if_mue.c revision 1.36 1 /* $NetBSD: if_mue.c,v 1.36 2019/02/06 08:28:11 rin Exp $ */
2 /* $OpenBSD: if_mue.c,v 1.3 2018/08/04 16:42:46 jsg Exp $ */
3
4 /*
5 * Copyright (c) 2018 Kevin Lo <kevlo (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /* Driver for Microchip LAN7500/LAN7800 chipsets. */
21
22 #include <sys/cdefs.h>
23 __KERNEL_RCSID(0, "$NetBSD: if_mue.c,v 1.36 2019/02/06 08:28:11 rin Exp $");
24
25 #ifdef _KERNEL_OPT
26 #include "opt_usb.h"
27 #include "opt_inet.h"
28 #endif
29
30 #include <sys/param.h>
31 #include <sys/bus.h>
32 #include <sys/systm.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/mutex.h>
36 #include <sys/kernel.h>
37 #include <sys/proc.h>
38 #include <sys/socket.h>
39
40 #include <sys/device.h>
41
42 #include <sys/rndsource.h>
43
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48
49 #include <net/bpf.h>
50
51 #include <netinet/if_inarp.h>
52 #include <netinet/in.h>
53 #include <netinet/ip.h> /* XXX for struct ip */
54 #include <netinet/ip6.h> /* XXX for struct ip6_hdr */
55
56 #include <dev/mii/mii.h>
57 #include <dev/mii/miivar.h>
58
59 #include <dev/usb/usb.h>
60 #include <dev/usb/usbdi.h>
61 #include <dev/usb/usbdi_util.h>
62 #include <dev/usb/usbdivar.h>
63 #include <dev/usb/usbdevs.h>
64
65 #include <dev/usb/if_muereg.h>
66 #include <dev/usb/if_muevar.h>
67
68 #define MUE_PRINTF(sc, fmt, args...) \
69 device_printf((sc)->mue_dev, "%s: " fmt, __func__, ##args);
70
71 #ifdef USB_DEBUG
72 int muedebug = 0;
73 #define DPRINTF(sc, fmt, args...) \
74 do { \
75 if (muedebug) \
76 MUE_PRINTF(sc, fmt, ##args); \
77 } while (0 /* CONSTCOND */)
78 #else
79 #define DPRINTF(sc, fmt, args...) __nothing
80 #endif
81
82 /*
83 * Various supported device vendors/products.
84 */
85 struct mue_type {
86 struct usb_devno mue_dev;
87 uint16_t mue_flags;
88 #define LAN7500 0x0001 /* LAN7500 */
89 };
90
91 const struct mue_type mue_devs[] = {
92 { { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN7500 }, LAN7500 },
93 { { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN7505 }, LAN7500 },
94 { { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN7800 }, 0 },
95 { { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN7801 }, 0 },
96 { { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN7850 }, 0 }
97 };
98
99 #define MUE_LOOKUP(uaa) ((const struct mue_type *)usb_lookup(mue_devs, \
100 uaa->uaa_vendor, uaa->uaa_product))
101
102 #define MUE_ENADDR_LO(enaddr) \
103 ((enaddr[3] << 24) | (enaddr[2] << 16) | (enaddr[1] << 8) | enaddr[0])
104 #define MUE_ENADDR_HI(enaddr) \
105 ((enaddr[5] << 8) | enaddr[4])
106
107 static int mue_match(device_t, cfdata_t, void *);
108 static void mue_attach(device_t, device_t, void *);
109 static int mue_detach(device_t, int);
110 static int mue_activate(device_t, enum devact);
111
112 static uint32_t mue_csr_read(struct mue_softc *, uint32_t);
113 static int mue_csr_write(struct mue_softc *, uint32_t, uint32_t);
114 static int mue_wait_for_bits(struct mue_softc *sc, uint32_t, uint32_t,
115 uint32_t, uint32_t);
116
117 static void mue_lock_mii(struct mue_softc *);
118 static void mue_unlock_mii(struct mue_softc *);
119
120 static int mue_miibus_readreg(device_t, int, int, uint16_t *);
121 static int mue_miibus_writereg(device_t, int, int, uint16_t);
122 static void mue_miibus_statchg(struct ifnet *);
123 static int mue_ifmedia_upd(struct ifnet *);
124 static void mue_ifmedia_sts(struct ifnet *, struct ifmediareq *);
125
126 static uint8_t mue_eeprom_getbyte(struct mue_softc *, int, uint8_t *);
127 static int mue_read_eeprom(struct mue_softc *, uint8_t *, int, int);
128 static bool mue_eeprom_present(struct mue_softc *sc);
129
130 static int mue_read_otp_raw(struct mue_softc *, uint8_t *, int, int);
131 static int mue_read_otp(struct mue_softc *, uint8_t *, int, int);
132
133 static void mue_dataport_write(struct mue_softc *, uint32_t, uint32_t,
134 uint32_t, uint32_t *);
135
136 static void mue_init_ltm(struct mue_softc *);
137
138 static int mue_chip_init(struct mue_softc *);
139
140 static void mue_set_macaddr(struct mue_softc *);
141 static int mue_get_macaddr(struct mue_softc *, prop_dictionary_t);
142
143 static int mue_rx_list_init(struct mue_softc *);
144 static int mue_tx_list_init(struct mue_softc *);
145 static int mue_open_pipes(struct mue_softc *);
146 static void mue_startup_rx_pipes(struct mue_softc *);
147
148 static int mue_encap(struct mue_softc *, struct mbuf *, int);
149 static void mue_tx_offload(struct mue_softc *, struct mbuf *);
150
151 static void mue_setmulti(struct mue_softc *);
152 static void mue_sethwcsum(struct mue_softc *);
153 static void mue_setmtu(struct mue_softc *);
154
155 static void mue_rxeof(struct usbd_xfer *, void *, usbd_status);
156 static void mue_txeof(struct usbd_xfer *, void *, usbd_status);
157
158 static int mue_init(struct ifnet *);
159 static int mue_ioctl(struct ifnet *, u_long, void *);
160 static void mue_watchdog(struct ifnet *);
161 static void mue_reset(struct mue_softc *);
162 static void mue_start(struct ifnet *);
163 static void mue_stop(struct ifnet *, int);
164 static void mue_tick(void *);
165 static void mue_tick_task(void *);
166
167 static struct mbuf *mue_newbuf(void);
168
169 #define MUE_SETBIT(sc, reg, x) \
170 mue_csr_write(sc, reg, mue_csr_read(sc, reg) | (x))
171
172 #define MUE_CLRBIT(sc, reg, x) \
173 mue_csr_write(sc, reg, mue_csr_read(sc, reg) & ~(x))
174
175 #define MUE_WAIT_SET(sc, reg, set, fail) \
176 mue_wait_for_bits(sc, reg, set, ~0, fail)
177
178 #define MUE_WAIT_CLR(sc, reg, clear, fail) \
179 mue_wait_for_bits(sc, reg, 0, clear, fail)
180
181 #define ETHER_IS_VALID(addr) \
182 (!ETHER_IS_MULTICAST(addr) && !ETHER_IS_ZERO(addr))
183
184 #define ETHER_IS_ZERO(addr) \
185 (!(addr[0] | addr[1] | addr[2] | addr[3] | addr[4] | addr[5]))
186
187 #define ETHER_ALIGN 2
188
189 CFATTACH_DECL_NEW(mue, sizeof(struct mue_softc), mue_match, mue_attach,
190 mue_detach, mue_activate);
191
192 static uint32_t
193 mue_csr_read(struct mue_softc *sc, uint32_t reg)
194 {
195 usb_device_request_t req;
196 usbd_status err;
197 uDWord val;
198
199 if (sc->mue_dying)
200 return 0;
201
202 USETDW(val, 0);
203 req.bmRequestType = UT_READ_VENDOR_DEVICE;
204 req.bRequest = MUE_UR_READREG;
205 USETW(req.wValue, 0);
206 USETW(req.wIndex, reg);
207 USETW(req.wLength, 4);
208
209 err = usbd_do_request(sc->mue_udev, &req, &val);
210 if (err) {
211 MUE_PRINTF(sc, "reg = 0x%x: %s\n", reg, usbd_errstr(err));
212 return 0;
213 }
214
215 return UGETDW(val);
216 }
217
218 static int
219 mue_csr_write(struct mue_softc *sc, uint32_t reg, uint32_t aval)
220 {
221 usb_device_request_t req;
222 usbd_status err;
223 uDWord val;
224
225 if (sc->mue_dying)
226 return 0;
227
228 USETDW(val, aval);
229 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
230 req.bRequest = MUE_UR_WRITEREG;
231 USETW(req.wValue, 0);
232 USETW(req.wIndex, reg);
233 USETW(req.wLength, 4);
234
235 err = usbd_do_request(sc->mue_udev, &req, &val);
236 if (err) {
237 MUE_PRINTF(sc, "reg = 0x%x: %s\n", reg, usbd_errstr(err));
238 return -1;
239 }
240
241 return 0;
242 }
243
244 static int
245 mue_wait_for_bits(struct mue_softc *sc, uint32_t reg,
246 uint32_t set, uint32_t clear, uint32_t fail)
247 {
248 uint32_t val;
249 int ntries;
250
251 for (ntries = 0; ntries < 1000; ntries++) {
252 val = mue_csr_read(sc, reg);
253 if ((val & set) || !(val & clear))
254 return 0;
255 if (val & fail)
256 return 1;
257 usbd_delay_ms(sc->mue_udev, 1);
258 }
259
260 return 1;
261 }
262
263 /*
264 * Get exclusive access to the MII registers.
