if_mue.c revision 1.52 1 1.52 mrg /* $NetBSD: if_mue.c,v 1.52 2019/08/15 08:02:32 mrg Exp $ */
2 1.1 rin /* $OpenBSD: if_mue.c,v 1.3 2018/08/04 16:42:46 jsg Exp $ */
3 1.1 rin
4 1.1 rin /*
5 1.1 rin * Copyright (c) 2018 Kevin Lo <kevlo (at) openbsd.org>
6 1.1 rin *
7 1.1 rin * Permission to use, copy, modify, and distribute this software for any
8 1.1 rin * purpose with or without fee is hereby granted, provided that the above
9 1.1 rin * copyright notice and this permission notice appear in all copies.
10 1.1 rin *
11 1.1 rin * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 1.1 rin * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 1.1 rin * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 1.1 rin * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 1.1 rin * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 1.1 rin * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 1.1 rin * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 1.1 rin */
19 1.1 rin
20 1.1 rin /* Driver for Microchip LAN7500/LAN7800 chipsets. */
21 1.1 rin
22 1.1 rin #include <sys/cdefs.h>
23 1.52 mrg __KERNEL_RCSID(0, "$NetBSD: if_mue.c,v 1.52 2019/08/15 08:02:32 mrg Exp $");
24 1.1 rin
25 1.1 rin #ifdef _KERNEL_OPT
26 1.1 rin #include "opt_usb.h"
27 1.1 rin #include "opt_inet.h"
28 1.1 rin #endif
29 1.1 rin
30 1.1 rin #include <sys/param.h>
31 1.52 mrg
32 1.52 mrg #include <dev/usb/usbnet.h>
33 1.1 rin
34 1.1 rin #include <dev/usb/if_muereg.h>
35 1.1 rin #include <dev/usb/if_muevar.h>
36 1.1 rin
37 1.52 mrg #define MUE_PRINTF(un, fmt, args...) \
38 1.52 mrg device_printf((un)->un_dev, "%s: " fmt, __func__, ##args);
39 1.1 rin
40 1.1 rin #ifdef USB_DEBUG
41 1.1 rin int muedebug = 0;
42 1.52 mrg #define DPRINTF(un, fmt, args...) \
43 1.45 msaitoh do { \
44 1.1 rin if (muedebug) \
45 1.52 mrg MUE_PRINTF(un, fmt, ##args); \
46 1.1 rin } while (0 /* CONSTCOND */)
47 1.1 rin #else
48 1.52 mrg #define DPRINTF(un, fmt, args...) __nothing
49 1.1 rin #endif
50 1.1 rin
51 1.1 rin /*
52 1.1 rin * Various supported device vendors/products.
53 1.1 rin */
54 1.1 rin struct mue_type {
55 1.1 rin struct usb_devno mue_dev;
56 1.1 rin uint16_t mue_flags;
57 1.1 rin #define LAN7500 0x0001 /* LAN7500 */
58 1.52 mrg #define LAN7800 0x0002 /* LAN7800 */
59 1.52 mrg #define LAN7801 0x0004 /* LAN7801 */
60 1.52 mrg #define LAN7850 0x0008 /* LAN7850 */
61 1.1 rin };
62 1.1 rin
63 1.1 rin const struct mue_type mue_devs[] = {
64 1.1 rin { { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN7500 }, LAN7500 },
65 1.1 rin { { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN7505 }, LAN7500 },
66 1.52 mrg { { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN7800 }, LAN7800 },
67 1.52 mrg { { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN7801 }, LAN7801 },
68 1.52 mrg { { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN7850 }, LAN7850 }
69 1.1 rin };
70 1.1 rin
71 1.1 rin #define MUE_LOOKUP(uaa) ((const struct mue_type *)usb_lookup(mue_devs, \
72 1.1 rin uaa->uaa_vendor, uaa->uaa_product))
73 1.1 rin
74 1.1 rin #define MUE_ENADDR_LO(enaddr) \
75 1.1 rin ((enaddr[3] << 24) | (enaddr[2] << 16) | (enaddr[1] << 8) | enaddr[0])
76 1.1 rin #define MUE_ENADDR_HI(enaddr) \
77 1.1 rin ((enaddr[5] << 8) | enaddr[4])
78 1.1 rin
79 1.1 rin static int mue_match(device_t, cfdata_t, void *);
80 1.1 rin static void mue_attach(device_t, device_t, void *);
81 1.1 rin
82 1.52 mrg static uint32_t mue_csr_read(struct usbnet *, uint32_t);
83 1.52 mrg static int mue_csr_write(struct usbnet *, uint32_t, uint32_t);
84 1.52 mrg static int mue_wait_for_bits(struct usbnet *, uint32_t, uint32_t,
85 1.1 rin uint32_t, uint32_t);
86 1.52 mrg static uint8_t mue_eeprom_getbyte(struct usbnet *, int, uint8_t *);
87 1.52 mrg static bool mue_eeprom_present(struct usbnet *);
88 1.52 mrg static void mue_dataport_write(struct usbnet *, uint32_t, uint32_t,
89 1.1 rin uint32_t, uint32_t *);
90 1.52 mrg static void mue_init_ltm(struct usbnet *);
91 1.52 mrg static int mue_chip_init(struct usbnet *);
92 1.52 mrg static void mue_set_macaddr(struct usbnet *);
93 1.52 mrg static int mue_get_macaddr(struct usbnet *, prop_dictionary_t);
94 1.52 mrg static int mue_prepare_tso(struct usbnet *, struct mbuf *);
95 1.52 mrg static void mue_setiff(struct usbnet *);
96 1.52 mrg static void mue_sethwcsum(struct usbnet *);
97 1.52 mrg static void mue_setmtu(struct usbnet *);
98 1.52 mrg static void mue_reset(struct usbnet *);
99 1.52 mrg
100 1.52 mrg static void mue_stop_cb(struct ifnet *, int);
101 1.52 mrg static int mue_ioctl_cb(struct ifnet *, u_long, void *);
102 1.52 mrg static usbd_status mue_mii_read_reg(struct usbnet *, int, int, uint16_t *);
103 1.52 mrg static usbd_status mue_mii_write_reg(struct usbnet *, int, int, uint16_t);
104 1.52 mrg static void mue_mii_statchg(struct ifnet *);
105 1.52 mrg static void mue_rx_loop(struct usbnet *, struct usbnet_chain *, uint32_t);
106 1.52 mrg static unsigned mue_tx_prepare(struct usbnet *, struct mbuf *,
107 1.52 mrg struct usbnet_chain *);
108 1.52 mrg static int mue_init(struct ifnet *);
109 1.1 rin
110 1.52 mrg static struct usbnet_ops mue_ops = {
111 1.52 mrg .uno_stop = mue_stop_cb,
112 1.52 mrg .uno_ioctl = mue_ioctl_cb,
113 1.52 mrg .uno_read_reg = mue_mii_read_reg,
114 1.52 mrg .uno_write_reg = mue_mii_write_reg,
115 1.52 mrg .uno_statchg = mue_mii_statchg,
116 1.52 mrg .uno_tx_prepare = mue_tx_prepare,
117 1.52 mrg .uno_rx_loop = mue_rx_loop,
118 1.52 mrg .uno_init = mue_init,
119 1.52 mrg };
120 1.1 rin
121 1.52 mrg #define MUE_SETBIT(un, reg, x) \
122 1.52 mrg mue_csr_write(un, reg, mue_csr_read(un, reg) | (x))
123 1.1 rin
124 1.52 mrg #define MUE_CLRBIT(un, reg, x) \
125 1.52 mrg mue_csr_write(un, reg, mue_csr_read(un, reg) & ~(x))
126 1.1 rin
127 1.52 mrg #define MUE_WAIT_SET(un, reg, set, fail) \
128 1.52 mrg mue_wait_for_bits(un, reg, set, ~0, fail)
129 1.1 rin
130 1.52 mrg #define MUE_WAIT_CLR(un, reg, clear, fail) \
131 1.52 mrg mue_wait_for_bits(un, reg, 0, clear, fail)
132 1.1 rin
133 1.1 rin #define ETHER_IS_VALID(addr) \
134 1.1 rin (!ETHER_IS_MULTICAST(addr) && !ETHER_IS_ZERO(addr))
135 1.1 rin
136 1.1 rin #define ETHER_IS_ZERO(addr) \
137 1.1 rin (!(addr[0] | addr[1] | addr[2] | addr[3] | addr[4] | addr[5]))
138 1.1 rin
139 1.52 mrg CFATTACH_DECL_NEW(mue, sizeof(struct usbnet), mue_match, mue_attach,
140 1.52 mrg usbnet_detach, usbnet_activate);
141 1.1 rin
142 1.1 rin static uint32_t
