
   1060 			}
   1061 
   1062 			memcpy(&csum_hdr, buf, sizeof(csum_hdr));
   1063 
   1064 			csum_hdr.len = le16toh(csum_hdr.len);
   1065 			csum_hdr.ilen = le16toh(csum_hdr.ilen);
   1066 			csum_hdr.cstatus = le16toh(csum_hdr.cstatus);
   1067 
   1068 			DPRINTFN(20, "total_len %#jx len %#jx ilen %#jx"
   1069 			    " cstatus %#jx", total_len,
   1070 			    csum_hdr.len, csum_hdr.ilen, csum_hdr.cstatus);
   1071 
   1072 			if ((AXE_CSUM_RXBYTES(csum_hdr.len) ^
   1073 			    AXE_CSUM_RXBYTES(csum_hdr.ilen)) !=
   1074 			    sc->sc_lenmask) {
   1075 				/* we lost sync */
   1076 				if_statinc(ifp, if_ierrors);
   1077 				DPRINTFN(20, "len %#jx ilen %#jx lenmask %#jx "
   1078 				    "err",
   1079 				    AXE_CSUM_RXBYTES(csum_hdr.len),
   1080 				    AXE_CSUM_RXBYTES(csum_hdr.ilen),
   1081 				    sc->sc_lenmask, 0);
   1082 				break;
   1083 			}
   1084 			/*
   1085 			 * Get total transferred frame length including
   1086 			 * checksum header.  The length should be multiple
   1087 			 * of 4.
   1088 			 */
   1089 			pktlen = AXE_CSUM_RXBYTES(csum_hdr.len);
   1090 			u_int len = sizeof(csum_hdr) + pktlen;
   1091 			len = (len + 3) & ~3;
   1092 			if (total_len < len) {
   1093 				DPRINTFN(20, "total_len %#jx < len %#jx",
   1094 				    total_len, len, 0, 0);
   1095 				/* invalid length */
   1096 				if_statinc(ifp, if_ierrors);
   1097 				break;
   1098 			}
   1099 			buf += sizeof(csum_hdr);
   1100 
   1101 			const uint16_t cstatus = csum_hdr.cstatus;
   1102 
   1103 			if (cstatus & AXE_CSUM_HDR_L3_TYPE_IPV4) {
   1104 				if (cstatus & AXE_CSUM_HDR_L4_CSUM_ERR)
   1105 					flags |= M_CSUM_TCP_UDP_BAD;
   1106 				if (cstatus & AXE_CSUM_HDR_L3_CSUM_ERR)
   1107 					flags |= M_CSUM_IPv4_BAD;
   1108 
   1109 				const uint16_t l4type =
   1110 				    cstatus & AXE_CSUM_HDR_L4_TYPE_MASK;
   1111 
   1112 				if (l4type == AXE_CSUM_HDR_L4_TYPE_TCP)
   1113 					flags |= M_CSUM_TCPv4;
   1114 				if (l4type == AXE_CSUM_HDR_L4_TYPE_UDP)
   1115 					flags |= M_CSUM_UDPv4;
   1116 			}
   1117 			if (total_len < len) {
   1118 				pktlen = total_len;
   1119 				total_len = 0;
   1120 			} else {
   1121 				total_len -= len;
   1122 				rxlen = len - sizeof(csum_hdr);
   1123 			}
   1124 			DPRINTFN(20, "total_len %#jx len %#jx pktlen %#jx"
   1125 			    " rxlen %#jx", total_len, len, pktlen, rxlen);
   1126 		} else { /* AX172 */
   1127 			pktlen = rxlen = total_len;
   1128 			total_len = 0;
   1129 		}
   1130 
   1131 		usbnet_enqueue(un, buf, pktlen, flags, 0, 0);
   1132 		buf += rxlen;
   1133 
   1134 	} while (total_len > 0);
   1135 
   1136 	DPRINTFN(10, "start rx", 0, 0, 0, 0);
   1137 }
   1138 
   1139 static unsigned
   1140 axe_uno_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
   1141 {
   1142 	AXEHIST_FUNC(); AXEHIST_CALLED();
   1143 	struct axe_sframe_hdr hdr, tlr;
   1144 	size_t hdr_len = 0, tlr_len = 0;
   1145 	int length, boundary;
   1146 
   1147 	usbnet_isowned_tx(un);
   1148 
   1149 	if (!AXE_IS_172(un)) {
   1150 		/*
   1151 		 * Copy the mbuf data into a contiguous buffer, leaving two
   1152 		 * bytes at the beginning to hold the frame length.