265 */
266 static void
267 mue_lock_mii(struct mue_softc *sc)
268 {
269 sc->mue_refcnt++;
270 mutex_enter(&sc->mue_mii_lock);
271 }
272
273 static void
274 mue_unlock_mii(struct mue_softc *sc)
275 {
276 mutex_exit(&sc->mue_mii_lock);
277 if (--sc->mue_refcnt < 0)
278 usb_detach_wakeupold(sc->mue_dev);
279 }
280
281 static int
282 mue_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
283 {
284 struct mue_softc *sc = device_private(dev);
285 uint32_t data;
286 int rv = 0;
287
288 if (sc->mue_dying) {
289 DPRINTF(sc, "dying\n");
290 return -1;
291 }
292
293 if (sc->mue_phyno != phy)
294 return -1;
295
296 mue_lock_mii(sc);
297 if (MUE_WAIT_CLR(sc, MUE_MII_ACCESS, MUE_MII_ACCESS_BUSY, 0)) {
298 mue_unlock_mii(sc);
299 MUE_PRINTF(sc, "not ready\n");
300 return -1;
301 }
302
303 mue_csr_write(sc, MUE_MII_ACCESS, MUE_MII_ACCESS_READ |
304 MUE_MII_ACCESS_BUSY | MUE_MII_ACCESS_REGADDR(reg) |
305 MUE_MII_ACCESS_PHYADDR(phy));
306
307 if (MUE_WAIT_CLR(sc, MUE_MII_ACCESS, MUE_MII_ACCESS_BUSY, 0)) {
308 MUE_PRINTF(sc, "timed out\n");
309 rv = ETIMEDOUT;
310 goto out;
311 }
312
313 data = mue_csr_read(sc, MUE_MII_DATA);
314 *val = data & 0xffff;
315
316 out:
317 mue_unlock_mii(sc);
318 return rv;
319 }
320
321 static int
322 mue_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
323 {
324 struct mue_softc *sc = device_private(dev);
325 int rv = 0;
326
327 if (sc->mue_dying) {
328 DPRINTF(sc, "dying\n");
329 return -1;
330 }
331
332 if (sc->mue_phyno != phy) {
333 DPRINTF(sc, "sc->mue_phyno (%d) != phy (%d)\n",
334 sc->mue_phyno, phy);
335 return -1;
336 }
337
338 mue_lock_mii(sc);
339 if (MUE_WAIT_CLR(sc, MUE_MII_ACCESS, MUE_MII_ACCESS_BUSY, 0)) {
340 MUE_PRINTF(sc, "not ready\n");
341 rv = EBUSY;
342 goto out;
343 }
344
345 mue_csr_write(sc, MUE_MII_DATA, val);
346 mue_csr_write(sc, MUE_MII_ACCESS, MUE_MII_ACCESS_WRITE |
347 MUE_MII_ACCESS_BUSY | MUE_MII_ACCESS_REGADDR(reg) |
348 MUE_MII_ACCESS_PHYADDR(phy));
349
350 if (MUE_WAIT_CLR(sc, MUE_MII_ACCESS, MUE_MII_ACCESS_BUSY, 0)) {
351 MUE_PRINTF(sc, "timed out\n");
352 rv = ETIMEDOUT;
353 }
354 out:
355 mue_unlock_mii(sc);
356 return rv;
357 }
358
359 static void
360 mue_miibus_statchg(struct ifnet *ifp)
361 {
362 struct mue_softc *sc;
363 struct mii_data *mii;
364 uint32_t flow, threshold;
365
366 if (ifp == NULL) {
367 DPRINTF(sc, "ifp not ready\n");
368 return;
369 }
370
371 if ((ifp->if_flags & IFF_RUNNING) == 0) {
372 DPRINTF(sc, "not running\n");
373 return;
374 }
375
376 sc = ifp->if_softc;
377 mii = GET_MII(sc);
378
379 if (mii == NULL) {
380 DPRINTF(sc, "mii not ready\n");
381 return;
382 }
383
384 sc->mue_link = 0;
385 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
386 (IFM_ACTIVE | IFM_AVALID)) {
387 switch (IFM_SUBTYPE(mii->mii_media_active)) {
388 case IFM_10_T:
389 case IFM_100_TX:
390 case IFM_1000_T:
391 sc->mue_link++;
392 break;
393 default:
394 break;
395 }
396 }
397
398 /* Lost link, do nothing. */
399 if (sc->mue_link == 0) {
400 DPRINTF(sc, "mii_media_status = 0x%x\n", mii->mii_media_status);
401 return;
402 }
403
404 if (!(sc->mue_flags & LAN7500)) {
405 if (sc->mue_udev->ud_speed == USB_SPEED_SUPER) {
406 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
407 /* Disable U2 and enable U1. */
408 MUE_CLRBIT(sc, MUE_USB_CFG1,
409 MUE_USB_CFG1_DEV_U2_INIT_EN);
410 MUE_SETBIT(sc, MUE_USB_CFG1,
411 MUE_USB_CFG1_DEV_U1_INIT_EN);
412 } else {
413 /* Enable U1 and U2. */
414 MUE_SETBIT(sc, MUE_USB_CFG1,
415 MUE_USB_CFG1_DEV_U1_INIT_EN |
416 MUE_USB_CFG1_DEV_U2_INIT_EN);
417 }
418 }
419 }
420
421 flow = 0;
422 /* XXX Linux does not check IFM_FDX flag for 7800. */
423 if (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) {
424 if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE)
425 flow |= MUE_FLOW_TX_FCEN | MUE_FLOW_PAUSE_TIME;
426 if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE)
427 flow |= MUE_FLOW_RX_FCEN;
428 }
429
430 /* XXX Magic numbers taken from Linux driver. */
431 if (sc->mue_flags & LAN7500)
432 threshold = 0x820;
433 else
434 switch (sc->mue_udev->ud_speed) {
435 case USB_SPEED_SUPER:
436 threshold = 0x817;
437 break;
438 case USB_SPEED_HIGH:
439 threshold = 0x211;
440 break;
441 default:
442 threshold = 0;
443 break;
444 }
445
446 /* Threshold value should be set before enabling flow. */
447 mue_csr_write(sc, (sc->mue_flags & LAN7500) ?
448 MUE_7500_FCT_FLOW : MUE_7800_FCT_FLOW, threshold);
449 mue_csr_write(sc, MUE_FLOW, flow);
450
451 DPRINTF(sc, "done\n");
452 }
453
454 /*
455 * Set media options.
456 */
457 static int
458 mue_ifmedia_upd(struct ifnet *ifp)
459 {
460 struct mue_softc *sc = ifp->if_softc;
461 struct mii_data *mii = GET_MII(sc);
462
463 sc->mue_link = 0; /* XXX */
464
465 if (mii->mii_instance) {
466 struct mii_softc *miisc;
467 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
468 mii_phy_reset(miisc);
469 }
470 return mii_mediachg(mii);
471 }
472
473 /*
474 * Report current media status.
475 */
476 static void
477 mue_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
478 {
479 struct mue_softc *sc = ifp->if_softc;
480 struct mii_data *mii = GET_MII(sc);
481
482 mii_pollstat(mii);
483 ifmr->ifm_active = mii->mii_media_active;
484 ifmr->ifm_status = mii->mii_media_status;
485 }
486
487 static uint8_t
488 mue_eeprom_getbyte(struct mue_softc *sc, int off, uint8_t *dest)
489 {
490 uint32_t val;
491
492 if (MUE_WAIT_CLR(sc, MUE_E2P_CMD, MUE_E2P_CMD_BUSY, 0)) {
493 MUE_PRINTF(sc, "not ready\n");
494 return ETIMEDOUT;
495 }
496
497 KASSERT((off & ~MUE_E2P_CMD_ADDR_MASK) == 0);
498 mue_csr_write(sc, MUE_E2P_CMD, MUE_E2P_CMD_READ | MUE_E2P_CMD_BUSY |
499 off);
500
501 if (MUE_WAIT_CLR(sc, MUE_E2P_CMD, MUE_E2P_CMD_BUSY,
502 MUE_E2P_CMD_TIMEOUT)) {
503 MUE_PRINTF(sc, "timed out\n");
504 return ETIMEDOUT;
505 }
506
507 val = mue_csr_read(sc, MUE_E2P_DATA);
508 *dest = val & 0xff;
509
510 return 0;
511 }
512
513 static int
514 mue_read_eeprom(struct mue_softc *sc, uint8_t *dest, int off, int cnt)
515 {
516 uint32_t val = 0; /* XXX gcc */
517 uint8_t byte;
518 int i, err;
519
520 /*
521 * EEPROM pins are muxed with the LED function on LAN7800 device.
