if_otus.c revision 1.1 1 /* $OpenBSD: if_otus.c,v 1.18 2010/08/27 17:08:00 jsg Exp $ */
2
3 /*-
4 * Copyright (c) 2009 Damien Bergamini <damien.bergamini (at) free.fr>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19 /*-
20 * Driver for Atheros AR9001U chipset.
21 * http://www.atheros.com/pt/bulletins/AR9001USBBulletin.pdf
22 */
23
24 #include "bpfilter.h"
25
26 #include <sys/param.h>
27 #include <sys/sockio.h>
28 #include <sys/mbuf.h>
29 #include <sys/kernel.h>
30 #include <sys/socket.h>
31 #include <sys/systm.h>
32 #include <sys/timeout.h>
33 #include <sys/conf.h>
34 #include <sys/device.h>
35
36 #include <machine/bus.h>
37 #include <machine/endian.h>
38 #include <machine/intr.h>
39
40 #if NBPFILTER > 0
41 #include <net/bpf.h>
42 #endif
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_types.h>
48
49 #include <netinet/in.h>
50 #include <netinet/in_systm.h>
51 #include <netinet/in_var.h>
52 #include <netinet/if_ether.h>
53 #include <netinet/ip.h>
54
55 #include <net80211/ieee80211_var.h>
56 #include <net80211/ieee80211_amrr.h>
57 #include <net80211/ieee80211_radiotap.h>
58
59 #include <dev/usb/usb.h>
60 #include <dev/usb/usbdi.h>
61 #include <dev/usb/usbdi_util.h>
62 #include <dev/usb/usbdevs.h>
63
64 #include <dev/usb/if_otusreg.h>
65
66 #ifdef USB_DEBUG
67 #define OTUS_DEBUG
68 #endif
69
70 #ifdef OTUS_DEBUG
71 #define DPRINTF(x) do { if (otus_debug) printf x; } while (0)
72 #define DPRINTFN(n, x) do { if (otus_debug >= (n)) printf x; } while (0)
73 int otus_debug = 1;
74 #else
75 #define DPRINTF(x)
76 #define DPRINTFN(n, x)
77 #endif
78
79 static const struct usb_devno otus_devs[] = {
80 { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_WN7512 },
81 { USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_3CRUSBN275 },
82 { USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_TG121N },
83 { USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_AR9170 },
84 { USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_WN612 },
85 { USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_WN821NV2 },
86 { USB_VENDOR_AVM, USB_PRODUCT_AVM_FRITZWLAN },
87 { USB_VENDOR_CACE, USB_PRODUCT_CACE_AIRPCAPNX },
88 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA130D1 },
89 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA160A1 },
90 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA160A2 },
91 { USB_VENDOR_IODATA, USB_PRODUCT_IODATA_WNGDNUS2 },
92 { USB_VENDOR_NEC, USB_PRODUCT_NEC_WL300NUG },
93 { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WN111V2 },
94 { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNA1000 },
95 { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNDA3100 },
96 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GW_US300 },
97 { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_O8494 },
98 { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_WNC0600 },
99 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_UB81 },
100 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_UB82 },
101 { USB_VENDOR_ZYDAS, USB_PRODUCT_ZYDAS_ZD1221 },
102 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_NWD271N }
103 };
104
105 int otus_match(struct device *, void *, void *);
106 void otus_attach(struct device *, struct device *, void *);
107 int otus_detach(struct device *, int);
108 void otus_attachhook(void *);
109 void otus_get_chanlist(struct otus_softc *);
110 int otus_load_firmware(struct otus_softc *, const char *,
111 uint32_t);
112 int otus_open_pipes(struct otus_softc *);
113 void otus_close_pipes(struct otus_softc *);
114 int otus_alloc_tx_cmd(struct otus_softc *);
115 void otus_free_tx_cmd(struct otus_softc *);
116 int otus_alloc_tx_data_list(struct otus_softc *);
117 void otus_free_tx_data_list(struct otus_softc *);
118 int otus_alloc_rx_data_list(struct otus_softc *);
119 void otus_free_rx_data_list(struct otus_softc *);
120 void otus_next_scan(void *);
121 void otus_task(void *);
122 void otus_do_async(struct otus_softc *,
123 void (*)(struct otus_softc *, void *), void *, int);
124 int otus_newstate(struct ieee80211com *, enum ieee80211_state,
125 int);
126 void otus_newstate_cb(struct otus_softc *, void *);
127 int otus_cmd(struct otus_softc *, uint8_t, const void *, int,
128 void *);
129 void otus_write(struct otus_softc *, uint32_t, uint32_t);
130 int otus_write_barrier(struct otus_softc *);
131 struct ieee80211_node *otus_node_alloc(struct ieee80211com *);
132 int otus_media_change(struct ifnet *);
133 int otus_read_eeprom(struct otus_softc *);
134 void otus_newassoc(struct ieee80211com *, struct ieee80211_node *,
135 int);
136 void otus_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
137 void otus_cmd_rxeof(struct otus_softc *, uint8_t *, int);
138 void otus_sub_rxeof(struct otus_softc *, uint8_t *, int);
139 void otus_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
140 void otus_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
141 int otus_tx(struct otus_softc *, struct mbuf *,
142 struct ieee80211_node *);
143 void otus_start(struct ifnet *);
144 void otus_watchdog(struct ifnet *);
145 int otus_ioctl(struct ifnet *, u_long, caddr_t);
146 int otus_set_multi(struct otus_softc *);
147 void otus_updateedca(struct ieee80211com *);
148 void otus_updateedca_cb(struct otus_softc *, void *);
149 void otus_updateslot(struct ieee80211com *);
150 void otus_updateslot_cb(struct otus_softc *, void *);
151 int otus_init_mac(struct otus_softc *);
152 uint32_t otus_phy_get_def(struct otus_softc *, uint32_t);
153 int otus_set_board_values(struct otus_softc *,
154 struct ieee80211_channel *);
155 int otus_program_phy(struct otus_softc *,
156 struct ieee80211_channel *);
157 int otus_set_rf_bank4(struct otus_softc *,
158 struct ieee80211_channel *);
159 void otus_get_delta_slope(uint32_t, uint32_t *, uint32_t *);
160 int otus_set_chan(struct otus_softc *, struct ieee80211_channel *,
161 int);
162 int otus_set_key(struct ieee80211com *, struct ieee80211_node *,
163 struct ieee80211_key *);
164 void otus_set_key_cb(struct otus_softc *, void *);
165 void otus_delete_key(struct ieee80211com *, struct ieee80211_node *,
166 struct ieee80211_key *);
167 void otus_delete_key_cb(struct otus_softc *, void *);
168 void otus_calibrate_to(void *);
169 int otus_set_bssid(struct otus_softc *, const uint8_t *);
170 int otus_set_macaddr(struct otus_softc *, const uint8_t *);
171 void otus_led_newstate_type1(struct otus_softc *);
172 void otus_led_newstate_type2(struct otus_softc *);
173 void otus_led_newstate_type3(struct otus_softc *);
174 int otus_init(struct ifnet *);
175 void otus_stop(struct ifnet *);
176
177 struct cfdriver otus_cd = {
178 NULL, "otus", DV_IFNET
179 };
180
181 const struct cfattach otus_ca = {
182 sizeof (struct otus_softc), otus_match, otus_attach, otus_detach
183 };
184
185 int
186 otus_match(struct device *parent, void *match, void *aux)
187 {
188 struct usb_attach_arg *uaa = aux;
189
190 if (uaa->iface != NULL)
191 return UMATCH_NONE;
192
193 return (usb_lookup(otus_devs, uaa->vendor, uaa->product) != NULL) ?
194 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
195 }
196
197 void
198 otus_attach(struct device *parent, struct device *self, void *aux)
199 {
200 struct otus_softc *sc = (struct otus_softc *)self;
201 struct usb_attach_arg *uaa = aux;
202 int error;
203
204 sc->sc_udev = uaa->device;
205
206 usb_init_task(&sc->sc_task, otus_task, sc);
207 timeout_set(&sc->scan_to, otus_next_scan, sc);
208 timeout_set(&sc->calib_to, otus_calibrate_to, sc);
209
210 sc->amrr.amrr_min_success_threshold = 1;
211 sc->amrr.amrr_max_success_threshold = 10;
212
213 if (usbd_set_config_no(sc->sc_udev, 1, 0) != 0) {
214 printf("%s: could not set configuration no\n",
215 sc->sc_dev.dv_xname);
216 return;
217 }
218
219 /* Get the first interface handle. */
220 error = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface);
221 if (error != 0) {
222 printf("%s: could not get interface handle\n",
223 sc->sc_dev.dv_xname);
224 return;
225 }
226
227 if ((error = otus_open_pipes(sc)) != 0) {
228 printf("%s: could not open pipes\n", sc->sc_dev.dv_xname);
229 return;
230 }
231
232 if (rootvp == NULL)
233 mountroothook_establish(otus_attachhook, sc);
234 else
235 otus_attachhook(sc);
236
237 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, &sc->sc_dev);
238 }
239
240 int
241 otus_detach(struct device *self, int flags)
242 {
243 struct otus_softc *sc = (struct otus_softc *)self;
244 struct ifnet *ifp = &sc->sc_ic.ic_if;
245 int s;
246
247 s = splnet();
248
249 /* Wait for all queued asynchronous commands to complete. */
250 while (sc->cmdq.queued > 0)
251 tsleep(&sc->cmdq, 0, "cmdq", 0);
252
253 timeout_del(&sc->scan_to);
254 timeout_del(&sc->calib_to);
255
256 if (ifp->if_flags != 0) { /* if_attach() has been called. */
257 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
258 ieee80211_ifdetach(ifp);
259 if_detach(ifp);
260 }
261
262 otus_close_pipes(sc);
263
264 splx(s);
265
266 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, &sc->sc_dev);
267
268 return 0;
269 }
270
271 void
272 otus_attachhook(void *xsc)
273 {
274 struct otus_softc *sc = xsc;
275 struct ieee80211com *ic = &sc->sc_ic;
276 struct ifnet *ifp = &ic->ic_if;
277 usb_device_request_t req;
278 uint32_t in, out;
279 int error;
280
281 error = otus_load_firmware(sc, "otus-init", AR_FW_INIT_ADDR);
282 if (error != 0) {
283 printf("%s: could not load %s firmware\n",
284 sc->sc_dev.dv_xname, "init");
285 return;
286 }
287
288 usbd_delay_ms(sc->sc_udev, 1000);
289
290 error = otus_load_firmware(sc, "otus-main", AR_FW_MAIN_ADDR);
291 if (error != 0) {
292 printf("%s: could not load %s firmware\n",
293 sc->sc_dev.dv_xname, "main");
294 return;
295 }
296
297 /* Tell device that firmware transfer is complete. */
298 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
299 req.bRequest = AR_FW_DOWNLOAD_COMPLETE;
300 USETW(req.wValue, 0);
301 USETW(req.wIndex, 0);
302 USETW(req.wLength, 0);
303 if (usbd_do_request(sc->sc_udev, &req, NULL) != 0) {
304 printf("%s: firmware initialization failed\n",
305 sc->sc_dev.dv_xname);
306 return;
307 }
308
309 /* Send an ECHO command to check that everything is settled. */
310 in = 0xbadc0ffe;
311 if (otus_cmd(sc, AR_CMD_ECHO, &in, sizeof in, &out) != 0) {
312 printf("%s: echo command failed\n", sc->sc_dev.dv_xname);
313 return;
314 }
315 if (in != out) {
316 printf("%s: echo reply mismatch: 0x%08x!=0x%08x\n",
317 sc->sc_dev.dv_xname, in, out);
318 return;
319 }
320
321 /* Read entire EEPROM. */
322 if (otus_read_eeprom(sc) != 0) {
323 printf("%s: could not read EEPROM\n", sc->sc_dev.dv_xname);
324 return;
325 }
326
327 sc->txmask = sc->eeprom.baseEepHeader.txMask;
328 sc->rxmask = sc->eeprom.baseEepHeader.rxMask;
329 sc->capflags = sc->eeprom.baseEepHeader.opCapFlags;
330 IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->eeprom.baseEepHeader.macAddr);
331 sc->sc_led_newstate = otus_led_newstate_type3; /* XXX */
332
333 printf("%s: MAC/BBP AR9170, RF AR%X, MIMO %dT%dR, address %s\n",
334 sc->sc_dev.dv_xname, (sc->capflags & AR5416_OPFLAGS_11A) ?
