1 1.19 jmcneill /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */ 2 1.71 rin /* $NetBSD: if_rum.c,v 1.71 2024/07/05 04:31:52 rin Exp $ */ 3 1.1 joerg 4 1.1 joerg /*- 5 1.18 kiyohara * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini (at) free.fr> 6 1.1 joerg * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org> 7 1.1 joerg * 8 1.1 joerg * Permission to use, copy, modify, and distribute this software for any 9 1.1 joerg * purpose with or without fee is hereby granted, provided that the above 10 1.1 joerg * copyright notice and this permission notice appear in all copies. 11 1.1 joerg * 12 1.1 joerg * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 1.1 joerg * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 1.1 joerg * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 1.1 joerg * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 1.1 joerg * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 1.1 joerg * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 1.1 joerg * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 1.1 joerg */ 20 1.1 joerg 21 1.1 joerg /*- 22 1.1 joerg * Ralink Technology RT2501USB/RT2601USB chipset driver 23 1.18 kiyohara * http://www.ralinktech.com.tw/ 24 1.1 joerg */ 25 1.1 joerg 26 1.2 xtraeme #include <sys/cdefs.h> 27 1.71 rin __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.71 2024/07/05 04:31:52 rin Exp $"); 28 1.57 skrll 29 1.57 skrll #ifdef _KERNEL_OPT 30 1.57 skrll #include "opt_usb.h" 31 1.57 skrll #endif 32 1.1 joerg 33 1.1 joerg #include <sys/param.h> 34 1.1 joerg #include <sys/sockio.h> 35 1.1 joerg #include <sys/sysctl.h> 36 1.1 joerg #include <sys/mbuf.h> 37 1.1 joerg #include <sys/kernel.h> 38 1.1 joerg #include <sys/socket.h> 39 1.1 joerg #include <sys/systm.h> 40 1.38 pgoyette #include <sys/module.h> 41 1.1 joerg #include <sys/conf.h> 42 1.1 joerg #include <sys/device.h> 43 1.1 joerg 44 1.16 ad #include <sys/bus.h> 45 1.1 joerg #include <machine/endian.h> 46 1.16 ad #include <sys/intr.h> 47 1.1 joerg 48 1.1 joerg #include <net/bpf.h> 49 1.1 joerg #include <net/if.h> 50 1.1 joerg #include <net/if_arp.h> 51 1.1 joerg #include <net/if_dl.h> 52 1.1 joerg #include <net/if_ether.h> 53 1.1 joerg #include <net/if_media.h> 54 1.1 joerg #include <net/if_types.h> 55 1.1 joerg 56 1.1 joerg #include <netinet/in.h> 57 1.1 joerg #include <netinet/in_systm.h> 58 1.1 joerg #include <netinet/in_var.h> 59 1.1 joerg #include <netinet/ip.h> 60 1.1 joerg 61 1.1 joerg #include <net80211/ieee80211_netbsd.h> 62 1.1 joerg #include <net80211/ieee80211_var.h> 63 1.1 joerg #include <net80211/ieee80211_amrr.h> 64 1.1 joerg #include <net80211/ieee80211_radiotap.h> 65 1.1 joerg 66 1.1 joerg #include <dev/firmload.h> 67 1.1 joerg 68 1.1 joerg #include <dev/usb/usb.h> 69 1.1 joerg #include <dev/usb/usbdi.h> 70 1.1 joerg #include <dev/usb/usbdi_util.h> 71 1.1 joerg #include <dev/usb/usbdevs.h> 72 1.1 joerg 73 1.1 joerg #include <dev/usb/if_rumreg.h> 74 1.1 joerg #include <dev/usb/if_rumvar.h> 75 1.1 joerg 76 1.1 joerg #ifdef RUM_DEBUG 77 1.33 dyoung #define DPRINTF(x) do { if (rum_debug) printf x; } while (0) 78 1.33 dyoung #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0) 79 1.11 xtraeme int rum_debug = 1; 80 1.1 joerg #else 81 1.1 joerg #define DPRINTF(x) 82 1.1 joerg #define DPRINTFN(n, x) 83 1.1 joerg #endif 84 1.1 joerg 85 1.1 joerg /* various supported device vendors/products */ 86 1.1 joerg static const struct usb_devno rum_devs[] = { 87 1.11 xtraeme { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM }, 88 1.11 xtraeme { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 }, 89 1.11 xtraeme { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 }, 90 1.11 xtraeme { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 }, 91 1.18 kiyohara { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 }, 92 1.11 xtraeme { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO }, 93 1.10 xtraeme { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 }, 94 1.11 xtraeme { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 }, 95 1.1 joerg { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A }, 96 1.1 joerg { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 }, 97 1.43 chs { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C }, 98 1.43 chs { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 }, 99 1.1 joerg { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC }, 100 1.11 xtraeme { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR }, 101 1.1 joerg { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 }, 102 1.43 chs { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_RT2573 }, 103 1.18 kiyohara { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL }, 104 1.23 jun { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX }, 105 1.1 joerg { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F }, 106 1.1 joerg { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 }, 107 1.1 joerg { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 }, 108 1.1 joerg { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 }, 109 1.40 christos { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 }, 110 1.29 pooka { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 }, 111 1.43 chs { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 }, 112 1.43 chs { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 }, 113 1.1 joerg { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS }, 114 1.11 xtraeme { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS }, 115 1.1 joerg { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 }, 116 1.1 joerg { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 }, 117 1.11 xtraeme { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB }, 118 1.11 xtraeme { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP }, 119 1.1 joerg { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 }, 120 1.11 xtraeme { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP }, 121 1.4 elad { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP }, 122 1.43 chs { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG }, 123 1.27 tshiozak { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG }, 124 1.1 joerg { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 }, 125 1.1 joerg { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 }, 126 1.1 joerg { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 }, 127 1.11 xtraeme { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 }, 128 1.11 xtraeme { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 }, 129 1.11 xtraeme { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP }, 130 1.4 elad { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 }, 131 1.1 joerg { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM }, 132 1.1 joerg { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 }, 133 1.1 joerg { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 }, 134 1.22 uebayasi { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 }, 135 1.1 joerg { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 }, 136 1.1 joerg { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 }, 137 1.1 joerg { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 }, 138 1.1 joerg { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 }, 139 1.43 chs { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 }, 140 1.43 chs { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }, 141 1.58 khorben { USB_VENDOR_SYNET, USB_PRODUCT_SYNET_MWP54SS }, 142 1.43 chs { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 } 143 1.1 joerg }; 144 1.1 joerg 145 1.35 jmcneill static int rum_attachhook(void *); 146 1.35 jmcneill static int rum_alloc_tx_list(struct rum_softc *); 147 1.35 jmcneill static void rum_free_tx_list(struct rum_softc *); 148 1.35 jmcneill static int rum_alloc_rx_list(struct rum_softc *); 149 1.35 jmcneill static void rum_free_rx_list(struct rum_softc *); 150 1.35 jmcneill static int rum_media_change(struct ifnet *); 151 1.35 jmcneill static void rum_next_scan(void *); 152 1.35 jmcneill static void rum_task(void *); 153 1.35 jmcneill static int rum_newstate(struct ieee80211com *, 154 1.1 joerg enum ieee80211_state, int); 155 1.52 skrll static void rum_txeof(struct usbd_xfer *, void *, 156 1.1 joerg usbd_status); 157 1.52 skrll static void rum_rxeof(struct usbd_xfer *, void *, 158 1.1 joerg usbd_status); 159 1.35 jmcneill static uint8_t rum_rxrate(const struct rum_rx_desc *); 160 1.35 jmcneill static int rum_ack_rate(struct ieee80211com *, int); 161 1.35 jmcneill static uint16_t rum_txtime(int, int, uint32_t); 162 1.35 jmcneill static uint8_t rum_plcp_signal(int); 163 1.35 jmcneill static void rum_setup_tx_desc(struct rum_softc *, 164 1.1 joerg struct rum_tx_desc *, uint32_t, uint16_t, int, 165 1.1 joerg int); 166 1.35 jmcneill static int rum_tx_data(struct rum_softc *, struct mbuf *, 167 1.1 joerg struct ieee80211_node *); 168 1.35 jmcneill static void rum_start(struct ifnet *); 169 1.35 jmcneill static void rum_watchdog(struct ifnet *); 170 1.35 jmcneill static int rum_ioctl(struct ifnet *, u_long, void *); 171 1.35 jmcneill static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 172 1.1 joerg int); 173 1.35 jmcneill static uint32_t rum_read(struct rum_softc *, uint16_t); 174 1.35 jmcneill static void rum_read_multi(struct rum_softc *, uint16_t, void *, 175 1.1 joerg int); 176 1.35 jmcneill static void rum_write(struct rum_softc *, uint16_t, uint32_t); 177 1.35 jmcneill static void rum_write_multi(struct rum_softc *, uint16_t, void *, 178 1.1 joerg size_t); 179 1.35 jmcneill static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 180 1.35 jmcneill static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 181 1.35 jmcneill static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 182 1.35 jmcneill static void rum_select_antenna(struct rum_softc *); 183 1.35 jmcneill static void rum_enable_mrr(struct rum_softc *); 184 1.35 jmcneill static void rum_set_txpreamble(struct rum_softc *); 185 1.35 jmcneill static void rum_set_basicrates(struct rum_softc *); 186 1.35 jmcneill static void rum_select_band(struct rum_softc *, 187 1.1 joerg struct ieee80211_channel *); 188 1.35 jmcneill static void rum_set_chan(struct rum_softc *, 189 1.1 joerg struct ieee80211_channel *); 190 1.35 jmcneill static void rum_enable_tsf_sync(struct rum_softc *); 191 1.35 jmcneill static void rum_update_slot(struct rum_softc *); 192 1.35 jmcneill static void rum_set_bssid(struct rum_softc *, const uint8_t *); 193 1.35 jmcneill static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 194 1.35 jmcneill static void rum_update_promisc(struct rum_softc *); 195 1.35 jmcneill static const char *rum_get_rf(int); 196 1.35 jmcneill static void rum_read_eeprom(struct rum_softc *); 197 1.35 jmcneill static int rum_bbp_init(struct rum_softc *); 198 1.35 jmcneill static int rum_init(struct ifnet *); 199 1.35 jmcneill static void rum_stop(struct ifnet *, int); 200 1.35 jmcneill static int rum_load_microcode(struct rum_softc *, const u_char *, 201 1.1 joerg size_t); 202 1.35 jmcneill static int rum_prepare_beacon(struct rum_softc *); 203 1.35 jmcneill static void rum_newassoc(struct ieee80211_node *, int); 204 1.35 jmcneill static void rum_amrr_start(struct rum_softc *, 205 1.1 joerg struct ieee80211_node *); 206 1.35 jmcneill static void rum_amrr_timeout(void *); 207 1.52 skrll static void rum_amrr_update(struct usbd_xfer *, void *, 208 1.52 skrll usbd_status); 209 1.1 joerg 210 1.1 joerg static const struct { 211 1.1 joerg uint32_t reg; 212 1.1 joerg uint32_t val; 213 1.1 joerg } rum_def_mac[] = { 214 1.1 joerg RT2573_DEF_MAC 215 1.1 joerg }; 216 1.1 joerg 217 1.1 joerg static const struct { 218 1.1 joerg uint8_t reg; 219 1.1 joerg uint8_t val; 220 1.1 joerg } rum_def_bbp[] = { 221 1.1 joerg RT2573_DEF_BBP 222 1.1 joerg }; 223 1.1 joerg 224 1.1 joerg static const struct rfprog { 225 1.1 joerg uint8_t chan; 226 1.1 joerg uint32_t r1, r2, r3, r4; 227 1.1 joerg } rum_rf5226[] = { 228 1.1 joerg RT2573_RF5226 229 1.1 joerg }, rum_rf5225[] = { 230 1.1 joerg RT2573_RF5225 231 1.1 joerg }; 232 1.1 joerg 233 1.35 jmcneill static int rum_match(device_t, cfdata_t, void *); 234 1.35 jmcneill static void rum_attach(device_t, device_t, void *); 235 1.35 jmcneill static int rum_detach(device_t, int); 236 1.35 jmcneill static int rum_activate(device_t, enum devact); 237 1.65 mrg 238 1.33 dyoung CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach, 239 1.33 dyoung rum_detach, rum_activate); 240 1.1 joerg 241 1.35 jmcneill static int 242 1.33 dyoung rum_match(device_t parent, cfdata_t match, void *aux) 243 1.1 joerg { 244 1.33 dyoung struct usb_attach_arg *uaa = aux; 245 1.1 joerg 246 1.52 skrll return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ? 247 1.1 joerg UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 248 1.1 joerg } 249 1.1 joerg 250 1.35 jmcneill static int 251 1.1 joerg rum_attachhook(void *xsc) 252 1.1 joerg { 253 1.1 joerg struct rum_softc *sc = xsc; 254 1.1 joerg firmware_handle_t fwh; 255 1.1 joerg const char *name = "rum-rt2573"; 256 1.1 joerg u_char *ucode; 257 1.1 joerg size_t size; 258 1.1 joerg int error; 259 1.1 joerg 260 1.1 joerg if ((error = firmware_open("rum", name, &fwh)) != 0) { 261 1.51 ryoon printf("%s: failed firmware_open of file %s (error %d)\n", 262 1.33 dyoung device_xname(sc->sc_dev), name, error); 263 1.1 joerg return error; 264 1.1 joerg } 265 1.1 joerg size = firmware_get_size(fwh); 266 1.1 joerg ucode = firmware_malloc(size); 267 1.1 joerg if (ucode == NULL) { 268 1.1 joerg printf("%s: failed to allocate firmware memory\n", 269 1.33 dyoung device_xname(sc->sc_dev)); 270 1.1 joerg firmware_close(fwh); 271 1.25 yamt return ENOMEM; 272 1.1 joerg } 273 1.1 joerg error = firmware_read(fwh, 0, ucode, size); 274 1.1 joerg firmware_close(fwh); 275 1.1 joerg if (error != 0) { 276 1.1 joerg printf("%s: failed to read firmware (error %d)\n", 277 1.33 dyoung device_xname(sc->sc_dev), error); 278 1.49 ozaki firmware_free(ucode, size); 279 1.1 joerg return error; 280 1.1 joerg } 281 1.1 joerg 282 1.1 joerg if (rum_load_microcode(sc, ucode, size) != 0) { 283 1.1 joerg printf("%s: could not load 8051 microcode\n", 284 1.33 dyoung device_xname(sc->sc_dev)); 285 1.49 ozaki firmware_free(ucode, size); 286 1.1 joerg return ENXIO; 287 1.1 joerg } 288 1.1 joerg 289 1.49 ozaki firmware_free(ucode, size); 