522 */
523 if (sc->mue_product == USB_PRODUCT_SMSC_LAN7800) {
524 val = mue_csr_read(sc, MUE_HW_CFG);
525 mue_csr_write(sc, MUE_HW_CFG,
526 val & ~(MUE_HW_CFG_LED0_EN | MUE_HW_CFG_LED1_EN));
527 }
528
529 for (i = 0; i < cnt; i++) {
530 err = mue_eeprom_getbyte(sc, off + i, &byte);
531 if (err)
532 break;
533 *(dest + i) = byte;
534 }
535
536 if (sc->mue_product == USB_PRODUCT_SMSC_LAN7800)
537 mue_csr_write(sc, MUE_HW_CFG, val);
538
539 return err ? 1 : 0;
540 }
541
542 static bool
543 mue_eeprom_present(struct mue_softc *sc)
544 {
545 uint32_t val;
546 uint8_t sig;
547 int ret;
548
549 if (sc->mue_flags & LAN7500) {
550 val = mue_csr_read(sc, MUE_E2P_CMD);
551 return val & MUE_E2P_CMD_LOADED;
552 } else {
553 ret = mue_read_eeprom(sc, &sig, MUE_E2P_IND_OFFSET, 1);
554 return (ret == 0) && (sig == MUE_E2P_IND);
555 }
556 }
557
558 static int
559 mue_read_otp_raw(struct mue_softc *sc, uint8_t *dest, int off, int cnt)
560 {
561 uint32_t val;
562 int i, err;
563
564 val = mue_csr_read(sc, MUE_OTP_PWR_DN);
565
566 /* Checking if bit is set. */
567 if (val & MUE_OTP_PWR_DN_PWRDN_N) {
568 /* Clear it, then wait for it to be cleared. */
569 mue_csr_write(sc, MUE_OTP_PWR_DN, 0);
570 err = MUE_WAIT_CLR(sc, MUE_OTP_PWR_DN, MUE_OTP_PWR_DN_PWRDN_N,
571 0);
572 if (err) {
573 MUE_PRINTF(sc, "not ready\n");
574 return 1;
575 }
576 }
577
578 /* Start reading the bytes, one at a time. */
579 for (i = 0; i < cnt; i++) {
580 mue_csr_write(sc, MUE_OTP_ADDR1,
581 ((off + i) >> 8) & MUE_OTP_ADDR1_MASK);
582 mue_csr_write(sc, MUE_OTP_ADDR2,
583 ((off + i) & MUE_OTP_ADDR2_MASK));
584 mue_csr_write(sc, MUE_OTP_FUNC_CMD, MUE_OTP_FUNC_CMD_READ);
585 mue_csr_write(sc, MUE_OTP_CMD_GO, MUE_OTP_CMD_GO_GO);
586
587 err = MUE_WAIT_CLR(sc, MUE_OTP_STATUS, MUE_OTP_STATUS_BUSY, 0);
588 if (err) {
589 MUE_PRINTF(sc, "timed out\n");
590 return 1;
591 }
592 val = mue_csr_read(sc, MUE_OTP_RD_DATA);
593 *(dest + i) = (uint8_t)(val & 0xff);
594 }
595
596 return 0;
597 }
598
599 static int
600 mue_read_otp(struct mue_softc *sc, uint8_t *dest, int off, int cnt)
601 {
602 uint8_t sig;
603 int err;
604
605 if (sc->mue_flags & LAN7500)
606 return 1;
607
608 err = mue_read_otp_raw(sc, &sig, MUE_OTP_IND_OFFSET, 1);
609 if (err)
610 return 1;
611 switch (sig) {
612 case MUE_OTP_IND_1:
613 break;
614 case MUE_OTP_IND_2:
615 off += 0x100;
616 break;
617 default:
618 DPRINTF(sc, "OTP not found\n");
619 return 1;
620 }
621 err = mue_read_otp_raw(sc, dest, off, cnt);
622 return err;
623 }
624
625 static void
626 mue_dataport_write(struct mue_softc *sc, uint32_t sel, uint32_t addr,
627 uint32_t cnt, uint32_t *data)
628 {
629 uint32_t i;
630
631 if (MUE_WAIT_SET(sc, MUE_DP_SEL, MUE_DP_SEL_DPRDY, 0)) {
632 MUE_PRINTF(sc, "not ready\n");
633 return;
634 }
635
636 mue_csr_write(sc, MUE_DP_SEL,
637 (mue_csr_read(sc, MUE_DP_SEL) & ~MUE_DP_SEL_RSEL_MASK) | sel);
638
639 for (i = 0; i < cnt; i++) {
640 mue_csr_write(sc, MUE_DP_ADDR, addr + i);
641 mue_csr_write(sc, MUE_DP_DATA, data[i]);
642 mue_csr_write(sc, MUE_DP_CMD, MUE_DP_CMD_WRITE);
643 if (MUE_WAIT_SET(sc, MUE_DP_SEL, MUE_DP_SEL_DPRDY, 0)) {
644 MUE_PRINTF(sc, "timed out\n");
645 return;
646 }
647 }
648 }
649
650 static void
651 mue_init_ltm(struct mue_softc *sc)
652 {
653 uint32_t idx[MUE_NUM_LTM_INDEX] = { 0, 0, 0, 0, 0, 0 };
654 uint8_t temp[2];
655 size_t i;
656
657 if (mue_csr_read(sc, MUE_USB_CFG1) & MUE_USB_CFG1_LTM_ENABLE) {
658 if (mue_eeprom_present(sc) &&
659 (mue_read_eeprom(sc, temp, MUE_E2P_LTM_OFFSET, 2) == 0)) {
660 if (temp[0] != sizeof(idx)) {
661 DPRINTF(sc, "EEPROM: unexpected size\n");
662 goto done;
663 }
664 if (mue_read_eeprom(sc, (uint8_t *)idx, temp[1] << 1,
665 sizeof(idx))) {
666 DPRINTF(sc, "EEPROM: failed to read\n");
667 goto done;
668 }
669 DPRINTF(sc, "success\n");
670 } else if (mue_read_otp(sc, temp, MUE_E2P_LTM_OFFSET, 2) == 0) {
671 if (temp[0] != sizeof(idx)) {
672 DPRINTF(sc, "OTP: unexpected size\n");
673 goto done;
674 }
675 if (mue_read_otp(sc, (uint8_t *)idx, temp[1] << 1,
676 sizeof(idx))) {
677 DPRINTF(sc, "OTP: failed to read\n");
678 goto done;
679 }
680 DPRINTF(sc, "success\n");
681 } else
682 DPRINTF(sc, "nothing to do\n");
683 } else
684 DPRINTF(sc, "nothing to do\n");
685 done:
686 for (i = 0; i < __arraycount(idx); i++)
687 mue_csr_write(sc, MUE_LTM_INDEX(i), idx[i]);
688 }
689
690 static int
691 mue_chip_init(struct mue_softc *sc)
692 {
693 uint32_t val;
694
695 if ((sc->mue_flags & LAN7500) &&
696 MUE_WAIT_SET(sc, MUE_PMT_CTL, MUE_PMT_CTL_READY, 0)) {
697 MUE_PRINTF(sc, "not ready\n");
698 return ETIMEDOUT;
699 }
700
701 MUE_SETBIT(sc, MUE_HW_CFG, MUE_HW_CFG_LRST);
702 if (MUE_WAIT_CLR(sc, MUE_HW_CFG, MUE_HW_CFG_LRST, 0)) {
703 MUE_PRINTF(sc, "timed out\n");
704 return ETIMEDOUT;
705 }
706
707 /* Respond to the IN token with a NAK. */
708 if (sc->mue_flags & LAN7500)
709 MUE_SETBIT(sc, MUE_HW_CFG, MUE_HW_CFG_BIR);
710 else
711 MUE_SETBIT(sc, MUE_USB_CFG0, MUE_USB_CFG0_BIR);
712
713 if (sc->mue_flags & LAN7500) {
714 if (sc->mue_udev->ud_speed == USB_SPEED_HIGH)
715 val = MUE_7500_HS_RX_BUFSIZE /
716 MUE_HS_USB_PKT_SIZE;
717 else
718 val = MUE_7500_FS_RX_BUFSIZE /
719 MUE_FS_USB_PKT_SIZE;
720 mue_csr_write(sc, MUE_7500_BURST_CAP, val);
721 mue_csr_write(sc, MUE_7500_BULKIN_DELAY,
722 MUE_7500_DEFAULT_BULKIN_DELAY);
723
724 MUE_SETBIT(sc, MUE_HW_CFG, MUE_HW_CFG_BCE | MUE_HW_CFG_MEF);
725
726 /* Set FIFO sizes. */
727 val = (MUE_7500_MAX_RX_FIFO_SIZE - 512) / 512;
728 mue_csr_write(sc, MUE_7500_FCT_RX_FIFO_END, val);
729 val = (MUE_7500_MAX_TX_FIFO_SIZE - 512) / 512;
730 mue_csr_write(sc, MUE_7500_FCT_TX_FIFO_END, val);
731 } else {
732 /* Init LTM. */
733 mue_init_ltm(sc);
734
735 val = MUE_7800_RX_BUFSIZE;
736 switch (sc->mue_udev->ud_speed) {
737 case USB_SPEED_SUPER:
738 val /= MUE_SS_USB_PKT_SIZE;
739 break;
740 case USB_SPEED_HIGH:
741 val /= MUE_HS_USB_PKT_SIZE;
742 break;
743 default:
744 val /= MUE_FS_USB_PKT_SIZE;
745 break;
746 }
747 mue_csr_write(sc, MUE_7800_BURST_CAP, val);
748 mue_csr_write(sc, MUE_7800_BULKIN_DELAY,
749 MUE_7800_DEFAULT_BULKIN_DELAY);
750
751 MUE_SETBIT(sc, MUE_HW_CFG, MUE_HW_CFG_MEF);
752 MUE_SETBIT(sc, MUE_USB_CFG0, MUE_USB_CFG0_BCE);
753
754 /*
755 * Set FCL's RX and TX FIFO sizes: according to data sheet this
756 * is already the default value. But we initialize it to the
757 * same value anyways, as that's what the Linux driver does.