335 0x9104 : ((sc->txmask == 0x5) ? 0x9102 : 0x9101),
336 (sc->txmask == 0x5) ? 2 : 1, (sc->rxmask == 0x5) ? 2 : 1,
337 ether_sprintf(ic->ic_myaddr));
338
339 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
340 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
341 ic->ic_state = IEEE80211_S_INIT;
342
343 /* Set device capabilities. */
344 ic->ic_caps =
345 IEEE80211_C_MONITOR | /* monitor mode supported */
346 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
347 IEEE80211_C_SHSLOT | /* short slot time supported */
348 IEEE80211_C_WEP | /* WEP */
349 IEEE80211_C_RSN; /* WPA/RSN */
350
351 if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) {
352 /* Set supported .11b and .11g rates. */
353 ic->ic_sup_rates[IEEE80211_MODE_11B] =
354 ieee80211_std_rateset_11b;
355 ic->ic_sup_rates[IEEE80211_MODE_11G] =
356 ieee80211_std_rateset_11g;
357 }
358 if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) {
359 /* Set supported .11a rates. */
360 ic->ic_sup_rates[IEEE80211_MODE_11A] =
361 ieee80211_std_rateset_11a;
362 }
363
364 /* Build the list of supported channels. */
365 otus_get_chanlist(sc);
366
367 ifp->if_softc = sc;
368 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
369 ifp->if_ioctl = otus_ioctl;
370 ifp->if_start = otus_start;
371 ifp->if_watchdog = otus_watchdog;
372 IFQ_SET_READY(&ifp->if_snd);
373 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
374
375 if_attach(ifp);
376 ieee80211_ifattach(ifp);
377 ic->ic_node_alloc = otus_node_alloc;
378 ic->ic_newassoc = otus_newassoc;
379 ic->ic_updateslot = otus_updateslot;
380 ic->ic_updateedca = otus_updateedca;
381 #ifdef notyet
382 ic->ic_set_key = otus_set_key;
383 ic->ic_delete_key = otus_delete_key;
384 #endif
385 /* Override state transition machine. */
386 sc->sc_newstate = ic->ic_newstate;
387 ic->ic_newstate = otus_newstate;
388 ieee80211_media_init(ifp, otus_media_change, ieee80211_media_status);
389
390 #if NBPFILTER > 0
391 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
392 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
393
394 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
395 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
396 sc->sc_rxtap.wr_ihdr.it_present = htole32(OTUS_RX_RADIOTAP_PRESENT);
397
398 sc->sc_txtap_len = sizeof sc->sc_txtapu;
399 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
400 sc->sc_txtap.wt_ihdr.it_present = htole32(OTUS_TX_RADIOTAP_PRESENT);
401 #endif
402 }
403
404 void
405 otus_get_chanlist(struct otus_softc *sc)
406 {
407 struct ieee80211com *ic = &sc->sc_ic;
408 uint16_t domain;
409 uint8_t chan;
410 int i;
411
412 /* XXX regulatory domain. */
413 domain = letoh16(sc->eeprom.baseEepHeader.regDmn[0]);
414 DPRINTF(("regdomain=0x%04x\n", domain));
415
416 if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) {
417 for (i = 0; i < 14; i++) {
418 chan = ar_chans[i];
419 ic->ic_channels[chan].ic_freq =
420 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
421 ic->ic_channels[chan].ic_flags =
422 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
423 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
424 }
425 }
426 if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) {
427 for (i = 14; i < nitems(ar_chans); i++) {
428 chan = ar_chans[i];
429 ic->ic_channels[chan].ic_freq =
430 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
431 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
432 }
433 }
434 }
435
436 int
437 otus_load_firmware(struct otus_softc *sc, const char *name, uint32_t addr)
438 {
439 usb_device_request_t req;
440 size_t size;
441 u_char *fw, *ptr;
442 int mlen, error;
443
444 /* Read firmware image from the filesystem. */
445 if ((error = loadfirmware(name, &fw, &size)) != 0) {
446 printf("%s: failed loadfirmware of file %s (error %d)\n",
447 sc->sc_dev.dv_xname, name, error);
448 return error;
449 }
450 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
451 req.bRequest = AR_FW_DOWNLOAD;
452 USETW(req.wIndex, 0);
453
454 ptr = fw;
455 addr >>= 8;
456 while (size > 0) {
457 mlen = MIN(size, 4096);
458
459 USETW(req.wValue, addr);
460 USETW(req.wLength, mlen);
461 if (usbd_do_request(sc->sc_udev, &req, ptr) != 0) {
462 error = EIO;
463 break;
464 }
465 addr += mlen >> 8;
466 ptr += mlen;
467 size -= mlen;
468 }
469 free(fw, M_DEVBUF);
470 return error;
471 }
472
473 int
474 otus_open_pipes(struct otus_softc *sc)
475 {
476 usb_endpoint_descriptor_t *ed;
477 int i, isize, error;
478
479 error = usbd_open_pipe(sc->sc_iface, AR_EPT_BULK_RX_NO, 0,
480 &sc->data_rx_pipe);
481 if (error != 0) {
482 printf("%s: could not open Rx bulk pipe\n",
483 sc->sc_dev.dv_xname);
484 goto fail;
485 }
486
487 ed = usbd_get_endpoint_descriptor(sc->sc_iface, AR_EPT_INTR_RX_NO);
488 if (ed == NULL) {
489 printf("%s: could not retrieve Rx intr pipe descriptor\n",
490 sc->sc_dev.dv_xname);
491 goto fail;
492 }
493 isize = UGETW(ed->wMaxPacketSize);
494 if (isize == 0) {
495 printf("%s: invalid Rx intr pipe descriptor\n",
496 sc->sc_dev.dv_xname);
497 goto fail;
498 }
499 sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
500 if (sc->ibuf == NULL) {
501 printf("%s: could not allocate Rx intr buffer\n",
502 sc->sc_dev.dv_xname);
503 goto fail;
504 }
505 error = usbd_open_pipe_intr(sc->sc_iface, AR_EPT_INTR_RX_NO,
506 USBD_SHORT_XFER_OK, &sc->cmd_rx_pipe, sc, sc->ibuf, isize,
507 otus_intr, USBD_DEFAULT_INTERVAL);
508 if (error != 0) {
509 printf("%s: could not open Rx intr pipe\n",
510 sc->sc_dev.dv_xname);
511 goto fail;
512 }
513
514 error = usbd_open_pipe(sc->sc_iface, AR_EPT_BULK_TX_NO, 0,
515 &sc->data_tx_pipe);
516 if (error != 0) {
517 printf("%s: could not open Tx bulk pipe\n",
518 sc->sc_dev.dv_xname);
519 goto fail;
520 }
521
522 error = usbd_open_pipe(sc->sc_iface, AR_EPT_INTR_TX_NO, 0,
523 &sc->cmd_tx_pipe);
524 if (error != 0) {
525 printf("%s: could not open Tx intr pipe\n",
526 sc->sc_dev.dv_xname);
527 goto fail;
528 }
529
530 if (otus_alloc_tx_cmd(sc) != 0) {
531 printf("%s: could not allocate command xfer\n",
532 sc->sc_dev.dv_xname);
533 goto fail;
534 }
535
536 if (otus_alloc_tx_data_list(sc) != 0) {
537 printf("%s: could not allocate Tx xfers\n",
538 sc->sc_dev.dv_xname);
539 goto fail;
540 }
541
542 if (otus_alloc_rx_data_list(sc) != 0) {
543 printf("%s: could not allocate Rx xfers\n",
544 sc->sc_dev.dv_xname);
545 goto fail;
546 }
547
548 for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++) {
549 struct otus_rx_data *data = &sc->rx_data[i];
550
551 usbd_setup_xfer(data->xfer, sc->data_rx_pipe, data, data->buf,
552 OTUS_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
553 USBD_NO_TIMEOUT, otus_rxeof);
554 error = usbd_transfer(data->xfer);
555 if (error != USBD_IN_PROGRESS && error != 0) {
556 printf("%s: could not queue Rx xfer\n",
557 sc->sc_dev.dv_xname);
558 goto fail;
559 }
560 }
561 return 0;
562
563 fail: otus_close_pipes(sc);
564 return error;
565 }
566
567 void
568 otus_close_pipes(struct otus_softc *sc)
569 {
570 otus_free_tx_cmd(sc);
571 otus_free_tx_data_list(sc);
572 otus_free_rx_data_list(sc);
573
574 if (sc->data_rx_pipe != NULL)
575 usbd_close_pipe(sc->data_rx_pipe);
576 if (sc->cmd_rx_pipe != NULL) {
577 usbd_abort_pipe(sc->cmd_rx_pipe);
578 usbd_close_pipe(sc->cmd_rx_pipe);
579 }
580 if (sc->ibuf != NULL)
581 free(sc->ibuf, M_USBDEV);
582 if (sc->data_tx_pipe != NULL)
583 usbd_close_pipe(sc->data_tx_pipe);
584 if (sc->cmd_tx_pipe != NULL)
585 usbd_close_pipe(sc->cmd_tx_pipe);
586 }
587
588 int
589 otus_alloc_tx_cmd(struct otus_softc *sc)
590 {
591 struct otus_tx_cmd *cmd = &sc->tx_cmd;
592
593 cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
594 if (cmd->xfer == NULL) {
595 printf("%s: could not allocate xfer\n",
596 sc->sc_dev.dv_xname);
597 return ENOMEM;
598 }
599 cmd->buf = usbd_alloc_buffer(cmd->xfer, OTUS_MAX_TXCMDSZ);
600 if (cmd->buf == NULL) {
601 printf("%s: could not allocate xfer buffer\n",
602 sc->sc_dev.dv_xname);
603 usbd_free_xfer(cmd->xfer);
604 return ENOMEM;
605 }
606 return 0;
607 }
608
609 void
610 otus_free_tx_cmd(struct otus_softc *sc)
611 {
612 /* Make sure no transfers are pending. */
613 usbd_abort_pipe(sc->cmd_tx_pipe);
614
615 if (sc->tx_cmd.xfer != NULL)
616 usbd_free_xfer(sc->tx_cmd.xfer);
617 }
618
619 int
620 otus_alloc_tx_data_list(struct otus_softc *sc)
621 {
622 struct otus_tx_data *data;
623 int i, error;
624
625 for (i = 0; i < OTUS_TX_DATA_LIST_COUNT; i++) {
626 data = &sc->tx_data[i];
627
628 data->sc = sc; /* Backpointer for callbacks. */
629
630 data->xfer = usbd_alloc_xfer(sc->sc_udev);
631 if (data->xfer == NULL) {
632 printf("%s: could not allocate xfer\n",
633 sc->sc_dev.dv_xname);
634 error = ENOMEM;
635 goto fail;
636 }
637 data->buf = usbd_alloc_buffer(data->xfer, OTUS_TXBUFSZ);