143 1.52 mrg mue_csr_read(struct usbnet *un, uint32_t reg)
144 1.1 rin {
145 1.1 rin usb_device_request_t req;
146 1.1 rin usbd_status err;
147 1.1 rin uDWord val;
148 1.1 rin
149 1.52 mrg if (usbnet_isdying(un))
150 1.1 rin return 0;
151 1.1 rin
152 1.1 rin USETDW(val, 0);
153 1.1 rin req.bmRequestType = UT_READ_VENDOR_DEVICE;
154 1.1 rin req.bRequest = MUE_UR_READREG;
155 1.1 rin USETW(req.wValue, 0);
156 1.1 rin USETW(req.wIndex, reg);
157 1.1 rin USETW(req.wLength, 4);
158 1.1 rin
159 1.52 mrg err = usbd_do_request(un->un_udev, &req, &val);
160 1.1 rin if (err) {
161 1.52 mrg MUE_PRINTF(un, "reg = 0x%x: %s\n", reg, usbd_errstr(err));
162 1.1 rin return 0;
163 1.1 rin }
164 1.1 rin
165 1.1 rin return UGETDW(val);
166 1.1 rin }
167 1.1 rin
168 1.1 rin static int
169 1.52 mrg mue_csr_write(struct usbnet *un, uint32_t reg, uint32_t aval)
170 1.1 rin {
171 1.1 rin usb_device_request_t req;
172 1.1 rin usbd_status err;
173 1.1 rin uDWord val;
174 1.1 rin
175 1.52 mrg if (usbnet_isdying(un))
176 1.1 rin return 0;
177 1.1 rin
178 1.1 rin USETDW(val, aval);
179 1.1 rin req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
180 1.1 rin req.bRequest = MUE_UR_WRITEREG;
181 1.1 rin USETW(req.wValue, 0);
182 1.1 rin USETW(req.wIndex, reg);
183 1.1 rin USETW(req.wLength, 4);
184 1.1 rin
185 1.52 mrg err = usbd_do_request(un->un_udev, &req, &val);
186 1.1 rin if (err) {
187 1.52 mrg MUE_PRINTF(un, "reg = 0x%x: %s\n", reg, usbd_errstr(err));
188 1.1 rin return -1;
189 1.1 rin }
190 1.1 rin
191 1.1 rin return 0;
192 1.1 rin }
193 1.1 rin
194 1.1 rin static int
195 1.52 mrg mue_wait_for_bits(struct usbnet *un, uint32_t reg,
196 1.1 rin uint32_t set, uint32_t clear, uint32_t fail)
197 1.1 rin {
198 1.1 rin uint32_t val;
199 1.1 rin int ntries;
200 1.1 rin
201 1.1 rin for (ntries = 0; ntries < 1000; ntries++) {
202 1.52 mrg val = mue_csr_read(un, reg);
203 1.1 rin if ((val & set) || !(val & clear))
204 1.1 rin return 0;
205 1.1 rin if (val & fail)
206 1.1 rin return 1;
207 1.52 mrg usbd_delay_ms(un->un_udev, 1);
208 1.1 rin }
209 1.1 rin
210 1.1 rin return 1;
211 1.1 rin }
212 1.1 rin
213 1.52 mrg static usbd_status
214 1.52 mrg mue_mii_read_reg(struct usbnet *un, int phy, int reg, uint16_t *val)
215 1.1 rin {
216 1.28 msaitoh uint32_t data;
217 1.1 rin
218 1.52 mrg usbnet_isowned_mii(un);
219 1.1 rin
220 1.52 mrg if (MUE_WAIT_CLR(un, MUE_MII_ACCESS, MUE_MII_ACCESS_BUSY, 0)) {
221 1.52 mrg MUE_PRINTF(un, "not ready\n");
222 1.52 mrg return USBD_IN_USE;
223 1.1 rin }
224 1.1 rin
225 1.52 mrg mue_csr_write(un, MUE_MII_ACCESS, MUE_MII_ACCESS_READ |
226 1.1 rin MUE_MII_ACCESS_BUSY | MUE_MII_ACCESS_REGADDR(reg) |
227 1.1 rin MUE_MII_ACCESS_PHYADDR(phy));
228 1.1 rin
229 1.52 mrg if (MUE_WAIT_CLR(un, MUE_MII_ACCESS, MUE_MII_ACCESS_BUSY, 0)) {
230 1.52 mrg MUE_PRINTF(un, "timed out\n");
231 1.52 mrg return USBD_TIMEOUT;
232 1.1 rin }
233 1.1 rin
234 1.52 mrg data = mue_csr_read(un, MUE_MII_DATA);
235 1.28 msaitoh *val = data & 0xffff;
236 1.28 msaitoh
237 1.52 mrg return USBD_NORMAL_COMPLETION;
238 1.1 rin }
239 1.1 rin
240 1.52 mrg static usbd_status
241 1.52 mrg mue_mii_write_reg(struct usbnet *un, int phy, int reg, uint16_t val)
242 1.1 rin {
243 1.52 mrg usbnet_isowned_mii(un);
244 1.1 rin
245 1.52 mrg if (MUE_WAIT_CLR(un, MUE_MII_ACCESS, MUE_MII_ACCESS_BUSY, 0)) {
246 1.52 mrg MUE_PRINTF(un, "not ready\n");
247 1.52 mrg return USBD_IN_USE;
248 1.1 rin }
249 1.1 rin
250 1.52 mrg mue_csr_write(un, MUE_MII_DATA, val);
251 1.52 mrg mue_csr_write(un, MUE_MII_ACCESS, MUE_MII_ACCESS_WRITE |
252 1.1 rin MUE_MII_ACCESS_BUSY | MUE_MII_ACCESS_REGADDR(reg) |
253 1.1 rin MUE_MII_ACCESS_PHYADDR(phy));
254 1.1 rin
255 1.52 mrg if (MUE_WAIT_CLR(un, MUE_MII_ACCESS, MUE_MII_ACCESS_BUSY, 0)) {
256 1.52 mrg MUE_PRINTF(un, "timed out\n");
257 1.52 mrg return USBD_TIMEOUT;
258 1.28 msaitoh }
259 1.52 mrg
260 1.52 mrg return USBD_NORMAL_COMPLETION;
261 1.1 rin }
262 1.1 rin
263 1.1 rin static void
264 1.52 mrg mue_mii_statchg(struct ifnet *ifp)
265 1.1 rin {
266 1.52 mrg struct usbnet * const un = ifp->if_softc;
267 1.52 mrg struct mii_data * const mii = usbnet_mii(un);
268 1.1 rin uint32_t flow, threshold;
269 1.1 rin
270 1.52 mrg if (usbnet_isdying(un))
271 1.34 rin return;
272 1.34 rin
273 1.1 rin if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
274 1.1 rin (IFM_ACTIVE | IFM_AVALID)) {
275 1.1 rin switch (IFM_SUBTYPE(mii->mii_media_active)) {
276 1.1 rin case IFM_10_T:
277 1.1 rin case IFM_100_TX:
278 1.1 rin case IFM_1000_T:
279 1.52 mrg usbnet_set_link(un, true);
280 1.1 rin break;
281 1.1 rin default:
282 1.1 rin break;
283 1.1 rin }
284 1.1 rin }
285 1.1 rin
286 1.1 rin /* Lost link, do nothing. */
287 1.52 mrg if (!usbnet_havelink(un)) {
288 1.52 mrg DPRINTF(un, "mii_media_status = 0x%x\n", mii->mii_media_status);
289 1.1 rin return;
290 1.1 rin }
291 1.1 rin
292 1.52 mrg if (!(un->un_flags & LAN7500)) {
293 1.52 mrg if (un->un_udev->ud_speed == USB_SPEED_SUPER) {
294 1.1 rin if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
295 1.1 rin /* Disable U2 and enable U1. */
296 1.52 mrg MUE_CLRBIT(un, MUE_USB_CFG1,
297 1.1 rin MUE_USB_CFG1_DEV_U2_INIT_EN);
298 1.52 mrg MUE_SETBIT(un, MUE_USB_CFG1,
299 1.1 rin MUE_USB_CFG1_DEV_U1_INIT_EN);
300 1.1 rin } else {
301 1.1 rin /* Enable U1 and U2. */
302 1.52 mrg MUE_SETBIT(un, MUE_USB_CFG1,
303 1.1 rin MUE_USB_CFG1_DEV_U1_INIT_EN |
304 1.1 rin MUE_USB_CFG1_DEV_U2_INIT_EN);
305 1.1 rin }
306 1.1 rin }
307 1.1 rin }
308 1.1 rin
309 1.1 rin flow = 0;
310 1.1 rin /* XXX Linux does not check IFM_FDX flag for 7800. */
311 1.1 rin if (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) {
312 1.1 rin if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE)
313 1.1 rin flow |= MUE_FLOW_TX_FCEN | MUE_FLOW_PAUSE_TIME;
314 1.1 rin if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE)
315 1.1 rin flow |= MUE_FLOW_RX_FCEN;
316 1.1 rin }
317 1.1 rin
318 1.1 rin /* XXX Magic numbers taken from Linux driver. */
319 1.52 mrg if (un->un_flags & LAN7500)
320 1.1 rin threshold = 0x820;
321 1.1 rin else
322 1.52 mrg switch (un->un_udev->ud_speed) {
323 1.1 rin case USB_SPEED_SUPER:
324 1.1 rin threshold = 0x817;
325 1.1 rin break;
326 1.1 rin case USB_SPEED_HIGH:
327 1.1 rin threshold = 0x211;
328 1.1 rin break;
329 1.1 rin default:
330 1.1 rin threshold = 0;
331 1.1 rin break;
332 1.1 rin }
333 1.1 rin
334 1.1 rin /* Threshold value should be set before enabling flow. */
335 1.52 mrg mue_csr_write(un, (un->un_flags & LAN7500) ?