758 */
759 val = (MUE_7800_MAX_RX_FIFO_SIZE - 512) / 512;
760 mue_csr_write(sc, MUE_7800_FCT_RX_FIFO_END, val);
761 val = (MUE_7800_MAX_TX_FIFO_SIZE - 512) / 512;
762 mue_csr_write(sc, MUE_7800_FCT_TX_FIFO_END, val);
763 }
764
765 /* Enabling interrupts. */
766 mue_csr_write(sc, MUE_INT_STATUS, ~0);
767
768 mue_csr_write(sc, (sc->mue_flags & LAN7500) ?
769 MUE_7500_FCT_FLOW : MUE_7800_FCT_FLOW, 0);
770 mue_csr_write(sc, MUE_FLOW, 0);
771
772 /* Reset PHY. */
773 MUE_SETBIT(sc, MUE_PMT_CTL, MUE_PMT_CTL_PHY_RST);
774 if (MUE_WAIT_CLR(sc, MUE_PMT_CTL, MUE_PMT_CTL_PHY_RST, 0)) {
775 MUE_PRINTF(sc, "PHY not ready\n");
776 return ETIMEDOUT;
777 }
778
779 /* LAN7801 only has RGMII mode. */
780 if (sc->mue_product == USB_PRODUCT_SMSC_LAN7801)
781 MUE_CLRBIT(sc, MUE_MAC_CR, MUE_MAC_CR_GMII_EN);
782
783 if ((sc->mue_flags & LAN7500) ||
784 (sc->mue_product == USB_PRODUCT_SMSC_LAN7800 &&
785 !mue_eeprom_present(sc))) {
786 /* Allow MAC to detect speed and duplex from PHY. */
787 MUE_SETBIT(sc, MUE_MAC_CR, MUE_MAC_CR_AUTO_SPEED |
788 MUE_MAC_CR_AUTO_DUPLEX);
789 }
790
791 MUE_SETBIT(sc, MUE_MAC_TX, MUE_MAC_TX_TXEN);
792 MUE_SETBIT(sc, (sc->mue_flags & LAN7500) ?
793 MUE_7500_FCT_TX_CTL : MUE_7800_FCT_TX_CTL, MUE_FCT_TX_CTL_EN);
794
795 MUE_SETBIT(sc, (sc->mue_flags & LAN7500) ?
796 MUE_7500_FCT_RX_CTL : MUE_7800_FCT_RX_CTL, MUE_FCT_RX_CTL_EN);
797
798 /* Set default GPIO/LED settings only if no EEPROM is detected. */
799 if ((sc->mue_flags & LAN7500) && !mue_eeprom_present(sc)) {
800 MUE_CLRBIT(sc, MUE_LED_CFG, MUE_LED_CFG_LED10_FUN_SEL);
801 MUE_SETBIT(sc, MUE_LED_CFG,
802 MUE_LED_CFG_LEDGPIO_EN | MUE_LED_CFG_LED2_FUN_SEL);
803 }
804
805 /* XXX We assume two LEDs at least when EEPROM is missing. */
806 if (sc->mue_product == USB_PRODUCT_SMSC_LAN7800 &&
807 !mue_eeprom_present(sc))
808 MUE_SETBIT(sc, MUE_HW_CFG,
809 MUE_HW_CFG_LED0_EN | MUE_HW_CFG_LED1_EN);
810
811 return 0;
812 }
813
814 static void
815 mue_set_macaddr(struct mue_softc *sc)
816 {
817 struct ifnet *ifp = GET_IFP(sc);
818 const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
819 uint32_t lo, hi;
820
821 lo = MUE_ENADDR_LO(enaddr);
822 hi = MUE_ENADDR_HI(enaddr);
823
824 mue_csr_write(sc, MUE_RX_ADDRL, lo);
825 mue_csr_write(sc, MUE_RX_ADDRH, hi);
826 }
827
828 static int
829 mue_get_macaddr(struct mue_softc *sc, prop_dictionary_t dict)
830 {
831 prop_data_t eaprop;
832 uint32_t low, high;
833
834 if (!(sc->mue_flags & LAN7500)) {
835 low = mue_csr_read(sc, MUE_RX_ADDRL);
836 high = mue_csr_read(sc, MUE_RX_ADDRH);
837 sc->mue_enaddr[5] = (uint8_t)((high >> 8) & 0xff);
838 sc->mue_enaddr[4] = (uint8_t)((high) & 0xff);
839 sc->mue_enaddr[3] = (uint8_t)((low >> 24) & 0xff);
840 sc->mue_enaddr[2] = (uint8_t)((low >> 16) & 0xff);
841 sc->mue_enaddr[1] = (uint8_t)((low >> 8) & 0xff);
842 sc->mue_enaddr[0] = (uint8_t)((low) & 0xff);
843 if (ETHER_IS_VALID(sc->mue_enaddr))
844 return 0;
845 else
846 DPRINTF(sc, "registers: %s\n",
847 ether_sprintf(sc->mue_enaddr));
848 }
849
850 if (mue_eeprom_present(sc) && !mue_read_eeprom(sc, sc->mue_enaddr,
851 MUE_E2P_MAC_OFFSET, ETHER_ADDR_LEN)) {
852 if (ETHER_IS_VALID(sc->mue_enaddr))
853 return 0;
854 else
855 DPRINTF(sc, "EEPROM: %s\n",
856 ether_sprintf(sc->mue_enaddr));
857 }
858
859 if (mue_read_otp(sc, sc->mue_enaddr, MUE_OTP_MAC_OFFSET,
860 ETHER_ADDR_LEN) == 0) {
861 if (ETHER_IS_VALID(sc->mue_enaddr))
862 return 0;
863 else
864 DPRINTF(sc, "OTP: %s\n",
865 ether_sprintf(sc->mue_enaddr));
866 }
867
868 /*
869 * Other MD methods. This should be tried only if other methods fail.
870 * Otherwise, MAC address for internal device can be assinged to
871 * external devices on Raspberry Pi, for example.
872 */
873 eaprop = prop_dictionary_get(dict, "mac-address");
874 if (eaprop != NULL) {
875 KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
876 KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
877 memcpy(sc->mue_enaddr, prop_data_data_nocopy(eaprop),
878 ETHER_ADDR_LEN);
879 if (ETHER_IS_VALID(sc->mue_enaddr))
880 return 0;
881 else
882 DPRINTF(sc, "prop_dictionary_get: %s\n",
883 ether_sprintf(sc->mue_enaddr));
884 }
885
886 return 1;
887 }
888
889
890 /*
891 * Probe for a Microchip chip. */
892 static int
893 mue_match(device_t parent, cfdata_t match, void *aux)
894 {
895 struct usb_attach_arg *uaa = aux;
896
897 return (MUE_LOOKUP(uaa) != NULL) ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
898 }
899
900 static void
901 mue_attach(device_t parent, device_t self, void *aux)
902 {
903 struct mue_softc *sc = device_private(self);
904 prop_dictionary_t dict = device_properties(self);
905 struct usb_attach_arg *uaa = aux;
906 struct usbd_device *dev = uaa->uaa_device;
907 usb_interface_descriptor_t *id;
908 usb_endpoint_descriptor_t *ed;
909 char *devinfop;
910 struct mii_data *mii;
911 struct ifnet *ifp;
912 usbd_status err;
913 const char *descr;
914 uint8_t i;
915 int s;
916
917 aprint_naive("\n");
918 aprint_normal("\n");
919
920 sc->mue_dev = self;
921 sc->mue_udev = dev;
922
923 devinfop = usbd_devinfo_alloc(sc->mue_udev, 0);
924 aprint_normal_dev(self, "%s\n", devinfop);
925 usbd_devinfo_free(devinfop);
926
927 #define MUE_CONFIG_NO 1
928 err = usbd_set_config_no(dev, MUE_CONFIG_NO, 1);
929 if (err) {
930 aprint_error_dev(self, "failed to set configuration: %s\n",
931 usbd_errstr(err));
932 return;
933 }
934
935 usb_init_task(&sc->mue_tick_task, mue_tick_task, sc, 0);
936
937 #define MUE_IFACE_IDX 0
938 err = usbd_device2interface_handle(dev, MUE_IFACE_IDX, &sc->mue_iface);
939 if (err) {
940 aprint_error_dev(self, "failed to get interface handle: %s\n",
941 usbd_errstr(err));
942 return;
943 }
944
945 sc->mue_product = uaa->uaa_product;
946 sc->mue_flags = MUE_LOOKUP(uaa)->mue_flags;
947
948 sc->mue_id_rev = mue_csr_read(sc, MUE_ID_REV);
949
950 /* Decide on what our bufsize will be. */
951 if (sc->mue_flags & LAN7500) {
952 sc->mue_rxbufsz = (sc->mue_udev->ud_speed == USB_SPEED_HIGH) ?