638 if (data->buf == NULL) {
639 printf("%s: could not allocate xfer buffer\n",
640 sc->sc_dev.dv_xname);
641 error = ENOMEM;
642 goto fail;
643 }
644 }
645 return 0;
646
647 fail: otus_free_tx_data_list(sc);
648 return error;
649 }
650
651 void
652 otus_free_tx_data_list(struct otus_softc *sc)
653 {
654 int i;
655
656 /* Make sure no transfers are pending. */
657 usbd_abort_pipe(sc->data_tx_pipe);
658
659 for (i = 0; i < OTUS_TX_DATA_LIST_COUNT; i++)
660 if (sc->tx_data[i].xfer != NULL)
661 usbd_free_xfer(sc->tx_data[i].xfer);
662 }
663
664 int
665 otus_alloc_rx_data_list(struct otus_softc *sc)
666 {
667 struct otus_rx_data *data;
668 int i, error;
669
670 for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++) {
671 data = &sc->rx_data[i];
672
673 data->sc = sc; /* Backpointer for callbacks. */
674
675 data->xfer = usbd_alloc_xfer(sc->sc_udev);
676 if (data->xfer == NULL) {
677 printf("%s: could not allocate xfer\n",
678 sc->sc_dev.dv_xname);
679 error = ENOMEM;
680 goto fail;
681 }
682 data->buf = usbd_alloc_buffer(data->xfer, OTUS_RXBUFSZ);
683 if (data->buf == NULL) {
684 printf("%s: could not allocate xfer buffer\n",
685 sc->sc_dev.dv_xname);
686 error = ENOMEM;
687 goto fail;
688 }
689 }
690 return 0;
691
692 fail: otus_free_rx_data_list(sc);
693 return error;
694 }
695
696 void
697 otus_free_rx_data_list(struct otus_softc *sc)
698 {
699 int i;
700
701 /* Make sure no transfers are pending. */
702 usbd_abort_pipe(sc->data_rx_pipe);
703
704 for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++)
705 if (sc->rx_data[i].xfer != NULL)
706 usbd_free_xfer(sc->rx_data[i].xfer);
707 }
708
709 void
710 otus_next_scan(void *arg)
711 {
712 struct otus_softc *sc = arg;
713
714 if (sc->sc_ic.ic_state == IEEE80211_S_SCAN)
715 ieee80211_next_scan(&sc->sc_ic.ic_if);
716 }
717
718 void
719 otus_task(void *arg)
720 {
721 struct otus_softc *sc = arg;
722 struct otus_host_cmd_ring *ring = &sc->cmdq;
723 struct otus_host_cmd *cmd;
724 int s;
725
726 /* Process host commands. */
727 s = splusb();
728 while (ring->next != ring->cur) {
729 cmd = &ring->cmd[ring->next];
730 splx(s);
731 /* Callback. */
732 cmd->cb(sc, cmd->data);
733 s = splusb();
734 ring->queued--;
735 ring->next = (ring->next + 1) % OTUS_HOST_CMD_RING_COUNT;
736 }
737 wakeup(ring);
738 splx(s);
739 }
740
741 void
742 otus_do_async(struct otus_softc *sc, void (*cb)(struct otus_softc *, void *),
743 void *arg, int len)
744 {
745 struct otus_host_cmd_ring *ring = &sc->cmdq;
746 struct otus_host_cmd *cmd;
747 int s;
748
749 s = splusb();
750 cmd = &ring->cmd[ring->cur];
751 cmd->cb = cb;
752 KASSERT(len <= sizeof (cmd->data));
753 memcpy(cmd->data, arg, len);
754 ring->cur = (ring->cur + 1) % OTUS_HOST_CMD_RING_COUNT;
755
756 /* If there is no pending command already, schedule a task. */
757 if (++ring->queued == 1)
758 usb_add_task(sc->sc_udev, &sc->sc_task);
759 splx(s);
760 }
761
762 int
763 otus_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
764 {
765 struct otus_softc *sc = ic->ic_softc;
766 struct otus_cmd_newstate cmd;
767
768 /* Do it in a process context. */
769 cmd.state = nstate;
770 cmd.arg = arg;
771 otus_do_async(sc, otus_newstate_cb, &cmd, sizeof cmd);
772 return 0;
773 }
774
775 void
776 otus_newstate_cb(struct otus_softc *sc, void *arg)
777 {
778 struct otus_cmd_newstate *cmd = arg;
779 struct ieee80211com *ic = &sc->sc_ic;
780 struct ieee80211_node *ni;
781 int s;
782
783 s = splnet();
784
785 switch (cmd->state) {
786 case IEEE80211_S_INIT:
787 break;
788
789 case IEEE80211_S_SCAN:
790 (void)otus_set_chan(sc, ic->ic_bss->ni_chan, 0);
791 timeout_add_msec(&sc->scan_to, 200);
792 break;
793
794 case IEEE80211_S_AUTH:
795 case IEEE80211_S_ASSOC:
796 (void)otus_set_chan(sc, ic->ic_bss->ni_chan, 0);
797 break;
798
799 case IEEE80211_S_RUN:
800 (void)otus_set_chan(sc, ic->ic_bss->ni_chan, 1);
801
802 ni = ic->ic_bss;
803
804 if (ic->ic_opmode == IEEE80211_M_STA) {
805 otus_updateslot(ic);
806 otus_set_bssid(sc, ni->ni_bssid);
807
808 /* Fake a join to init the Tx rate. */
809 otus_newassoc(ic, ni, 1);
810
811 /* Start calibration timer. */
812 timeout_add_sec(&sc->calib_to, 1);
813 }
814 break;
815 }
816
817 sc->sc_led_newstate(sc);
818 (void)sc->sc_newstate(ic, cmd->state, cmd->arg);
819
820 splx(s);
821 }
822
823 int
824 otus_cmd(struct otus_softc *sc, uint8_t code, const void *idata, int ilen,
825 void *odata)
826 {
827 struct otus_tx_cmd *cmd = &sc->tx_cmd;
828 struct ar_cmd_hdr *hdr;
829 int s, xferlen, error;
830
831 /* Always bulk-out a multiple of 4 bytes. */
832 xferlen = (sizeof (*hdr) + ilen + 3) & ~3;
833
834 hdr = (struct ar_cmd_hdr *)cmd->buf;
835 hdr->code = code;
836 hdr->len = ilen;
837 hdr->token = ++cmd->token; /* Don't care about endianness. */
838 memcpy((uint8_t *)&hdr[1], idata, ilen);
839
840 DPRINTFN(2, ("sending command code=0x%02x len=%d token=%d\n",
841 code, ilen, hdr->token));
842
843 s = splusb();
844 cmd->odata = odata;
845 cmd->done = 0;
846
847 usbd_setup_xfer(cmd->xfer, sc->cmd_tx_pipe, cmd, cmd->buf, xferlen,
848 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, OTUS_CMD_TIMEOUT, NULL);
849 error = usbd_sync_transfer(cmd->xfer);
850 if (error != 0) {
851 splx(s);
852 printf("%s: could not send command 0x%x (error=%s)\n",
853 sc->sc_dev.dv_xname, code, usbd_errstr(error));
854 return EIO;
855 }
856 if (!cmd->done)
857 error = tsleep(cmd, PCATCH, "otuscmd", hz);
858 cmd->odata = NULL; /* In case answer is received too late. */
859 splx(s);
860 if (error != 0) {
861 printf("%s: timeout waiting for command 0x%02x reply\n",
862 sc->sc_dev.dv_xname, code);
863 }
864 return error;
865 }
866
867 void
868 otus_write(struct otus_softc *sc, uint32_t reg, uint32_t val)
869 {
870 sc->write_buf[sc->write_idx].reg = htole32(reg);
871 sc->write_buf[sc->write_idx].val = htole32(val);
872
873 if (++sc->write_idx > AR_MAX_WRITE_IDX)
874 (void)otus_write_barrier(sc);
875 }
876
877 int
878 otus_write_barrier(struct otus_softc *sc)
879 {
880 int error;
881
882 if (sc->write_idx == 0)
883 return 0; /* Nothing to flush. */
884
885 error = otus_cmd(sc, AR_CMD_WREG, sc->write_buf,
886 sizeof (sc->write_buf[0]) * sc->write_idx, NULL);
887 sc->write_idx = 0;
888 return error;
889 }
890
891 struct ieee80211_node *
892 otus_node_alloc(struct ieee80211com *ic)
893 {
894 return malloc(sizeof (struct otus_node), M_DEVBUF, M_NOWAIT | M_ZERO);
895 }
896
897 int
898 otus_media_change(struct ifnet *ifp)
899 {
900 struct otus_softc *sc = ifp->if_softc;
901 struct ieee80211com *ic = &sc->sc_ic;
902 uint8_t rate, ridx;
903 int error;
904
905 error = ieee80211_media_change(ifp);
906 if (error != ENETRESET)
907 return error;
908
909 if (ic->ic_fixed_rate != -1) {
910 rate = ic->ic_sup_rates[ic->ic_curmode].
911 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
912 for (ridx = 0; ridx <= OTUS_RIDX_MAX; ridx++)
913 if (otus_rates[ridx].rate == rate)
914 break;
915 sc->fixed_ridx = ridx;
916 }
917
918 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
919 error = otus_init(ifp);
920
921 return error;
922 }
923
924 int
925 otus_read_eeprom(struct otus_softc *sc)
926 {
927 uint32_t regs[8], reg;
928 uint8_t *eep;
929 int i, j, error;
930
931 /* Read EEPROM by blocks of 32 bytes. */
932 eep = (uint8_t *)&sc->eeprom;
933 reg = AR_EEPROM_OFFSET;
934 for (i = 0; i < sizeof (sc->eeprom) / 32; i++) {
935 for (j = 0; j < 8; j++, reg += 4)
936 regs[j] = htole32(reg);
937 error = otus_cmd(sc, AR_CMD_RREG, regs, sizeof regs, eep);
938 if (error != 0)
939 break;
940 eep += 32;
941 }
942 return error;
943 }
944
945 void
946 otus_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
947 {
948 struct otus_softc *sc = ic->ic_softc;
949 struct otus_node *on = (void *)ni;
950 struct ieee80211_rateset *rs = &ni->ni_rates;
951 uint8_t rate;
952 int ridx, i;
953
954 DPRINTF(("new assoc isnew=%d addr=%s\n",
955 isnew, ether_sprintf(ni->ni_macaddr)));
956
957 ieee80211_amrr_node_init(&sc->amrr, &on->amn);
958 /* Start at lowest available bit-rate, AMRR will raise. */
959 ni->ni_txrate = 0;
960
961 for (i = 0; i < rs->rs_nrates; i++) {
962 rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
963 /* Convert 802.11 rate to hardware rate index. */
964 for (ridx = 0; ridx <= OTUS_RIDX_MAX; ridx++)
965 if (otus_rates[ridx].rate == rate)
966 break;
967 on->ridx[i] = ridx;
968 DPRINTF(("rate=0x%02x ridx=%d\n",
969 rs->rs_rates[i], on->ridx[i]));
970 }
971 }
972
973 /* ARGSUSED */
974 void
975 otus_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
976 {
977 #if 0
978 struct otus_softc *sc = priv;
979 int len;
980
981 /*
982 * The Rx intr pipe is unused with current firmware. Notifications
983 * and replies to commands are sent through the Rx bulk pipe instead
984 * (with a magic PLCP header.)