336 1.1 rin MUE_7500_FCT_FLOW : MUE_7800_FCT_FLOW, threshold);
337 1.52 mrg mue_csr_write(un, MUE_FLOW, flow);
338 1.1 rin
339 1.52 mrg DPRINTF(un, "done\n");
340 1.1 rin }
341 1.1 rin
342 1.1 rin static uint8_t
343 1.52 mrg mue_eeprom_getbyte(struct usbnet *un, int off, uint8_t *dest)
344 1.1 rin {
345 1.1 rin uint32_t val;
346 1.1 rin
347 1.52 mrg if (MUE_WAIT_CLR(un, MUE_E2P_CMD, MUE_E2P_CMD_BUSY, 0)) {
348 1.52 mrg MUE_PRINTF(un, "not ready\n");
349 1.1 rin return ETIMEDOUT;
350 1.1 rin }
351 1.1 rin
352 1.17 rin KASSERT((off & ~MUE_E2P_CMD_ADDR_MASK) == 0);
353 1.52 mrg mue_csr_write(un, MUE_E2P_CMD, MUE_E2P_CMD_READ | MUE_E2P_CMD_BUSY |
354 1.17 rin off);
355 1.1 rin
356 1.52 mrg if (MUE_WAIT_CLR(un, MUE_E2P_CMD, MUE_E2P_CMD_BUSY,
357 1.1 rin MUE_E2P_CMD_TIMEOUT)) {
358 1.52 mrg MUE_PRINTF(un, "timed out\n");
359 1.1 rin return ETIMEDOUT;
360 1.1 rin }
361 1.1 rin
362 1.52 mrg val = mue_csr_read(un, MUE_E2P_DATA);
363 1.1 rin *dest = val & 0xff;
364 1.1 rin
365 1.1 rin return 0;
366 1.1 rin }
367 1.1 rin
368 1.1 rin static int
369 1.52 mrg mue_read_eeprom(struct usbnet *un, uint8_t *dest, int off, int cnt)
370 1.1 rin {
371 1.1 rin uint32_t val = 0; /* XXX gcc */
372 1.1 rin uint8_t byte;
373 1.42 martin int i, err = 0;
374 1.1 rin
375 1.1 rin /*
376 1.1 rin * EEPROM pins are muxed with the LED function on LAN7800 device.
377 1.1 rin */
378 1.52 mrg if (un->un_flags & LAN7800) {
379 1.52 mrg val = mue_csr_read(un, MUE_HW_CFG);
380 1.52 mrg mue_csr_write(un, MUE_HW_CFG,
381 1.1 rin val & ~(MUE_HW_CFG_LED0_EN | MUE_HW_CFG_LED1_EN));
382 1.1 rin }
383 1.1 rin
384 1.1 rin for (i = 0; i < cnt; i++) {
385 1.52 mrg err = mue_eeprom_getbyte(un, off + i, &byte);
386 1.1 rin if (err)
387 1.1 rin break;
388 1.1 rin *(dest + i) = byte;
389 1.1 rin }
390 1.1 rin
391 1.52 mrg if (un->un_flags & LAN7800)
392 1.52 mrg mue_csr_write(un, MUE_HW_CFG, val);
393 1.1 rin
394 1.1 rin return err ? 1 : 0;
395 1.1 rin }
396 1.1 rin
397 1.1 rin static bool
398 1.52 mrg mue_eeprom_present(struct usbnet *un)
399 1.1 rin {
400 1.1 rin uint32_t val;
401 1.1 rin uint8_t sig;
402 1.1 rin int ret;
403 1.1 rin
404 1.52 mrg if (un->un_flags & LAN7500) {
405 1.52 mrg val = mue_csr_read(un, MUE_E2P_CMD);
406 1.1 rin return val & MUE_E2P_CMD_LOADED;
407 1.1 rin } else {
408 1.52 mrg ret = mue_read_eeprom(un, &sig, MUE_E2P_IND_OFFSET, 1);
409 1.1 rin return (ret == 0) && (sig == MUE_E2P_IND);
410 1.1 rin }
411 1.1 rin }
412 1.1 rin
413 1.1 rin static int
414 1.52 mrg mue_read_otp_raw(struct usbnet *un, uint8_t *dest, int off, int cnt)
415 1.1 rin {
416 1.1 rin uint32_t val;
417 1.1 rin int i, err;
418 1.1 rin
419 1.52 mrg val = mue_csr_read(un, MUE_OTP_PWR_DN);
420 1.1 rin
421 1.1 rin /* Checking if bit is set. */
422 1.1 rin if (val & MUE_OTP_PWR_DN_PWRDN_N) {
423 1.1 rin /* Clear it, then wait for it to be cleared. */
424 1.52 mrg mue_csr_write(un, MUE_OTP_PWR_DN, 0);
425 1.52 mrg err = MUE_WAIT_CLR(un, MUE_OTP_PWR_DN, MUE_OTP_PWR_DN_PWRDN_N,
426 1.1 rin 0);
427 1.1 rin if (err) {
428 1.52 mrg MUE_PRINTF(un, "not ready\n");
429 1.1 rin return 1;
430 1.1 rin }
431 1.1 rin }
432 1.1 rin
433 1.1 rin /* Start reading the bytes, one at a time. */
434 1.1 rin for (i = 0; i < cnt; i++) {
435 1.52 mrg mue_csr_write(un, MUE_OTP_ADDR1,
436 1.1 rin ((off + i) >> 8) & MUE_OTP_ADDR1_MASK);
437 1.52 mrg mue_csr_write(un, MUE_OTP_ADDR2,
438 1.1 rin ((off + i) & MUE_OTP_ADDR2_MASK));
439 1.52 mrg mue_csr_write(un, MUE_OTP_FUNC_CMD, MUE_OTP_FUNC_CMD_READ);
440 1.52 mrg mue_csr_write(un, MUE_OTP_CMD_GO, MUE_OTP_CMD_GO_GO);
441 1.1 rin
442 1.52 mrg err = MUE_WAIT_CLR(un, MUE_OTP_STATUS, MUE_OTP_STATUS_BUSY, 0);
443 1.1 rin if (err) {
444 1.52 mrg MUE_PRINTF(un, "timed out\n");
445 1.1 rin return 1;
446 1.1 rin }
447 1.52 mrg val = mue_csr_read(un, MUE_OTP_RD_DATA);
448 1.1 rin *(dest + i) = (uint8_t)(val & 0xff);
449 1.1 rin }
450 1.1 rin
451 1.1 rin return 0;
452 1.1 rin }
453 1.1 rin
454 1.1 rin static int
455 1.52 mrg mue_read_otp(struct usbnet *un, uint8_t *dest, int off, int cnt)
456 1.1 rin {
457 1.1 rin uint8_t sig;
458 1.1 rin int err;
459 1.1 rin
460 1.52 mrg if (un->un_flags & LAN7500)
461 1.1 rin return 1;
462 1.1 rin
463 1.52 mrg err = mue_read_otp_raw(un, &sig, MUE_OTP_IND_OFFSET, 1);
464 1.1 rin if (err)
465 1.1 rin return 1;
466 1.1 rin switch (sig) {
467 1.1 rin case MUE_OTP_IND_1:
468 1.1 rin break;
469 1.1 rin case MUE_OTP_IND_2:
470 1.1 rin off += 0x100;
471 1.1 rin break;
472 1.1 rin default:
473 1.52 mrg DPRINTF(un, "OTP not found\n");
474 1.1 rin return 1;
475 1.1 rin }
476 1.52 mrg err = mue_read_otp_raw(un, dest, off, cnt);
477 1.1 rin return err;
478 1.1 rin }
479 1.1 rin
480 1.1 rin static void
481 1.52 mrg mue_dataport_write(struct usbnet *un, uint32_t sel, uint32_t addr,
482 1.1 rin uint32_t cnt, uint32_t *data)
483 1.1 rin {
484 1.1 rin uint32_t i;
485 1.1 rin
486 1.52 mrg if (MUE_WAIT_SET(un, MUE_DP_SEL, MUE_DP_SEL_DPRDY, 0)) {
487 1.52 mrg MUE_PRINTF(un, "not ready\n");
488 1.1 rin return;
489 1.1 rin }
490 1.1 rin
491 1.52 mrg mue_csr_write(un, MUE_DP_SEL,
492 1.52 mrg (mue_csr_read(un, MUE_DP_SEL) & ~MUE_DP_SEL_RSEL_MASK) | sel);
493 1.1 rin
494 1.1 rin for (i = 0; i < cnt; i++) {
495 1.52 mrg mue_csr_write(un, MUE_DP_ADDR, addr + i);
496 1.52 mrg mue_csr_write(un, MUE_DP_DATA, data[i]);
497 1.52 mrg mue_csr_write(un, MUE_DP_CMD, MUE_DP_CMD_WRITE);
498 1.52 mrg if (MUE_WAIT_SET(un, MUE_DP_SEL, MUE_DP_SEL_DPRDY, 0)) {
499 1.52 mrg MUE_PRINTF(un, "timed out\n");
500 1.1 rin return;
501 1.1 rin }
502 1.1 rin }
503 1.1 rin }
504 1.1 rin
505 1.1 rin static void