290 1.1 joerg sc->sc_flags |= RT2573_FWLOADED; 291 1.1 joerg 292 1.1 joerg return 0; 293 1.1 joerg } 294 1.1 joerg 295 1.35 jmcneill static void 296 1.33 dyoung rum_attach(device_t parent, device_t self, void *aux) 297 1.1 joerg { 298 1.33 dyoung struct rum_softc *sc = device_private(self); 299 1.33 dyoung struct usb_attach_arg *uaa = aux; 300 1.1 joerg struct ieee80211com *ic = &sc->sc_ic; 301 1.1 joerg struct ifnet *ifp = &sc->sc_if; 302 1.1 joerg usb_interface_descriptor_t *id; 303 1.1 joerg usb_endpoint_descriptor_t *ed; 304 1.1 joerg usbd_status error; 305 1.1 joerg char *devinfop; 306 1.1 joerg int i, ntries; 307 1.1 joerg uint32_t tmp; 308 1.1 joerg 309 1.21 cube sc->sc_dev = self; 310 1.52 skrll sc->sc_udev = uaa->uaa_device; 311 1.1 joerg sc->sc_flags = 0; 312 1.1 joerg 313 1.28 plunky aprint_naive("\n"); 314 1.28 plunky aprint_normal("\n"); 315 1.28 plunky 316 1.1 joerg devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 317 1.21 cube aprint_normal_dev(self, "%s\n", devinfop); 318 1.1 joerg usbd_devinfo_free(devinfop); 319 1.1 joerg 320 1.44 skrll error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0); 321 1.44 skrll if (error != 0) { 322 1.44 skrll aprint_error_dev(self, "failed to set configuration" 323 1.44 skrll ", err=%s\n", usbd_errstr(error)); 324 1.33 dyoung return; 325 1.1 joerg } 326 1.1 joerg 327 1.1 joerg /* get the first interface handle */ 328 1.1 joerg error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX, 329 1.1 joerg &sc->sc_iface); 330 1.1 joerg if (error != 0) { 331 1.21 cube aprint_error_dev(self, "could not get interface handle\n"); 332 1.33 dyoung return; 333 1.1 joerg } 334 1.1 joerg 335 1.1 joerg /* 336 1.1 joerg * Find endpoints. 337 1.1 joerg */ 338 1.1 joerg id = usbd_get_interface_descriptor(sc->sc_iface); 339 1.1 joerg 340 1.1 joerg sc->sc_rx_no = sc->sc_tx_no = -1; 341 1.1 joerg for (i = 0; i < id->bNumEndpoints; i++) { 342 1.1 joerg ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 343 1.1 joerg if (ed == NULL) { 344 1.21 cube aprint_error_dev(self, 345 1.21 cube "no endpoint descriptor for iface %d\n", i); 346 1.33 dyoung return; 347 1.1 joerg } 348 1.1 joerg 349 1.1 joerg if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 350 1.1 joerg UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 351 1.1 joerg sc->sc_rx_no = ed->bEndpointAddress; 352 1.1 joerg else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 353 1.1 joerg UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 354 1.1 joerg sc->sc_tx_no = ed->bEndpointAddress; 355 1.1 joerg } 356 1.1 joerg if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 357 1.21 cube aprint_error_dev(self, "missing endpoint\n"); 358 1.33 dyoung return; 359 1.1 joerg } 360 1.1 joerg 361 1.47 jmcneill usb_init_task(&sc->sc_task, rum_task, sc, 0); 362 1.33 dyoung callout_init(&sc->sc_scan_ch, 0); 363 1.1 joerg 364 1.1 joerg sc->amrr.amrr_min_success_threshold = 1; 365 1.1 joerg sc->amrr.amrr_max_success_threshold = 10; 366 1.33 dyoung callout_init(&sc->sc_amrr_ch, 0); 367 1.1 joerg 368 1.1 joerg /* retrieve RT2573 rev. no */ 369 1.1 joerg for (ntries = 0; ntries < 1000; ntries++) { 370 1.1 joerg if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 371 1.1 joerg break; 372 1.1 joerg DELAY(1000); 373 1.1 joerg } 374 1.1 joerg if (ntries == 1000) { 375 1.21 cube aprint_error_dev(self, "timeout waiting for chip to settle\n"); 376 1.33 dyoung return; 377 1.1 joerg } 378 1.1 joerg 379 1.1 joerg /* retrieve MAC address and various other things from EEPROM */ 380 1.1 joerg rum_read_eeprom(sc); 381 1.1 joerg 382 1.21 cube aprint_normal_dev(self, 383 1.68 christos "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n", 384 1.21 cube sc->macbbp_rev, tmp, 385 1.1 joerg rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr)); 386 1.1 joerg 387 1.1 joerg ic->ic_ifp = ifp; 388 1.1 joerg ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 389 1.1 joerg ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 390 1.1 joerg ic->ic_state = IEEE80211_S_INIT; 391 1.1 joerg 392 1.1 joerg /* set device capabilities */ 393 1.1 joerg ic->ic_caps = 394 1.1 joerg IEEE80211_C_IBSS | /* IBSS mode supported */ 395 1.1 joerg IEEE80211_C_MONITOR | /* monitor mode supported */ 396 1.1 joerg IEEE80211_C_HOSTAP | /* HostAp mode supported */ 397 1.1 joerg IEEE80211_C_TXPMGT | /* tx power management */ 398 1.1 joerg IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 399 1.1 joerg IEEE80211_C_SHSLOT | /* short slot time supported */ 400 1.1 joerg IEEE80211_C_WPA; /* 802.11i */ 401 1.1 joerg 402 1.1 joerg if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 403 1.1 joerg /* set supported .11a rates */ 404 1.60 maya ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; 405 1.1 joerg 406 1.1 joerg /* set supported .11a channels */ 407 1.1 joerg for (i = 34; i <= 46; i += 4) { 408 1.1 joerg ic->ic_channels[i].ic_freq = 409 1.1 joerg ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 410 1.1 joerg ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 411 1.1 joerg } 412 1.1 joerg for (i = 36; i <= 64; i += 4) { 413 1.1 joerg ic->ic_channels[i].ic_freq = 414 1.1 joerg ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 415 1.1 joerg ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 416 1.1 joerg } 417 1.1 joerg for (i = 100; i <= 140; i += 4) { 418 1.1 joerg ic->ic_channels[i].ic_freq = 419 1.1 joerg ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 420 1.1 joerg ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 421 1.1 joerg } 422 1.1 joerg for (i = 149; i <= 165; i += 4) { 423 1.1 joerg ic->ic_channels[i].ic_freq = 424 1.1 joerg ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 425 1.1 joerg ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 426 1.1 joerg } 427 1.1 joerg } 428 1.1 joerg 429 1.1 joerg /* set supported .11b and .11g rates */ 430 1.60 maya ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 431 1.60 maya ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 432 1.1 joerg 433 1.1 joerg /* set supported .11b and .11g channels (1 through 14) */ 434 1.1 joerg for (i = 1; i <= 14; i++) { 435 1.1 joerg ic->ic_channels[i].ic_freq = 436 1.1 joerg ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 437 1.1 joerg ic->ic_channels[i].ic_flags = 438 1.1 joerg IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 439 1.1 joerg IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 440 1.1 joerg } 441 1.1 joerg 442 1.1 joerg ifp->if_softc = sc; 443 1.1 joerg ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 444 1.1 joerg ifp->if_init = rum_init; 445 1.1 joerg ifp->if_ioctl = rum_ioctl; 446 1.1 joerg ifp->if_start = rum_start; 447 1.1 joerg ifp->if_watchdog = rum_watchdog; 448 1.1 joerg IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 449 1.1 joerg IFQ_SET_READY(&ifp->if_snd); 450 1.33 dyoung memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 451 1.1 joerg 452 1.1 joerg if_attach(ifp); 453 1.1 joerg ieee80211_ifattach(ic); 454 1.18 kiyohara ic->ic_newassoc = rum_newassoc; 455 1.1 joerg 456 1.1 joerg /* override state transition machine */ 457 1.1 joerg sc->sc_newstate = ic->ic_newstate; 458 1.1 joerg ic->ic_newstate = rum_newstate; 459 1.69 thorpej 460 1.69 thorpej /* XXX media locking needs revisiting */ 461 1.69 thorpej mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB); 462 1.69 thorpej ieee80211_media_init_with_lock(ic, 463 1.69 thorpej rum_media_change, ieee80211_media_status, &sc->sc_media_mtx); 464 1.1 joerg 465 1.32 joerg bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 466 1.52 skrll sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 467 1.31 pooka &sc->sc_drvbpf); 468 1.1 joerg 469 1.52 skrll sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); 470 1.1 joerg sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 471 1.1 joerg sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT); 472 1.1 joerg 473 1.52 skrll sc->sc_txtap_len = sizeof(sc->sc_txtapu); 474 1.1 joerg sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 475 1.1 joerg sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT); 476 1.1 joerg 477 1.1 joerg ieee80211_announce(ic); 478 1.1 joerg 479 1.56 msaitoh usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); 480 1.1 joerg 481 1.50 nonaka if (!pmf_device_register(self, NULL, NULL)) 482 1.50 nonaka aprint_error_dev(self, "couldn't establish power handler\n"); 483 1.50 nonaka 484 1.33 dyoung return; 485 1.1 joerg } 486 1.1 joerg 487 1.35 jmcneill static int 488 1.33 dyoung rum_detach(device_t self, int flags) 489 1.1 joerg { 490 1.33 dyoung struct rum_softc *sc = device_private(self); 491 1.1 joerg struct ieee80211com *ic = &sc->sc_ic; 492 1.1 joerg struct ifnet *ifp = &sc->sc_if; 493 1.1 joerg int s; 494 1.1 joerg 495 1.13 drochner if (!ifp->if_softc) 496 1.13 drochner return 0; 497 1.13 drochner 498 1.50 nonaka pmf_device_deregister(self); 499 1.50 nonaka 500 1.1 joerg s = splusb(); 501 1.1 joerg 502 1.1 joerg rum_stop(ifp, 1); 503 1.62 riastrad callout_halt(&sc->sc_scan_ch, NULL); 504 1.62 riastrad callout_halt(&sc->sc_amrr_ch, NULL); 505 1.63 riastrad usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL); 506 1.1 joerg 507 1.32 joerg bpf_detach(ifp); 508 1.1 joerg ieee80211_ifdetach(ic); /* free all nodes */ 509 1.1 joerg if_detach(ifp); 510 1.1 joerg 511 1.1 joerg splx(s); 512 1.1 joerg 513 1.33 dyoung usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); 514 1.1 joerg 515 1.1 joerg return 0; 516 1.1 joerg } 517 1.1 joerg 518 1.35 jmcneill static int 519 1.1 joerg rum_alloc_tx_list(struct rum_softc *sc) 520 1.1 joerg { 521 1.1 joerg struct rum_tx_data *data; 522 1.1 joerg int i, error; 523 1.1 joerg 524 1.35 jmcneill sc->tx_cur = sc->tx_queued = 0; 525 1.1 joerg 526 1.18 kiyohara for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 527 1.1 joerg data = &sc->tx_data[i]; 528 1.1 joerg 529 1.1 joerg data->sc = sc; 530 1.1 joerg 531 1.52 skrll error = usbd_create_xfer(sc->sc_tx_pipeh, 532 1.52 skrll RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN, 533 1.52 skrll USBD_FORCE_SHORT_XFER, 0, &data->xfer); 534 1.52 skrll if (error) { 535 1.1 joerg printf("%s: could not allocate tx xfer\n", 536 1.33 dyoung device_xname(sc->sc_dev)); 537 1.1 joerg goto fail; 538 1.1 joerg } 539 1.52 skrll data->buf = usbd_get_buffer(data->xfer); 540 1.1 joerg 541 1.1 joerg /* clean Tx descriptor */ 542 1.26 cegger memset(data->buf, 0, RT2573_TX_DESC_SIZE); 543 1.1 joerg } 544 1.1 joerg 545 1.1 joerg return 0; 546 1.1 joerg 547 1.1 joerg fail: rum_free_tx_list(sc); 548 1.1 joerg return error; 549 1.1 joerg } 550 1.1 joerg 551 1.35 jmcneill static void 552 1.1 joerg rum_free_tx_list(struct rum_softc *sc) 553 1.1 joerg { 554 1.1 joerg struct rum_tx_data *data; 555 1.1 joerg int i; 556 1.1 joerg 557 1.18 kiyohara for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 558 1.1 joerg data = &sc->tx_data[i]; 559 1.1 joerg 560 1.1 joerg if (data->xfer != NULL) { 561 1.52 skrll usbd_destroy_xfer(data->xfer); 562 1.1 joerg data->xfer = NULL; 563 1.1 joerg } 564 1.1 joerg 565 1.1 joerg if (data->ni != NULL) { 566 1.1 joerg ieee80211_free_node(data->ni); 567 1.1 joerg data->ni = NULL; 568 1.1 joerg } 569 1.1 joerg } 570 1.1 joerg } 571 1.1 joerg 572 1.35 jmcneill static int 573 1.1 joerg rum_alloc_rx_list(struct rum_softc *sc) 574 1.1 joerg { 575 1.1 joerg struct rum_rx_data *data; 576 1.1 joerg int i, error; 577 1.1 joerg 578 1.18 kiyohara for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 579 1.1 joerg data = &sc->rx_data[i]; 580 1.1 joerg 581 1.1 joerg data->sc = sc; 582 1.1 joerg 583 1.52 skrll error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES, 584 1.59 skrll 0, 0, &data->xfer); 585 1.52 skrll if (error) { 586 1.1 joerg printf("%s: could not allocate rx xfer\n", 587 1.33 dyoung device_xname(sc->sc_dev)); 588 1.1 joerg goto fail; 589 1.1 joerg } 590 1.1 joerg 591 1.1 joerg MGETHDR(data->m, M_DONTWAIT, MT_DATA); 592 1.1 joerg if (data->m == NULL) { 593 1.1 joerg printf("%s: could not allocate rx mbuf\n", 594 1.33 dyoung device_xname(sc->sc_dev)); 595 1.1 joerg error = ENOMEM; 596 1.1 joerg goto fail; 597 1.1 joerg } 598 1.1 joerg 599 1.1 joerg MCLGET(data->m, M_DONTWAIT); 600 1.1 joerg if (!(data->m->m_flags & M_EXT)) { 601 1.1 joerg printf("%s: could not allocate rx mbuf cluster\n", 602 1.33 dyoung device_xname(sc->sc_dev)); 603 1.1 joerg error = ENOMEM; 604 1.1 joerg goto fail; 605 1.1 joerg } 606 1.1 joerg 607 1.1 joerg data->buf = mtod(data->m, uint8_t *); 608 1.1 joerg } 609 1.1 joerg 610 1.1 joerg return 0; 611 1.1 joerg 612 1.34 dholland fail: rum_free_rx_list(sc); 613 1.1 joerg return error; 614 1.1 joerg } 615 1.1 joerg 616 1.35 jmcneill static void 617 1.1 joerg rum_free_rx_list(struct rum_softc *sc) 618 1.1 joerg { 619 1.1 joerg struct rum_rx_data *data; 620 1.1 joerg int i; 621 1.1 joerg 622 1.18 kiyohara for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 623 1.1 joerg data = &sc->rx_data[i]; 624 1.1 joerg 625 1.1 joerg if (data->xfer != NULL) { 626 1.52 skrll usbd_destroy_xfer(data->xfer); 627 1.1 joerg data->xfer = NULL; 628 1.1 joerg } 629 1.1 joerg 630 1.71 rin m_freem(data->m); 631 1.71 rin data->m = NULL; 632 1.1 joerg } 633 1.1 joerg } 634 1.1 joerg 635 1.35 jmcneill static int 636 1.1 joerg rum_media_change(struct ifnet *ifp) 637 1.1 joerg { 638 1.1 joerg int error; 639 1.1 joerg 640 1.1 joerg error = ieee80211_media_change(ifp); 641 1.1 joerg if (error != ENETRESET) 642 1.1 joerg return error; 643 1.1 joerg 644 1.1 joerg if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 645 1.1 joerg rum_init(ifp); 646 1.1 joerg 647 1.1 joerg return 0; 648 1.1 joerg } 649 1.1 joerg 650 1.1 joerg /* 651 1.1 joerg * This function is called periodically (every 200ms) during scanning to 652 1.1 joerg * switch from one channel to another. 