   1153 		 */
   1154 		boundary = (un->un_udev->ud_speed == USB_SPEED_HIGH) ? 512 : 64;
   1155 
   1156 		hdr.len = htole16(m->m_pkthdr.len);
   1157 		hdr.ilen = ~hdr.len;
   1158 		hdr_len = sizeof(hdr);
   1159 
   1160 		length = hdr_len + m->m_pkthdr.len;
   1161 
   1162 		if ((length % boundary) == 0) {
   1163 			tlr.len = 0x0000;
   1164 			tlr.ilen = 0xffff;
   1165 			tlr_len = sizeof(tlr);
   1166 		}
   1167 		DPRINTFN(20, "length %jx m_pkthdr.len %jx hdrsize %#jx",
   1168 			length, m->m_pkthdr.len, sizeof(hdr), 0);
   1169 	}
   1170 
   1171 	if ((unsigned)m->m_pkthdr.len > un->un_tx_bufsz - hdr_len - tlr_len)
   1172 		return 0;
   1173 	length = hdr_len + m->m_pkthdr.len + tlr_len;
   1174 
   1175 	if (hdr_len)
   1176 		memcpy(c->unc_buf, &hdr, hdr_len);
   1177 	m_copydata(m, 0, m->m_pkthdr.len, c->unc_buf + hdr_len);
   1178 	if (tlr_len)
   1179 		memcpy(c->unc_buf + length - tlr_len, &tlr, tlr_len);
   1180 
   1181 	return length;
   1182 }
   1183 
   1184 static void
   1185 axe_csum_cfg(struct axe_softc *sc)
   1186 {
   1187 	struct usbnet * const un = &sc->axe_un;
   1188 	struct ifnet * const ifp = usbnet_ifp(un);
   1189 	uint16_t csum1, csum2;
   1190 
   1191 	if ((un->un_flags & AX772B) != 0) {
   1192 		csum1 = 0;
   1193 		csum2 = 0;
   1194 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) != 0)
   1195 			csum1 |= AXE_TXCSUM_IP;
   1196 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) != 0)
   1197 			csum1 |= AXE_TXCSUM_TCP;
   1198 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) != 0)
   1199 			csum1 |= AXE_TXCSUM_UDP;
   1200 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) != 0)
   1201 			csum1 |= AXE_TXCSUM_TCPV6;
   1202 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) != 0)
   1203 			csum1 |= AXE_TXCSUM_UDPV6;
   1204 		axe_cmd(sc, AXE_772B_CMD_WRITE_TXCSUM, csum2, csum1, NULL);
   1205 		csum1 = 0;
   1206 		csum2 = 0;
   1207 
   1208 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0)
   1209 			csum1 |= AXE_RXCSUM_IP;
   1210 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0)
   1211 			csum1 |= AXE_RXCSUM_TCP;
   1212 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0)
   1213 			csum1 |= AXE_RXCSUM_UDP;
   1214 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0)
   1215 			csum1 |= AXE_RXCSUM_TCPV6;
   1216 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)
   1217 			csum1 |= AXE_RXCSUM_UDPV6;
   1218 		axe_cmd(sc, AXE_772B_CMD_WRITE_RXCSUM, csum2, csum1, NULL);
   1219 	}
   1220 }
   1221 
   1222 static int
   1223 axe_init_locked(struct ifnet *ifp)
   1224 {
   1225 	AXEHIST_FUNC(); AXEHIST_CALLED();
   1226 	struct usbnet * const un = ifp->if_softc;
   1227 	struct axe_softc * const sc = usbnet_softc(un);
   1228 	int rxmode;
   1229 
   1230 	usbnet_isowned_core(un);
   1231 
   1232 	if (usbnet_isdying(un))
   1233 		return EIO;
   1234 
   1235 	/* Cancel pending I/O */
   1236 	usbnet_stop(un, ifp, 1);
   1237 
   1238 	/* Reset the ethernet interface. */
   1239 	axe_reset(un);
   1240 
   1241 #if 0
   1242 	ret = asix_write_gpio(dev, AX_GPIO_RSE | AX_GPIO_GPO_2 |
   1243 			      AX_GPIO_GPO2EN, 5, in_pm);
   1244 #endif
   1245 	/* Set MAC address and transmitter IPG values. */
   1246 	if (AXE_IS_172(un)) {
   1247 		axe_cmd(sc, AXE_172_CMD_WRITE_NODEID, 0, 0, un->un_eaddr);
   1248 		axe_cmd(sc, AXE_172_CMD_WRITE_IPG0, 0, sc->axe_ipgs[0], NULL);
   1249 		axe_cmd(sc, AXE_172_CMD_WRITE_IPG1, 0, sc->axe_ipgs[1], NULL);
   1250 		axe_cmd(sc, AXE_172_CMD_WRITE_IPG2, 0, sc->axe_ipgs[2], NULL);
   1251 	} else {