506 1.52 mrg mue_init_ltm(struct usbnet *un)
507 1.1 rin {
508 1.1 rin uint32_t idx[MUE_NUM_LTM_INDEX] = { 0, 0, 0, 0, 0, 0 };
509 1.1 rin uint8_t temp[2];
510 1.1 rin size_t i;
511 1.1 rin
512 1.52 mrg if (mue_csr_read(un, MUE_USB_CFG1) & MUE_USB_CFG1_LTM_ENABLE) {
513 1.52 mrg if (mue_eeprom_present(un) &&
514 1.52 mrg (mue_read_eeprom(un, temp, MUE_E2P_LTM_OFFSET, 2) == 0)) {
515 1.1 rin if (temp[0] != sizeof(idx)) {
516 1.52 mrg DPRINTF(un, "EEPROM: unexpected size\n");
517 1.1 rin goto done;
518 1.1 rin }
519 1.52 mrg if (mue_read_eeprom(un, (uint8_t *)idx, temp[1] << 1,
520 1.1 rin sizeof(idx))) {
521 1.52 mrg DPRINTF(un, "EEPROM: failed to read\n");
522 1.1 rin goto done;
523 1.1 rin }
524 1.52 mrg DPRINTF(un, "success\n");
525 1.52 mrg } else if (mue_read_otp(un, temp, MUE_E2P_LTM_OFFSET, 2) == 0) {
526 1.1 rin if (temp[0] != sizeof(idx)) {
527 1.52 mrg DPRINTF(un, "OTP: unexpected size\n");
528 1.1 rin goto done;
529 1.1 rin }
530 1.52 mrg if (mue_read_otp(un, (uint8_t *)idx, temp[1] << 1,
531 1.1 rin sizeof(idx))) {
532 1.52 mrg DPRINTF(un, "OTP: failed to read\n");
533 1.1 rin goto done;
534 1.1 rin }
535 1.52 mrg DPRINTF(un, "success\n");
536 1.26 rin } else
537 1.52 mrg DPRINTF(un, "nothing to do\n");
538 1.26 rin } else
539 1.52 mrg DPRINTF(un, "nothing to do\n");
540 1.1 rin done:
541 1.1 rin for (i = 0; i < __arraycount(idx); i++)
542 1.52 mrg mue_csr_write(un, MUE_LTM_INDEX(i), idx[i]);
543 1.1 rin }
544 1.1 rin
545 1.1 rin static int
546 1.52 mrg mue_chip_init(struct usbnet *un)
547 1.1 rin {
548 1.1 rin uint32_t val;
549 1.1 rin
550 1.52 mrg if ((un->un_flags & LAN7500) &&
551 1.52 mrg MUE_WAIT_SET(un, MUE_PMT_CTL, MUE_PMT_CTL_READY, 0)) {
552 1.52 mrg MUE_PRINTF(un, "not ready\n");
553 1.1 rin return ETIMEDOUT;
554 1.1 rin }
555 1.1 rin
556 1.52 mrg MUE_SETBIT(un, MUE_HW_CFG, MUE_HW_CFG_LRST);
557 1.52 mrg if (MUE_WAIT_CLR(un, MUE_HW_CFG, MUE_HW_CFG_LRST, 0)) {
558 1.52 mrg MUE_PRINTF(un, "timed out\n");
559 1.1 rin return ETIMEDOUT;
560 1.1 rin }
561 1.1 rin
562 1.1 rin /* Respond to the IN token with a NAK. */
563 1.52 mrg if (un->un_flags & LAN7500)
564 1.52 mrg MUE_SETBIT(un, MUE_HW_CFG, MUE_HW_CFG_BIR);
565 1.1 rin else
566 1.52 mrg MUE_SETBIT(un, MUE_USB_CFG0, MUE_USB_CFG0_BIR);
567 1.1 rin
568 1.52 mrg if (un->un_flags & LAN7500) {
569 1.52 mrg if (un->un_udev->ud_speed == USB_SPEED_HIGH)
570 1.3 rin val = MUE_7500_HS_RX_BUFSIZE /
571 1.1 rin MUE_HS_USB_PKT_SIZE;
572 1.1 rin else
573 1.3 rin val = MUE_7500_FS_RX_BUFSIZE /
574 1.1 rin MUE_FS_USB_PKT_SIZE;
575 1.52 mrg mue_csr_write(un, MUE_7500_BURST_CAP, val);
576 1.52 mrg mue_csr_write(un, MUE_7500_BULKIN_DELAY,
577 1.1 rin MUE_7500_DEFAULT_BULKIN_DELAY);
578 1.1 rin
579 1.52 mrg MUE_SETBIT(un, MUE_HW_CFG, MUE_HW_CFG_BCE | MUE_HW_CFG_MEF);
580 1.1 rin
581 1.1 rin /* Set FIFO sizes. */
582 1.1 rin val = (MUE_7500_MAX_RX_FIFO_SIZE - 512) / 512;
583 1.52 mrg mue_csr_write(un, MUE_7500_FCT_RX_FIFO_END, val);
584 1.1 rin val = (MUE_7500_MAX_TX_FIFO_SIZE - 512) / 512;
585 1.52 mrg mue_csr_write(un, MUE_7500_FCT_TX_FIFO_END, val);
586 1.1 rin } else {
587 1.1 rin /* Init LTM. */
588 1.52 mrg mue_init_ltm(un);
589 1.1 rin
590 1.3 rin val = MUE_7800_RX_BUFSIZE;
591 1.52 mrg switch (un->un_udev->ud_speed) {
592 1.1 rin case USB_SPEED_SUPER:
593 1.1 rin val /= MUE_SS_USB_PKT_SIZE;
594 1.1 rin break;
595 1.1 rin case USB_SPEED_HIGH:
596 1.1 rin val /= MUE_HS_USB_PKT_SIZE;
597 1.1 rin break;
598 1.1 rin default:
599 1.1 rin val /= MUE_FS_USB_PKT_SIZE;
600 1.1 rin break;
601 1.1 rin }
602 1.52 mrg mue_csr_write(un, MUE_7800_BURST_CAP, val);
603 1.52 mrg mue_csr_write(un, MUE_7800_BULKIN_DELAY,
604 1.1 rin MUE_7800_DEFAULT_BULKIN_DELAY);
605 1.1 rin
606 1.52 mrg MUE_SETBIT(un, MUE_HW_CFG, MUE_HW_CFG_MEF);
607 1.52 mrg MUE_SETBIT(un, MUE_USB_CFG0, MUE_USB_CFG0_BCE);
608 1.1 rin
609 1.1 rin /*
610 1.1 rin * Set FCL's RX and TX FIFO sizes: according to data sheet this
611 1.1 rin * is already the default value. But we initialize it to the
612 1.1 rin * same value anyways, as that's what the Linux driver does.
613 1.1 rin */
614 1.1 rin val = (MUE_7800_MAX_RX_FIFO_SIZE - 512) / 512;
615 1.52 mrg mue_csr_write(un, MUE_7800_FCT_RX_FIFO_END, val);
616 1.1 rin val = (MUE_7800_MAX_TX_FIFO_SIZE - 512) / 512;
617 1.52 mrg mue_csr_write(un, MUE_7800_FCT_TX_FIFO_END, val);
618 1.1 rin }
619 1.1 rin
620 1.1 rin /* Enabling interrupts. */
621 1.52 mrg mue_csr_write(un, MUE_INT_STATUS, ~0);
622 1.1 rin
623 1.52 mrg mue_csr_write(un, (un->un_flags & LAN7500) ?
624 1.1 rin MUE_7500_FCT_FLOW : MUE_7800_FCT_FLOW, 0);
625 1.52 mrg mue_csr_write(un, MUE_FLOW, 0);
626 1.44 msaitoh
627 1.1 rin /* Reset PHY. */
628 1.52 mrg MUE_SETBIT(un, MUE_PMT_CTL, MUE_PMT_CTL_PHY_RST);
629 1.52 mrg if (MUE_WAIT_CLR(un, MUE_PMT_CTL, MUE_PMT_CTL_PHY_RST, 0)) {
630 1.52 mrg MUE_PRINTF(un, "PHY not ready\n");
631 1.1 rin return ETIMEDOUT;
632 1.1 rin }
633 1.1 rin
634 1.1 rin /* LAN7801 only has RGMII mode. */
635 1.52 mrg if (un->un_flags & LAN7801)
636 1.52 mrg MUE_CLRBIT(un, MUE_MAC_CR, MUE_MAC_CR_GMII_EN);
637 1.1 rin
638 1.52 mrg if ((un->un_flags & (LAN7500 | LAN7800)) ||
639 1.52 mrg !mue_eeprom_present(un)) {
640 1.1 rin /* Allow MAC to detect speed and duplex from PHY. */
641 1.52 mrg MUE_SETBIT(un, MUE_MAC_CR, MUE_MAC_CR_AUTO_SPEED |
642 1.1 rin MUE_MAC_CR_AUTO_DUPLEX);
643 1.1 rin }
644 1.1 rin
645 1.52 mrg MUE_SETBIT(un, MUE_MAC_TX, MUE_MAC_TX_TXEN);
646 1.52 mrg MUE_SETBIT(un, (un->un_flags & LAN7500) ?
647 1.1 rin MUE_7500_FCT_TX_CTL : MUE_7800_FCT_TX_CTL, MUE_FCT_TX_CTL_EN);
648 1.1 rin
649 1.52 mrg MUE_SETBIT(un, (un->un_flags & LAN7500) ?