653 1.1 joerg */ 654 1.35 jmcneill static void 655 1.1 joerg rum_next_scan(void *arg) 656 1.1 joerg { 657 1.1 joerg struct rum_softc *sc = arg; 658 1.1 joerg struct ieee80211com *ic = &sc->sc_ic; 659 1.35 jmcneill int s; 660 1.1 joerg 661 1.35 jmcneill s = splnet(); 662 1.1 joerg if (ic->ic_state == IEEE80211_S_SCAN) 663 1.1 joerg ieee80211_next_scan(ic); 664 1.35 jmcneill splx(s); 665 1.1 joerg } 666 1.1 joerg 667 1.35 jmcneill static void 668 1.1 joerg rum_task(void *arg) 669 1.1 joerg { 670 1.1 joerg struct rum_softc *sc = arg; 671 1.1 joerg struct ieee80211com *ic = &sc->sc_ic; 672 1.1 joerg enum ieee80211_state ostate; 673 1.1 joerg struct ieee80211_node *ni; 674 1.1 joerg uint32_t tmp; 675 1.1 joerg 676 1.1 joerg ostate = ic->ic_state; 677 1.1 joerg 678 1.1 joerg switch (sc->sc_state) { 679 1.1 joerg case IEEE80211_S_INIT: 680 1.1 joerg if (ostate == IEEE80211_S_RUN) { 681 1.1 joerg /* abort TSF synchronization */ 682 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR9); 683 1.1 joerg rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 684 1.1 joerg } 685 1.1 joerg break; 686 1.1 joerg 687 1.1 joerg case IEEE80211_S_SCAN: 688 1.1 joerg rum_set_chan(sc, ic->ic_curchan); 689 1.33 dyoung callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc); 690 1.1 joerg break; 691 1.1 joerg 692 1.1 joerg case IEEE80211_S_AUTH: 693 1.1 joerg rum_set_chan(sc, ic->ic_curchan); 694 1.1 joerg break; 695 1.1 joerg 696 1.1 joerg case IEEE80211_S_ASSOC: 697 1.1 joerg rum_set_chan(sc, ic->ic_curchan); 698 1.1 joerg break; 699 1.1 joerg 700 1.1 joerg case IEEE80211_S_RUN: 701 1.1 joerg rum_set_chan(sc, ic->ic_curchan); 702 1.1 joerg 703 1.1 joerg ni = ic->ic_bss; 704 1.1 joerg 705 1.1 joerg if (ic->ic_opmode != IEEE80211_M_MONITOR) { 706 1.1 joerg rum_update_slot(sc); 707 1.1 joerg rum_enable_mrr(sc); 708 1.1 joerg rum_set_txpreamble(sc); 709 1.1 joerg rum_set_basicrates(sc); 710 1.1 joerg rum_set_bssid(sc, ni->ni_bssid); 711 1.1 joerg } 712 1.1 joerg 713 1.1 joerg if (ic->ic_opmode == IEEE80211_M_HOSTAP || 714 1.1 joerg ic->ic_opmode == IEEE80211_M_IBSS) 715 1.1 joerg rum_prepare_beacon(sc); 716 1.1 joerg 717 1.1 joerg if (ic->ic_opmode != IEEE80211_M_MONITOR) 718 1.1 joerg rum_enable_tsf_sync(sc); 719 1.1 joerg 720 1.18 kiyohara if (ic->ic_opmode == IEEE80211_M_STA) { 721 1.18 kiyohara /* fake a join to init the tx rate */ 722 1.18 kiyohara rum_newassoc(ic->ic_bss, 1); 723 1.18 kiyohara 724 1.18 kiyohara /* enable automatic rate adaptation in STA mode */ 725 1.18 kiyohara if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 726 1.18 kiyohara rum_amrr_start(sc, ni); 727 1.18 kiyohara } 728 1.1 joerg 729 1.1 joerg break; 730 1.1 joerg } 731 1.1 joerg 732 1.35 jmcneill sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 733 1.1 joerg } 734 1.1 joerg 735 1.35 jmcneill static int 736 1.1 joerg rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 737 1.1 joerg { 738 1.1 joerg struct rum_softc *sc = ic->ic_ifp->if_softc; 739 1.1 joerg 740 1.62 riastrad /* 741 1.62 riastrad * XXXSMP: This does not wait for the task, if it is in flight, 742 1.62 riastrad * to complete. If this code works at all, it must rely on the 743 1.62 riastrad * kernel lock to serialize with the USB task thread. 744 1.62 riastrad */ 745 1.1 joerg usb_rem_task(sc->sc_udev, &sc->sc_task); 746 1.33 dyoung callout_stop(&sc->sc_scan_ch); 747 1.33 dyoung callout_stop(&sc->sc_amrr_ch); 748 1.1 joerg 749 1.1 joerg /* do it in a process context */ 750 1.1 joerg sc->sc_state = nstate; 751 1.35 jmcneill sc->sc_arg = arg; 752 1.1 joerg usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 753 1.1 joerg 754 1.1 joerg return 0; 755 1.1 joerg } 756 1.1 joerg 757 1.1 joerg /* quickly determine if a given rate is CCK or OFDM */ 758 1.1 joerg #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 759 1.1 joerg 760 1.1 joerg #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */ 761 1.1 joerg #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */ 762 1.1 joerg 763 1.35 jmcneill static void 764 1.52 skrll rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 765 1.1 joerg { 766 1.1 joerg struct rum_tx_data *data = priv; 767 1.1 joerg struct rum_softc *sc = data->sc; 768 1.1 joerg struct ifnet *ifp = &sc->sc_if; 769 1.1 joerg int s; 770 1.1 joerg 771 1.1 joerg if (status != USBD_NORMAL_COMPLETION) { 772 1.1 joerg if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 773 1.1 joerg return; 774 1.1 joerg 775 1.1 joerg printf("%s: could not transmit buffer: %s\n", 776 1.33 dyoung device_xname(sc->sc_dev), usbd_errstr(status)); 777 1.1 joerg 778 1.1 joerg if (status == USBD_STALLED) 779 1.1 joerg usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 780 1.1 joerg 781 1.66 thorpej if_statinc(ifp, if_oerrors); 782 1.1 joerg return; 783 1.1 joerg } 784 1.1 joerg 785 1.1 joerg s = splnet(); 786 1.1 joerg 787 1.1 joerg ieee80211_free_node(data->ni); 788 1.1 joerg data->ni = NULL; 789 1.1 joerg 790 1.1 joerg sc->tx_queued--; 791 1.66 thorpej if_statinc(ifp, if_opackets); 792 1.1 joerg 793 1.1 joerg DPRINTFN(10, ("tx done\n")); 794 1.1 joerg 795 1.1 joerg sc->sc_tx_timer = 0; 796 1.1 joerg ifp->if_flags &= ~IFF_OACTIVE; 797 1.1 joerg rum_start(ifp); 798 1.1 joerg 799 1.1 joerg splx(s); 800 1.1 joerg } 801 1.1 joerg 802 1.35 jmcneill static void 803 1.52 skrll rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 804 1.1 joerg { 805 1.1 joerg struct rum_rx_data *data = priv; 806 1.1 joerg struct rum_softc *sc = data->sc; 807 1.1 joerg struct ieee80211com *ic = &sc->sc_ic; 808 1.1 joerg struct ifnet *ifp = &sc->sc_if; 809 1.1 joerg struct rum_rx_desc *desc; 810 1.1 joerg struct ieee80211_frame *wh; 811 1.1 joerg struct ieee80211_node *ni; 812 1.1 joerg struct mbuf *mnew, *m; 813 1.1 joerg int s, len; 814 1.1 joerg 815 1.1 joerg if (status != USBD_NORMAL_COMPLETION) { 816 1.1 joerg if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 817 1.1 joerg return; 818 1.1 joerg 819 1.1 joerg if (status == USBD_STALLED) 820 1.1 joerg usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 821 1.1 joerg goto skip; 822 1.1 joerg } 823 1.1 joerg 824 1.1 joerg usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 825 1.1 joerg 826 1.37 pgoyette if (len < (int)(RT2573_RX_DESC_SIZE + 827 1.37 pgoyette sizeof(struct ieee80211_frame_min))) { 828 1.33 dyoung DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev), 829 1.1 joerg len)); 830 1.66 thorpej if_statinc(ifp, if_ierrors); 831 1.1 joerg goto skip; 832 1.1 joerg } 833 1.1 joerg 834 1.1 joerg desc = (struct rum_rx_desc *)data->buf; 835 1.1 joerg 836 1.1 joerg if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) { 837 1.1 joerg /* 838 1.1 joerg * This should not happen since we did not request to receive 839 1.1 joerg * those frames when we filled RT2573_TXRX_CSR0. 840 1.1 joerg */ 841 1.1 joerg DPRINTFN(5, ("CRC error\n")); 842 1.66 thorpej if_statinc(ifp, if_ierrors); 843 1.1 joerg goto skip; 844 1.1 joerg } 845 1.1 joerg 846 1.1 joerg MGETHDR(mnew, M_DONTWAIT, MT_DATA); 847 1.1 joerg if (mnew == NULL) { 848 1.1 joerg printf("%s: could not allocate rx mbuf\n", 849 1.33 dyoung device_xname(sc->sc_dev)); 850 1.66 thorpej if_statinc(ifp, if_ierrors); 851 1.1 joerg goto skip; 852 1.1 joerg } 853 1.1 joerg 854 1.1 joerg MCLGET(mnew, M_DONTWAIT); 855 1.1 joerg if (!