985 */
986 if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
987 DPRINTF(("intr status=%d\n", status));
988 if (status == USBD_STALLED)
989 usbd_clear_endpoint_stall_async(sc->cmd_rx_pipe);
990 return;
991 }
992 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
993
994 otus_cmd_rxeof(sc, sc->ibuf, len);
995 #endif
996 }
997
998 void
999 otus_cmd_rxeof(struct otus_softc *sc, uint8_t *buf, int len)
1000 {
1001 struct ieee80211com *ic = &sc->sc_ic;
1002 struct otus_tx_cmd *cmd;
1003 struct ar_cmd_hdr *hdr;
1004 int s;
1005
1006 if (__predict_false(len < sizeof (*hdr))) {
1007 DPRINTF(("cmd too small %d\n", len));
1008 return;
1009 }
1010 hdr = (struct ar_cmd_hdr *)buf;
1011 if (__predict_false(sizeof (*hdr) + hdr->len > len ||
1012 sizeof (*hdr) + hdr->len > 64)) {
1013 DPRINTF(("cmd too large %d\n", hdr->len));
1014 return;
1015 }
1016
1017 if ((hdr->code & 0xc0) != 0xc0) {
1018 DPRINTFN(2, ("received reply code=0x%02x len=%d token=%d\n",
1019 hdr->code, hdr->len, hdr->token));
1020 cmd = &sc->tx_cmd;
1021 if (__predict_false(hdr->token != cmd->token))
1022 return;
1023 /* Copy answer into caller's supplied buffer. */
1024 if (cmd->odata != NULL)
1025 memcpy(cmd->odata, &hdr[1], hdr->len);
1026 cmd->done = 1;
1027 wakeup(cmd);
1028 return;
1029 }
1030
1031 /* Received unsolicited notification. */
1032 DPRINTF(("received notification code=0x%02x len=%d\n",
1033 hdr->code, hdr->len));
1034 switch (hdr->code & 0x3f) {
1035 case AR_EVT_BEACON:
1036 break;
1037 case AR_EVT_TX_COMP:
1038 {
1039 struct ar_evt_tx_comp *tx = (struct ar_evt_tx_comp *)&hdr[1];
1040 struct ieee80211_node *ni;
1041 struct otus_node *on;
1042
1043 DPRINTF(("tx completed %s status=%d phy=0x%x\n",
1044 ether_sprintf(tx->macaddr), letoh16(tx->status),
1045 letoh32(tx->phy)));
1046 s = splnet();
1047 #ifdef notyet
1048 #ifndef IEEE80211_STA_ONLY
1049 if (ic->ic_opmode != IEEE80211_M_STA) {
1050 ni = ieee80211_find_node(ic, tx->macaddr);
1051 if (__predict_false(ni == NULL)) {
1052 splx(s);
1053 break;
1054 }
1055 } else
1056 #endif
1057 #endif
1058 ni = ic->ic_bss;
1059 /* Update rate control statistics. */
1060 on = (void *)ni;
1061 /* NB: we do not set the TX_MAC_RATE_PROBING flag. */
1062 if (__predict_true(tx->status != 0))
1063 on->amn.amn_retrycnt++;
1064 splx(s);
1065 break;
1066 }
1067 case AR_EVT_TBTT:
1068 break;
1069 }
1070 }
1071
1072 void
1073 otus_sub_rxeof(struct otus_softc *sc, uint8_t *buf, int len)
1074 {
1075 struct ieee80211com *ic = &sc->sc_ic;
1076 struct ifnet *ifp = &ic->ic_if;
1077 struct ieee80211_rxinfo rxi;
1078 struct ieee80211_node *ni;
1079 struct ar_rx_tail *tail;
1080 struct ieee80211_frame *wh;
1081 struct mbuf *m;
1082 uint8_t *plcp;
1083 int s, mlen, align;
1084
1085 if (__predict_false(len < AR_PLCP_HDR_LEN)) {
1086 DPRINTF(("sub-xfer too short %d\n", len));
1087 return;
1088 }
1089 plcp = buf;
1090
1091 /* All bits in the PLCP header are set to 1 for non-MPDU. */
1092 if (memcmp(plcp, AR_PLCP_HDR_INTR, AR_PLCP_HDR_LEN) == 0) {
1093 otus_cmd_rxeof(sc, plcp + AR_PLCP_HDR_LEN,
1094 len - AR_PLCP_HDR_LEN);
1095 return;
1096 }
1097
1098 /* Received MPDU. */
1099 if (__predict_false(len < AR_PLCP_HDR_LEN + sizeof (*tail))) {
1100 DPRINTF(("MPDU too short %d\n", len));
1101 ifp->if_ierrors++;
1102 return;
1103 }
1104 tail = (struct ar_rx_tail *)(plcp + len - sizeof (*tail));
1105
1106 /* Discard error frames. */
1107 if (__predict_false(tail->error != 0)) {
1108 DPRINTF(("error frame 0x%02x\n", tail->error));
1109 if (tail->error & AR_RX_ERROR_FCS) {
1110 DPRINTFN(3, ("bad FCS\n"));
1111 } else if (tail->error & AR_RX_ERROR_MMIC) {
1112 /* Report Michael MIC failures to net80211. */
1113 ic->ic_stats.is_rx_locmicfail++;
1114 ieee80211_michael_mic_failure(ic, 0);
1115 }
1116 ifp->if_ierrors++;
1117 return;
1118 }
1119 /* Compute MPDU's length. */
1120 mlen = len - AR_PLCP_HDR_LEN - sizeof (*tail);
1121 /* Make sure there's room for an 802.11 header + FCS. */
1122 if (__predict_false(mlen < IEEE80211_MIN_LEN)) {
1123 ifp->if_ierrors++;
1124 return;
1125 }
1126 mlen -= IEEE80211_CRC_LEN; /* strip 802.11 FCS */
1127
1128 wh = (struct ieee80211_frame *)(plcp + AR_PLCP_HDR_LEN);
1129 /* Provide a 32-bit aligned protocol header to the stack. */
1130 align = (ieee80211_has_qos(wh) ^ ieee80211_has_addr4(wh)) ? 2 : 0;
1131
1132 MGETHDR(m, M_DONTWAIT, MT_DATA);
1133 if (__predict_false(m == NULL)) {
1134 ifp->if_ierrors++;
1135 return;
1136 }
1137 if (align + mlen > MHLEN) {
1138 MCLGET(m, M_DONTWAIT);
1139 if (__predict_false(!(m->m_flags & M_EXT))) {
1140 ifp->if_ierrors++;
1141 m_freem(m);
1142 return;
1143 }
1144 }
1145 /* Finalize mbuf. */
1146 m->m_pkthdr.rcvif = ifp;
1147 m->m_data += align;
1148 memcpy(mtod(m, caddr_t), wh, mlen);
1149 m->m_pkthdr.len = m->m_len = mlen;
1150
1151 #if NBPFILTER > 0
1152 if (__predict_false(sc->sc_drvbpf != NULL)) {
1153 struct otus_rx_radiotap_header *tap = &sc->sc_rxtap;
1154 struct mbuf mb;
1155
1156 tap->wr_flags = 0;
1157 tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1158 tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1159 tap->wr_antsignal = tail->rssi;
1160 tap->wr_rate = 2; /* In case it can't be found below. */
1161 switch (tail->status & AR_RX_STATUS_MT_MASK) {
1162 case AR_RX_STATUS_MT_CCK:
1163 switch (plcp[0]) {
1164 case 10: tap->wr_rate = 2; break;
1165 case 20: tap->wr_rate = 4; break;
1166 case 55: tap->wr_rate = 11; break;
1167 case 110: tap->wr_rate = 22; break;
1168 }
1169 if (tail->status & AR_RX_STATUS_SHPREAMBLE)
1170 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1171 break;
1172 case AR_RX_STATUS_MT_OFDM:
1173 switch (plcp[0] & 0xf) {
1174 case 0xb: tap->wr_rate = 12; break;
1175 case 0xf: tap->wr_rate = 18; break;
1176 case 0xa: tap->wr_rate = 24; break;
1177 case 0xe: tap->wr_rate = 36; break;
1178 case 0x9: tap->wr_rate = 48; break;
1179 case 0xd: tap->wr_rate = 72; break;
1180 case 0x8: tap->wr_rate = 96; break;
1181 case 0xc: tap->wr_rate = 108; break;
1182 }
1183 break;
1184 }
1185 mb.m_data = (caddr_t)tap;
1186 mb.m_len = sc->sc_rxtap_len;
1187 mb.m_next = m;
1188 mb.m_nextpkt = NULL;
1189 mb.m_type = 0;
1190 mb.m_flags = 0;
1191 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1192 }
1193 #endif
1194
1195 s = splnet();
1196 ni = ieee80211_find_rxnode(ic, wh);
1197 rxi.rxi_flags = 0;
1198 rxi.rxi_rssi = tail->rssi;
1199 rxi.rxi_tstamp = 0; /* unused */
1200 ieee80211_input(ifp, m, ni, &rxi);
1201
1202 /* Node is no longer needed. */
1203 ieee80211_release_node(ic, ni);
1204 splx(s);
1205 }
1206
1207 void
1208 otus_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1209 {
1210 struct otus_rx_data *data = priv;
1211 struct otus_softc *sc = data->sc;
1212 caddr_t buf = data->buf;
1213 struct ar_rx_head *head;
1214 uint16_t hlen;
1215 int len;
1216
1217 if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
1218 DPRINTF(("RX status=%d\n", status));
1219 if (status == USBD_STALLED)
1220 usbd_clear_endpoint_stall_async(sc->data_rx_pipe);
1221 if (status != USBD_CANCELLED)
1222 goto resubmit;
1223 return;
1224 }
1225 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1226
1227 while (len >= sizeof (*head)) {
1228 head = (struct ar_rx_head *)buf;
1229 if (__predict_false(head->tag != htole16(AR_RX_HEAD_TAG))) {
1230 DPRINTF(("tag not valid 0x%x\n", letoh16(head->tag)));
1231 break;
1232 }
1233 hlen = letoh16(head->len);
1234 if (__predict_false(sizeof (*head) + hlen > len)) {
1235 DPRINTF(("xfer too short %d/%d\n", len, hlen));
1236 break;
1237 }
1238 /* Process sub-xfer. */
1239 otus_sub_rxeof(sc, (uint8_t *)&head[1], hlen);
1240
1241 /* Next sub-xfer is aligned on a 32-bit boundary. */
1242 hlen = (sizeof (*head) + hlen + 3) & ~3;
1243 buf += hlen;
1244 len -= hlen;
1245 }
1246
1247 resubmit:
1248 usbd_setup_xfer(xfer, sc->data_rx_pipe, data, data->buf, OTUS_RXBUFSZ,
1249 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, otus_rxeof);
1250 (void)usbd_transfer(data->xfer);
1251 }
1252
1253 void
1254 otus_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1255 {
1256 struct otus_tx_data *data = priv;
1257 struct otus_softc *sc = data->sc;
1258 struct ieee80211com *ic = &sc->sc_ic;
1259 struct ifnet *ifp = &ic->ic_if;
1260 int s;
1261
1262 if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
1263 DPRINTF(("TX status=%d\n", status));
1264 if (status == USBD_STALLED)
1265 usbd_clear_endpoint_stall_async(sc->data_tx_pipe);
1266 ifp->if_oerrors++;
1267 return;
1268 }
1269 s = splnet();
1270 sc->tx_queued--;
1271 sc->sc_tx_timer = 0;
1272 ifp->if_flags &= ~IFF_OACTIVE;
1273 otus_start(ifp);
1274 splx(s);
1275 }
1276
1277 int
1278 otus_tx(struct otus_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
1279 {
1280 struct ieee80211com *ic = &sc->sc_ic;
1281 struct otus_node *on = (void *)ni;
1282 struct otus_tx_data *data;
1283 struct ieee80211_frame *wh;
1284 struct ieee80211_key *k;