650 1.1 rin MUE_7500_FCT_RX_CTL : MUE_7800_FCT_RX_CTL, MUE_FCT_RX_CTL_EN);
651 1.1 rin
652 1.1 rin /* Set default GPIO/LED settings only if no EEPROM is detected. */
653 1.52 mrg if ((un->un_flags & LAN7500) && !mue_eeprom_present(un)) {
654 1.52 mrg MUE_CLRBIT(un, MUE_LED_CFG, MUE_LED_CFG_LED10_FUN_SEL);
655 1.52 mrg MUE_SETBIT(un, MUE_LED_CFG,
656 1.1 rin MUE_LED_CFG_LEDGPIO_EN | MUE_LED_CFG_LED2_FUN_SEL);
657 1.1 rin }
658 1.1 rin
659 1.1 rin /* XXX We assume two LEDs at least when EEPROM is missing. */
660 1.52 mrg if (un->un_flags & LAN7800 &&
661 1.52 mrg !mue_eeprom_present(un))
662 1.52 mrg MUE_SETBIT(un, MUE_HW_CFG,
663 1.1 rin MUE_HW_CFG_LED0_EN | MUE_HW_CFG_LED1_EN);
664 1.1 rin
665 1.1 rin return 0;
666 1.1 rin }
667 1.1 rin
668 1.1 rin static void
669 1.52 mrg mue_set_macaddr(struct usbnet *un)
670 1.1 rin {
671 1.52 mrg struct ifnet * const ifp = usbnet_ifp(un);
672 1.1 rin const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
673 1.1 rin uint32_t lo, hi;
674 1.1 rin
675 1.1 rin lo = MUE_ENADDR_LO(enaddr);
676 1.1 rin hi = MUE_ENADDR_HI(enaddr);
677 1.1 rin
678 1.52 mrg mue_csr_write(un, MUE_RX_ADDRL, lo);
679 1.52 mrg mue_csr_write(un, MUE_RX_ADDRH, hi);
680 1.1 rin }
681 1.1 rin
682 1.1 rin static int
683 1.52 mrg mue_get_macaddr(struct usbnet *un, prop_dictionary_t dict)
684 1.1 rin {
685 1.1 rin prop_data_t eaprop;
686 1.1 rin uint32_t low, high;
687 1.1 rin
688 1.52 mrg if (!(un->un_flags & LAN7500)) {
689 1.52 mrg low = mue_csr_read(un, MUE_RX_ADDRL);
690 1.52 mrg high = mue_csr_read(un, MUE_RX_ADDRH);
691 1.52 mrg un->un_eaddr[5] = (uint8_t)((high >> 8) & 0xff);
692 1.52 mrg un->un_eaddr[4] = (uint8_t)((high) & 0xff);
693 1.52 mrg un->un_eaddr[3] = (uint8_t)((low >> 24) & 0xff);
694 1.52 mrg un->un_eaddr[2] = (uint8_t)((low >> 16) & 0xff);
695 1.52 mrg un->un_eaddr[1] = (uint8_t)((low >> 8) & 0xff);
696 1.52 mrg un->un_eaddr[0] = (uint8_t)((low) & 0xff);
697 1.52 mrg if (ETHER_IS_VALID(un->un_eaddr))
698 1.1 rin return 0;
699 1.26 rin else
700 1.52 mrg DPRINTF(un, "registers: %s\n",
701 1.52 mrg ether_sprintf(un->un_eaddr));
702 1.1 rin }
703 1.1 rin
704 1.52 mrg if (mue_eeprom_present(un) && !mue_read_eeprom(un, un->un_eaddr,
705 1.1 rin MUE_E2P_MAC_OFFSET, ETHER_ADDR_LEN)) {
706 1.52 mrg if (ETHER_IS_VALID(un->un_eaddr))
707 1.1 rin return 0;
708 1.26 rin else
709 1.52 mrg DPRINTF(un, "EEPROM: %s\n",
710 1.52 mrg ether_sprintf(un->un_eaddr));
711 1.1 rin }
712 1.1 rin
713 1.52 mrg if (mue_read_otp(un, un->un_eaddr, MUE_OTP_MAC_OFFSET,
714 1.1 rin ETHER_ADDR_LEN) == 0) {
715 1.52 mrg if (ETHER_IS_VALID(un->un_eaddr))
716 1.1 rin return 0;
717 1.26 rin else
718 1.52 mrg DPRINTF(un, "OTP: %s\n",
719 1.52 mrg ether_sprintf(un->un_eaddr));
720 1.1 rin }
721 1.1 rin
722 1.1 rin /*
723 1.1 rin * Other MD methods. This should be tried only if other methods fail.
724 1.1 rin * Otherwise, MAC address for internal device can be assinged to
725 1.1 rin * external devices on Raspberry Pi, for example.
726 1.1 rin */
727 1.1 rin eaprop = prop_dictionary_get(dict, "mac-address");
728 1.1 rin if (eaprop != NULL) {
729 1.1 rin KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
730 1.1 rin KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
731 1.52 mrg memcpy(un->un_eaddr, prop_data_data_nocopy(eaprop),
732 1.1 rin ETHER_ADDR_LEN);
733 1.52 mrg if (ETHER_IS_VALID(un->un_eaddr))
734 1.1 rin return 0;
735 1.26 rin else
736 1.52 mrg DPRINTF(un, "prop_dictionary_get: %s\n",
737 1.52 mrg ether_sprintf(un->un_eaddr));
738 1.1 rin }
739 1.1 rin
740 1.1 rin return 1;
741 1.1 rin }
742 1.1 rin
743 1.1 rin
744 1.1 rin /*
745 1.45 msaitoh * Probe for a Microchip chip.
746 1.45 msaitoh */
747 1.1 rin static int
748 1.1 rin mue_match(device_t parent, cfdata_t match, void *aux)
749 1.1 rin {
750 1.1 rin struct usb_attach_arg *uaa = aux;
751 1.1 rin
752 1.1 rin return (MUE_LOOKUP(uaa) != NULL) ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
753 1.1 rin }
754 1.1 rin
755 1.1 rin static void
756 1.1 rin mue_attach(device_t parent, device_t self, void *aux)
757 1.1 rin {
758 1.52 mrg struct usbnet * const un = device_private(self);
759 1.1 rin prop_dictionary_t dict = device_properties(self);
760 1.1 rin struct usb_attach_arg *uaa = aux;
761 1.1 rin struct usbd_device *dev = uaa->uaa_device;
762 1.1 rin usb_interface_descriptor_t *id;
763 1.1 rin usb_endpoint_descriptor_t *ed;
764 1.1 rin char *devinfop;
765 1.1 rin usbd_status err;
766 1.31 mlelstv const char *descr;
767 1.52 mrg uint32_t id_rev;
768 1.8 rin uint8_t i;
769 1.52 mrg unsigned rx_list_cnt, tx_list_cnt;
770 1.52 mrg unsigned rx_bufsz;
771 1.1 rin
772 1.1 rin aprint_naive("\n");
773 1.1 rin aprint_normal("\n");
774 1.52 mrg devinfop = usbd_devinfo_alloc(dev, 0);
775 1.1 rin aprint_normal_dev(self, "%s\n", devinfop);
776 1.1 rin usbd_devinfo_free(devinfop);
777 1.1 rin
778 1.52 mrg un->un_dev = self;
779 1.52 mrg un->un_udev = dev;
780 1.52 mrg un->un_sc = un;
781 1.52 mrg un->un_ops = &mue_ops;
782 1.52 mrg un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
783 1.52 mrg un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
784 1.49 mlelstv
785 1.1 rin #define MUE_CONFIG_NO 1
786 1.1 rin err = usbd_set_config_no(dev, MUE_CONFIG_NO, 1);
787 1.1 rin if (err) {
788 1.1 rin aprint_error_dev(self, "failed to set configuration: %s\n",
789 1.1 rin usbd_errstr(err));
790 1.1 rin return;
791 1.1 rin }
792 1.1 rin
793 1.1 rin #define MUE_IFACE_IDX 0
794 1.52 mrg err = usbd_device2interface_handle(dev, MUE_IFACE_IDX, &un->un_iface);
795 1.1 rin if (err) {
796 1.1 rin aprint_error_dev(self, "failed to get interface handle: %s\n",
797 1.1 rin usbd_errstr(err));
798 1.1 rin return;
799 1.1 rin }
800 1.1 rin
801 1.52 mrg un->un_flags = MUE_LOOKUP(uaa)->mue_flags;
802 1.31 mlelstv
803 1.1 rin /* Decide on what our bufsize will be. */
804 1.52 mrg if (un->un_flags & LAN7500) {
805 1.52 mrg rx_bufsz = (un->un_udev->ud_speed == USB_SPEED_HIGH) ?