953 MUE_7500_HS_RX_BUFSIZE : MUE_7500_FS_RX_BUFSIZE;
954 sc->mue_rx_list_cnt = 1;
955 sc->mue_tx_list_cnt = 1;
956 } else {
957 sc->mue_rxbufsz = MUE_7800_RX_BUFSIZE;
958 sc->mue_rx_list_cnt = MUE_RX_LIST_CNT;
959 sc->mue_tx_list_cnt = MUE_TX_LIST_CNT;
960 }
961 sc->mue_txbufsz = MUE_TX_BUFSIZE;
962
963 /* Find endpoints. */
964 id = usbd_get_interface_descriptor(sc->mue_iface);
965 for (i = 0; i < id->bNumEndpoints; i++) {
966 ed = usbd_interface2endpoint_descriptor(sc->mue_iface, i);
967 if (ed == NULL) {
968 aprint_error_dev(self, "failed to get ep %hhd\n", i);
969 return;
970 }
971 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
972 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
973 sc->mue_ed[MUE_ENDPT_RX] = ed->bEndpointAddress;
974 } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
975 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
976 sc->mue_ed[MUE_ENDPT_TX] = ed->bEndpointAddress;
977 } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
978 UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) {
979 sc->mue_ed[MUE_ENDPT_INTR] = ed->bEndpointAddress;
980 }
981 }
982 KASSERT(sc->mue_ed[MUE_ENDPT_RX] != 0);
983 KASSERT(sc->mue_ed[MUE_ENDPT_TX] != 0);
984 KASSERT(sc->mue_ed[MUE_ENDPT_INTR] != 0);
985
986 s = splnet();
987
988 sc->mue_phyno = 1;
989
990 if (mue_chip_init(sc)) {
991 aprint_error_dev(self, "failed to initialize chip\n");
992 splx(s);
993 return;
994 }
995
996 /* A Microchip chip was detected. Inform the world. */
997 descr = (sc->mue_flags & LAN7500) ? "LAN7500" : "LAN7800";
998 aprint_normal_dev(self, "%s id 0x%x rev 0x%x\n", descr,
999 (unsigned)__SHIFTOUT(sc->mue_id_rev, MUE_ID_REV_ID),
1000 (unsigned)__SHIFTOUT(sc->mue_id_rev, MUE_ID_REV_REV));
1001
1002 if (mue_get_macaddr(sc, dict)) {
1003 aprint_error_dev(self, "failed to read MAC address\n");
1004 splx(s);
1005 return;
1006 }
1007
1008 aprint_normal_dev(self, "Ethernet address %s\n",
1009 ether_sprintf(sc->mue_enaddr));
1010
1011 /* Initialize interface info.*/
1012 ifp = GET_IFP(sc);
1013 ifp->if_softc = sc;
1014 strlcpy(ifp->if_xname, device_xname(sc->mue_dev), IFNAMSIZ);
1015 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1016 ifp->if_init = mue_init;
1017 ifp->if_ioctl = mue_ioctl;
1018 ifp->if_start = mue_start;
1019 ifp->if_stop = mue_stop;
1020 ifp->if_watchdog = mue_watchdog;
1021
1022 IFQ_SET_READY(&ifp->if_snd);
1023
1024 ifp->if_capabilities = IFCAP_TSOv4 | IFCAP_TSOv6 |
1025 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1026 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1027 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1028 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
1029 IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
1030
1031 sc->mue_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
1032 #if 0 /* XXX not yet */
1033 sc->mue_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
1034 #endif
1035
1036 /* Initialize MII/media info. */
1037 mii = GET_MII(sc);
1038 mii->mii_ifp = ifp;
1039 mii->mii_readreg = mue_miibus_readreg;
1040 mii->mii_writereg = mue_miibus_writereg;
1041 mii->mii_statchg = mue_miibus_statchg;
1042 mii->mii_flags = MIIF_AUTOTSLEEP;
1043
1044 sc->mue_ec.ec_mii = mii;
1045 ifmedia_init(&mii->mii_media, 0, mue_ifmedia_upd, mue_ifmedia_sts);
1046 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
1047
1048 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1049 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1050 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1051 } else
1052 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1053
1054 /* Attach the interface. */
1055 if_attach(ifp);
1056 ether_ifattach(ifp, sc->mue_enaddr);
1057
1058 rnd_attach_source(&sc->mue_rnd_source, device_xname(sc->mue_dev),
1059 RND_TYPE_NET, RND_FLAG_DEFAULT);
1060
1061 callout_init(&sc->mue_stat_ch, 0);
1062
1063 splx(s);
1064
1065 mutex_init(&sc->mue_mii_lock, MUTEX_DEFAULT, IPL_NONE);
1066
1067 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->mue_udev, sc->mue_dev);
1068 }
1069
1070 static int
1071 mue_detach(device_t self, int flags)
1072 {
1073 struct mue_softc *sc = device_private(self);
1074 struct ifnet *ifp = GET_IFP(sc);
1075 size_t i;
1076 int s;
1077
1078 sc->mue_dying = true;
1079
1080 callout_halt(&sc->mue_stat_ch, NULL);
1081
1082 for (i = 0; i < __arraycount(sc->mue_ep); i++)
1083 if (sc->mue_ep[i] != NULL)
1084 usbd_abort_pipe(sc->mue_ep[i]);
1085
1086 /*
1087 * Remove any pending tasks. They cannot be executing because they run
1088 * in the same thread as detach.
1089 */
1090 usb_rem_task_wait(sc->mue_udev, &sc->mue_tick_task, USB_TASKQ_DRIVER,
1091 NULL);
1092
1093 s = splusb();
1094
1095 if (ifp->if_flags & IFF_RUNNING)
1096 mue_stop(ifp, 1);
1097
1098 callout_destroy(&sc->mue_stat_ch);
1099 rnd_detach_source(&sc->mue_rnd_source);
1100 mii_detach(&sc->mue_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1101 ifmedia_delete_instance(&sc->mue_mii.mii_media, IFM_INST_ANY);
1102 if (ifp->if_softc != NULL) {
1103 ether_ifdetach(ifp);
1104 if_detach(ifp);
1105 }
1106
1107 if (--sc->mue_refcnt >= 0) {
1108 /* Wait for processes to go away. */
1109 usb_detach_waitold(sc->mue_dev);
1110 }
1111 splx(s);
1112
1113 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->mue_udev, sc->mue_dev);
1114
1115 mutex_destroy(&sc->mue_mii_lock);
1116
1117 return 0;
1118 }
1119
1120 static int
1121 mue_activate(device_t self, enum devact act)
1122 {
1123 struct mue_softc *sc = device_private(self);
1124 struct ifnet *ifp = GET_IFP(sc);
1125
1126 switch (act) {
1127 case DVACT_DEACTIVATE:
1128 if_deactivate(ifp);
1129 sc->mue_dying = true;
1130 return 0;
1131 default:
1132 return EOPNOTSUPP;
1133 }
1134 return 0;
1135 }
1136
1137 static int
1138 mue_rx_list_init(struct mue_softc *sc)
1139 {
1140 struct mue_cdata *cd;
1141 struct mue_chain *c;
1142 size_t i;
1143 int err;
1144
1145 cd = &sc->mue_cdata;
1146 for (i = 0; i < sc->mue_rx_list_cnt; i++) {
1147 c = &cd->mue_rx_chain[i];
1148 c->mue_sc = sc;
1149 if (c->mue_xfer == NULL) {
1150 err = usbd_create_xfer(sc->mue_ep[MUE_ENDPT_RX],
1151 sc->mue_rxbufsz, 0, 0, &c->mue_xfer);
1152 if (err)
1153 return err;
1154 c->mue_buf = usbd_get_buffer(c->mue_xfer);
1155 }
1156 }
1157
1158 return 0;
1159 }
1160
1161 static int
1162 mue_tx_list_init(struct mue_softc *sc)
1163 {
1164 struct mue_cdata *cd;
1165 struct mue_chain *c;
1166 size_t i;
1167 int err;
1168
1169 cd = &sc->mue_cdata;
1170 for (i = 0; i < sc->mue_tx_list_cnt; i++) {
1171 c = &cd->mue_tx_chain[i];
1172 c->mue_sc = sc;
1173 if (c->mue_xfer == NULL) {
1174 err = usbd_create_xfer(sc->mue_ep[MUE_ENDPT_TX],