1285 struct ar_tx_head *head;
1286 uint32_t phyctl;
1287 uint16_t macctl, qos;
1288 uint8_t tid, qid;
1289 int error, ridx, hasqos, xferlen;
1290
1291 wh = mtod(m, struct ieee80211_frame *);
1292 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1293 k = ieee80211_get_txkey(ic, wh, ni);
1294 if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
1295 return ENOBUFS;
1296 wh = mtod(m, struct ieee80211_frame *);
1297 }
1298
1299 if ((hasqos = ieee80211_has_qos(wh))) {
1300 qos = ieee80211_get_qos(wh);
1301 tid = qos & IEEE80211_QOS_TID;
1302 qid = ieee80211_up_to_ac(ic, tid);
1303 } else
1304 qid = EDCA_AC_BE;
1305
1306 /* Pickup a rate index. */
1307 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1308 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA)
1309 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1310 OTUS_RIDX_OFDM6 : OTUS_RIDX_CCK1;
1311 else if (ic->ic_fixed_rate != -1)
1312 ridx = sc->fixed_ridx;
1313 else
1314 ridx = on->ridx[ni->ni_txrate];
1315
1316 phyctl = 0;
1317 macctl = AR_TX_MAC_BACKOFF | AR_TX_MAC_HW_DUR | AR_TX_MAC_QID(qid);
1318
1319 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1320 (hasqos && ((qos & IEEE80211_QOS_ACK_POLICY_MASK) ==
1321 IEEE80211_QOS_ACK_POLICY_NOACK)))
1322 macctl |= AR_TX_MAC_NOACK;
1323
1324 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1325 if (m->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
1326 macctl |= AR_TX_MAC_RTS;
1327 else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1328 ridx >= OTUS_RIDX_OFDM6) {
1329 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1330 macctl |= AR_TX_MAC_CTS;
1331 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1332 macctl |= AR_TX_MAC_RTS;
1333 }
1334 }
1335
1336 phyctl |= AR_TX_PHY_MCS(otus_rates[ridx].mcs);
1337 if (ridx >= OTUS_RIDX_OFDM6) {
1338 phyctl |= AR_TX_PHY_MT_OFDM;
1339 if (ridx <= OTUS_RIDX_OFDM24)
1340 phyctl |= AR_TX_PHY_ANTMSK(sc->txmask);
1341 else
1342 phyctl |= AR_TX_PHY_ANTMSK(1);
1343 } else { /* CCK */
1344 phyctl |= AR_TX_PHY_MT_CCK;
1345 phyctl |= AR_TX_PHY_ANTMSK(sc->txmask);
1346 }
1347
1348 /* Update rate control stats for frames that are ACK'ed. */
1349 if (!(macctl & AR_TX_MAC_NOACK))
1350 ((struct otus_node *)ni)->amn.amn_txcnt++;
1351
1352 data = &sc->tx_data[sc->tx_cur];
1353 /* Fill Tx descriptor. */
1354 head = (struct ar_tx_head *)data->buf;
1355 head->len = htole16(m->m_pkthdr.len + IEEE80211_CRC_LEN);
1356 head->macctl = htole16(macctl);
1357 head->phyctl = htole32(phyctl);
1358
1359 #if NBPFILTER > 0
1360 if (__predict_false(sc->sc_drvbpf != NULL)) {
1361 struct otus_tx_radiotap_header *tap = &sc->sc_txtap;
1362 struct mbuf mb;
1363
1364 tap->wt_flags = 0;
1365 tap->wt_rate = otus_rates[ridx].rate;
1366 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1367 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1368
1369 mb.m_data = (caddr_t)tap;
1370 mb.m_len = sc->sc_txtap_len;
1371 mb.m_next = m;
1372 mb.m_nextpkt = NULL;
1373 mb.m_type = 0;
1374 mb.m_flags = 0;
1375 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1376 }
1377 #endif
1378
1379 xferlen = sizeof (*head) + m->m_pkthdr.len;
1380 m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)&head[1]);
1381 m_freem(m);
1382 ieee80211_release_node(ic, ni);
1383
1384 DPRINTFN(5, ("tx queued=%d len=%d mac=0x%04x phy=0x%08x rate=%d\n",
1385 sc->tx_queued, head->len, head->macctl, head->phyctl,
1386 otus_rates[ridx].rate));
1387 usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf, xferlen,
1388 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, OTUS_TX_TIMEOUT, otus_txeof);
1389 error = usbd_transfer(data->xfer);
1390 if (__predict_false(error != USBD_IN_PROGRESS && error != 0))
1391 return error;
1392
1393 sc->tx_queued++;
1394 sc->tx_cur = (sc->tx_cur + 1) % OTUS_TX_DATA_LIST_COUNT;
1395
1396 return 0;
1397 }
1398
1399 void
1400 otus_start(struct ifnet *ifp)
1401 {
1402 struct otus_softc *sc = ifp->if_softc;
1403 struct ieee80211com *ic = &sc->sc_ic;
1404 struct ieee80211_node *ni;
1405 struct mbuf *m;
1406
1407 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1408 return;
1409
1410 for (;;) {
1411 if (sc->tx_queued >= OTUS_TX_DATA_LIST_COUNT) {
1412 ifp->if_flags |= IFF_OACTIVE;
1413 break;
1414 }
1415 /* Send pending management frames first. */
1416 IF_DEQUEUE(&ic->ic_mgtq, m);
1417 if (m != NULL) {
1418 ni = (void *)m->m_pkthdr.rcvif;
1419 goto sendit;
1420 }
1421 if (ic->ic_state != IEEE80211_S_RUN)
1422 break;
1423
1424 /* Encapsulate and send data frames. */
1425 IFQ_DEQUEUE(&ifp->if_snd, m);
1426 if (m == NULL)
1427 break;
1428 #if NBPFILTER > 0
1429 if (ifp->if_bpf != NULL)
1430 bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1431 #endif
1432 if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
1433 continue;
1434 sendit:
1435 #if NBPFILTER > 0
1436 if (ic->ic_rawbpf != NULL)
1437 bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1438 #endif
1439 if (otus_tx(sc, m, ni) != 0) {
1440 ieee80211_release_node(ic, ni);
1441 ifp->if_oerrors++;
1442 continue;
1443 }
1444
1445 sc->sc_tx_timer = 5;
1446 ifp->if_timer = 1;
1447 }
1448 }
1449
1450 void
1451 otus_watchdog(struct ifnet *ifp)
1452 {
1453 struct otus_softc *sc = ifp->if_softc;
1454
1455 ifp->if_timer = 0;
1456
1457 if (sc->sc_tx_timer > 0) {
1458 if (--sc->sc_tx_timer == 0) {
1459 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1460 /* otus_init(ifp); XXX needs a process context! */
1461 ifp->if_oerrors++;
1462 return;
1463 }
1464 ifp->if_timer = 1;
1465 }
1466 ieee80211_watchdog(ifp);
1467 }
1468
1469 int
1470 otus_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1471 {
1472 struct otus_softc *sc = ifp->if_softc;
1473 struct ieee80211com *ic = &sc->sc_ic;
1474 struct ifaddr *ifa;
1475 struct ifreq *ifr;
1476 int s, error = 0;
1477
1478 s = splnet();
1479
1480 switch (cmd) {
1481 case SIOCSIFADDR:
1482 ifa = (struct ifaddr *)data;
1483 ifp->if_flags |= IFF_UP;
1484 #ifdef INET
1485 if (ifa->ifa_addr->sa_family == AF_INET)
1486 arp_ifinit(&ic->ic_ac, ifa);
1487 #endif
1488 /* FALLTHROUGH */
1489 case SIOCSIFFLAGS:
1490 if (ifp->if_flags & IFF_UP) {
1491 if ((ifp->if_flags & IFF_RUNNING) &&
1492 ((ifp->if_flags ^ sc->sc_if_flags) &
1493 (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1494 otus_set_multi(sc);
1495 } else if (!(ifp->if_flags & IFF_RUNNING))
1496 otus_init(ifp);
1497
1498 } else if (ifp->if_flags & IFF_RUNNING)
1499 otus_stop(ifp);
1500
1501 sc->sc_if_flags = ifp->if_flags;
1502 break;
1503 case SIOCADDMULTI:
1504 case SIOCDELMULTI:
1505 ifr = (struct ifreq *)data;
1506 error = (cmd == SIOCADDMULTI) ?
1507 ether_addmulti(ifr, &ic->ic_ac) :
1508 ether_delmulti(ifr, &ic->ic_ac);
1509 if (error == ENETRESET)
1510 error = 0;
1511 break;
1512 case SIOCS80211CHANNEL:
1513 error = ieee80211_ioctl(ifp, cmd, data);
1514 if (error == ENETRESET &&
1515 ic->ic_opmode == IEEE80211_M_MONITOR) {
1516 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1517 (IFF_UP | IFF_RUNNING))
1518 otus_set_chan(sc, ic->ic_ibss_chan, 0);
1519 error = 0;
1520 }
1521 break;
1522 default:
1523 error = ieee80211_ioctl(ifp, cmd, data);
1524 }
1525
1526 if (error == ENETRESET) {
1527 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1528 (IFF_UP | IFF_RUNNING))
1529 otus_init(ifp);
1530 error = 0;
1531 }
1532
1533 splx(s);
1534 return error;
1535 }
1536
1537 int
1538 otus_set_multi(struct otus_softc *sc)
1539 {
1540 struct arpcom *ac = &sc->sc_ic.ic_ac;
1541 struct ifnet *ifp = &ac->ac_if;
1542 struct ether_multi *enm;
1543 struct ether_multistep step;
1544 uint32_t lo, hi;
1545 uint8_t bit;
1546
1547 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1548 lo = hi = 0xffffffff;
1549 goto done;
1550 }
1551 lo = hi = 0;
1552 ETHER_FIRST_MULTI(step, ac, enm);
1553 while (enm != NULL) {
1554 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1555 ifp->if_flags |= IFF_ALLMULTI;
1556 lo = hi = 0xffffffff;
1557 goto done;
1558 }
1559 bit = enm->enm_addrlo[5] >> 2;
1560 if (bit < 32)
1561 lo |= 1 << bit;
1562 else
1563 hi |= 1 << (bit - 32);
1564 ETHER_NEXT_MULTI(step, enm);
1565 }
1566 done:
1567 hi |= 1 << 31; /* Make sure the broadcast bit is set. */
1568 otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_L, lo);
1569 otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_H, hi);
1570 return otus_write_barrier(sc);
1571 }
1572
1573 void
1574 otus_updateedca(struct ieee80211com *ic)
1575 {
1576 /* Do it in a process context. */
1577 otus_do_async(ic->ic_softc, otus_updateedca_cb, NULL, 0);
1578 }
1579
1580 /* ARGSUSED */
1581 void
1582 otus_updateedca_cb(struct otus_softc *sc, void *arg)
1583 {
1584 #define EXP2(val) ((1 << (val)) - 1)
1585 #define AIFS(val) ((val) * 9 + 10)
1586 struct ieee80211com *ic = &sc->sc_ic;
1587 const struct ieee80211_edca_ac_params *edca;
1588 int s;
1589
1590 s = splnet();
1591
1592 edca = (ic->ic_flags & IEEE80211_F_QOS) ?