806 1.3 rin MUE_7500_HS_RX_BUFSIZE : MUE_7500_FS_RX_BUFSIZE;
807 1.52 mrg rx_list_cnt = 1;
808 1.52 mrg tx_list_cnt = 1;
809 1.31 mlelstv } else {
810 1.52 mrg rx_bufsz = MUE_7800_RX_BUFSIZE;
811 1.52 mrg rx_list_cnt = MUE_RX_LIST_CNT;
812 1.52 mrg tx_list_cnt = MUE_TX_LIST_CNT;
813 1.31 mlelstv }
814 1.52 mrg
815 1.52 mrg un->un_rx_list_cnt = rx_list_cnt;
816 1.52 mrg un->un_tx_list_cnt = tx_list_cnt;
817 1.52 mrg un->un_rx_bufsz = rx_bufsz;
818 1.52 mrg un->un_tx_bufsz = MUE_TX_BUFSIZE;
819 1.1 rin
820 1.1 rin /* Find endpoints. */
821 1.52 mrg id = usbd_get_interface_descriptor(un->un_iface);
822 1.1 rin for (i = 0; i < id->bNumEndpoints; i++) {
823 1.52 mrg ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
824 1.1 rin if (ed == NULL) {
825 1.8 rin aprint_error_dev(self, "failed to get ep %hhd\n", i);
826 1.1 rin return;
827 1.1 rin }
828 1.1 rin if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
829 1.1 rin UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
830 1.52 mrg un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
831 1.1 rin } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
832 1.1 rin UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
833 1.52 mrg un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
834 1.1 rin } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
835 1.1 rin UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) {
836 1.52 mrg un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress;
837 1.1 rin }
838 1.1 rin }
839 1.52 mrg if (un->un_ed[USBNET_ENDPT_RX] == 0 ||
840 1.52 mrg un->un_ed[USBNET_ENDPT_TX] == 0 ||
841 1.52 mrg un->un_ed[USBNET_ENDPT_INTR] == 0) {
842 1.52 mrg aprint_error_dev(self, "failed to find endpoints\n");
843 1.52 mrg return;
844 1.52 mrg }
845 1.1 rin
846 1.52 mrg /* Set these up now for mue_cmd(). */
847 1.52 mrg usbnet_attach(un, "muedet");
848 1.1 rin
849 1.52 mrg un->un_phyno = 1;
850 1.1 rin
851 1.52 mrg if (mue_chip_init(un)) {
852 1.9 rin aprint_error_dev(self, "failed to initialize chip\n");
853 1.1 rin return;
854 1.1 rin }
855 1.1 rin
856 1.1 rin /* A Microchip chip was detected. Inform the world. */
857 1.52 mrg id_rev = mue_csr_read(un, MUE_ID_REV);
858 1.52 mrg descr = (un->un_flags & LAN7500) ? "LAN7500" : "LAN7800";
859 1.31 mlelstv aprint_normal_dev(self, "%s id 0x%x rev 0x%x\n", descr,
860 1.52 mrg (unsigned)__SHIFTOUT(id_rev, MUE_ID_REV_ID),
861 1.52 mrg (unsigned)__SHIFTOUT(id_rev, MUE_ID_REV_REV));
862 1.1 rin
863 1.52 mrg if (mue_get_macaddr(un, dict)) {
864 1.21 rin aprint_error_dev(self, "failed to read MAC address\n");
865 1.21 rin return;
866 1.1 rin }
867 1.1 rin
868 1.52 mrg struct ifnet *ifp = usbnet_ifp(un);
869 1.20 rin ifp->if_capabilities = IFCAP_TSOv4 | IFCAP_TSOv6 |
870 1.44 msaitoh IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
871 1.20 rin IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
872 1.20 rin IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
873 1.20 rin IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
874 1.20 rin IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
875 1.3 rin
876 1.52 mrg struct ethercom *ec = usbnet_ec(un);
877 1.52 mrg ec->ec_capabilities = ETHERCAP_VLAN_MTU;
878 1.22 rin #if 0 /* XXX not yet */
879 1.52 mrg ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
880 1.22 rin #endif
881 1.1 rin
882 1.52 mrg usbnet_attach_ifp(un, true, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
883 1.52 mrg 0, 0);
884 1.1 rin }
885 1.1 rin
886 1.52 mrg static unsigned
887 1.52 mrg mue_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
888 1.1 rin {
889 1.52 mrg struct ifnet * const ifp = usbnet_ifp(un);
890 1.1 rin struct mue_txbuf_hdr hdr;
891 1.12 rin uint32_t tx_cmd_a, tx_cmd_b;
892 1.37 rin int csum, len, rv;
893 1.20 rin bool tso, ipe, tpe;
894 1.12 rin
895 1.52 mrg usbnet_isowned_tx(un);
896 1.52 mrg
897 1.52 mrg if ((unsigned)m->m_pkthdr.len > un->un_tx_bufsz - sizeof(hdr))
898 1.52 mrg return 0;
899 1.52 mrg
900 1.20 rin csum = m->m_pkthdr.csum_flags;
901 1.20 rin tso = csum & (M_CSUM_TSOv4 | M_CSUM_TSOv6);
902 1.20 rin ipe = csum & M_CSUM_IPv4;
903 1.20 rin tpe = csum & (M_CSUM_TCPv4 | M_CSUM_UDPv4 |
904 1.20 rin M_CSUM_TCPv6 | M_CSUM_UDPv6);
905 1.12 rin
906 1.12 rin len = m->m_pkthdr.len;
907 1.41 rin if (__predict_false((!tso && len > (int)MUE_FRAME_LEN(ifp->if_mtu)) ||
908 1.22 rin ( tso && len > MUE_TSO_FRAME_LEN))) {
909 1.52 mrg MUE_PRINTF(un, "packet length %d\n too long", len);
910 1.52 mrg return 0;
911 1.12 rin }
912 1.1 rin
913 1.12 rin KASSERT((len & ~MUE_TX_CMD_A_LEN_MASK) == 0);
914 1.12 rin tx_cmd_a = len | MUE_TX_CMD_A_FCS;
915 1.3 rin
916 1.12 rin if (tso) {
917 1.12 rin tx_cmd_a |= MUE_TX_CMD_A_LSO;
918 1.3 rin if (__predict_true(m->m_pkthdr.segsz > MUE_TX_MSS_MIN))
919 1.12 rin tx_cmd_b = m->m_pkthdr.segsz;
920 1.3 rin else
921 1.12 rin tx_cmd_b = MUE_TX_MSS_MIN;
922 1.12 rin tx_cmd_b <<= MUE_TX_CMD_B_MSS_SHIFT;
923 1.12 rin KASSERT((tx_cmd_b & ~MUE_TX_CMD_B_MSS_MASK) == 0);
924 1.52 mrg rv = mue_prepare_tso(un, m);
925 1.37 rin if (__predict_false(rv))
926 1.52 mrg return 0;
927 1.20 rin } else {
928 1.20 rin if (ipe)
929 1.20 rin tx_cmd_a |= MUE_TX_CMD_A_IPE;
930 1.20 rin if (tpe)
931 1.20 rin tx_cmd_a |= MUE_TX_CMD_A_TPE;
932 1.12 rin tx_cmd_b = 0;
933 1.20 rin }
934 1.12 rin
935 1.12 rin hdr.tx_cmd_a = htole32(tx_cmd_a);
936 1.12 rin hdr.tx_cmd_b = htole32(tx_cmd_b);
937 1.3 rin
938 1.52 mrg memcpy(c->unc_buf, &hdr, sizeof(hdr));
939 1.52 mrg m_copydata(m, 0, len, c->unc_buf + sizeof(hdr));
940 1.32 rin
941 1.52 mrg return len + sizeof(hdr);
942 1.1 rin }
943 1.1 rin
944 1.37 rin /*
945 1.37 rin * L3 length field should be cleared.