(mnew->m_flags & M_EXT)) { 856 1.1 joerg printf("%s: could not allocate rx mbuf cluster\n", 857 1.33 dyoung device_xname(sc->sc_dev)); 858 1.1 joerg m_freem(mnew); 859 1.66 thorpej if_statinc(ifp, if_ierrors); 860 1.1 joerg goto skip; 861 1.1 joerg } 862 1.1 joerg 863 1.1 joerg m = data->m; 864 1.1 joerg data->m = mnew; 865 1.1 joerg data->buf = mtod(data->m, uint8_t *); 866 1.1 joerg 867 1.1 joerg /* finalize mbuf */ 868 1.55 ozaki m_set_rcvif(m, ifp); 869 1.7 christos m->m_data = (void *)(desc + 1); 870 1.1 joerg m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; 871 1.1 joerg 872 1.1 joerg s = splnet(); 873 1.1 joerg 874 1.1 joerg if (sc->sc_drvbpf != NULL) { 875 1.1 joerg struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 876 1.1 joerg 877 1.1 joerg tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 878 1.1 joerg tap->wr_rate = rum_rxrate(desc); 879 1.1 joerg tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 880 1.1 joerg tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 881 1.1 joerg tap->wr_antenna = sc->rx_ant; 882 1.1 joerg tap->wr_antsignal = desc->rssi; 883 1.1 joerg 884 1.61 msaitoh bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN); 885 1.1 joerg } 886 1.1 joerg 887 1.1 joerg wh = mtod(m, struct ieee80211_frame *); 888 1.1 joerg ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 889 1.1 joerg 890 1.1 joerg /* send the frame to the 802.11 layer */ 891 1.1 joerg ieee80211_input(ic, m, ni, desc->rssi, 0); 892 1.1 joerg 893 1.1 joerg /* node is no longer needed */ 894 1.1 joerg ieee80211_free_node(ni); 895 1.1 joerg 896 1.1 joerg splx(s); 897 1.1 joerg 898 1.1 joerg DPRINTFN(15, ("rx done\n")); 899 1.1 joerg 900 1.1 joerg skip: /* setup a new transfer */ 901 1.52 skrll usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK, 902 1.52 skrll USBD_NO_TIMEOUT, rum_rxeof); 903 1.1 joerg usbd_transfer(xfer); 904 1.1 joerg } 905 1.1 joerg 906 1.1 joerg /* 907 1.1 joerg * This function is only used by the Rx radiotap code. It returns the rate at 908 1.1 joerg * which a given frame was received. 909 1.1 joerg */ 910 1.35 jmcneill static uint8_t 911 1.18 kiyohara rum_rxrate(const struct rum_rx_desc *desc) 912 1.1 joerg { 913 1.1 joerg if (le32toh(desc->flags) & RT2573_RX_OFDM) { 914 1.1 joerg /* reverse function of rum_plcp_signal */ 915 1.1 joerg switch (desc->rate) { 916 1.1 joerg case 0xb: return 12; 917 1.1 joerg case 0xf: return 18; 918 1.1 joerg case 0xa: return 24; 919 1.1 joerg case 0xe: return 36; 920 1.1 joerg case 0x9: return 48; 921 1.1 joerg case 0xd: return 72; 922 1.1 joerg case 0x8: return 96; 923 1.1 joerg case 0xc: return 108; 924 1.1 joerg } 925 1.1 joerg } else { 926 1.1 joerg if (desc->rate == 10) 927 1.1 joerg return 2; 928 1.1 joerg if (desc->rate == 20) 929 1.1 joerg return 4; 930 1.1 joerg if (desc->rate == 55) 931 1.1 joerg return 11; 932 1.1 joerg if (desc->rate == 110) 933 1.1 joerg return 22; 934 1.1 joerg } 935 1.1 joerg return 2; /* should not get there */ 936 1.1 joerg } 937 1.1 joerg 938 1.1 joerg /* 939 1.1 joerg * Return the expected ack rate for a frame transmitted at rate `rate'. 940 1.1 joerg * XXX: this should depend on the destination node basic rate set. 941 1.1 joerg */ 942 1.35 jmcneill static int 943 1.1 joerg rum_ack_rate(struct ieee80211com *ic, int rate) 944 1.1 joerg { 945 1.1 joerg switch (rate) { 946 1.1 joerg /* CCK rates */ 947 1.1 joerg case 2: 948 1.1 joerg return 2; 949 1.1 joerg case 4: 950 1.1 joerg case 11: 951 1.1 joerg case 22: 952 1.1 joerg return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 953 1.1 joerg 954 1.1 joerg /* OFDM rates */ 955 1.1 joerg case 12: 956 1.1 joerg case 18: 957 1.1 joerg return 12; 958 1.1 joerg case 24: 959 1.1 joerg case 36: 960 1.1 joerg return 24; 961 1.1 joerg case 48: 962 1.1 joerg case 72: 963 1.1 joerg case 96: 964 1.1 joerg case 108: 965 1.1 joerg return 48; 966 1.1 joerg } 967 1.1 joerg 968 1.1 joerg /* default to 1Mbps */ 969 1.1 joerg return 2; 970 1.1 joerg } 971 1.1 joerg 972 1.1 joerg /* 973 1.1 joerg * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 974 1.1 joerg * The function automatically determines the operating mode depending on the 975 1.1 joerg * given rate. `flags' indicates whether short preamble is in use or not. 976 1.1 joerg */ 977 1.35 jmcneill static uint16_t 978 1.1 joerg rum_txtime(int len, int rate, uint32_t flags) 979 1.1 joerg { 980 1.1 joerg uint16_t txtime; 981 1.1 joerg 982 1.1 joerg if (RUM_RATE_IS_OFDM(rate)) { 983 1.1 joerg /* IEEE Std 802.11a-1999, pp. 37 */ 984 1.1 joerg txtime = (8 + 4 * len + 3 + rate - 1) / rate; 985 1.1 joerg txtime = 16 + 4 + 4 * txtime + 6; 986 1.1 joerg } else { 987 1.1 joerg /* IEEE Std 802.11b-1999, pp. 28 */ 988 1.1 joerg txtime = (16 * len + rate - 1) / rate; 989 1.1 joerg if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 990 1.1 joerg txtime += 72 + 24; 991 1.1 joerg else 992 1.1 joerg txtime += 144 + 48; 993 1.1 joerg } 994 1.1 joerg return txtime; 995 1.1 joerg } 996 1.1 joerg 997 1.35 jmcneill static uint8_t 998 1.1 joerg rum_plcp_signal(int rate) 999 1.1 joerg { 1000 1.1 joerg switch (rate) { 1001 1.1 joerg /* CCK rates (returned values are device-dependent) */ 1002 1.1 joerg case 2: return 0x0; 1003 1.1 joerg case 4: return 0x1; 1004 1.1 joerg case 11: return 0x2; 1005 1.1 joerg case 22: return 0x3; 1006 1.1 joerg 1007 1.1 joerg /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1008 1.1 joerg case 12: return 0xb; 1009 1.1 joerg case 18: return 0xf; 1010 1.1 joerg case 24: return 0xa; 1011 1.1 joerg case 36: return 0xe; 1012 1.1 joerg case 48: return 0x9; 1013 1.1 joerg case 72: return 0xd; 1014 1.1 joerg case 96: return 0x8; 1015 1.1 joerg case 108: return 0xc; 1016 1.1 joerg 1017 1.1 joerg /* unsupported rates (should not get there) */ 1018 1.1 joerg default: return 0xff; 1019 1.1 joerg } 1020 1.1 joerg } 1021 1.1 joerg 1022 1.35 jmcneill static void 1023 1.1 joerg rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1024 1.1 joerg uint32_t flags, uint16_t xflags, int len, int rate) 1025 1.1 joerg { 1026 1.1 joerg struct ieee80211com *ic = &sc->sc_ic; 1027 1.1 joerg uint16_t plcp_length; 1028 1.1 joerg int remainder; 1029 1.1 joerg 1030 1.1 joerg desc->flags = htole32(flags); 1031 1.1 joerg desc->flags |= htole32(RT2573_TX_VALID); 1032 1.1 joerg desc->flags |= htole32(len << 16); 1033 1.1 joerg 1034 1.1 joerg desc->xflags = htole16(xflags); 1035 1.1 joerg 1036 1.1 joerg desc->wme = htole16( 1037 1.1 joerg RT2573_QID(0) | 1038 1.1 joerg RT2573_AIFSN(2) | 1039 1.1 joerg RT2573_LOGCWMIN(4) | 1040 1.1 joerg RT2573_LOGCWMAX(10)); 1041 1.1 joerg 1042 1.1 joerg /* setup PLCP fields */ 1043 1.1 joerg desc->plcp_signal = rum_plcp_signal(rate); 1044 1.1 joerg desc->plcp_service = 4; 1045 1.1 joerg 1046 1.1 joerg len += IEEE80211_CRC_LEN; 1047 1.1 joerg if (RUM_RATE_IS_OFDM(rate)) { 1048 1.1 joerg desc->flags |= htole32(RT2573_TX_OFDM); 1049 1.1 joerg 1050 1.1 joerg plcp_length = len & 0xfff; 1051 1.1 joerg desc->plcp_length_hi = plcp_length >> 6; 1052 1.1 joerg desc->plcp_length_lo = plcp_length & 0x3f; 1053 1.1 joerg } else { 1054 1.1 joerg plcp_length = (16 * len + rate - 1) / rate; 1055 1.1 joerg if (rate == 22) { 1056 1.1 joerg remainder = (16 * len) % 22; 1057 1.1 joerg if (remainder != 0 && remainder < 7) 1058 1.1 joerg desc->plcp_service |= RT2573_PLCP_LENGEXT; 1059 1.1 joerg } 1060 1.1 joerg desc->plcp_length_hi = plcp_length >> 8; 1061 1.1 joerg desc->plcp_length_lo = plcp_length & 0xff; 1062 1.1 joerg 1063 1.1 joerg if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1064 1.1 joerg desc->plcp_signal |= 0x08; 1065 1.1 joerg } 1066 1.1 joerg } 1067 1.1 joerg 1068 1.1 joerg #define