if_axe.c revision 1.132 1 /* $NetBSD: if_axe.c,v 1.132 2021/03/01 17:41:00 jakllsch Exp $ */
2 /* $OpenBSD: if_axe.c,v 1.137 2016/04/13 11:03:37 mpi Exp $ */
3
4 /*
5 * Copyright (c) 2005, 2006, 2007 Jonathan Gray <jsg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Copyright (c) 1997, 1998, 1999, 2000-2003
22 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
23 *
24 * Redistribution and use in source and binary forms, with or without
25 * modification, are permitted provided that the following conditions
26 * are met:
27 * 1. Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * 2. Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in the
31 * documentation and/or other materials provided with the distribution.
32 * 3. All advertising materials mentioning features or use of this software
33 * must display the following acknowledgement:
34 * This product includes software developed by Bill Paul.
35 * 4. Neither the name of the author nor the names of any co-contributors
36 * may be used to endorse or promote products derived from this software
37 * without specific prior written permission.
38 *
39 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
40 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
43 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
47 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
49 * THE POSSIBILITY OF SUCH DAMAGE.
50 */
51
52 /*
53 * ASIX Electronics AX88172/AX88178/AX88778 USB 2.0 ethernet driver.
54 * Used in the LinkSys USB200M and various other adapters.
55 *
56 * Written by Bill Paul <wpaul (at) windriver.com>
57 * Senior Engineer
58 * Wind River Systems
59 */
60
61 /*
62 * The AX88172 provides USB ethernet supports at 10 and 100Mbps.
63 * It uses an external PHY (reference designs use a RealTek chip),
64 * and has a 64-bit multicast hash filter. There is some information
65 * missing from the manual which one needs to know in order to make
66 * the chip function:
67 *
68 * - You must set bit 7 in the RX control register, otherwise the
69 * chip won't receive any packets.
70 * - You must initialize all 3 IPG registers, or you won't be able
71 * to send any packets.
72 *
73 * Note that this device appears to only support loading the station
74 * address via autoload from the EEPROM (i.e. there's no way to manually
75 * set it).
76 *
77 * (Adam Weinberger wanted me to name this driver if_gir.c.)
78 */
79
80 /*
81 * Ax88178 and Ax88772 support backported from the OpenBSD driver.
82 * 2007/02/12, J.R. Oldroyd, fbsd (at) opal.com
83 *
84 * Manual here:
85 * http://www.asix.com.tw/FrootAttach/datasheet/AX88178_datasheet_Rev10.pdf
86 * http://www.asix.com.tw/FrootAttach/datasheet/AX88772_datasheet_Rev10.pdf
87 */
88
89 #include <sys/cdefs.h>
90 __KERNEL_RCSID(0, "$NetBSD: if_axe.c,v 1.132 2021/03/01 17:41:00 jakllsch Exp $");
91
92 #ifdef _KERNEL_OPT
93 #include "opt_usb.h"
94 #include "opt_net_mpsafe.h"
95 #endif
96
97 #include <sys/param.h>
98
99 #include <dev/usb/usbnet.h>
100 #include <dev/usb/usbhist.h>
101 #include <dev/usb/if_axereg.h>
102
103 struct axe_type {
104 struct usb_devno axe_dev;
105 uint16_t axe_flags;
106 };
107
108 struct axe_softc {
109 struct usbnet axe_un;
110
111 /* usbnet:un_flags values */
112 #define AX178 __BIT(0) /* AX88178 */
113 #define AX772 __BIT(1) /* AX88772 */
114 #define AX772A __BIT(2) /* AX88772A */
115 #define AX772B __BIT(3) /* AX88772B */
116 #define AXSTD_FRAME __BIT(12)
117 #define AXCSUM_FRAME __BIT(13)
118
119 uint8_t axe_ipgs[3];
120 uint8_t axe_phyaddrs[2];
121 uint16_t sc_pwrcfg;
122 uint16_t sc_lenmask;
123
124 };
125
126 #define AXE_IS_178_FAMILY(un) \
127 ((un)->un_flags & (AX178 | AX772 | AX772A | AX772B))
128
129 #define AXE_IS_772(un) \
130 ((un)->un_flags & (AX772 | AX772A | AX772B))
131
132 #define AXE_IS_172(un) (AXE_IS_178_FAMILY(un) == 0)
133
134 #define AX_RXCSUM \
135 (IFCAP_CSUM_IPv4_Rx | \
136 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx | \
137 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)
138
139 #define AX_TXCSUM \
140 (IFCAP_CSUM_IPv4_Tx | \
141 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx | \
142 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)
143
144 /*
145 * AXE_178_MAX_FRAME_BURST
146 * max frame burst size for Ax88178 and Ax88772
147 * 0 2048 bytes
148 * 1 4096 bytes
149 * 2 8192 bytes
150 * 3 16384 bytes
151 * use the largest your system can handle without USB stalling.
152 *
153 * NB: 88772 parts appear to generate lots of input errors with
154 * a 2K rx buffer and 8K is only slightly faster than 4K on an
155 * EHCI port on a T42 so change at your own risk.
156 */
157 #define AXE_178_MAX_FRAME_BURST 1
158
159
160 #ifdef USB_DEBUG
161 #ifndef AXE_DEBUG
162 #define axedebug 0
163 #else
164 static int axedebug = 0;
165
166 SYSCTL_SETUP(sysctl_hw_axe_setup, "sysctl hw.axe setup")
167 {
168 int err;
169 const struct sysctlnode *rnode;
170 const struct sysctlnode *cnode;
171
172 err = sysctl_createv(clog, 0, NULL, &rnode,
173 CTLFLAG_PERMANENT, CTLTYPE_NODE, "axe",
174 SYSCTL_DESCR("axe global controls"),
175 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
176
177 if (err)
178 goto fail;
179
180 /* control debugging printfs */
181 err = sysctl_createv(clog, 0, &rnode, &cnode,
182 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
183 "debug", SYSCTL_DESCR("Enable debugging output"),
184 NULL, 0, &axedebug, sizeof(axedebug), CTL_CREATE, CTL_EOL);
185 if (err)
186 goto fail;
187
188 return;
189 fail:
190 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
191 }
192
193 #endif /* AXE_DEBUG */
194 #endif /* USB_DEBUG */
195
196 #define DPRINTF(FMT,A,B,C,D) USBHIST_LOGN(axedebug,1,FMT,A,B,C,D)
197 #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(axedebug,N,FMT,A,B,C,D)
198 #define AXEHIST_FUNC() USBHIST_FUNC()
199 #define AXEHIST_CALLED(name) USBHIST_CALLED(axedebug)
200
201 /*
202 * Various supported device vendors/products.