946 1.37 rin */
947 1.37 rin static int
948 1.52 mrg mue_prepare_tso(struct usbnet *un, struct mbuf *m)
949 1.3 rin {
950 1.3 rin struct ether_header *eh;
951 1.3 rin struct ip *ip;
952 1.3 rin struct ip6_hdr *ip6;
953 1.37 rin uint16_t type, len = 0;
954 1.18 rin int off;
955 1.3 rin
956 1.41 rin if (__predict_true(m->m_len >= (int)sizeof(*eh))) {
957 1.37 rin eh = mtod(m, struct ether_header *);
958 1.37 rin type = eh->ether_type;
959 1.37 rin } else
960 1.37 rin m_copydata(m, offsetof(struct ether_header, ether_type),
961 1.37 rin sizeof(type), &type);
962 1.37 rin switch (type = htons(type)) {
963 1.3 rin case ETHERTYPE_IP:
964 1.3 rin case ETHERTYPE_IPV6:
965 1.18 rin off = ETHER_HDR_LEN;
966 1.3 rin break;
967 1.3 rin case ETHERTYPE_VLAN:
968 1.18 rin off = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
969 1.3 rin break;
970 1.3 rin default:
971 1.37 rin return EINVAL;
972 1.3 rin }
973 1.3 rin
974 1.13 rin if (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
975 1.41 rin if (__predict_true(m->m_len >= off + (int)sizeof(*ip))) {
976 1.37 rin ip = (void *)(mtod(m, char *) + off);
977 1.37 rin ip->ip_len = 0;
978 1.37 rin } else
979 1.37 rin m_copyback(m, off + offsetof(struct ip, ip_len),
980 1.37 rin sizeof(len), &len);
981 1.3 rin } else {
982 1.41 rin if (__predict_true(m->m_len >= off + (int)sizeof(*ip6))) {
983 1.37 rin ip6 = (void *)(mtod(m, char *) + off);
984 1.37 rin ip6->ip6_plen = 0;
985 1.37 rin } else
986 1.37 rin m_copyback(m, off + offsetof(struct ip6_hdr, ip6_plen),
987 1.37 rin sizeof(len), &len);
988 1.3 rin }
989 1.37 rin return 0;
990 1.3 rin }
991 1.3 rin
992 1.3 rin static void
993 1.52 mrg mue_setiff(struct usbnet *un)
994 1.1 rin {
995 1.52 mrg struct ethercom *ec = usbnet_ec(un);
996 1.52 mrg struct ifnet * const ifp = usbnet_ifp(un);
997 1.1 rin const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
998 1.1 rin struct ether_multi *enm;
999 1.1 rin struct ether_multistep step;
1000 1.1 rin uint32_t pfiltbl[MUE_NUM_ADDR_FILTX][2];
1001 1.1 rin uint32_t hashtbl[MUE_DP_SEL_VHF_HASH_LEN];
1002 1.1 rin uint32_t reg, rxfilt, h, hireg, loreg;
1003 1.8 rin size_t i;
1004 1.1 rin
1005 1.52 mrg if (usbnet_isdying(un))
1006 1.1 rin return;
1007 1.1 rin
1008 1.1 rin /* Clear perfect filter and hash tables. */
1009 1.1 rin memset(pfiltbl, 0, sizeof(pfiltbl));
1010 1.1 rin memset(hashtbl, 0, sizeof(hashtbl));
1011 1.1 rin
1012 1.52 mrg reg = (un->un_flags & LAN7500) ? MUE_7500_RFE_CTL : MUE_7800_RFE_CTL;
1013 1.52 mrg rxfilt = mue_csr_read(un, reg);
1014 1.1 rin rxfilt &= ~(MUE_RFE_CTL_PERFECT | MUE_RFE_CTL_MULTICAST_HASH |
1015 1.1 rin MUE_RFE_CTL_UNICAST | MUE_RFE_CTL_MULTICAST);
1016 1.1 rin
1017 1.1 rin /* Always accept broadcast frames. */
1018 1.1 rin rxfilt |= MUE_RFE_CTL_BROADCAST;
1019 1.1 rin
1020 1.25 rin if (ifp->if_flags & IFF_PROMISC) {
1021 1.25 rin rxfilt |= MUE_RFE_CTL_UNICAST;
1022 1.25 rin allmulti: rxfilt |= MUE_RFE_CTL_MULTICAST;
1023 1.25 rin ifp->if_flags |= IFF_ALLMULTI;
1024 1.26 rin if (ifp->if_flags & IFF_PROMISC)
1025 1.52 mrg DPRINTF(un, "promisc\n");
1026 1.26 rin else
1027 1.52 mrg DPRINTF(un, "allmulti\n");
1028 1.1 rin } else {
1029 1.1 rin /* Now program new ones. */
1030 1.1 rin pfiltbl[0][0] = MUE_ENADDR_HI(enaddr) | MUE_ADDR_FILTX_VALID;
1031 1.1 rin pfiltbl[0][1] = MUE_ENADDR_LO(enaddr);
1032 1.1 rin i = 1;
1033 1.48 msaitoh ETHER_LOCK(ec);
1034 1.48 msaitoh ETHER_FIRST_MULTI(step, ec, enm);
1035 1.1 rin while (enm != NULL) {
1036 1.1 rin if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1037 1.1 rin ETHER_ADDR_LEN)) {
1038 1.1 rin memset(pfiltbl, 0, sizeof(pfiltbl));
1039 1.1 rin memset(hashtbl, 0, sizeof(hashtbl));
1040 1.1 rin rxfilt &= ~MUE_RFE_CTL_MULTICAST_HASH;
1041 1.48 msaitoh ETHER_UNLOCK(ec);
1042 1.1 rin goto allmulti;
1043 1.1 rin }
1044 1.1 rin if (i < MUE_NUM_ADDR_FILTX) {
1045 1.1 rin /* Use perfect address table if possible. */
1046 1.1 rin pfiltbl[i][0] = MUE_ENADDR_HI(enm->enm_addrlo) |
1047 1.1 rin MUE_ADDR_FILTX_VALID;
1048 1.1 rin pfiltbl[i][1] = MUE_ENADDR_LO(enm->enm_addrlo);
1049 1.1 rin } else {
1050 1.1 rin /* Otherwise, use hash table. */
1051 1.1 rin rxfilt |= MUE_RFE_CTL_MULTICAST_HASH;
1052 1.1 rin h = (ether_crc32_be(enm->enm_addrlo,
1053 1.1 rin ETHER_ADDR_LEN) >> 23) & 0x1ff;
1054 1.44 msaitoh hashtbl[h / 32] |= 1 << (h % 32);
1055 1.1 rin }
1056 1.1 rin i++;
1057 1.1 rin ETHER_NEXT_MULTI(step, enm);
1058 1.1 rin }
1059 1.48 msaitoh ETHER_UNLOCK(ec);
1060 1.1 rin rxfilt |= MUE_RFE_CTL_PERFECT;
1061 1.25 rin ifp->if_flags &= ~IFF_ALLMULTI;
1062 1.26 rin if (rxfilt & MUE_RFE_CTL_MULTICAST_HASH)
1063 1.52 mrg DPRINTF(un, "perfect filter and hash tables\n");
1064 1.26 rin else
1065 1.52 mrg DPRINTF(un, "perfect filter\n");
1066 1.1 rin }
1067 1.1 rin
1068 1.1 rin for (i = 0; i < MUE_NUM_ADDR_FILTX; i++) {
1069 1.52 mrg hireg = (un->un_flags & LAN7500) ?
1070 1.1 rin MUE_7500_ADDR_FILTX(i) : MUE_7800_ADDR_FILTX(i);
1071 1.1 rin loreg = hireg + 4;
1072 1.52 mrg mue_csr_write(un, hireg, 0);
1073 1.52 mrg mue_csr_write(un, loreg, pfiltbl[i][1]);
1074 1.52 mrg mue_csr_write(un, hireg, pfiltbl[i][0]);
1075 1.1 rin }
1076 1.1 rin
1077 1.52 mrg mue_dataport_write(un, MUE_DP_SEL_VHF, MUE_DP_SEL_VHF_VLAN_LEN,
1078 1.1 rin MUE_DP_SEL_VHF_HASH_LEN, hashtbl);
1079 1.1 rin
1080 1.52 mrg mue_csr_write(un, reg, rxfilt);
1081 1.1 rin }
1082 1.1 rin
1083 1.1 rin static void
1084 1.52 mrg mue_sethwcsum(struct usbnet *un)
1085 1.1 rin {
1086 1.52 mrg struct ifnet * const ifp = usbnet_ifp(un);
1087 1.1 rin uint32_t reg, val;
1088 1.1 rin
1089 1.52 mrg reg = (un->un_flags & LAN7500) ? MUE_7500_RFE_CTL : MUE_7800_RFE_CTL;
1090 1.52 mrg val = mue_csr_read(un, reg);
1091 1.1 rin
1092 1.29 rin if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1093 1.52 mrg DPRINTF(un, "RX IPv4 hwcsum enabled\n");
1094 1.29 rin val |= MUE_RFE_CTL_IP_COE;
1095 1.1 rin } else {
1096 1.52 mrg DPRINTF(un, "RX IPv4 hwcsum disabled\n");
1097 1.29 rin val &= ~MUE_RFE_CTL_IP_COE;
1098 1.29 rin }
1099 1.29 rin
1100 1.29 rin if (ifp->if_capenable &
1101 1.29 rin (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
1102 1.29 rin IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) {
1103 1.52 mrg DPRINTF(un, "RX L4 hwcsum enabled\n");
1104 1.29 rin val |= MUE_RFE_CTL_TCPUDP_COE;
1105 1.29 rin } else {
1106 1.52 mrg DPRINTF(un, "RX L4 hwcsum disabled\n");
1107 1.29 rin val &= ~MUE_RFE_CTL_TCPUDP_COE;
1108 1.29 rin }
1109 1.1 rin
1110 1.1 rin val &= ~MUE_RFE_CTL_VLAN_FILTER;
1111 1.1 rin
1112 1.52 mrg mue_csr_write(un, reg, val);
1113 1.1 rin }
1114 1.1 rin
1115 1.22 rin static void
1116 1.52 mrg mue_setmtu(struct usbnet *un)
1117 1.22 rin {
1118 1.52 mrg struct ifnet * const ifp = usbnet_ifp(un);
1119 1.22 rin uint32_t val;
1120 1.22 rin
1121 1.22 rin /* Set the maximum frame size. */
1122 1.52 mrg MUE_CLRBIT(un, MUE_MAC_RX, MUE_MAC_RX_RXEN);
1123 1.52 mrg val = mue_csr_read(un, MUE_MAC_RX);
1124 1.22 rin val &= ~MUE_MAC_RX_MAX_SIZE_MASK;
1125 1.22 rin val |= MUE_MAC_RX_MAX_LEN(MUE_FRAME_LEN(ifp->if_mtu));
1126 1.52 mrg mue_csr_write(un, MUE_MAC_RX, val);
1127 1.52 mrg MUE_SETBIT(un, MUE_MAC_RX, MUE_MAC_RX_RXEN);
1128 1.22 rin }
1129 1.1 rin
1130 1.1 rin static void
1131 1.52 mrg mue_rx_loop(struct usbnet *un, struct usbnet_chain *c, uint32_t total_len)
1132 1.1 rin {
1133 1.52 mrg struct ifnet * const ifp = usbnet_ifp(un);
1134 1.1 rin struct mue_rxbuf_hdr *hdrp;
1135 1.52 mrg uint32_t rx_cmd_a;
1136 1.1 rin uint16_t pktlen;
1137 1.20 rin int csum;
1138 1.52 mrg uint8_t *buf = c->unc_buf;
1139 1.20 rin bool v6;
1140 1.1 rin
1141 1.52 mrg usbnet_isowned_rx(un);
1142 1.1 rin
1143 1.52 mrg KASSERTMSG(total_len <= un->un_rx_bufsz, "%u vs %u",
1144 1.52 mrg total_len, un->un_rx_bufsz);
1145 1.1 rin
1146 1.1 rin do {
1147 1.52 mrg if (__predict_false(total_len < sizeof(*hdrp))) {
1148 1.52 mrg MUE_PRINTF(un, "packet length %u too short\n", total_len);
1149 1.1 rin ifp->if_ierrors++;
1150 1.52 mrg return;
1151 1.1 rin }
1152 1.1 rin
1153 1.1 rin hdrp = (struct mue_rxbuf_hdr *)buf;
1154 1.1 rin rx_cmd_a = le32toh(hdrp->rx_cmd_a);
1155 1.1 rin
1156 1.20 rin if (__predict_false(rx_cmd_a & MUE_RX_CMD_A_ERRORS)) {
1157 1.20 rin /*
1158 1.20 rin * We cannot use MUE_RX_CMD_A_RED bit here;
1159 1.20 rin * it is turned on in the cases of L3/L4
1160 1.20 rin * checksum errors which we handle below.