1175 sc->mue_txbufsz, USBD_FORCE_SHORT_XFER, 0,
1176 &c->mue_xfer);
1177 if (err)
1178 return err;
1179 c->mue_buf = usbd_get_buffer(c->mue_xfer);
1180 }
1181 }
1182
1183 cd->mue_tx_prod = 0;
1184 cd->mue_tx_cnt = 0;
1185
1186 return 0;
1187 }
1188
1189 static int
1190 mue_open_pipes(struct mue_softc *sc)
1191 {
1192 usbd_status err;
1193
1194 /* Open RX and TX pipes. */
1195 err = usbd_open_pipe(sc->mue_iface, sc->mue_ed[MUE_ENDPT_RX],
1196 USBD_EXCLUSIVE_USE, &sc->mue_ep[MUE_ENDPT_RX]);
1197 if (err) {
1198 MUE_PRINTF(sc, "rx pipe: %s\n", usbd_errstr(err));
1199 return EIO;
1200 }
1201 err = usbd_open_pipe(sc->mue_iface, sc->mue_ed[MUE_ENDPT_TX],
1202 USBD_EXCLUSIVE_USE, &sc->mue_ep[MUE_ENDPT_TX]);
1203 if (err) {
1204 MUE_PRINTF(sc, "tx pipe: %s\n", usbd_errstr(err));
1205 return EIO;
1206 }
1207 return 0;
1208 }
1209
1210 static void
1211 mue_startup_rx_pipes(struct mue_softc *sc)
1212 {
1213 struct mue_chain *c;
1214 size_t i;
1215
1216 /* Start up the receive pipe. */
1217 for (i = 0; i < sc->mue_rx_list_cnt; i++) {
1218 c = &sc->mue_cdata.mue_rx_chain[i];
1219 usbd_setup_xfer(c->mue_xfer, c, c->mue_buf, sc->mue_rxbufsz,
1220 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, mue_rxeof);
1221 usbd_transfer(c->mue_xfer);
1222 }
1223 }
1224
1225 static int
1226 mue_encap(struct mue_softc *sc, struct mbuf *m, int idx)
1227 {
1228 struct ifnet *ifp = GET_IFP(sc);
1229 struct mue_chain *c;
1230 usbd_status err;
1231 struct mue_txbuf_hdr hdr;
1232 uint32_t tx_cmd_a, tx_cmd_b;
1233 int csum, len;
1234 bool tso, ipe, tpe;
1235
1236 csum = m->m_pkthdr.csum_flags;
1237 tso = csum & (M_CSUM_TSOv4 | M_CSUM_TSOv6);
1238 ipe = csum & M_CSUM_IPv4;
1239 tpe = csum & (M_CSUM_TCPv4 | M_CSUM_UDPv4 |
1240 M_CSUM_TCPv6 | M_CSUM_UDPv6);
1241
1242 len = m->m_pkthdr.len;
1243 if (__predict_false((!tso &&
1244 (unsigned)len > MUE_FRAME_LEN(ifp->if_mtu)) ||
1245 ( tso && len > MUE_TSO_FRAME_LEN))) {
1246 MUE_PRINTF(sc, "packet length %d\n too long", len);
1247 return EINVAL;
1248 }
1249
1250 c = &sc->mue_cdata.mue_tx_chain[idx];
1251
1252 KASSERT((len & ~MUE_TX_CMD_A_LEN_MASK) == 0);
1253 tx_cmd_a = len | MUE_TX_CMD_A_FCS;
1254
1255 if (tso) {
1256 tx_cmd_a |= MUE_TX_CMD_A_LSO;
1257 if (__predict_true(m->m_pkthdr.segsz > MUE_TX_MSS_MIN))
1258 tx_cmd_b = m->m_pkthdr.segsz;
1259 else
1260 tx_cmd_b = MUE_TX_MSS_MIN;
1261 tx_cmd_b <<= MUE_TX_CMD_B_MSS_SHIFT;
1262 KASSERT((tx_cmd_b & ~MUE_TX_CMD_B_MSS_MASK) == 0);
1263 mue_tx_offload(sc, m);
1264 } else {
1265 if (ipe)
1266 tx_cmd_a |= MUE_TX_CMD_A_IPE;
1267 if (tpe)
1268 tx_cmd_a |= MUE_TX_CMD_A_TPE;
1269 tx_cmd_b = 0;
1270 }
1271
1272 hdr.tx_cmd_a = htole32(tx_cmd_a);
1273 hdr.tx_cmd_b = htole32(tx_cmd_b);
1274
1275 memcpy(c->mue_buf, &hdr, sizeof(hdr));
1276 m_copydata(m, 0, len, c->mue_buf + sizeof(hdr));
1277
1278 if (__predict_false(c->mue_xfer == NULL))
1279 return EIO; /* XXX plugged out or down */
1280
1281 usbd_setup_xfer(c->mue_xfer, c, c->mue_buf, len + sizeof(hdr),
1282 USBD_FORCE_SHORT_XFER, 10000, mue_txeof);
1283
1284 /* Transmit */
1285 err = usbd_transfer(c->mue_xfer);
1286 if (__predict_false(err != USBD_IN_PROGRESS)) {
1287 MUE_PRINTF(sc, "%s\n", usbd_errstr(err));
1288 mue_stop(ifp, 0);
1289 return EIO;
1290 }
1291
1292 return 0;
1293 }
1294
1295 static void
1296 mue_tx_offload(struct mue_softc *sc, struct mbuf *m)
1297 {
1298 struct ether_header *eh;
1299 struct ip *ip;
1300 struct ip6_hdr *ip6;
1301 int off;
1302
1303 eh = mtod(m, struct ether_header *);
1304 switch (htons(eh->ether_type)) {
1305 case ETHERTYPE_IP:
1306 case ETHERTYPE_IPV6:
1307 off = ETHER_HDR_LEN;
1308 break;
1309 case ETHERTYPE_VLAN:
1310 /* XXX not yet supported */
1311 off = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1312 break;
1313 default:
1314 /* XXX */
1315 panic("%s: unsupported ethertype\n", __func__);
1316 /* NOTREACHED */
1317 }
1318
1319 /* Packet length should be cleared. */
1320 if (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
1321 ip = (void *)(mtod(m, char *) + off);
1322 ip->ip_len = 0;
1323 } else {
1324 ip6 = (void *)(mtod(m, char *) + off);
1325 ip6->ip6_plen = 0;
1326 }
1327 }
1328
1329 static void
1330 mue_setmulti(struct mue_softc *sc)
1331 {
1332 struct ifnet *ifp = GET_IFP(sc);
1333 const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
1334 struct ether_multi *enm;
1335 struct ether_multistep step;
1336 uint32_t pfiltbl[MUE_NUM_ADDR_FILTX][2];
1337 uint32_t hashtbl[MUE_DP_SEL_VHF_HASH_LEN];
1338 uint32_t reg, rxfilt, h, hireg, loreg;
1339 size_t i;
1340
1341 if (sc->mue_dying)
1342 return;
1343
1344 /* Clear perfect filter and hash tables. */
1345 memset(pfiltbl, 0, sizeof(pfiltbl));
1346 memset(hashtbl, 0, sizeof(hashtbl));
1347
1348 reg = (sc->mue_flags & LAN7500) ? MUE_7500_RFE_CTL : MUE_7800_RFE_CTL;
1349 rxfilt = mue_csr_read(sc, reg);
1350 rxfilt &= ~(MUE_RFE_CTL_PERFECT | MUE_RFE_CTL_MULTICAST_HASH |
1351 MUE_RFE_CTL_UNICAST | MUE_RFE_CTL_MULTICAST);
1352
1353 /* Always accept broadcast frames. */
1354 rxfilt |= MUE_RFE_CTL_BROADCAST;
1355
1356 if (ifp->if_flags & IFF_PROMISC) {
1357 rxfilt |= MUE_RFE_CTL_UNICAST;
1358 allmulti: rxfilt |= MUE_RFE_CTL_MULTICAST;
1359 ifp->if_flags |= IFF_ALLMULTI;
1360 if (ifp->if_flags & IFF_PROMISC)
1361 DPRINTF(sc, "promisc\n");
1362 else
1363 DPRINTF(sc, "allmulti\n");
1364 } else {
1365 /* Now program new ones. */
1366 pfiltbl[0][0] = MUE_ENADDR_HI(enaddr) | MUE_ADDR_FILTX_VALID;
1367 pfiltbl[0][1] = MUE_ENADDR_LO(enaddr);
1368 i = 1;
1369 ETHER_FIRST_MULTI(step, &sc->mue_ec, enm);
1370 while (enm != NULL) {
1371 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1372 ETHER_ADDR_LEN)) {
1373 memset(pfiltbl, 0, sizeof(pfiltbl));
1374 memset(hashtbl, 0, sizeof(hashtbl));
1375 rxfilt &= ~MUE_RFE_CTL_MULTICAST_HASH;
1376 goto allmulti;
1377 }
1378 if (i < MUE_NUM_ADDR_FILTX) {
1379 /* Use perfect address table if possible. */
1380 pfiltbl[i][0] = MUE_ENADDR_HI(enm->enm_addrlo) |
1381 MUE_ADDR_FILTX_VALID;
1382 pfiltbl[i][1] = MUE_ENADDR_LO(enm->enm_addrlo);
1383 } else {
1384 /* Otherwise, use hash table. */
1385 rxfilt |= MUE_RFE_CTL_MULTICAST_HASH;
1386 h = (ether_crc32_be(enm->enm_addrlo,
1387 ETHER_ADDR_LEN) >> 23) & 0x1ff;
1388 hashtbl[h / 32] |= 1 << (h % 32);
1389 }
1390 i++;
1391 ETHER_NEXT_MULTI(step, enm);
1392 }
1393 rxfilt |= MUE_RFE_CTL_PERFECT;
1394 ifp->if_flags &= ~IFF_ALLMULTI;
1395 if (rxfilt & MUE_RFE_CTL_MULTICAST_HASH)
1396 DPRINTF(sc, "perfect filter and hash tables\n");
1397 else
1398 DPRINTF(sc, "perfect filter\n");
1399 }
1400
1401 for (i = 0; i < MUE_NUM_ADDR_FILTX; i++) {
1402 hireg = (sc->mue_flags & LAN7500) ?