RUM_TX_TIMEOUT 5000 1069 1.1 joerg 1070 1.35 jmcneill static int 1071 1.35 jmcneill rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1072 1.1 joerg { 1073 1.1 joerg struct ieee80211com *ic = &sc->sc_ic; 1074 1.1 joerg struct rum_tx_desc *desc; 1075 1.1 joerg struct rum_tx_data *data; 1076 1.1 joerg struct ieee80211_frame *wh; 1077 1.17 degroote struct ieee80211_key *k; 1078 1.1 joerg uint32_t flags = 0; 1079 1.1 joerg uint16_t dur; 1080 1.1 joerg usbd_status error; 1081 1.35 jmcneill int rate, xferlen, pktlen, needrts = 0, needcts = 0; 1082 1.1 joerg 1083 1.1 joerg wh = mtod(m0, struct ieee80211_frame *); 1084 1.1 joerg 1085 1.17 degroote if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1086 1.17 degroote k = ieee80211_crypto_encap(ic, ni, m0); 1087 1.17 degroote if (k == NULL) { 1088 1.17 degroote m_freem(m0); 1089 1.17 degroote return ENOBUFS; 1090 1.17 degroote } 1091 1.17 degroote 1092 1.35 jmcneill /* packet header may have moved, reset our local pointer */ 1093 1.35 jmcneill wh = mtod(m0, struct ieee80211_frame *); 1094 1.1 joerg } 1095 1.1 joerg 1096 1.35 jmcneill /* compute actual packet length (including CRC and crypto overhead) */ 1097 1.35 jmcneill pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 1098 1.1 joerg 1099 1.35 jmcneill /* pickup a rate */ 1100 1.35 jmcneill if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1101 1.35 jmcneill ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1102 1.35 jmcneill IEEE80211_FC0_TYPE_MGT)) { 1103 1.35 jmcneill /* mgmt/multicast frames are sent at the lowest avail. rate */ 1104 1.35 jmcneill rate = ni->ni_rates.rs_rates[0]; 1105 1.35 jmcneill } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 1106 1.35 jmcneill rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 1107 1.35 jmcneill } else 1108 1.35 jmcneill rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1109 1.35 jmcneill if (rate == 0) 1110 1.35 jmcneill rate = 2; /* XXX should not happen */ 1111 1.35 jmcneill rate &= IEEE80211_RATE_VAL; 1112 1.1 joerg 1113 1.35 jmcneill /* check if RTS/CTS or CTS-to-self protection must be used */ 1114 1.35 jmcneill if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1115 1.35 jmcneill /* multicast frames are not sent at OFDM rates in 802.11b/g */ 1116 1.35 jmcneill if (pktlen > ic->ic_rtsthreshold) { 1117 1.35 jmcneill needrts = 1; /* RTS/CTS based on frame length */ 1118 1.35 jmcneill } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1119 1.35 jmcneill RUM_RATE_IS_OFDM(rate)) { 1120 1.35 jmcneill if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 1121 1.35 jmcneill needcts = 1; /* CTS-to-self */ 1122 1.35 jmcneill else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 1123 1.35 jmcneill needrts = 1; /* RTS/CTS */ 1124 1.35 jmcneill } 1125 1.35 jmcneill } 1126 1.35 jmcneill if (needrts || needcts) { 1127 1.35 jmcneill struct mbuf *mprot; 1128 1.35 jmcneill int protrate, ackrate; 1129 1.35 jmcneill 1130 1.35 jmcneill protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1131 1.35 jmcneill ackrate = rum_ack_rate(ic, rate); 1132 1.35 jmcneill 1133 1.35 jmcneill dur = rum_txtime(pktlen, rate, ic->ic_flags) + 1134 1.35 jmcneill rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) + 1135 1.35 jmcneill 2 * sc->sifs; 1136 1.35 jmcneill if (needrts) { 1137 1.35 jmcneill dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic, 1138 1.35 jmcneill protrate), ic->ic_flags) + sc->sifs; 1139 1.35 jmcneill mprot = ieee80211_get_rts(ic, wh, dur); 1140 1.35 jmcneill } else { 1141 1.35 jmcneill mprot = ieee80211_get_cts_to_self(ic, dur); 1142 1.35 jmcneill } 1143 1.35 jmcneill if (mprot == NULL) { 1144 1.35 jmcneill aprint_error_dev(sc->sc_dev, 1145 1.35 jmcneill "couldn't allocate protection frame\n"); 1146 1.35 jmcneill m_freem(m0); 1147 1.35 jmcneill return ENOBUFS; 1148 1.35 jmcneill } 1149 1.1 joerg 1150 1.35 jmcneill data = &sc->tx_data[sc->tx_cur]; 1151 1.35 jmcneill desc = (struct rum_tx_desc *)data->buf; 1152 1.1 joerg 1153 1.35 jmcneill /* avoid multiple free() of the same node for each fragment */ 1154 1.35 jmcneill data->ni = ieee80211_ref_node(ni); 1155 1.1 joerg 1156 1.35 jmcneill m_copydata(mprot, 0, mprot->m_pkthdr.len, 1157 1.35 jmcneill data->buf + RT2573_TX_DESC_SIZE); 1158 1.35 jmcneill rum_setup_tx_desc(sc, desc, 1159 1.35 jmcneill (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG, 1160 1.35 jmcneill 0, mprot->m_pkthdr.len, protrate); 1161 1.1 joerg 1162 1.35 jmcneill /* no roundup necessary here */ 1163 1.35 jmcneill xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len; 1164 1.1 joerg 1165 1.35 jmcneill /* XXX may want to pass the protection frame to BPF */ 1166 1.1 joerg 1167 1.35 jmcneill /* mbuf is no longer needed */ 1168 1.35 jmcneill m_freem(mprot); 1169 1.1 joerg 1170 1.52 skrll usbd_setup_xfer(data->xfer, data, data->buf, 1171 1.52 skrll xferlen, USBD_FORCE_SHORT_XFER, 1172 1.35 jmcneill RUM_TX_TIMEOUT, rum_txeof); 1173 1.35 jmcneill error = usbd_transfer(data->xfer); 1174 1.35 jmcneill if (error != USBD_NORMAL_COMPLETION && 1175 1.35 jmcneill error != USBD_IN_PROGRESS) { 1176 1.1 joerg m_freem(m0); 1177 1.35 jmcneill return error; 1178 1.1 joerg } 1179 1.1 joerg 1180 1.35 jmcneill sc->tx_queued++; 1181 1.35 jmcneill sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1182 1.35 jmcneill 1183 1.35 jmcneill flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1184 1.1 joerg } 1185 1.1 joerg 1186 1.35 jmcneill data = &sc->tx_data[sc->tx_cur]; 1187 1.1 joerg desc = (struct rum_tx_desc *)data->buf; 1188 1.1 joerg 1189 1.1 joerg data->ni = ni; 1190 1.1 joerg 1191 1.1 joerg if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1192 1.18 kiyohara flags |= RT2573_TX_NEED_ACK; 1193 1.1 joerg 1194 1.1 joerg dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 1195 1.1 joerg ic->ic_flags) + sc->sifs; 1196 1.1 joerg *(uint16_t *)wh->i_dur = htole16(dur); 1197 1.35 jmcneill 1198 1.35 jmcneill /* tell hardware to set timestamp in probe responses */ 1199 1.35 jmcneill if ((wh->i_fc[0] & 1200 1.35 jmcneill (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1201 1.35 jmcneill (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1202 1.35 jmcneill flags |= RT2573_TX_TIMESTAMP; 1203 1.1 joerg } 1204 1.1 joerg 1205 1.1 joerg if (sc->sc_drvbpf != NULL) { 1206 1.1 joerg struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1207 1.1 joerg 1208 1.1 joerg tap->wt_flags = 0; 1209 1.1 joerg tap->wt_rate = rate; 1210 1.1 joerg tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1211 1.1 joerg tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1212 1.1 joerg tap->wt_antenna = sc->tx_ant; 1213 1.1 joerg 1214 1.61 msaitoh bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT); 1215 1.1 joerg } 1216 1.1 joerg 1217 1.1 joerg m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); 1218 1.1 joerg rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate); 1219 1.1 joerg 1220 1.1 joerg /* align end on a 4-bytes boundary */ 1221 1.1 joerg xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3; 1222 1.1 joerg 1223 1.1 joerg /* 1224 1.1 joerg * No space left in the last URB to store the extra 4 bytes, force 1225 1.1 joerg * sending of another URB. 1226 