203 */
204 static const struct axe_type axe_devs[] = {
205 { { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_UFE2000 }, 0 },
206 { { USB_VENDOR_ACERCM, USB_PRODUCT_ACERCM_EP1427X2 }, 0 },
207 { { USB_VENDOR_APPLE, USB_PRODUCT_APPLE_ETHERNET }, AX772 },
208 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88172 }, 0 },
209 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772 }, AX772 },
210 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772A }, AX772 },
211 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772B }, AX772B },
212 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772B_1 }, AX772B },
213 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88178 }, AX178 },
214 { { USB_VENDOR_ATEN, USB_PRODUCT_ATEN_UC210T }, 0 },
215 { { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D5055 }, AX178 },
216 { { USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USB2AR }, 0},
217 { { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_USB200MV2 }, AX772A },
218 { { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_FETHER_USB2_TX }, 0 },
219 { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100 }, 0 },
220 { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100B1 }, AX772 },
221 { { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DUBE100B1 }, AX772 },
222 { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100C1 }, AX772B },
223 { { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_GWUSB2E }, 0 },
224 { { USB_VENDOR_IODATA, USB_PRODUCT_IODATA_ETGUS2 }, AX178 },
225 { { USB_VENDOR_JVC, USB_PRODUCT_JVC_MP_PRX1 }, 0 },
226 { { USB_VENDOR_LENOVO, USB_PRODUCT_LENOVO_ETHERNET }, AX772B },
227 { { USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_HG20F9 }, AX772B },
228 { { USB_VENDOR_LINKSYS2, USB_PRODUCT_LINKSYS2_USB200M }, 0 },
229 { { USB_VENDOR_LINKSYS4, USB_PRODUCT_LINKSYS4_USB1000 }, AX178 },
230 { { USB_VENDOR_LOGITEC, USB_PRODUCT_LOGITEC_LAN_GTJU2 }, AX178 },
231 { { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUAU2GT }, AX178 },
232 { { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUAU2KTX }, 0 },
233 { { USB_VENDOR_MSI, USB_PRODUCT_MSI_AX88772A }, AX772 },
234 { { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_FA120 }, 0 },
235 { { USB_VENDOR_OQO, USB_PRODUCT_OQO_ETHER01PLUS }, AX772 },
236 { { USB_VENDOR_PLANEX3, USB_PRODUCT_PLANEX3_GU1000T }, AX178 },
237 { { USB_VENDOR_SITECOM, USB_PRODUCT_SITECOM_LN029 }, 0 },
238 { { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_LN028 }, AX178 },
239 { { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_LN031 }, AX178 },
240 { { USB_VENDOR_SYSTEMTALKS, USB_PRODUCT_SYSTEMTALKS_SGCX2UL }, 0 },
241 };
242 #define axe_lookup(v, p) ((const struct axe_type *)usb_lookup(axe_devs, v, p))
243
244 static const struct ax88772b_mfb ax88772b_mfb_table[] = {
245 { 0x8000, 0x8001, 2048 },
246 { 0x8100, 0x8147, 4096 },
247 { 0x8200, 0x81EB, 6144 },
248 { 0x8300, 0x83D7, 8192 },
249 { 0x8400, 0x851E, 16384 },
250 { 0x8500, 0x8666, 20480 },
251 { 0x8600, 0x87AE, 24576 },
252 { 0x8700, 0x8A3D, 32768 }
253 };
254
255 static int axe_match(device_t, cfdata_t, void *);
256 static void axe_attach(device_t, device_t, void *);
257
258 CFATTACH_DECL_NEW(axe, sizeof(struct axe_softc),
259 axe_match, axe_attach, usbnet_detach, usbnet_activate);
260
261 static void axe_uno_stop(struct ifnet *, int);
262 static int axe_uno_ioctl(struct ifnet *, u_long, void *);
263 static int axe_uno_init(struct ifnet *);
264 static int axe_uno_mii_read_reg(struct usbnet *, int, int, uint16_t *);
265 static int axe_uno_mii_write_reg(struct usbnet *, int, int, uint16_t);
266 static void axe_uno_mii_statchg(struct ifnet *);
267 static void axe_uno_rx_loop(struct usbnet *, struct usbnet_chain *,
268 uint32_t);
269 static unsigned axe_uno_tx_prepare(struct usbnet *, struct mbuf *,
270 struct usbnet_chain *);
271
272 static void axe_ax88178_init(struct axe_softc *);
273 static void axe_ax88772_init(struct axe_softc *);
274 static void axe_ax88772a_init(struct axe_softc *);
275 static void axe_ax88772b_init(struct axe_softc *);
276
277 static const struct usbnet_ops axe_ops = {
278 .uno_stop = axe_uno_stop,
279 .uno_ioctl = axe_uno_ioctl,
280 .uno_read_reg = axe_uno_mii_read_reg,
281 .uno_write_reg = axe_uno_mii_write_reg,
282 .uno_statchg = axe_uno_mii_statchg,
283 .uno_tx_prepare = axe_uno_tx_prepare,
284 .uno_rx_loop = axe_uno_rx_loop,
285 .uno_init = axe_uno_init,
286 };
287
288 static usbd_status
289 axe_cmd(struct axe_softc *sc, int cmd, int index, int val, void *buf)
290 {
291 AXEHIST_FUNC(); AXEHIST_CALLED();
292 struct usbnet * const un = &sc->axe_un;
293 usb_device_request_t req;
294 usbd_status err;
295
296 usbnet_isowned_core(un);
297
298 if (usbnet_isdying(un))
299 return -1;
300
301 DPRINTFN(20, "cmd %#jx index %#jx val %#jx", cmd, index, val, 0);
302
303 if (AXE_CMD_DIR(cmd))
304 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
305 else
306 req.bmRequestType = UT_READ_VENDOR_DEVICE;
307 req.bRequest = AXE_CMD_CMD(cmd);
308 USETW(req.wValue, val);
309 USETW(req.wIndex, index);
310 USETW(req.wLength, AXE_CMD_LEN(cmd));
311
312 err = usbd_do_request(un->un_udev, &req, buf);
313 if (err)
314 DPRINTF("cmd %jd err %jd", cmd, err, 0, 0);
315
316 return err;
317 }
318
319 static int
320 axe_uno_mii_read_reg(struct usbnet *un, int phy, int reg, uint16_t *val)
321 {
322 AXEHIST_FUNC(); AXEHIST_CALLED();
323 struct axe_softc * const sc = usbnet_softc(un);
324 usbd_status err;
325 uint16_t data;
326
327 DPRINTFN(30, "phy %#jx reg %#jx\n", phy, reg, 0, 0);
328
329 if (un->un_phyno != phy)
330 return EINVAL;
331
332 axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
333
334 err = axe_cmd(sc, AXE_CMD_MII_READ_REG, reg, phy, &data);
335 axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
336
337 if (err) {
338 device_printf(un->un_dev, "read PHY failed\n");
339 return EIO;
340 }
341
342 *val = le16toh(data);
343 if (AXE_IS_772(un) && reg == MII_BMSR) {
344 /*
345 * BMSR of AX88772 indicates that it supports extended
346 * capability but the extended status register is
347 * reserved for embedded ethernet PHY. So clear the
348 * extended capability bit of BMSR.