1161 1.20 rin */
1162 1.52 mrg MUE_PRINTF(un, "rx_cmd_a: 0x%x\n", rx_cmd_a);
1163 1.1 rin ifp->if_ierrors++;
1164 1.52 mrg return;
1165 1.1 rin }
1166 1.1 rin
1167 1.1 rin pktlen = (uint16_t)(rx_cmd_a & MUE_RX_CMD_A_LEN_MASK);
1168 1.52 mrg if (un->un_flags & LAN7500)
1169 1.1 rin pktlen -= 2;
1170 1.1 rin
1171 1.10 rin if (__predict_false(pktlen < ETHER_HDR_LEN + ETHER_CRC_LEN ||
1172 1.22 rin pktlen > MCLBYTES - ETHER_ALIGN || /* XXX */
1173 1.52 mrg pktlen + sizeof(*hdrp) > total_len)) {
1174 1.52 mrg MUE_PRINTF(un, "invalid packet length %d\n", pktlen);
1175 1.1 rin ifp->if_ierrors++;
1176 1.52 mrg return;
1177 1.1 rin }
1178 1.1 rin
1179 1.20 rin if (__predict_false(rx_cmd_a & MUE_RX_CMD_A_ICSM)) {
1180 1.20 rin csum = 0;
1181 1.20 rin } else {
1182 1.20 rin v6 = rx_cmd_a & MUE_RX_CMD_A_IPV;
1183 1.20 rin switch (rx_cmd_a & MUE_RX_CMD_A_PID) {
1184 1.20 rin case MUE_RX_CMD_A_PID_TCP:
1185 1.20 rin csum = v6 ?
1186 1.20 rin M_CSUM_TCPv6 : M_CSUM_IPv4 | M_CSUM_TCPv4;
1187 1.20 rin break;
1188 1.20 rin case MUE_RX_CMD_A_PID_UDP:
1189 1.20 rin csum = v6 ?
1190 1.20 rin M_CSUM_UDPv6 : M_CSUM_IPv4 | M_CSUM_UDPv4;
1191 1.20 rin break;
1192 1.20 rin case MUE_RX_CMD_A_PID_IP:
1193 1.20 rin csum = v6 ? 0 : M_CSUM_IPv4;
1194 1.20 rin break;
1195 1.20 rin default:
1196 1.20 rin csum = 0;
1197 1.20 rin break;
1198 1.20 rin }
1199 1.20 rin csum &= ifp->if_csum_flags_rx;
1200 1.20 rin if (__predict_false((csum & M_CSUM_IPv4) &&
1201 1.20 rin (rx_cmd_a & MUE_RX_CMD_A_ICE)))
1202 1.20 rin csum |= M_CSUM_IPv4_BAD;
1203 1.20 rin if (__predict_false((csum & ~M_CSUM_IPv4) &&
1204 1.20 rin (rx_cmd_a & MUE_RX_CMD_A_TCE)))
1205 1.20 rin csum |= M_CSUM_TCP_UDP_BAD;
1206 1.20 rin }
1207 1.52 mrg
1208 1.52 mrg usbnet_enqueue(un, buf + sizeof(*hdrp), pktlen, csum,
1209 1.52 mrg 0, M_HASFCS);
1210 1.1 rin
1211 1.1 rin /* Attention: sizeof(hdr) = 10 */
1212 1.1 rin pktlen = roundup(pktlen + sizeof(*hdrp), 4);
1213 1.52 mrg if (pktlen > total_len)
1214 1.52 mrg pktlen = total_len;
1215 1.52 mrg total_len -= pktlen;
1216 1.1 rin buf += pktlen;
1217 1.52 mrg } while (total_len > 0);
1218 1.1 rin }
1219 1.1 rin
1220 1.1 rin static int
1221 1.52 mrg mue_init_locked(struct ifnet *ifp)
1222 1.1 rin {
1223 1.52 mrg struct usbnet * const un = ifp->if_softc;
1224 1.1 rin
1225 1.52 mrg if (usbnet_isdying(un)) {
1226 1.52 mrg DPRINTF(un, "dying\n");
1227 1.1 rin return EIO;
1228 1.1 rin }
1229 1.1 rin
1230 1.1 rin /* Cancel pending I/O and free all TX/RX buffers. */
1231 1.1 rin if (ifp->if_flags & IFF_RUNNING)
1232 1.52 mrg usbnet_stop(un, ifp, 1);
1233 1.1 rin
1234 1.52 mrg mue_reset(un);
1235 1.1 rin
1236 1.1 rin /* Set MAC address. */
1237 1.52 mrg mue_set_macaddr(un);
1238 1.1 rin
1239 1.1 rin /* Load the multicast filter. */
1240 1.52 mrg mue_setiff(un);
1241 1.1 rin
1242 1.1 rin /* TCP/UDP checksum offload engines. */
1243 1.52 mrg mue_sethwcsum(un);
1244 1.1 rin
1245 1.22 rin /* Set MTU. */
1246 1.52 mrg mue_setmtu(un);
1247 1.22 rin
1248 1.52 mrg return usbnet_init_rx_tx(un);
1249 1.52 mrg }
1250 1.1 rin
1251 1.52 mrg static int
1252 1.52 mrg mue_init(struct ifnet *ifp)
1253 1.52 mrg {
1254 1.52 mrg struct usbnet * const un = ifp->if_softc;
1255 1.52 mrg int rv;
1256 1.1 rin
1257 1.52 mrg usbnet_lock(un);
1258 1.52 mrg rv = mue_init_locked(ifp);
1259 1.52 mrg usbnet_unlock(un);
1260 1.1 rin
1261 1.52 mrg return rv;
1262 1.1 rin }
1263 1.1 rin
1264 1.1 rin static int
1265 1.52 mrg mue_ioctl_cb(struct ifnet *ifp, u_long cmd, void *data)
1266 1.1 rin {
1267 1.52 mrg struct usbnet * const un = ifp->if_softc;
1268 1.1 rin
1269 1.22 rin switch (cmd) {
1270 1.1 rin case SIOCSIFFLAGS:
1271 1.52 mrg case SIOCSETHERCAP:
1272 1.52 mrg case SIOCADDMULTI:
1273 1.52 mrg case SIOCDELMULTI:
1274 1.52 mrg mue_setiff(un);
1275 1.52 mrg break;
1276 1.52 mrg case SIOCSIFCAP:
1277 1.52 mrg mue_sethwcsum(un);
1278 1.52 mrg break;
1279 1.52 mrg case SIOCSIFMTU:
1280 1.52 mrg mue_setmtu(un);
1281 1.1 rin break;
1282 1.1 rin default:
1283 1.1 rin break;
1284 1.1 rin }
1285 1.1 rin
1286 1.52 mrg return 0;
1287 1.1 rin }
1288 1.1 rin
1289 1.1 rin static void
1290 1.52 mrg mue_reset(struct usbnet *un)
1291 1.1 rin {
1292 1.52 mrg if (usbnet_isdying(un))
1293 1.1 rin return;
1294 1.1 rin
1295 1.1 rin /* Wait a little while for the chip to get its brains in order. */
1296 1.52 mrg usbd_delay_ms(un->un_udev, 1);
1297 1.1 rin
1298 1.52 mrg // mue_chip_init(un); /* XXX */
1299 1.1 rin }
1300 1.1 rin
1301 1.1 rin static void
1302 1.52 mrg mue_stop_cb(struct ifnet *ifp, int disable)
1303 1.1 rin {
1304 1.52 mrg struct usbnet * const un = ifp->if_softc;
1305 1.27 mlelstv
1306 1.52 mrg mue_reset(un);
1307 1.1 rin }
1308 1.1 rin
1309 1.52 mrg #ifdef _MODULE
1310 1.52 mrg #include "ioconf.c"
1311 1.52 mrg #endif
1312 1.1 rin
1313 1.52 mrg USBNET_MODULE(mue)
1314