1403 MUE_7500_ADDR_FILTX(i) : MUE_7800_ADDR_FILTX(i);
1404 loreg = hireg + 4;
1405 mue_csr_write(sc, hireg, 0);
1406 mue_csr_write(sc, loreg, pfiltbl[i][1]);
1407 mue_csr_write(sc, hireg, pfiltbl[i][0]);
1408 }
1409
1410 mue_dataport_write(sc, MUE_DP_SEL_VHF, MUE_DP_SEL_VHF_VLAN_LEN,
1411 MUE_DP_SEL_VHF_HASH_LEN, hashtbl);
1412
1413 mue_csr_write(sc, reg, rxfilt);
1414 }
1415
1416 static void
1417 mue_sethwcsum(struct mue_softc *sc)
1418 {
1419 struct ifnet *ifp = GET_IFP(sc);
1420 uint32_t reg, val;
1421
1422 reg = (sc->mue_flags & LAN7500) ? MUE_7500_RFE_CTL : MUE_7800_RFE_CTL;
1423 val = mue_csr_read(sc, reg);
1424
1425 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1426 DPRINTF(sc, "RX IPv4 hwcsum enabled\n");
1427 val |= MUE_RFE_CTL_IP_COE;
1428 } else {
1429 DPRINTF(sc, "RX IPv4 hwcsum disabled\n");
1430 val &= ~MUE_RFE_CTL_IP_COE;
1431 }
1432
1433 if (ifp->if_capenable &
1434 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
1435 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) {
1436 DPRINTF(sc, "RX L4 hwcsum enabled\n");
1437 val |= MUE_RFE_CTL_TCPUDP_COE;
1438 } else {
1439 DPRINTF(sc, "RX L4 hwcsum disabled\n");
1440 val &= ~MUE_RFE_CTL_TCPUDP_COE;
1441 }
1442
1443 val &= ~MUE_RFE_CTL_VLAN_FILTER;
1444
1445 mue_csr_write(sc, reg, val);
1446 }
1447
1448 static void
1449 mue_setmtu(struct mue_softc *sc)
1450 {
1451 struct ifnet *ifp = GET_IFP(sc);
1452 uint32_t val;
1453
1454 /* Set the maximum frame size. */
1455 MUE_CLRBIT(sc, MUE_MAC_RX, MUE_MAC_RX_RXEN);
1456 val = mue_csr_read(sc, MUE_MAC_RX);
1457 val &= ~MUE_MAC_RX_MAX_SIZE_MASK;
1458 val |= MUE_MAC_RX_MAX_LEN(MUE_FRAME_LEN(ifp->if_mtu));
1459 mue_csr_write(sc, MUE_MAC_RX, val);
1460 MUE_SETBIT(sc, MUE_MAC_RX, MUE_MAC_RX_RXEN);
1461 }
1462
1463 static void
1464 mue_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
1465 {
1466 struct mue_chain *c = (struct mue_chain *)priv;
1467 struct mue_softc *sc = c->mue_sc;
1468 struct ifnet *ifp = GET_IFP(sc);
1469 struct mbuf *m;
1470 struct mue_rxbuf_hdr *hdrp;
1471 uint32_t rx_cmd_a, totlen;
1472 uint16_t pktlen;
1473 int s;
1474 int csum;
1475 char *buf = c->mue_buf;
1476 bool v6;
1477
1478 if (__predict_false(sc->mue_dying)) {
1479 DPRINTF(sc, "dying\n");
1480 return;
1481 }
1482
1483 if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
1484 DPRINTF(sc, "%s\n", usbd_errstr(status));
1485 if (status == USBD_INVAL)
1486 return; /* XXX plugged out or down */
1487 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1488 return;
1489 if (usbd_ratecheck(&sc->mue_rx_notice))
1490 MUE_PRINTF(sc, "%s\n", usbd_errstr(status));
1491 if (status == USBD_STALLED)
1492 usbd_clear_endpoint_stall_async(
1493 sc->mue_ep[MUE_ENDPT_RX]);
1494 goto done;
1495 }
1496
1497 usbd_get_xfer_status(xfer, NULL, NULL, &totlen, NULL);
1498
1499 KASSERTMSG(totlen <= sc->mue_rxbufsz, "%u vs %u",
1500 totlen, sc->mue_rxbufsz);
1501
1502 do {
1503 if (__predict_false(totlen < sizeof(*hdrp))) {
1504 MUE_PRINTF(sc, "packet length %u too short\n", totlen);
1505 ifp->if_ierrors++;
1506 goto done;
1507 }
1508
1509 hdrp = (struct mue_rxbuf_hdr *)buf;
1510 rx_cmd_a = le32toh(hdrp->rx_cmd_a);
1511
1512 if (__predict_false(rx_cmd_a & MUE_RX_CMD_A_ERRORS)) {
1513 /*
1514 * We cannot use MUE_RX_CMD_A_RED bit here;
1515 * it is turned on in the cases of L3/L4
1516 * checksum errors which we handle below.
1517 */
1518 MUE_PRINTF(sc, "rx_cmd_a: 0x%x\n", rx_cmd_a);
1519 ifp->if_ierrors++;
1520 goto done;
1521 }
1522
1523 pktlen = (uint16_t)(rx_cmd_a & MUE_RX_CMD_A_LEN_MASK);
1524 if (sc->mue_flags & LAN7500)
1525 pktlen -= 2;
1526
1527 if (__predict_false(pktlen < ETHER_HDR_LEN + ETHER_CRC_LEN ||
1528 pktlen > MCLBYTES - ETHER_ALIGN || /* XXX */
1529 pktlen + sizeof(*hdrp) > totlen)) {
1530 MUE_PRINTF(sc, "invalid packet length %d\n", pktlen);
1531 ifp->if_ierrors++;
1532 goto done;
1533 }
1534
1535 m = mue_newbuf();
1536 if (__predict_false(m == NULL)) {
1537 MUE_PRINTF(sc, "failed to allocate mbuf\n");
1538 ifp->if_ierrors++;
1539 goto done;
1540 }
1541
1542 m_set_rcvif(m, ifp);
1543 m->m_pkthdr.len = m->m_len = pktlen;
1544 m->m_flags |= M_HASFCS;
1545
1546 if (__predict_false(rx_cmd_a & MUE_RX_CMD_A_ICSM)) {
1547 csum = 0;
1548 } else {
1549 v6 = rx_cmd_a & MUE_RX_CMD_A_IPV;
1550 switch (rx_cmd_a & MUE_RX_CMD_A_PID) {
1551 case MUE_RX_CMD_A_PID_TCP:
1552 csum = v6 ?
1553 M_CSUM_TCPv6 : M_CSUM_IPv4 | M_CSUM_TCPv4;
1554 break;
1555 case MUE_RX_CMD_A_PID_UDP:
1556 csum = v6 ?
1557 M_CSUM_UDPv6 : M_CSUM_IPv4 | M_CSUM_UDPv4;
1558 break;
1559 case MUE_RX_CMD_A_PID_IP:
1560 csum = v6 ? 0 : M_CSUM_IPv4;
1561 break;
1562 default:
1563 csum = 0;
1564 break;
1565 }
1566 csum &= ifp->if_csum_flags_rx;
1567 if (__predict_false((csum & M_CSUM_IPv4) &&
1568 (rx_cmd_a & MUE_RX_CMD_A_ICE)))
1569 csum |= M_CSUM_IPv4_BAD;
1570 if (__predict_false((csum & ~M_CSUM_IPv4) &&
1571 (rx_cmd_a & MUE_RX_CMD_A_TCE)))
1572 csum |= M_CSUM_TCP_UDP_BAD;
1573 }
1574 m->m_pkthdr.csum_flags = csum;
1575 memcpy(mtod(m, char *), buf + sizeof(*hdrp), pktlen);
1576
1577 /* Attention: sizeof(hdr) = 10 */
1578 pktlen = roundup(pktlen + sizeof(*hdrp), 4);
1579 if (pktlen > totlen)
1580 pktlen = totlen;
1581 totlen -= pktlen;
1582 buf += pktlen;
1583
1584 s = splnet();
1585 if_percpuq_enqueue(ifp->if_percpuq, m);
1586 splx(s);
1587 } while (totlen > 0);
1588
1589 done:
1590 /* Setup new transfer. */
1591 usbd_setup_xfer(xfer, c, c->mue_buf, sc->mue_rxbufsz,
1592 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, mue_rxeof);
1593 usbd_transfer(xfer);
1594 }
1595
1596 static void
1597 mue_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
1598 {
1599 struct mue_chain *c = priv;
1600 struct mue_softc *sc = c->mue_sc;
1601 struct mue_cdata *cd = &sc->mue_cdata;
1602 struct ifnet *ifp = GET_IFP(sc);
1603 int s;
1604
1605 if (__predict_false(sc->mue_dying))
1606 return;
1607
1608 s = splnet();
1609 KASSERT(cd->mue_tx_cnt > 0);
1610 cd->mue_tx_cnt--;
1611 if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
1612 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
1613 splx(s);
1614 return;
1615 }
1616 ifp->if_oerrors++;
1617 MUE_PRINTF(sc, "%s\n", usbd_errstr(status));
1618 if (status == USBD_STALLED)
1619 usbd_clear_endpoint_stall_async(
1620 sc->mue_ep[MUE_ENDPT_TX]);
1621 splx(s);
1622 return;
1623 }
1624
1625 ifp->if_timer = 0;
1626 ifp->if_flags &= ~IFF_OACTIVE;
1627
1628 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1629 mue_start(ifp);
1630
1631 ifp->if_opackets++;
1632 splx(s);
1633 }
1634
1635 static int
1636 mue_init(struct ifnet *ifp)
1637 {
1638 struct mue_softc *sc = ifp->if_softc;
1639 int s;
1640
1641 if (sc->mue_dying) {