349 */
350 *val &= ~BMSR_EXTCAP;
351 }
352
353 DPRINTFN(30, "phy %#jx reg %#jx val %#jx", phy, reg, *val, 0);
354
355 return 0;
356 }
357
358 static int
359 axe_uno_mii_write_reg(struct usbnet *un, int phy, int reg, uint16_t val)
360 {
361 struct axe_softc * const sc = usbnet_softc(un);
362 usbd_status err;
363 uint16_t aval;
364
365 if (un->un_phyno != phy)
366 return EINVAL;
367
368 aval = htole16(val);
369
370 axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
371 err = axe_cmd(sc, AXE_CMD_MII_WRITE_REG, reg, phy, &aval);
372 axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
373
374 if (err)
375 return EIO;
376 return 0;
377 }
378
379 static void
380 axe_uno_mii_statchg(struct ifnet *ifp)
381 {
382 AXEHIST_FUNC(); AXEHIST_CALLED();
383
384 struct usbnet * const un = ifp->if_softc;
385 struct axe_softc * const sc = usbnet_softc(un);
386 struct mii_data *mii = usbnet_mii(un);
387 int val, err;
388
389 if (usbnet_isdying(un))
390 return;
391
392 val = 0;
393 if (AXE_IS_172(un)) {
394 if (mii->mii_media_active & IFM_FDX)
395 val |= AXE_MEDIA_FULL_DUPLEX;
396 } else {
397 if (mii->mii_media_active & IFM_FDX) {
398 val |= AXE_MEDIA_FULL_DUPLEX;
399 if (mii->mii_media_active & IFM_ETH_TXPAUSE)
400 val |= AXE_178_MEDIA_TXFLOW_CONTROL_EN;
401 if (mii->mii_media_active & IFM_ETH_RXPAUSE)
402 val |= AXE_178_MEDIA_RXFLOW_CONTROL_EN;
403 }
404 val |= AXE_178_MEDIA_RX_EN | AXE_178_MEDIA_MAGIC;
405 if (un->un_flags & AX178)
406 val |= AXE_178_MEDIA_ENCK;
407 switch (IFM_SUBTYPE(mii->mii_media_active)) {
408 case IFM_1000_T:
409 val |= AXE_178_MEDIA_GMII | AXE_178_MEDIA_ENCK;
410 usbnet_set_link(un, true);
411 break;
412 case IFM_100_TX:
413 val |= AXE_178_MEDIA_100TX;
414 usbnet_set_link(un, true);
415 break;
416 case IFM_10_T:
417 usbnet_set_link(un, true);
418 break;
419 }
420 }
421
422 DPRINTF("val=%#jx", val, 0, 0, 0);
423 err = axe_cmd(sc, AXE_CMD_WRITE_MEDIA, 0, val, NULL);
424 if (err)
425 device_printf(un->un_dev, "media change failed\n");
426 }
427
428 static void
429 axe_rcvfilt_locked(struct usbnet *un)
430 {
431 AXEHIST_FUNC(); AXEHIST_CALLED();
432 struct axe_softc * const sc = usbnet_softc(un);
433 struct ifnet * const ifp = usbnet_ifp(un);
434 struct ethercom *ec = usbnet_ec(un);
435 struct ether_multi *enm;
436 struct ether_multistep step;
437 uint16_t rxmode;
438 uint32_t h = 0;
439 uint8_t mchash[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
440
441 if (usbnet_isdying(un))
442 return;
443
444 if (axe_cmd(sc, AXE_CMD_RXCTL_READ, 0, 0, &rxmode)) {
445 device_printf(un->un_dev, "can't read rxmode");
446 return;
447 }
448 rxmode = le16toh(rxmode);
449
450 rxmode &=
451 ~(AXE_RXCMD_ALLMULTI | AXE_RXCMD_PROMISC | AXE_RXCMD_MULTICAST);
452
453 ETHER_LOCK(ec);
454 if (ifp->if_flags & IFF_PROMISC) {
455 ec->ec_flags |= ETHER_F_ALLMULTI;
456 ETHER_UNLOCK(ec);
457 /* run promisc. mode */
458 rxmode |= AXE_RXCMD_ALLMULTI; /* ??? */
459 rxmode |= AXE_RXCMD_PROMISC;
460 goto update;
461 }
462 ec->ec_flags &= ~ETHER_F_ALLMULTI;
463 ETHER_FIRST_MULTI(step, ec, enm);
464 while (enm != NULL) {
465 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
466 ec->ec_flags |= ETHER_F_ALLMULTI;
467 ETHER_UNLOCK(ec);
468 /* accept all mcast frames */
469 rxmode |= AXE_RXCMD_ALLMULTI;
470 goto update;
471 }
472 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
473 mchash[h >> 29] |= 1U << ((h >> 26) & 7);
474 ETHER_NEXT_MULTI(step, enm);
475 }
476 ETHER_UNLOCK(ec);
477 if (h != 0)
478 rxmode |= AXE_RXCMD_MULTICAST; /* activate mcast hash filter */
479 axe_cmd(sc, AXE_CMD_WRITE_MCAST, 0, 0, mchash);
480 update:
481 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
482 }
483
484 static void
485 axe_ax_init(struct usbnet *un)
486 {
487 struct axe_softc * const sc = usbnet_softc(un);
488
489 int cmd = AXE_178_CMD_READ_NODEID;
490
491 if (un->un_flags & AX178) {
492 axe_ax88178_init(sc);
493 } else if (un->un_flags & AX772) {
494 axe_ax88772_init(sc);
495 } else if (un->un_flags & AX772A) {
496 axe_ax88772a_init(sc);
497 } else if (un->un_flags & AX772B) {
498 axe_ax88772b_init(sc);
499 return;
500 } else {
501 cmd = AXE_172_CMD_READ_NODEID;
502 }
503
504 if (axe_cmd(sc, cmd, 0, 0, un->un_eaddr)) {
505 aprint_error_dev(un->un_dev,
506 "failed to read ethernet address\n");
507 }
508 }
509
510
511 static void
512 axe_reset(struct usbnet *un)
513 {
514
515 usbnet_isowned_core(un);
516
517 if (usbnet_isdying(un))
518 return;
519
520 /*
521 * softnet_lock can be taken when NET_MPAFE is not defined when calling
522 * if_addr_init -> if_init. This doesn't mix well with the
523 * usbd_delay_ms calls in the init routines as things like nd6_slowtimo
524 * can fire during the wait and attempt to take softnet_lock and then
525 * block the softclk thread meaning the wait never ends.