1593 ic->ic_edca_ac : otus_edca_def;
1594
1595 /* Set CWmin/CWmax values. */
1596 otus_write(sc, AR_MAC_REG_AC0_CW,
1597 EXP2(edca[EDCA_AC_BE].ac_ecwmax) << 16 |
1598 EXP2(edca[EDCA_AC_BE].ac_ecwmin));
1599 otus_write(sc, AR_MAC_REG_AC1_CW,
1600 EXP2(edca[EDCA_AC_BK].ac_ecwmax) << 16 |
1601 EXP2(edca[EDCA_AC_BK].ac_ecwmin));
1602 otus_write(sc, AR_MAC_REG_AC2_CW,
1603 EXP2(edca[EDCA_AC_VI].ac_ecwmax) << 16 |
1604 EXP2(edca[EDCA_AC_VI].ac_ecwmin));
1605 otus_write(sc, AR_MAC_REG_AC3_CW,
1606 EXP2(edca[EDCA_AC_VO].ac_ecwmax) << 16 |
1607 EXP2(edca[EDCA_AC_VO].ac_ecwmin));
1608 otus_write(sc, AR_MAC_REG_AC4_CW, /* Special TXQ. */
1609 EXP2(edca[EDCA_AC_VO].ac_ecwmax) << 16 |
1610 EXP2(edca[EDCA_AC_VO].ac_ecwmin));
1611
1612 /* Set AIFSN values. */
1613 otus_write(sc, AR_MAC_REG_AC1_AC0_AIFS,
1614 AIFS(edca[EDCA_AC_VI].ac_aifsn) << 24 |
1615 AIFS(edca[EDCA_AC_BK].ac_aifsn) << 12 |
1616 AIFS(edca[EDCA_AC_BE].ac_aifsn));
1617 otus_write(sc, AR_MAC_REG_AC3_AC2_AIFS,
1618 AIFS(edca[EDCA_AC_VO].ac_aifsn) << 16 | /* Special TXQ. */
1619 AIFS(edca[EDCA_AC_VO].ac_aifsn) << 4 |
1620 AIFS(edca[EDCA_AC_VI].ac_aifsn) >> 8);
1621
1622 /* Set TXOP limit. */
1623 otus_write(sc, AR_MAC_REG_AC1_AC0_TXOP,
1624 edca[EDCA_AC_BK].ac_txoplimit << 16 |
1625 edca[EDCA_AC_BE].ac_txoplimit);
1626 otus_write(sc, AR_MAC_REG_AC3_AC2_TXOP,
1627 edca[EDCA_AC_VO].ac_txoplimit << 16 |
1628 edca[EDCA_AC_VI].ac_txoplimit);
1629
1630 splx(s);
1631
1632 (void)otus_write_barrier(sc);
1633 #undef AIFS
1634 #undef EXP2
1635 }
1636
1637 void
1638 otus_updateslot(struct ieee80211com *ic)
1639 {
1640 /* Do it in a process context. */
1641 otus_do_async(ic->ic_softc, otus_updateslot_cb, NULL, 0);
1642 }
1643
1644 /* ARGSUSED */
1645 void
1646 otus_updateslot_cb(struct otus_softc *sc, void *arg)
1647 {
1648 uint32_t slottime;
1649
1650 slottime = (sc->sc_ic.ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1651 otus_write(sc, AR_MAC_REG_SLOT_TIME, slottime << 10);
1652 (void)otus_write_barrier(sc);
1653 }
1654
1655 int
1656 otus_init_mac(struct otus_softc *sc)
1657 {
1658 int error;
1659
1660 otus_write(sc, AR_MAC_REG_ACK_EXTENSION, 0x40);
1661 otus_write(sc, AR_MAC_REG_RETRY_MAX, 0);
1662 otus_write(sc, AR_MAC_REG_SNIFFER, 0x2000000);
1663 otus_write(sc, AR_MAC_REG_RX_THRESHOLD, 0xc1f80);
1664 otus_write(sc, AR_MAC_REG_RX_PE_DELAY, 0x70);
1665 otus_write(sc, AR_MAC_REG_EIFS_AND_SIFS, 0xa144000);
1666 otus_write(sc, AR_MAC_REG_SLOT_TIME, 9 << 10);
1667 otus_write(sc, 0x1c3b2c, 0x19000000);
1668 /* NAV protects ACK only (in TXOP). */
1669 otus_write(sc, 0x1c3b38, 0x201);
1670 /* Set beacon Tx power to 0x7. */
1671 otus_write(sc, AR_MAC_REG_BCN_HT1, 0x8000170);
1672 otus_write(sc, AR_MAC_REG_BACKOFF_PROTECT, 0x105);
1673 otus_write(sc, 0x1c3b9c, 0x10000a);
1674 /* Filter any control frames, BAR is bit 24. */
1675 otus_write(sc, 0x1c368c, 0x0500ffff);
1676 otus_write(sc, 0x1c3c40, 0x1);
1677 otus_write(sc, AR_MAC_REG_BASIC_RATE, 0x150f);
1678 otus_write(sc, AR_MAC_REG_MANDATORY_RATE, 0x150f);
1679 otus_write(sc, AR_MAC_REG_RTS_CTS_RATE, 0x10b01bb);
1680 otus_write(sc, 0x1c3694, 0x4003c1e);
1681 /* Enable LED0 and LED1. */
1682 otus_write(sc, 0x1d0100, 0x3);
1683 otus_write(sc, 0x1d0104, 0x3);
1684 /* Switch MAC to OTUS interface. */
1685 otus_write(sc, 0x1c3600, 0x3);
1686 otus_write(sc, 0x1c3c50, 0xffff);
1687 otus_write(sc, 0x1c3680, 0xf00008);
1688 /* Disable Rx timeout (workaround). */
1689 otus_write(sc, 0x1c362c, 0);
1690
1691 /* Set USB Rx stream mode maximum frame number to 2. */
1692 otus_write(sc, 0x1e1110, 0x4);
1693 /* Set USB Rx stream mode timeout to 10us. */
1694 otus_write(sc, 0x1e1114, 0x80);
1695
1696 /* Set clock frequency to 88/80MHz. */
1697 otus_write(sc, 0x1d4008, 0x73);
1698 /* Set WLAN DMA interrupt mode: generate intr per packet. */
1699 otus_write(sc, 0x1c3d7c, 0x110011);
1700 otus_write(sc, 0x1c3bb0, 0x4);
1701 otus_write(sc, AR_MAC_REG_TXOP_NOT_ENOUGH_INDICATION, 0x141e0f48);
1702
1703 /* Disable HW decryption for now. */
1704 otus_write(sc, 0x1c3678, 0x78);
1705
1706 if ((error = otus_write_barrier(sc)) != 0)
1707 return error;
1708
1709 /* Set default EDCA parameters. */
1710 otus_updateedca_cb(sc, NULL);
1711
1712 return 0;
1713 }
1714
1715 /*
1716 * Return default value for PHY register based on current operating mode.
1717 */
1718 uint32_t
1719 otus_phy_get_def(struct otus_softc *sc, uint32_t reg)
1720 {
1721 int i;
1722
1723 for (i = 0; i < nitems(ar5416_phy_regs); i++)
1724 if (AR_PHY(ar5416_phy_regs[i]) == reg)
1725 return sc->phy_vals[i];
1726 return 0; /* Register not found. */
1727 }
1728
1729 /*
1730 * Update PHY's programming based on vendor-specific data stored in EEPROM.
1731 * This is for FEM-type devices only.