1642 DPRINTF(sc, "dying\n");
1643 return EIO;
1644 }
1645
1646 s = splnet();
1647
1648 /* Cancel pending I/O and free all TX/RX buffers. */
1649 if (ifp->if_flags & IFF_RUNNING)
1650 mue_stop(ifp, 1);
1651
1652 mue_reset(sc);
1653
1654 /* Set MAC address. */
1655 mue_set_macaddr(sc);
1656
1657 /* Load the multicast filter. */
1658 mue_setmulti(sc);
1659
1660 /* TCP/UDP checksum offload engines. */
1661 mue_sethwcsum(sc);
1662
1663 /* Set MTU. */
1664 mue_setmtu(sc);
1665
1666 if (mue_open_pipes(sc)) {
1667 splx(s);
1668 return EIO;
1669 }
1670
1671 /* Init RX ring. */
1672 if (mue_rx_list_init(sc)) {
1673 MUE_PRINTF(sc, "failed to init rx list\n");
1674 splx(s);
1675 return ENOBUFS;
1676 }
1677
1678 /* Init TX ring. */
1679 if (mue_tx_list_init(sc)) {
1680 MUE_PRINTF(sc, "failed to init tx list\n");
1681 splx(s);
1682 return ENOBUFS;
1683 }
1684
1685 mue_startup_rx_pipes(sc);
1686
1687 ifp->if_flags |= IFF_RUNNING;
1688 ifp->if_flags &= ~IFF_OACTIVE;
1689
1690 splx(s);
1691
1692 callout_reset(&sc->mue_stat_ch, hz, mue_tick, sc);
1693
1694 return 0;
1695 }
1696
1697 static int
1698 mue_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1699 {
1700 struct mue_softc *sc = ifp->if_softc;
1701 int s, error = 0;
1702
1703 s = splnet();
1704
1705 switch (cmd) {
1706 case SIOCSIFFLAGS:
1707 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1708 break;
1709
1710 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1711 case IFF_RUNNING:
1712 mue_stop(ifp, 1);
1713 break;
1714 case IFF_UP:
1715 mue_init(ifp);
1716 break;
1717 case IFF_UP | IFF_RUNNING:
1718 if ((ifp->if_flags ^ sc->mue_if_flags) == IFF_PROMISC)
1719 mue_setmulti(sc);
1720 else
1721 mue_init(ifp);
1722 break;
1723 }
1724 sc->mue_if_flags = ifp->if_flags;
1725 break;
1726 default:
1727 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1728 break;
1729 error = 0;
1730 switch (cmd) {
1731 case SIOCADDMULTI:
1732 case SIOCDELMULTI:
1733 mue_setmulti(sc);
1734 break;
1735 case SIOCSIFCAP:
1736 mue_sethwcsum(sc);
1737 break;
1738 case SIOCSIFMTU:
1739 mue_setmtu(sc);
1740 break;
1741 default:
1742 break;
1743 }
1744 break;
1745 }
1746 splx(s);
1747
1748 return error;
1749 }
1750
1751 static void
1752 mue_watchdog(struct ifnet *ifp)
1753 {
1754 struct mue_softc *sc = ifp->if_softc;
1755 struct mue_chain *c;
1756 usbd_status stat;
1757 int s;
1758
1759 ifp->if_oerrors++;
1760 MUE_PRINTF(sc, "timed out\n");
1761
1762 s = splusb();
1763 c = &sc->mue_cdata.mue_tx_chain[0];
1764 usbd_get_xfer_status(c->mue_xfer, NULL, NULL, NULL, &stat);
1765 mue_txeof(c->mue_xfer, c, stat);
1766
1767 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1768 mue_start(ifp);
1769 splx(s);
1770 }
1771
1772 static void
1773 mue_reset(struct mue_softc *sc)
1774 {
1775 if (sc->mue_dying)
1776 return;
1777
1778 /* Wait a little while for the chip to get its brains in order. */
1779 usbd_delay_ms(sc->mue_udev, 1);
1780
1781 // mue_chip_init(sc); /* XXX */
1782 }
1783
1784 static void
1785 mue_start(struct ifnet *ifp)
1786 {
1787 struct mue_softc *sc = ifp->if_softc;
1788 struct mbuf *m;
1789 struct mue_cdata *cd = &sc->mue_cdata;
1790 int idx;
1791
1792 if (__predict_false(!sc->mue_link)) {
1793 DPRINTF(sc, "no link\n");
1794 return;
1795 }
1796
1797 if (__predict_false((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING))
1798 != IFF_RUNNING)) {
1799 DPRINTF(sc, "not ready\n");
1800 return;
1801 }
1802
1803 idx = cd->mue_tx_prod;
1804 while ((unsigned)cd->mue_tx_cnt < sc->mue_tx_list_cnt) {
1805 IFQ_POLL(&ifp->if_snd, m);
1806 if (m == NULL)
1807 break;
1808
1809 if (__predict_false(mue_encap(sc, m, idx))) {
1810 ifp->if_oerrors++;
1811 break;
1812 }
1813 IFQ_DEQUEUE(&ifp->if_snd, m);
1814
1815 bpf_mtap(ifp, m, BPF_D_OUT);
1816 m_freem(m);
1817
1818 idx = (idx + 1) % sc->mue_tx_list_cnt;
1819 cd->mue_tx_cnt++;
1820
1821 }
1822 cd->mue_tx_prod = idx;
1823
1824 if ((unsigned)cd->mue_tx_cnt >= sc->mue_tx_list_cnt)
1825 ifp->if_flags |= IFF_OACTIVE;
1826
1827 /* Set a timeout in case the chip goes out to lunch. */
1828 ifp->if_timer = 5;
1829 }
1830
1831 static void
1832 mue_stop(struct ifnet *ifp, int disable __unused)
1833 {
1834 struct mue_softc *sc = ifp->if_softc;
1835 struct mue_chain *c;
1836 usbd_status err;
1837 size_t i;
1838
1839 mue_reset(sc);
1840
1841 ifp->if_timer = 0;
1842 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1843
1844 callout_stop(&sc->mue_stat_ch);
1845 sc->mue_link = 0;
1846
1847 /* Stop transfers. */
1848 for (i = 0; i < __arraycount(sc->mue_ep); i++)
1849 if (sc->mue_ep[i] != NULL) {
1850 err = usbd_abort_pipe(sc->mue_ep[i]);
1851 if (err)
1852 MUE_PRINTF(sc, "abort pipe %zu: %s\n",
1853 i, usbd_errstr(err));
1854 }
1855
1856 /* Free RX resources. */
1857 for (i = 0; i < sc->mue_rx_list_cnt; i++) {
1858 c = &sc->mue_cdata.mue_rx_chain[i];
1859 if (c->mue_xfer != NULL) {
1860 usbd_destroy_xfer(c->mue_xfer);
1861 c->mue_xfer = NULL;
1862 }
1863 }
1864
1865 /* Free TX resources. */
1866 for (i = 0; i < sc->mue_tx_list_cnt; i++) {
1867 c = &sc->mue_cdata.mue_tx_chain[i];
1868 if (c->mue_xfer != NULL) {
1869 usbd_destroy_xfer(c->mue_xfer);
1870 c->mue_xfer = NULL;
1871 }
1872 }
1873
1874 /* Close pipes */
1875 for (i = 0; i < __arraycount(sc->mue_ep); i++)
1876 if (sc->mue_ep[i] != NULL) {
1877 err = usbd_close_pipe(sc->mue_ep[i]);
1878 if (err)
1879 MUE_PRINTF(sc, "close pipe %zu: %s\n",
1880 i, usbd_errstr(err));
1881 sc->mue_ep[i] = NULL;
1882 }
1883
1884 DPRINTF(sc, "done\n");
1885 }
1886
1887 static void
1888 mue_tick(void *xsc)
1889 {
1890 struct mue_softc *sc = xsc;
1891
1892 if (sc == NULL)
1893 return;
1894
1895 if (sc->mue_dying)
1896 return;
1897
1898 /* Perform periodic stuff in process context. */
1899 usb_add_task(sc->mue_udev, &sc->mue_tick_task, USB_TASKQ_DRIVER);
1900 }
1901
1902 static void
1903 mue_tick_task(void *xsc)
1904 {
1905 struct mue_softc *sc = xsc;
1906 struct ifnet *ifp;
1907 struct mii_data *mii;
1908 int s;
1909
1910 if (sc == NULL)
1911 return;
1912
1913 if (sc->mue_dying)
1914 return;
1915
1916 ifp = GET_IFP(sc);
1917 mii = GET_MII(sc);
1918
1919 s = splnet();
1920 mii_tick(mii);
1921 if (sc->mue_link == 0)
1922 mue_miibus_statchg(ifp);
1923 callout_reset(&sc->mue_stat_ch, hz, mue_tick, sc);
1924 splx(s);
1925 }
1926
1927 static struct mbuf *
1928 mue_newbuf(void)
1929 {
1930 struct mbuf *m;
1931
1932 MGETHDR(m, M_DONTWAIT, MT_DATA);
1933 if (__predict_false(m == NULL))
1934 return NULL;
1935
1936 MCLGET(m, M_DONTWAIT);
1937 if (__predict_false(!(m->m_flags & M_EXT))) {
1938 m_freem(m);
1939 return NULL;
1940 }
1941
1942 m_adj(m, ETHER_ALIGN);
1943
1944 return m;
1945 }
1946