526 */
527 #ifndef NET_MPSAFE
528 /* XXX What to reset? */
529
530 /* Wait a little while for the chip to get its brains in order. */
531 DELAY(1000);
532 #else
533 axe_ax_init(un);
534 #endif
535 }
536
537 static int
538 axe_get_phyno(struct axe_softc *sc, int sel)
539 {
540 int phyno;
541
542 switch (AXE_PHY_TYPE(sc->axe_phyaddrs[sel])) {
543 case PHY_TYPE_100_HOME:
544 /* FALLTHROUGH */
545 case PHY_TYPE_GIG:
546 phyno = AXE_PHY_NO(sc->axe_phyaddrs[sel]);
547 break;
548 case PHY_TYPE_SPECIAL:
549 /* FALLTHROUGH */
550 case PHY_TYPE_RSVD:
551 /* FALLTHROUGH */
552 case PHY_TYPE_NON_SUP:
553 /* FALLTHROUGH */
554 default:
555 phyno = -1;
556 break;
557 }
558
559 return phyno;
560 }
561
562 #define AXE_GPIO_WRITE(x, y) do { \
563 axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, (x), NULL); \
564 usbd_delay_ms(sc->axe_un.un_udev, hztoms(y)); \
565 } while (0)
566
567 static void
568 axe_ax88178_init(struct axe_softc *sc)
569 {
570 AXEHIST_FUNC(); AXEHIST_CALLED();
571 struct usbnet * const un = &sc->axe_un;
572 int gpio0, ledmode, phymode;
573 uint16_t eeprom, val;
574
575 axe_cmd(sc, AXE_CMD_SROM_WR_ENABLE, 0, 0, NULL);
576 /* XXX magic */
577 if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, 0x0017, &eeprom) != 0)
578 eeprom = 0xffff;
579 axe_cmd(sc, AXE_CMD_SROM_WR_DISABLE, 0, 0, NULL);
580
581 eeprom = le16toh(eeprom);
582
583 DPRINTF("EEPROM is %#jx", eeprom, 0, 0, 0);
584
585 /* if EEPROM is invalid we have to use to GPIO0 */
586 if (eeprom == 0xffff) {
587 phymode = AXE_PHY_MODE_MARVELL;
588 gpio0 = 1;
589 ledmode = 0;
590 } else {
591 phymode = eeprom & 0x7f;
592 gpio0 = (eeprom & 0x80) ? 0 : 1;
593 ledmode = eeprom >> 8;
594 }
595
596 DPRINTF("use gpio0: %jd, phymode %jd", gpio0, phymode, 0, 0);
597
598 /* Program GPIOs depending on PHY hardware. */
599 switch (phymode) {
600 case AXE_PHY_MODE_MARVELL:
601 if (gpio0 == 1) {
602 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0_EN,
603 hz / 32);
604 AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
605 hz / 32);
606 AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2_EN, hz / 4);
607 AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
608 hz / 32);
609 } else {
610 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
611 AXE_GPIO1_EN, hz / 3);
612 if (ledmode == 1) {
613 AXE_GPIO_WRITE(AXE_GPIO1_EN, hz / 3);
614 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN,
615 hz / 3);
616 } else {
617 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
618 AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
619 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
620 AXE_GPIO2_EN, hz / 4);
621 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
622 AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
623 }
624 }
625 break;
626 case AXE_PHY_MODE_CICADA:
627 case AXE_PHY_MODE_CICADA_V2:
628 case AXE_PHY_MODE_CICADA_V2_ASIX:
629 if (gpio0 == 1)
630 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0 |
631 AXE_GPIO0_EN, hz / 32);
632 else
633 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
634 AXE_GPIO1_EN, hz / 32);
635 break;
636 case AXE_PHY_MODE_AGERE:
637 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
638 AXE_GPIO1_EN, hz / 32);
639 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
640 AXE_GPIO2_EN, hz / 32);
641 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2_EN, hz / 4);
642 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
643 AXE_GPIO2_EN, hz / 32);
644 break;
645 case AXE_PHY_MODE_REALTEK_8211CL:
646 case AXE_PHY_MODE_REALTEK_8211BN:
647 case AXE_PHY_MODE_REALTEK_8251CL:
648 val = gpio0 == 1 ? AXE_GPIO0 | AXE_GPIO0_EN :
649 AXE_GPIO1 | AXE_GPIO1_EN;
650 AXE_GPIO_WRITE(val, hz / 32);
651 AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
652 AXE_GPIO_WRITE(val | AXE_GPIO2_EN, hz / 4);
653 AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
654 if (phymode == AXE_PHY_MODE_REALTEK_8211CL) {
655 axe_uno_mii_write_reg(un, un->un_phyno, 0x1F, 0x0005);
656 axe_uno_mii_write_reg(un, un->un_phyno, 0x0C, 0x0000);
657 axe_uno_mii_read_reg(un, un->un_phyno, 0x0001, &val);
658 axe_uno_mii_write_reg(un, un->un_phyno, 0x01, val | 0x0080);
659 axe_uno_mii_write_reg(un, un->un_phyno, 0x1F, 0x0000);
660 }
661 break;
662 default:
663 /* Unknown PHY model or no need to program GPIOs. */
664 break;
665 }
666
667 /* soft reset */
668 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
669 usbd_delay_ms(un->un_udev, 150);
670 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
671 AXE_SW_RESET_PRL | AXE_178_RESET_MAGIC, NULL);
672 usbd_delay_ms(un->un_udev, 150);
673 /* Enable MII/GMII/RGMII interface to work with external PHY. */
674 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0, NULL);
675 usbd_delay_ms(un->un_udev, 10);
676 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
677 }
678
679 static void
680 axe_ax88772_init(struct axe_softc *sc)
681 {
682 AXEHIST_FUNC(); AXEHIST_CALLED();
683 struct usbnet * const un = &sc->axe_un;
684
685 axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x00b0, NULL);
686 usbd_delay_ms(un->un_udev, 40);
687
688 if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
689 /* ask for the embedded PHY */
690 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
691 AXE_SW_PHY_SELECT_EMBEDDED, NULL);
692 usbd_delay_ms(un->un_udev, 10);
693
694 /* power down and reset state, pin reset state */
695 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
696 usbd_delay_ms(un->un_udev, 60);
697
698 /* power down/reset state, pin operating state */
699 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
700 AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
701 usbd_delay_ms(un->un_udev, 150);
702
703 /* power up, reset */
704 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRL, NULL);
705
706 /* power up, operating */
707 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
708 AXE_SW_RESET_IPRL | AXE_SW_RESET_PRL, NULL);
709 } else {
710 /* ask for external PHY */
711 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_EXT,
712 NULL);
713 usbd_delay_ms(un->un_udev, 10);
714
715 /* power down internal PHY */
716 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
717 AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
718 }
719
720 usbd_delay_ms(un->un_udev, 150);
721 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
722 }
723
724 static void
725 axe_ax88772_phywake(struct axe_softc *sc)
726 {
727 AXEHIST_FUNC(); AXEHIST_CALLED();
728 struct usbnet * const un = &sc->axe_un;
729
730 if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
731 /* Manually select internal(embedded) PHY - MAC mode. */
732 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
733 AXE_SW_PHY_SELECT_EMBEDDED, NULL);
734 usbd_delay_ms(un->un_udev, hztoms(hz / 32));
735 } else {
736 /*
737 * Manually select external PHY - MAC mode.