1732 */
1733 int
1734 otus_set_board_values(struct otus_softc *sc, struct ieee80211_channel *c)
1735 {
1736 const struct ModalEepHeader *eep;
1737 uint32_t tmp, offset;
1738
1739 if (IEEE80211_IS_CHAN_5GHZ(c))
1740 eep = &sc->eeprom.modalHeader[0];
1741 else
1742 eep = &sc->eeprom.modalHeader[1];
1743
1744 /* Offset of chain 2. */
1745 offset = 2 * 0x1000;
1746
1747 tmp = letoh32(eep->antCtrlCommon);
1748 otus_write(sc, AR_PHY_SWITCH_COM, tmp);
1749
1750 tmp = letoh32(eep->antCtrlChain[0]);
1751 otus_write(sc, AR_PHY_SWITCH_CHAIN_0, tmp);
1752
1753 tmp = letoh32(eep->antCtrlChain[1]);
1754 otus_write(sc, AR_PHY_SWITCH_CHAIN_0 + offset, tmp);
1755
1756 if (1 /* sc->sc_sco == AR_SCO_SCN */) {
1757 tmp = otus_phy_get_def(sc, AR_PHY_SETTLING);
1758 tmp &= ~(0x7f << 7);
1759 tmp |= (eep->switchSettling & 0x7f) << 7;
1760 otus_write(sc, AR_PHY_SETTLING, tmp);
1761 }
1762
1763 tmp = otus_phy_get_def(sc, AR_PHY_DESIRED_SZ);
1764 tmp &= ~0xffff;
1765 tmp |= eep->pgaDesiredSize << 8 | eep->adcDesiredSize;
1766 otus_write(sc, AR_PHY_DESIRED_SZ, tmp);
1767
1768 tmp = eep->txEndToXpaOff << 24 | eep->txEndToXpaOff << 16 |
1769 eep->txFrameToXpaOn << 8 | eep->txFrameToXpaOn;
1770 otus_write(sc, AR_PHY_RF_CTL4, tmp);
1771
1772 tmp = otus_phy_get_def(sc, AR_PHY_RF_CTL3);
1773 tmp &= ~(0xff << 16);
1774 tmp |= eep->txEndToRxOn << 16;
1775 otus_write(sc, AR_PHY_RF_CTL3, tmp);
1776
1777 tmp = otus_phy_get_def(sc, AR_PHY_CCA);
1778 tmp &= ~(0x7f << 12);
1779 tmp |= (eep->thresh62 & 0x7f) << 12;
1780 otus_write(sc, AR_PHY_CCA, tmp);
1781
1782 tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN);
1783 tmp &= ~(0x3f << 12);
1784 tmp |= (eep->txRxAttenCh[0] & 0x3f) << 12;
1785 otus_write(sc, AR_PHY_RXGAIN, tmp);
1786
1787 tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN + offset);
1788 tmp &= ~(0x3f << 12);
1789 tmp |= (eep->txRxAttenCh[1] & 0x3f) << 12;
1790 otus_write(sc, AR_PHY_RXGAIN + offset, tmp);
1791
1792 tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ);
1793 tmp &= ~(0x3f << 18);
1794 tmp |= (eep->rxTxMarginCh[0] & 0x3f) << 18;
1795 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1796 tmp &= ~(0xf << 10);
1797 tmp |= (eep->bswMargin[0] & 0xf) << 10;
1798 }
1799 otus_write(sc, AR_PHY_GAIN_2GHZ, tmp);
1800
1801 tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ + offset);
1802 tmp &= ~(0x3f << 18);
1803 tmp |= (eep->rxTxMarginCh[1] & 0x3f) << 18;
1804 otus_write(sc, AR_PHY_GAIN_2GHZ + offset, tmp);
1805
1806 tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4);
1807 tmp &= ~(0x3f << 5 | 0x1f);
1808 tmp |= (eep->iqCalICh[0] & 0x3f) << 5 | (eep->iqCalQCh[0] & 0x1f);
1809 otus_write(sc, AR_PHY_TIMING_CTRL4, tmp);
1810
1811 tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4 + offset);
1812 tmp &= ~(0x3f << 5 | 0x1f);
1813 tmp |= (eep->iqCalICh[1] & 0x3f) << 5 | (eep->iqCalQCh[1] & 0x1f);
1814 otus_write(sc, AR_PHY_TIMING_CTRL4 + offset, tmp);
1815
1816 tmp = otus_phy_get_def(sc, AR_PHY_TPCRG1);
1817 tmp &= ~(0xf << 16);
1818 tmp |= (eep->xpd & 0xf) << 16;
1819 otus_write(sc, AR_PHY_TPCRG1, tmp);
1820
1821 return otus_write_barrier(sc);
1822 }
1823
1824 int
1825 otus_program_phy(struct otus_softc *sc, struct ieee80211_channel *c)
1826 {
1827 const uint32_t *vals;
1828 int error, i;
1829
1830 /* Select PHY programming based on band and bandwidth. */
1831 if (IEEE80211_IS_CHAN_2GHZ(c))
1832 vals = ar5416_phy_vals_2ghz_20mhz;
1833 else
1834 vals = ar5416_phy_vals_5ghz_20mhz;
1835 for (i = 0; i < nitems(ar5416_phy_regs); i++)
1836 otus_write(sc, AR_PHY(ar5416_phy_regs[i]), vals[i]);
1837 sc->phy_vals = vals;
1838
1839 if (sc->eeprom.baseEepHeader.deviceType == 0x80) /* FEM */
1840 if ((error = otus_set_board_values(sc, c)) != 0)
1841 return error;
1842
1843 /* Initial Tx power settings. */
1844 otus_write(sc, AR_PHY_POWER_TX_RATE_MAX, 0x7f);
1845 otus_write(sc, AR_PHY_POWER_TX_RATE1, 0x3f3f3f3f);
1846 otus_write(sc, AR_PHY_POWER_TX_RATE2, 0x3f3f3f3f);
1847 otus_write(sc, AR_PHY_POWER_TX_RATE3, 0x3f3f3f3f);
1848 otus_write(sc, AR_PHY_POWER_TX_RATE4, 0x3f3f3f3f);
1849 otus_write(sc, AR_PHY_POWER_TX_RATE5, 0x3f3f3f3f);
1850 otus_write(sc, AR_PHY_POWER_TX_RATE6, 0x3f3f3f3f);
1851 otus_write(sc, AR_PHY_POWER_TX_RATE7, 0x3f3f3f3f);
1852 otus_write(sc, AR_PHY_POWER_TX_RATE8, 0x3f3f3f3f);
1853 otus_write(sc, AR_PHY_POWER_TX_RATE9, 0x3f3f3f3f);
1854
1855 if (IEEE80211_IS_CHAN_2GHZ(c))
1856 otus_write(sc, 0x1d4014, 0x5163);
1857 else
1858 otus_write(sc, 0x1d4014, 0x5143);
1859
1860 return otus_write_barrier(sc);
1861 }
1862
1863 static __inline uint8_t
1864 otus_reverse_bits(uint8_t v)
1865 {
1866 v = ((v >> 1) & 0x55) | ((v & 0x55) << 1);
1867 v = ((v >> 2) & 0x33) | ((v & 0x33) << 2);
1868 v = ((v >> 4) & 0x0f) | ((v & 0x0f) << 4);
1869 return v;
1870 }
1871
1872 int
1873 otus_set_rf_bank4(struct otus_softc *sc, struct ieee80211_channel *c)
1874 {
1875 uint8_t chansel, d0, d1;
1876 uint16_t data;
1877 int error;
1878
1879 d0 = 0;
1880 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1881 chansel = (c->ic_freq - 4800) / 5;
1882 if (chansel & 1)
1883 d0 |= AR_BANK4_AMODE_REFSEL(2);
1884 else
1885 d0 |= AR_BANK4_AMODE_REFSEL(1);
1886 } else {
1887 d0 |= AR_BANK4_AMODE_REFSEL(2);
1888 if (c->ic_freq == 2484) { /* CH 14 */
1889 d0 |= AR_BANK4_BMODE_LF_SYNTH_FREQ;
1890 chansel = 10 + (c->ic_freq - 2274) / 5;
1891 } else
1892 chansel = 16 + (c->ic_freq - 2272) / 5;
1893 chansel <<= 2;
1894 }
1895 d0 |= AR_BANK4_ADDR(1) | AR_BANK4_CHUP;
1896 d1 = otus_reverse_bits(chansel);
1897
1898 /* Write bits 0-4 of d0 and d1. */
1899 data = (d1 & 0x1f) << 5 | (d0 & 0x1f);
1900 otus_write(sc, AR_PHY(44), data);
1901 /* Write bits 5-7 of d0 and d1. */
1902 data = (d1 >> 5) << 5 | (d0 >> 5);
1903 otus_write(sc, AR_PHY(58), data);
1904
1905 if ((error = otus_write_barrier(sc)) == 0)
1906 usbd_delay_ms(sc->sc_udev, 10);
1907 return error;
1908 }
1909
1910 void
1911 otus_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
1912 {
1913 #define COEFF_SCALE_SHIFT 24
1914 uint32_t exp, man;
1915
1916 /* exponent = 14 - floor(log2(coeff)) */
1917 for (exp = 31; exp > 0; exp--)
1918 if (coeff & (1 << exp))
1919 break;
1920 KASSERT(exp != 0);
1921 exp = 14 - (exp - COEFF_SCALE_SHIFT);
1922
1923 /* mantissa = floor(coeff * 2^exponent + 0.5) */
1924 man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
1925
1926 *mantissa = man >> (COEFF_SCALE_SHIFT - exp);
1927 *exponent = exp - 16;
1928 #undef COEFF_SCALE_SHIFT
1929 }
1930
1931 int
1932 otus_set_chan(struct otus_softc *sc, struct ieee80211_channel *c, int assoc)
1933 {
1934 struct ieee80211com *ic = &sc->sc_ic;
1935 struct ar_cmd_frequency cmd;
1936 struct ar_rsp_frequency rsp;
1937 const uint32_t *vals;
1938 uint32_t coeff, exp, man, tmp;
1939 uint8_t code;
1940 int error, chan, i;
1941
1942 chan = ieee80211_chan2ieee(ic, c);
1943 DPRINTF(("setting channel %d (%dMHz)\n", chan, c->ic_freq));
1944
1945 tmp = IEEE80211_IS_CHAN_2GHZ(c) ? 0x105 : 0x104;
1946 otus_write(sc, AR_MAC_REG_DYNAMIC_SIFS_ACK, tmp);
1947 if ((error = otus_write_barrier(sc)) != 0)
1948 return error;
1949
1950 /* Disable BB Heavy Clip. */
1951 otus_write(sc, AR_PHY_HEAVY_CLIP_ENABLE, 0x200);
1952 if ((error = otus_write_barrier(sc)) != 0)
1953 return error;
1954
1955 /* XXX Is that FREQ_START ? */
1956 error = otus_cmd(sc, AR_CMD_FREQ_STRAT, NULL, 0, NULL);
1957 if (error != 0)
1958 return error;
1959
1960 /* Reprogram PHY and RF on channel band or bandwidth changes. */
1961 if (sc->bb_reset || c->ic_flags != sc->sc_curchan->ic_flags) {
1962 DPRINTF(("band switch\n"));
1963
1964 /* Cold/Warm reset BB/ADDA. */
1965 otus_write(sc, 0x1d4004, sc->bb_reset ? 0x800 : 0x400);
1966 if ((error = otus_write_barrier(sc)) != 0)
1967 return error;
1968 otus_write(sc, 0x1d4004, 0);
1969 if ((error = otus_write_barrier(sc)) != 0)
1970 return error;
1971 sc->bb_reset = 0;
1972
1973 if ((error = otus_program_phy(sc, c)) != 0) {
1974 printf("%s: could not program PHY\n",
1975 sc->sc_dev.dv_xname);
1976 return error;
1977 }
1978
1979 /* Select RF programming based on band. */
1980 if (IEEE80211_IS_CHAN_5GHZ(c))
1981 vals = ar5416_banks_vals_5ghz;
1982 else
1983 vals = ar5416_banks_vals_2ghz;
1984 for (i = 0; i < nitems(ar5416_banks_regs); i++)
1985 otus_write(sc, AR_PHY(ar5416_banks_regs[i]), vals[i]);
1986 if ((error = otus_write_barrier(sc)) != 0) {
1987 printf("%s: could not program RF\n",
1988 sc->sc_dev.dv_xname);
1989 return error;
1990 }
1991 code = AR_CMD_RF_INIT;
1992 } else {
1993 code = AR_CMD_FREQUENCY;
1994 }
1995
1996 if ((error = otus_set_rf_bank4(sc, c)) != 0)
1997 return error;
1998
1999 tmp = (sc->txmask == 0x5) ? 0x340 : 0x240;
2000 otus_write(sc, AR_PHY_TURBO, tmp);
2001 if ((error = otus_write_barrier(sc)) != 0)
2002 return error;
2003
2004 /* Send firmware command to set channel. */
2005 cmd.freq = htole32((uint32_t)c->ic_freq * 1000);
2006 cmd.dynht2040 = htole32(0);
2007 cmd.htena = htole32(1);
2008 /* Set Delta Slope (exponent and mantissa). */
2009 coeff = (100 << 24) / c->ic_freq;
2010 otus_get_delta_slope(coeff, &exp, &man);