   1252 		axe_cmd(sc, AXE_178_CMD_WRITE_NODEID, 0, 0, un->un_eaddr);
   1253 		axe_cmd(sc, AXE_178_CMD_WRITE_IPG012, sc->axe_ipgs[2],
   1254 		    (sc->axe_ipgs[1] << 8) | (sc->axe_ipgs[0]), NULL);
   1255 
   1256 		un->un_flags &= ~(AXSTD_FRAME | AXCSUM_FRAME);
   1257 		if ((un->un_flags & AX772B) != 0 &&
   1258 		    (ifp->if_capenable & AX_RXCSUM) != 0) {
   1259 			sc->sc_lenmask = AXE_CSUM_HDR_LEN_MASK;
   1260 			un->un_flags |= AXCSUM_FRAME;
   1261 		} else {
   1262 			sc->sc_lenmask = AXE_HDR_LEN_MASK;
   1263 			un->un_flags |= AXSTD_FRAME;
   1264 		}
   1265 	}
   1266 
   1267 	/* Configure TX/RX checksum offloading. */
   1268 	axe_csum_cfg(sc);
   1269 
   1270 	if (un->un_flags & AX772B) {
   1271 		/* AX88772B uses different maximum frame burst configuration. */
   1272 		axe_cmd(sc, AXE_772B_CMD_RXCTL_WRITE_CFG,
   1273 		    ax88772b_mfb_table[AX88772B_MFB_16K].threshold,
   1274 		    ax88772b_mfb_table[AX88772B_MFB_16K].byte_cnt, NULL);
   1275 	}
   1276 	/* Enable receiver, set RX mode */
   1277 	rxmode = (AXE_RXCMD_BROADCAST | AXE_RXCMD_MULTICAST | AXE_RXCMD_ENABLE);
   1278 	if (AXE_IS_172(un))
   1279 		rxmode |= AXE_172_RXCMD_UNICAST;
   1280 	else {
   1281 		if (un->un_flags & AX772B) {
   1282 			/*
   1283 			 * Select RX header format type 1.  Aligning IP
   1284 			 * header on 4 byte boundary is not needed when
   1285 			 * checksum offloading feature is not used
   1286 			 * because we always copy the received frame in
   1287 			 * RX handler.  When RX checksum offloading is
   1288 			 * active, aligning IP header is required to
   1289 			 * reflect actual frame length including RX
   1290 			 * header size.
   1291 			 */
   1292 			rxmode |= AXE_772B_RXCMD_HDR_TYPE_1;
   1293 			if (un->un_flags & AXCSUM_FRAME)
   1294 				rxmode |= AXE_772B_RXCMD_IPHDR_ALIGN;
   1295 		} else {
   1296 			/*
   1297 			 * Default Rx buffer size is too small to get
   1298 			 * maximum performance.
   1299 			 */
   1300 #if 0
   1301 			if (un->un_udev->ud_speed == USB_SPEED_HIGH) {
   1302 				/* Largest possible USB buffer size for AX88178 */
   1303 			}
   1304 #endif
   1305 			rxmode |= AXE_178_RXCMD_MFB_16384;
   1306 		}
   1307 	}
   1308 
   1309 	DPRINTF("rxmode %#jx", rxmode, 0, 0, 0);
   1310 
   1311 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
   1312 
   1313 	/* Accept multicast frame or run promisc. mode */
   1314 	axe_setiff_locked(un);
   1315 
   1316 	return usbnet_init_rx_tx(un);
   1317 }
   1318 
   1319 static int
   1320 axe_uno_init(struct ifnet *ifp)
   1321 {
   1322 	struct usbnet * const un = ifp->if_softc;
   1323 
   1324 	usbnet_lock_core(un);
   1325 	usbnet_busy(un);
   1326 	int ret = axe_init_locked(ifp);
   1327 	usbnet_unbusy(un);
   1328 	usbnet_unlock_core(un);
   1329 
   1330 	return ret;
   1331 }
   1332 
   1333 static int
   1334 axe_uno_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1335 {
   1336 	struct usbnet * const un = ifp->if_softc;
   1337 
   1338 	usbnet_lock_core(un);
   1339 	usbnet_busy(un);
   1340 
   1341 	switch (cmd) {
   1342 	case SIOCADDMULTI:
   1343 	case SIOCDELMULTI:
   1344 		axe_setiff_locked(un);
   1345 		break;
   1346 	default:
   1347 		break;
   1348 	}
   1349 
   1350 	usbnet_unbusy(un);
   1351 	usbnet_unlock_core(un);
   1352 
   1353 	return 0;
   1354 }
   1355 
   1356 static void
   1357 axe_uno_stop(struct ifnet *ifp, int disable)
   1358 {
   1359 	struct usbnet * const un = ifp->if_softc;
   1360 
   1361 	axe_reset(un);
   1362 }
   1363 
   1364 #ifdef _MODULE
   1365 #include "ioconf.c"
   1366 #endif
   1367 
   1368 USBNET_MODULE(axe)
   1369