738 * Reverse MII/RMII is for AX88772A PHY mode.
739 */
740 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_SS_ENB |
741 AXE_SW_PHY_SELECT_EXT | AXE_SW_PHY_SELECT_SS_MII, NULL);
742 usbd_delay_ms(un->un_udev, hztoms(hz / 32));
743 }
744
745 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPPD |
746 AXE_SW_RESET_IPRL, NULL);
747
748 /* T1 = min 500ns everywhere */
749 usbd_delay_ms(un->un_udev, 150);
750
751 /* Take PHY out of power down. */
752 if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
753 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
754 } else {
755 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRTE, NULL);
756 }
757
758 /* 772 T2 is 60ms. 772A T2 is 160ms, 772B T2 is 600ms */
759 usbd_delay_ms(un->un_udev, 600);
760
761 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
762
763 /* T3 = 500ns everywhere */
764 usbd_delay_ms(un->un_udev, hztoms(hz / 32));
765 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
766 usbd_delay_ms(un->un_udev, hztoms(hz / 32));
767 }
768
769 static void
770 axe_ax88772a_init(struct axe_softc *sc)
771 {
772 AXEHIST_FUNC(); AXEHIST_CALLED();
773
774 /* Reload EEPROM. */
775 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM, hz / 32);
776 axe_ax88772_phywake(sc);
777 /* Stop MAC. */
778 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
779 }
780
781 static void
782 axe_ax88772b_init(struct axe_softc *sc)
783 {
784 AXEHIST_FUNC(); AXEHIST_CALLED();
785 struct usbnet * const un = &sc->axe_un;
786 uint16_t eeprom;
787 int i;
788
789 /* Reload EEPROM. */
790 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM , hz / 32);
791
792 /*
793 * Save PHY power saving configuration(high byte) and
794 * clear EEPROM checksum value(low byte).
795 */
796 if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, AXE_EEPROM_772B_PHY_PWRCFG,
797 &eeprom)) {
798 aprint_error_dev(un->un_dev, "failed to read eeprom\n");
799 return;
800 }
801
802 sc->sc_pwrcfg = le16toh(eeprom) & 0xFF00;
803
804 /*
805 * Auto-loaded default station address from internal ROM is
806 * 00:00:00:00:00:00 such that an explicit access to EEPROM
807 * is required to get real station address.
808 */
809 uint8_t *eaddr = un->un_eaddr;
810 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
811 if (axe_cmd(sc, AXE_CMD_SROM_READ, 0,
812 AXE_EEPROM_772B_NODE_ID + i, &eeprom)) {
813 aprint_error_dev(un->un_dev,
814 "failed to read eeprom\n");
815 eeprom = 0;
816 }
817 eeprom = le16toh(eeprom);
818 *eaddr++ = (uint8_t)(eeprom & 0xFF);
819 *eaddr++ = (uint8_t)((eeprom >> 8) & 0xFF);
820 }
821 /* Wakeup PHY. */
822 axe_ax88772_phywake(sc);
823 /* Stop MAC. */
824 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
825 }
826
827 #undef AXE_GPIO_WRITE
828
829 /*
830 * Probe for a AX88172 chip.
831 */
832 static int
833 axe_match(device_t parent, cfdata_t match, void *aux)
834 {
835 struct usb_attach_arg *uaa = aux;
836
837 return axe_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL ?
838 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
839 }
840
841 /*
842 * Attach the interface. Allocate softc structures, do ifmedia
843 * setup and ethernet/BPF attach.
844 */
845 static void
846 axe_attach(device_t parent, device_t self, void *aux)
847 {
848 AXEHIST_FUNC(); AXEHIST_CALLED();
849 USBNET_MII_DECL_DEFAULT(unm);
850 struct axe_softc *sc = device_private(self);
851 struct usbnet * const un = &sc->axe_un;
852 struct usb_attach_arg *uaa = aux;
853 struct usbd_device *dev = uaa->uaa_device;
854 usbd_status err;
855 usb_interface_descriptor_t *id;
856 usb_endpoint_descriptor_t *ed;
857 char *devinfop;
858 unsigned bufsz;
859 int i;
860
861 KASSERT((void *)sc == un);
862
863 aprint_naive("\n");
864 aprint_normal("\n");
865 devinfop = usbd_devinfo_alloc(dev, 0);
866 aprint_normal_dev(self, "%s\n", devinfop);
867 usbd_devinfo_free(devinfop);
868
869 un->un_dev = self;
870 un->un_udev = dev;
871 un->un_sc = sc;
872 un->un_ops = &axe_ops;
873 un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
874 un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
875 un->un_rx_list_cnt = AXE_RX_LIST_CNT;
876 un->un_tx_list_cnt = AXE_TX_LIST_CNT;
877
878 err = usbd_set_config_no(dev, AXE_CONFIG_NO, 1);
879 if (err) {
880 aprint_error_dev(self, "failed to set configuration"
881 ", err=%s\n", usbd_errstr(err));
882 return;
883 }
884
885 un->un_flags = axe_lookup(uaa->uaa_vendor, uaa->uaa_product)->axe_flags;
886
887 err = usbd_device2interface_handle(dev, AXE_IFACE_IDX, &un->un_iface);
888 if (err) {
889 aprint_error_dev(self, "getting interface handle failed\n");
890 return;
891 }
892
893 id = usbd_get_interface_descriptor(un->un_iface);
894
895 /* decide on what our bufsize will be */
896 if (AXE_IS_172(un))
897 bufsz = AXE_172_BUFSZ;
898 else
899 bufsz = (un->un_udev->ud_speed == USB_SPEED_HIGH) ?