2011 cmd.dsc_exp = htole32(exp);
2012 cmd.dsc_man = htole32(man);
2013 DPRINTF(("ds coeff=%u exp=%u man=%u\n", coeff, exp, man));
2014 /* For Short GI, coeff is 9/10 that of normal coeff. */
2015 coeff = (9 * coeff) / 10;
2016 otus_get_delta_slope(coeff, &exp, &man);
2017 cmd.dsc_shgi_exp = htole32(exp);
2018 cmd.dsc_shgi_man = htole32(man);
2019 DPRINTF(("ds shgi coeff=%u exp=%u man=%u\n", coeff, exp, man));
2020 /* Set wait time for AGC and noise calibration (100 or 200ms). */
2021 cmd.check_loop_count = assoc ? htole32(2000) : htole32(1000);
2022 DPRINTF(("%s\n", (code == AR_CMD_RF_INIT) ? "RF_INIT" : "FREQUENCY"));
2023 error = otus_cmd(sc, code, &cmd, sizeof cmd, &rsp);
2024 if (error != 0)
2025 return error;
2026 if ((rsp.status & htole32(AR_CAL_ERR_AGC | AR_CAL_ERR_NF_VAL)) != 0) {
2027 DPRINTF(("status=0x%x\n", letoh32(rsp.status)));
2028 /* Force cold reset on next channel. */
2029 sc->bb_reset = 1;
2030 }
2031 #ifdef OTUS_DEBUG
2032 if (otus_debug) {
2033 printf("calibration status=0x%x\n", letoh32(rsp.status));
2034 for (i = 0; i < 2; i++) { /* 2 Rx chains */
2035 /* Sign-extend 9-bit NF values. */
2036 printf("noisefloor chain %d=%d\n", i,
2037 (((int32_t)letoh32(rsp.nf[i])) << 4) >> 23);
2038 printf("noisefloor ext chain %d=%d\n", i,
2039 ((int32_t)letoh32(rsp.nf_ext[i])) >> 23);
2040 }
2041 }
2042 #endif
2043 sc->sc_curchan = c;
2044 return 0;
2045 }
2046
2047 #ifdef notyet
2048 int
2049 otus_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2050 struct ieee80211_key *k)
2051 {
2052 struct otus_softc *sc = ic->ic_softc;
2053 struct otus_cmd_key cmd;
2054
2055 /* Defer setting of WEP keys until interface is brought up. */
2056 if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
2057 (IFF_UP | IFF_RUNNING))
2058 return 0;
2059
2060 /* Do it in a process context. */
2061 cmd.key = *k;
2062 cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
2063 otus_do_async(sc, otus_set_key_cb, &cmd, sizeof cmd);
2064 return 0;
2065 }
2066
2067 void
2068 otus_set_key_cb(struct otus_softc *sc, void *arg)
2069 {
2070 struct otus_cmd_key *cmd = arg;
2071 struct ieee80211_key *k = &cmd->key;
2072 struct ar_cmd_ekey key;
2073 uint16_t cipher;
2074 int error;
2075
2076 memset(&key, 0, sizeof key);
2077 if (k->k_flags & IEEE80211_KEY_GROUP) {
2078 key.uid = htole16(k->k_id);
2079 IEEE80211_ADDR_COPY(key.macaddr, sc->sc_ic.ic_myaddr);
2080 key.macaddr[0] |= 0x80;
2081 } else {
2082 key.uid = htole16(OTUS_UID(cmd->associd));
2083 IEEE80211_ADDR_COPY(key.macaddr, ni->ni_macaddr);
2084 }
2085 key.kix = htole16(0);
2086 /* Map net80211 cipher to hardware. */
2087 switch (k->k_cipher) {
2088 case IEEE80211_CIPHER_WEP40:
2089 cipher = AR_CIPHER_WEP64;
2090 break;
2091 case IEEE80211_CIPHER_WEP104:
2092 cipher = AR_CIPHER_WEP128;
2093 break;
2094 case IEEE80211_CIPHER_TKIP:
2095 cipher = AR_CIPHER_TKIP;
2096 break;
2097 case IEEE80211_CIPHER_CCMP:
2098 cipher = AR_CIPHER_AES;
2099 break;
2100 default:
2101 return;
2102 }
2103 key.cipher = htole16(cipher);
2104 memcpy(key.key, k->k_key, MIN(k->k_len, 16));
2105 error = otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL);
2106 if (error != 0 || k->k_cipher != IEEE80211_CIPHER_TKIP)
2107 return;
2108
2109 /* TKIP: set Tx/Rx MIC Key. */
2110 key.kix = htole16(1);
2111 memcpy(key.key, k->k_key + 16, 16);
2112 (void)otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL);
2113 }
2114
2115 void
2116 otus_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2117 struct ieee80211_key *k)
2118 {
2119 struct otus_softc *sc = ic->ic_softc;
2120 struct otus_cmd_key cmd;
2121
2122 if (!(ic->ic_if.if_flags & IFF_RUNNING) ||
2123 ic->ic_state != IEEE80211_S_RUN)
2124 return; /* Nothing to do. */
2125
2126 /* Do it in a process context. */
2127 cmd.key = *k;
2128 cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
2129 otus_do_async(sc, otus_delete_key_cb, &cmd, sizeof cmd);
2130 }
2131
2132 void
2133 otus_delete_key_cb(struct otus_softc *sc, void *arg)
2134 {
2135 struct otus_cmd_key *cmd = arg;
2136 struct ieee80211_key *k = &cmd->key;
2137 uint32_t uid;
2138
2139 if (k->k_flags & IEEE80211_KEY_GROUP)
2140 uid = htole32(k->k_id);
2141 else
2142 uid = htole32(OTUS_UID(cmd->associd));
2143 (void)otus_cmd(sc, AR_CMD_DKEY, &uid, sizeof uid, NULL);
2144 }
2145 #endif
2146
2147 void
2148 otus_calibrate_to(void *arg)
2149 {
2150 struct otus_softc *sc = arg;
2151 struct ieee80211com *ic = &sc->sc_ic;
2152 struct ieee80211_node *ni;
2153 int s;
2154
2155 s = splnet();
2156 ni = ic->ic_bss;
2157 ieee80211_amrr_choose(&sc->amrr, ni, &((struct otus_node *)ni)->amn);
2158 splx(s);
2159
2160 timeout_add_sec(&sc->calib_to, 1);
2161 }
2162
2163 int
2164 otus_set_bssid(struct otus_softc *sc, const uint8_t *bssid)
2165 {
2166 otus_write(sc, AR_MAC_REG_BSSID_L,
2167 bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
2168 otus_write(sc, AR_MAC_REG_BSSID_H,
2169 bssid[4] | bssid[5] << 8);
2170 return otus_write_barrier(sc);
2171 }
2172
2173 int
2174 otus_set_macaddr(struct otus_softc *sc, const uint8_t *addr)
2175 {
2176 otus_write(sc, AR_MAC_REG_MAC_ADDR_L,
2177 addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
2178 otus_write(sc, AR_MAC_REG_MAC_ADDR_H,
2179 addr[4] | addr[5] << 8);
2180 return otus_write_barrier(sc);
2181 }
2182
2183 /* Default single-LED. */
2184 void
2185 otus_led_newstate_type1(struct otus_softc *sc)
2186 {
2187 /* TBD */
2188 }
2189
2190 /* NETGEAR, dual-LED. */
2191 void
2192 otus_led_newstate_type2(struct otus_softc *sc)
2193 {
2194 /* TBD */
2195 }
2196
2197 /* NETGEAR, single-LED/3 colors (blue, red, purple.) */
2198 void
2199 otus_led_newstate_type3(struct otus_softc *sc)
2200 {
2201 struct ieee80211com *ic = &sc->sc_ic;
2202 uint32_t state = sc->led_state;
2203
2204 if (ic->ic_state == IEEE80211_S_INIT) {
2205 state = 0; /* LED off. */
2206 } else if (ic->ic_state == IEEE80211_S_RUN) {
2207 /* Associated, LED always on. */
2208 if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan))
2209 state = AR_LED0_ON; /* 2GHz=>Red. */
2210 else
2211 state = AR_LED1_ON; /* 5GHz=>Blue. */
2212 } else {
2213 /* Scanning, blink LED. */
2214 state ^= AR_LED0_ON | AR_LED1_ON;
2215 if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan))
2216 state &= ~AR_LED1_ON;
2217 else
2218 state &= ~AR_LED0_ON;
2219 }
2220 if (state != sc->led_state) {
2221 otus_write(sc, 0x1d0104, state);
2222 if (otus_write_barrier(sc) == 0)
2223 sc->led_state = state;
2224 }
2225 }
2226
2227 int
2228 otus_init(struct ifnet *ifp)
2229 {
2230 struct otus_softc *sc = ifp->if_softc;
2231 struct ieee80211com *ic = &sc->sc_ic;
2232 int error;
2233
2234 /* Init host command ring. */
2235 sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0;
2236
2237 if ((error = otus_init_mac(sc)) != 0) {
2238 printf("%s: could not initialize MAC\n", sc->sc_dev.dv_xname);
2239 return error;
2240 }
2241
2242 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2243 (void)otus_set_macaddr(sc, ic->ic_myaddr);
2244
2245 switch (ic->ic_opmode) {
2246 #ifdef notyet
2247 #ifndef IEEE80211_STA_ONLY
2248 case IEEE80211_M_HOSTAP:
2249 otus_write(sc, 0x1c3700, 0x0f0000a1);
2250 otus_write(sc, 0x1c3c40, 0x1);
2251 break;
2252 case IEEE80211_M_IBSS:
2253 otus_write(sc, 0x1c3700, 0x0f000000);
2254 otus_write(sc, 0x1c3c40, 0x1);
2255 break;
2256 #endif
2257 #endif
2258 case IEEE80211_M_STA:
2259 otus_write(sc, 0x1c3700, 0x0f000002);
2260 otus_write(sc, 0x1c3c40, 0x1);
2261 break;
2262 default:
2263 break;
2264 }
2265 otus_write(sc, AR_MAC_REG_SNIFFER,
2266 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 0x2000001 : 0x2000000);
2267 (void)otus_write_barrier(sc);
2268
2269 sc->bb_reset = 1; /* Force cold reset. */
2270 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2271 if ((error = otus_set_chan(sc, ic->ic_ibss_chan, 0)) != 0) {
2272 printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
2273 return error;
2274 }
2275
2276 /* Start Rx. */
2277 otus_write(sc, 0x1c3d30, 0x100);
2278 (void)otus_write_barrier(sc);
2279
2280 ifp->if_flags &= ~IFF_OACTIVE;
2281 ifp->if_flags |= IFF_RUNNING;
2282
2283 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2284 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2285 else
2286 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2287
2288 return 0;
2289 }
2290
2291 void
2292 otus_stop(struct ifnet *ifp)
2293 {
2294 struct otus_softc *sc = ifp->if_softc;
2295 struct ieee80211com *ic = &sc->sc_ic;
2296 int s;
2297
2298 sc->sc_tx_timer = 0;
2299 ifp->if_timer = 0;
2300 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2301
2302 timeout_del(&sc->scan_to);
2303 timeout_del(&sc->calib_to);
2304
2305 s = splusb();
2306 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2307 /* Wait for all queued asynchronous commands to complete. */
2308 while (sc->cmdq.queued > 0)
2309 tsleep(&sc->cmdq, 0, "cmdq", 0);
2310 splx(s);
2311
2312 /* Stop Rx. */
2313 otus_write(sc, 0x1c3d30, 0);
2314 (void)otus_write_barrier(sc);
2315
2316 sc->tx_queued = 0;
2317 }
2318