900 AXE_178_MAX_BUFSZ : AXE_178_MIN_BUFSZ;
901 un->un_rx_bufsz = un->un_tx_bufsz = bufsz;
902
903 un->un_ed[USBNET_ENDPT_RX] = 0;
904 un->un_ed[USBNET_ENDPT_TX] = 0;
905 un->un_ed[USBNET_ENDPT_INTR] = 0;
906
907 /* Find endpoints. */
908 for (i = 0; i < id->bNumEndpoints; i++) {
909 ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
910 if (ed == NULL) {
911 aprint_error_dev(self, "couldn't get ep %d\n", i);
912 return;
913 }
914 const uint8_t xt = UE_GET_XFERTYPE(ed->bmAttributes);
915 const uint8_t dir = UE_GET_DIR(ed->bEndpointAddress);
916
917 if (dir == UE_DIR_IN && xt == UE_BULK &&
918 un->un_ed[USBNET_ENDPT_RX] == 0) {
919 un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
920 } else if (dir == UE_DIR_OUT && xt == UE_BULK &&
921 un->un_ed[USBNET_ENDPT_TX] == 0) {
922 un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
923 } else if (dir == UE_DIR_IN && xt == UE_INTERRUPT) {
924 un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress;
925 }
926 }
927
928 /* Set these up now for axe_cmd(). */
929 usbnet_attach(un, "axedet");
930
931 /* We need the PHYID for init dance in some cases */
932 usbnet_lock_core(un);
933 usbnet_busy(un);
934 if (axe_cmd(sc, AXE_CMD_READ_PHYID, 0, 0, &sc->axe_phyaddrs)) {
935 aprint_error_dev(self, "failed to read phyaddrs\n");
936 usbnet_unbusy(un);
937 usbnet_unlock_core(un);
938 return;
939 }
940
941 DPRINTF(" phyaddrs[0]: %jx phyaddrs[1]: %jx",
942 sc->axe_phyaddrs[0], sc->axe_phyaddrs[1], 0, 0);
943 un->un_phyno = axe_get_phyno(sc, AXE_PHY_SEL_PRI);
944 if (un->un_phyno == -1)
945 un->un_phyno = axe_get_phyno(sc, AXE_PHY_SEL_SEC);
946 if (un->un_phyno == -1) {
947 DPRINTF(" no valid PHY address found, assuming PHY address 0",
948 0, 0, 0, 0);
949 un->un_phyno = 0;
950 }
951
952 /* Initialize controller and get station address. */
953
954 axe_ax_init(un);
955
956 /*
957 * Fetch IPG values.
958 */
959 if (un->un_flags & (AX772A | AX772B)) {
960 /* Set IPG values. */
961 sc->axe_ipgs[0] = AXE_IPG0_DEFAULT;
962 sc->axe_ipgs[1] = AXE_IPG1_DEFAULT;
963 sc->axe_ipgs[2] = AXE_IPG2_DEFAULT;
964 } else {
965 if (axe_cmd(sc, AXE_CMD_READ_IPG012, 0, 0, sc->axe_ipgs)) {
966 aprint_error_dev(self, "failed to read ipg\n");
967 usbnet_unbusy(un);
968 usbnet_unlock_core(un);
969 return;
970 }
971 }
972
973 usbnet_unbusy(un);
974 usbnet_unlock_core(un);
975
976 if (!AXE_IS_172(un))
977 usbnet_ec(un)->ec_capabilities = ETHERCAP_VLAN_MTU;
978 if (un->un_flags & AX772B) {
979 struct ifnet *ifp = usbnet_ifp(un);
980
981 ifp->if_capabilities =
982 IFCAP_CSUM_IPv4_Rx |
983 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
984 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
985 /*
986 * Checksum offloading of AX88772B also works with VLAN
987 * tagged frames but there is no way to take advantage
988 * of the feature because vlan(4) assumes
989 * IFCAP_VLAN_HWTAGGING is prerequisite condition to
990 * support checksum offloading with VLAN. VLAN hardware
991 * tagging support of AX88772B is very limited so it's
992 * not possible to announce IFCAP_VLAN_HWTAGGING.
993 */
994 }
995 if (un->un_flags & (AX772A | AX772B | AX178))
996 unm.un_mii_flags = MIIF_DOPAUSE;
997
998 usbnet_attach_ifp(un, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
999 0, &unm);
1000 }
1001
1002 static void
1003 axe_uno_rx_loop(struct usbnet * un, struct usbnet_chain *c, uint32_t total_len)
1004 {
1005 AXEHIST_FUNC(); AXEHIST_CALLED();
1006 struct axe_softc * const sc = usbnet_softc(un);
1007 struct ifnet *ifp = usbnet_ifp(un);
1008 uint8_t *buf = c->unc_buf;
1009
1010 do {
1011 u_int pktlen = 0;
1012 u_int rxlen = 0;
1013 int flags = 0;
1014
1015 if ((un->un_flags & AXSTD_FRAME) != 0) {
1016 struct axe_sframe_hdr hdr;
1017
1018 if (total_len < sizeof(hdr)) {
1019 if_statinc(ifp, if_ierrors);
1020 break;
1021 }
1022
1023 memcpy(&hdr, buf, sizeof(hdr));
1024
1025 DPRINTFN(20, "total_len %#jx len %#jx ilen %#jx",
1026 total_len,
1027 (le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK),
1028 (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK), 0);
1029
1030 total_len -= sizeof(hdr);
1031 buf += sizeof(hdr);
1032
1033 if (((le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK) ^
1034 (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK)) !=
1035 AXE_RH1M_RXLEN_MASK) {
1036 if_statinc(ifp, if_ierrors);
1037 break;
1038 }
1039
1040 rxlen = le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK;
1041 if (total_len < rxlen) {
1042 pktlen = total_len;
1043 total_len = 0;
1044 } else {
1045 pktlen = rxlen;
1046 rxlen = roundup2(rxlen, 2);
1047 total_len -= rxlen;
1048 }
1049
1050 } else if ((un->un_flags & AXCSUM_FRAME) != 0) {
1051 struct axe_csum_hdr csum_hdr;
1052
1053 if (total_len < sizeof(csum_hdr)) {
1054 if_statinc(ifp, if_ierrors);
1055 break;
1056 }
1057
1058 memcpy(&csum_hdr, buf, sizeof(csum_hdr));
1059
1060 csum_hdr.len = le16toh(csum_hdr.len);
1061 csum_hdr.ilen = le16toh(csum_hdr.ilen);
1062 csum_hdr.cstatus = le16toh(csum_hdr.cstatus);
1063
1064 DPRINTFN(20, "total_len %#jx len %#jx ilen %#jx"
1065 " cstatus %#jx", total_len,
1066 csum_hdr.len, csum_hdr.ilen, csum_hdr.cstatus);
1067
1068 if ((AXE_CSUM_RXBYTES(csum_hdr.len) ^
1069 AXE_CSUM_RXBYTES(csum_hdr.ilen)) !=
1070 sc->sc_lenmask) {
1071 /* we lost sync */
1072 if_statinc(ifp, if_ierrors);
1073 DPRINTFN(20, "len %#jx ilen %#jx lenmask %#jx "
1074 "err",
1075 AXE_CSUM_RXBYTES(csum_hdr.len),
1076 AXE_CSUM_RXBYTES(csum_hdr.ilen),
1077 sc->sc_lenmask, 0);
1078 break;
1079 }
1080 /*
1081 * Get total transferred frame length including
1082 * checksum header. The length should be multiple
1083 * of 4.
1084 */
1085 pktlen = AXE_CSUM_RXBYTES(csum_hdr.len);
1086 u_int len = sizeof(csum_hdr) + pktlen;
1087 len = (len + 3) & ~3;
1088 if (total_len < len) {
1089 DPRINTFN(20, "total_len %#jx < len %#jx",
1090 total_len, len, 0, 0);
1091 /* invalid length */
1092 if_statinc(ifp, if_ierrors);
1093 break;
1094 }
1095 buf += sizeof(csum_hdr);
1096
1097 const uint16_t cstatus = csum_hdr.cstatus;
1098
1099 if (cstatus & AXE_CSUM_HDR_L3_TYPE_IPV4) {
1100 if (cstatus & AXE_CSUM_HDR_L4_CSUM_ERR)
1101 flags |= M_CSUM_TCP_UDP_BAD;
1102 if (cstatus & AXE_CSUM_HDR_L3_CSUM_ERR)
1103 flags |= M_CSUM_IPv4_BAD;
1104
1105 const uint16_t l4type =
1106 cstatus & AXE_CSUM_HDR_L4_TYPE_MASK;
1107
1108 if (l4type == AXE_CSUM_HDR_L4_TYPE_TCP)
1109 flags |= M_CSUM_TCPv4;
1110 if (l4type == AXE_CSUM_HDR_L4_TYPE_UDP)
1111 flags |= M_CSUM_UDPv4;
1112 }
1113 if (total_len < len) {
1114 pktlen = total_len;
1115 total_len = 0;
1116 } else {
1117 total_len -= len;
1118 rxlen = len - sizeof(csum_hdr);
1119 }
1120 DPRINTFN(20, "total_len %#jx len %#jx pktlen %#jx"
1121 " rxlen %#jx", total_len, len, pktlen, rxlen);
1122 } else { /* AX172 */
1123 pktlen = rxlen = total_len;
1124 total_len = 0;
1125 }
1126
1127 usbnet_enqueue(un, buf, pktlen, flags, 0, 0);
1128 buf += rxlen;
1129
1130 } while (total_len > 0);
1131
1132 DPRINTFN(10, "start rx", 0, 0, 0, 0);
1133 }
1134
1135 static unsigned
1136 axe_uno_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
1137 {
1138 AXEHIST_FUNC(); AXEHIST_CALLED();
1139 struct axe_sframe_hdr hdr, tlr;
1140 size_t hdr_len = 0, tlr_len = 0;
1141 int length, boundary;
1142
1143 usbnet_isowned_tx(un);
1144
1145 if (!AXE_IS_172(un)) {
1146 /*
1147 * Copy the mbuf data into a contiguous buffer, leaving two
1148 * bytes at the beginning to hold the frame length.
1149 */
1150 boundary = (un->un_udev->ud_speed == USB_SPEED_HIGH) ? 512 : 64;
1151
1152 hdr.len = htole16(m->m_pkthdr.len);
1153 hdr.ilen = ~hdr.len;
1154 hdr_len = sizeof(hdr);
1155
1156 length = hdr_len + m->m_pkthdr.len;
1157
1158 if ((length % boundary) == 0) {
1159 tlr.len = 0x0000;
1160 tlr.ilen = 0xffff;
1161 tlr_len = sizeof(tlr);
1162 }
1163 DPRINTFN(20, "length %jx m_pkthdr.len %jx hdrsize %#jx",
1164 length, m->m_pkthdr.len, sizeof(hdr), 0);
1165 }
1166
1167 if ((unsigned)m->m_pkthdr.len > un->un_tx_bufsz - hdr_len - tlr_len)
1168 return 0;
1169 length = hdr_len + m->m_pkthdr.len + tlr_len;
1170
1171 if (hdr_len)
1172 memcpy(c->unc_buf, &hdr, hdr_len);
1173 m_copydata(m, 0, m->m_pkthdr.len, c->unc_buf + hdr_len);
1174 if (tlr_len)
1175 memcpy(c->unc_buf + length - tlr_len, &tlr, tlr_len);
1176
1177 return length;
1178 }
1179
1180 static void
1181 axe_csum_cfg(struct axe_softc *sc)
1182 {
1183 struct usbnet * const un = &sc->axe_un;
1184 struct ifnet * const ifp = usbnet_ifp(un);
1185 uint16_t csum1, csum2;
1186
1187 if ((un->un_flags & AX772B) != 0) {
1188 csum1 = 0;
1189 csum2 = 0;
1190 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) != 0)
1191 csum1 |= AXE_TXCSUM_IP;
1192 if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) != 0)
1193 csum1 |= AXE_TXCSUM_TCP;
1194 if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) != 0)
1195 csum1 |= AXE_TXCSUM_UDP;
1196 if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) != 0)
1197 csum1 |= AXE_TXCSUM_TCPV6;
1198 if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) != 0)
1199 csum1 |= AXE_TXCSUM_UDPV6;
1200 axe_cmd(sc, AXE_772B_CMD_WRITE_TXCSUM, csum2, csum1, NULL);
1201 csum1 = 0;
1202 csum2 = 0;
1203
1204 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0)
1205 csum1 |= AXE_RXCSUM_IP;
1206 if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0)
1207 csum1 |= AXE_RXCSUM_TCP;
1208 if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0)
1209 csum1 |= AXE_RXCSUM_UDP;
1210 if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0)
1211 csum1 |= AXE_RXCSUM_TCPV6;
1212 if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)
1213 csum1 |= AXE_RXCSUM_UDPV6;
1214 axe_cmd(sc, AXE_772B_CMD_WRITE_RXCSUM, csum2, csum1, NULL);
1215 }
1216 }
1217
1218 static int
1219 axe_init_locked(struct ifnet *ifp)
1220 {
1221 AXEHIST_FUNC(); AXEHIST_CALLED();
1222 struct usbnet * const un = ifp->if_softc;
1223 struct axe_softc * const sc = usbnet_softc(un);
1224 int rxmode;
1225
1226 usbnet_isowned_core(un);
1227
1228 if (usbnet_isdying(un))
1229 return EIO;
1230
1231 /* Cancel pending I/O */
1232 usbnet_stop(un, ifp, 1);
1233
1234 /* Reset the ethernet interface. */
1235 axe_reset(un);
1236
1237 #if 0
1238 ret = asix_write_gpio(dev, AX_GPIO_RSE | AX_GPIO_GPO_2 |
1239 AX_GPIO_GPO2EN, 5, in_pm);
1240 #endif
1241 /* Set MAC address and transmitter IPG values. */
1242 if (AXE_IS_172(un)) {
1243 axe_cmd(sc, AXE_172_CMD_WRITE_NODEID, 0, 0, un->un_eaddr);
1244 axe_cmd(sc, AXE_172_CMD_WRITE_IPG0, 0, sc->axe_ipgs[0], NULL);
1245 axe_cmd(sc, AXE_172_CMD_WRITE_IPG1, 0, sc->axe_ipgs[1], NULL);
1246 axe_cmd(sc, AXE_172_CMD_WRITE_IPG2, 0, sc->axe_ipgs[2], NULL);
1247 } else {
1248 axe_cmd(sc, AXE_178_CMD_WRITE_NODEID, 0, 0, un->un_eaddr);
1249 axe_cmd(sc, AXE_178_CMD_WRITE_IPG012, sc->axe_ipgs[2],
1250 (sc->axe_ipgs[1] << 8) | (sc->axe_ipgs[0]), NULL);
1251
1252 un->un_flags &= ~(AXSTD_FRAME | AXCSUM_FRAME);
1253 if ((un->un_flags & AX772B) != 0 &&
1254 (ifp->if_capenable & AX_RXCSUM) != 0) {
1255 sc->sc_lenmask = AXE_CSUM_HDR_LEN_MASK;
1256 un->un_flags |= AXCSUM_FRAME;
1257 } else {
1258 sc->sc_lenmask = AXE_HDR_LEN_MASK;
1259 un->un_flags |= AXSTD_FRAME;
1260 }
1261 }
1262
1263 /* Configure TX/RX checksum offloading. */
1264 axe_csum_cfg(sc);
1265
1266 if (un->un_flags & AX772B) {
1267 /* AX88772B uses different maximum frame burst configuration. */
1268 axe_cmd(sc, AXE_772B_CMD_RXCTL_WRITE_CFG,
1269 ax88772b_mfb_table[AX88772B_MFB_16K].threshold,
1270 ax88772b_mfb_table[AX88772B_MFB_16K].byte_cnt, NULL);
1271 }
1272 /* Enable receiver, set RX mode */
1273 rxmode = (AXE_RXCMD_BROADCAST | AXE_RXCMD_MULTICAST | AXE_RXCMD_ENABLE);
1274 if (AXE_IS_172(un))
1275 rxmode |= AXE_172_RXCMD_UNICAST;
1276 else {
1277 if (un->un_flags & AX772B) {
1278 /*
1279 * Select RX header format type 1. Aligning IP
1280 * header on 4 byte boundary is not needed when
1281 * checksum offloading feature is not used
1282 * because we always copy the received frame in
1283 * RX handler. When RX checksum offloading is
1284 * active, aligning IP header is required to
1285 * reflect actual frame length including RX
1286 * header size.
1287 */
1288 rxmode |= AXE_772B_RXCMD_HDR_TYPE_1;
1289 if (un->un_flags & AXCSUM_FRAME)
1290 rxmode |= AXE_772B_RXCMD_IPHDR_ALIGN;
1291 } else {
1292 /*
1293 * Default Rx buffer size is too small to get
1294 * maximum performance.
1295 */
1296 #if 0
1297 if (un->un_udev->ud_speed == USB_SPEED_HIGH) {
1298 /* Largest possible USB buffer size for AX88178 */
1299 }
1300 #endif
1301 rxmode |= AXE_178_RXCMD_MFB_16384;
1302 }
1303 }
1304
1305 DPRINTF("rxmode %#jx", rxmode, 0, 0, 0);
1306
1307 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
1308
1309 /* Accept multicast frame or run promisc. mode */
1310 axe_rcvfilt_locked(un);
1311
1312 return usbnet_init_rx_tx(un);
1313 }
1314
1315 static int
1316 axe_uno_init(struct ifnet *ifp)
1317 {
1318 struct usbnet * const un = ifp->if_softc;
1319
1320 usbnet_lock_core(un);
1321 usbnet_busy(un);
1322 int ret = axe_init_locked(ifp);
1323 usbnet_unbusy(un);
1324 usbnet_unlock_core(un);
1325
1326 return ret;
1327 }
1328
1329 static int
1330 axe_uno_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1331 {
1332 struct usbnet * const un = ifp->if_softc;
1333
1334 usbnet_lock_core(un);
1335 usbnet_busy(un);
1336
1337 switch (cmd) {
1338 case SIOCADDMULTI:
1339 case SIOCDELMULTI:
1340 axe_rcvfilt_locked(un);
1341 break;
1342 default:
1343 break;
1344 }
1345
1346 usbnet_unbusy(un);
1347 usbnet_unlock_core(un);
1348
1349 return 0;
1350 }
1351
1352 static void
1353 axe_uno_stop(struct ifnet *ifp, int disable)
1354 {
1355 struct usbnet * const un = ifp->if_softc;
1356
1357 axe_reset(un);
1358 }
1359
1360 #ifdef _MODULE
1361 #include "ioconf.c"
1362 #endif
1363
1364 USBNET_MODULE(axe)
1365