1.1 joerg */ 1227 1.1 joerg if ((xferlen % 64) == 0) 1228 1.1 joerg xferlen += 4; 1229 1.1 joerg 1230 1.8 mlelstv DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n", 1231 1.8 mlelstv (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, 1232 1.6 wiz rate, xferlen)); 1233 1.1 joerg 1234 1.18 kiyohara /* mbuf is no longer needed */ 1235 1.18 kiyohara m_freem(m0); 1236 1.18 kiyohara 1237 1.52 skrll usbd_setup_xfer(data->xfer, data, data->buf, xferlen, 1238 1.52 skrll USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof); 1239 1.1 joerg error = usbd_transfer(data->xfer); 1240 1.18 kiyohara if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) 1241 1.1 joerg return error; 1242 1.1 joerg 1243 1.1 joerg sc->tx_queued++; 1244 1.35 jmcneill sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1245 1.1 joerg 1246 1.1 joerg return 0; 1247 1.1 joerg } 1248 1.1 joerg 1249 1.35 jmcneill static void 1250 1.1 joerg rum_start(struct ifnet *ifp) 1251 1.1 joerg { 1252 1.1 joerg struct rum_softc *sc = ifp->if_softc; 1253 1.1 joerg struct ieee80211com *ic = &sc->sc_ic; 1254 1.1 joerg struct ether_header *eh; 1255 1.1 joerg struct ieee80211_node *ni; 1256 1.1 joerg struct mbuf *m0; 1257 1.1 joerg 1258 1.35 jmcneill if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1259 1.35 jmcneill return; 1260 1.35 jmcneill 1261 1.1 joerg for (;;) { 1262 1.1 joerg IF_POLL(&ic->ic_mgtq, m0); 1263 1.1 joerg if (m0 != NULL) { 1264 1.35 jmcneill if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1265 1.1 joerg ifp->if_flags |= IFF_OACTIVE; 1266 1.1 joerg break; 1267 1.1 joerg } 1268 1.1 joerg IF_DEQUEUE(&ic->ic_mgtq, m0); 1269 1.1 joerg 1270 1.53 ozaki ni = M_GETCTX(m0, struct ieee80211_node *); 1271 1.54 ozaki M_CLEARCTX(m0); 1272 1.61 msaitoh bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT); 1273 1.35 jmcneill if (rum_tx_data(sc, m0, ni) != 0) 1274 1.1 joerg break; 1275 1.1 joerg 1276 1.1 joerg } else { 1277 1.1 joerg if (ic->ic_state != IEEE80211_S_RUN) 1278 1.1 joerg break; 1279 1.1 joerg IFQ_POLL(&ifp->if_snd, m0); 1280 1.1 joerg if (m0 == NULL) 1281 1.1 joerg break; 1282 1.35 jmcneill if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1283 1.1 joerg ifp->if_flags |= IFF_OACTIVE; 1284 1.1 joerg break; 1285 1.1 joerg } 1286 1.1 joerg IFQ_DEQUEUE(&ifp->if_snd, m0); 1287 1.37 pgoyette if (m0->m_len < (int)sizeof(struct ether_header) && 1288 1.1 joerg !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 1289 1.1 joerg continue; 1290 1.1 joerg 1291 1.1 joerg eh = mtod(m0, struct ether_header *); 1292 1.1 joerg ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1293 1.1 joerg if (ni == NULL) { 1294 1.1 joerg m_freem(m0); 1295 1.1 joerg continue; 1296 1.1 joerg } 1297 1.61 msaitoh bpf_mtap(ifp, m0, BPF_D_OUT); 1298 1.1 joerg m0 = ieee80211_encap(ic, m0, ni); 1299 1.1 joerg if (m0 == NULL) { 1300 1.1 joerg ieee80211_free_node(ni); 1301 1.1 joerg continue; 1302 1.1 joerg } 1303 1.61 msaitoh bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT); 1304 1.1 joerg if (rum_tx_data(sc, m0, ni) != 0) { 1305 1.1 joerg ieee80211_free_node(ni); 1306 1.66 thorpej if_statinc(ifp, if_oerrors); 1307 1.1 joerg break; 1308 1.1 joerg } 1309 1.1 joerg } 1310 1.1 joerg 1311 1.1 joerg sc->sc_tx_timer = 5; 1312 1.1 joerg ifp->if_timer = 1; 1313 1.1 joerg } 1314 1.1 joerg } 1315 1.1 joerg 1316 1.35 jmcneill static void 1317 1.1 joerg rum_watchdog(struct ifnet *ifp) 1318 1.1 joerg { 1319 1.1 joerg struct rum_softc *sc = ifp->if_softc; 1320 1.1 joerg struct ieee80211com *ic = &sc->sc_ic; 1321 1.1 joerg 1322 1.1 joerg ifp->if_timer = 0; 1323 1.1 joerg 1324 1.1 joerg if (sc->sc_tx_timer > 0) { 1325 1.1 joerg if (--sc->sc_tx_timer == 0) { 1326 1.33 dyoung printf("%s: device timeout\n", device_xname(sc->sc_dev)); 1327 1.1 joerg /*rum_init(ifp); XXX needs a process context! */ 1328 1.66 thorpej if_statinc(ifp, if_oerrors); 1329 1.1 joerg return; 1330 1.1 joerg } 1331 1.1 joerg ifp->if_timer = 1; 1332 1.1 joerg } 1333 1.1 joerg 1334 1.1 joerg ieee80211_watchdog(ic); 1335 1.1 joerg } 1336 1.1 joerg 1337 1.35 jmcneill static int 1338 1.7 christos rum_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1339 1.1 joerg { 1340 1.36 jmcneill #define IS_RUNNING(ifp) \ 1341 1.36 jmcneill (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING)) 1342 1.36 jmcneill 1343 1.1 joerg struct rum_softc *sc = ifp->if_softc; 1344 1.1 joerg struct ieee80211com *ic = &sc->sc_ic; 1345 1.1 joerg int s, error = 0; 1346 1.1 joerg 1347 1.1 joerg s = splnet(); 1348 1.1 joerg 1349 1.1 joerg switch (cmd) { 1350 1.1 joerg case SIOCSIFFLAGS: 1351 1.24 dyoung if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1352 1.24 dyoung break; 1353 1.24 dyoung switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 1354 1.24 dyoung case IFF_UP|IFF_RUNNING: 1355 1.24 dyoung rum_update_promisc(sc); 1356 1.24 dyoung break; 1357 1.24 dyoung case IFF_UP: 1358 1.24 dyoung rum_init(ifp); 1359 1.24 dyoung break; 1360 1.24 dyoung case IFF_RUNNING: 1361 1.24 dyoung rum_stop(ifp, 1); 1362 1.24 dyoung break; 1363 1.24 dyoung case 0: 1364 1.24 dyoung break; 1365 1.1 joerg } 1366 1.1 joerg break; 1367 1.1 joerg 1368 1.36 jmcneill case SIOCADDMULTI: 1369 1.36 jmcneill case SIOCDELMULTI: 1370 1.36 jmcneill if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 1371 1.36 jmcneill error = 0; 1372 1.36 jmcneill } 1373 1.36 jmcneill break; 1374 1.36 jmcneill 1375 1.1 joerg default: 1376 1.1 joerg error = ieee80211_ioctl(ic, cmd, data); 1377 1.1 joerg } 1378 1.1 joerg 1379 1.1 joerg if (error == ENETRESET) { 1380 1.36 jmcneill if (IS_RUNNING(ifp) && 1381 1.36 jmcneill (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 1382 1.1 joerg rum_init(ifp); 1383 1.1 joerg error = 0; 1384 1.1 joerg } 1385 1.1 joerg 1386 1.1 joerg splx(s); 1387 1.1 joerg 1388 1.1 joerg return error; 1389 1.36 jmcneill #undef IS_RUNNING 1390 1.1 joerg } 1391 1.1 joerg 1392 1.35 jmcneill static void 1393 1.1 joerg rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1394 1.1 joerg { 1395 1.1 joerg usb_device_request_t req; 1396 1.1 joerg usbd_status error; 1397 1.1 joerg 1398 1.1 joerg req.bmRequestType = UT_READ_VENDOR_DEVICE; 1399 1.1 joerg req.bRequest = RT2573_READ_EEPROM; 1400 1.1 joerg USETW(req.wValue, 0); 1401 1.1 joerg USETW(req.wIndex, addr); 1402 1.1 joerg USETW(req.wLength, len); 1403 1.1 joerg 1404 1.1 joerg error = usbd_do_request(sc->sc_udev, &req, buf); 1405 1.1 joerg if (error != 0) { 1406 1.1 joerg printf("%s: could not read EEPROM: %s\n", 1407 1.33 dyoung device_xname(sc->sc_dev), usbd_errstr(error)); 1408 1.70 riastrad memset(buf, 0, len); 1409 1.1 joerg } 1410 1.1 joerg } 1411 1.1 joerg 1412 1.35 jmcneill static uint32_t 1413 1.1 joerg rum_read(struct rum_softc *sc, uint16_t reg) 1414 1.1 joerg { 1415 1.1 joerg uint32_t val; 1416 1.1 joerg 1417 1.52 skrll rum_read_multi(sc, reg, &val, sizeof(val)); 1418 1.1 joerg 1419 1.1 joerg return le32toh(val); 1420 1.1 joerg } 1421 1.1 joerg 1422 1.35 jmcneill static void 1423 1.1 joerg rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1424 1.1 joerg { 1425 1.1 joerg usb_device_request_t req; 1426 1.1 joerg usbd_status error; 1427 1.1 joerg 1428 1.1 joerg req.bmRequestType = UT_READ_VENDOR_DEVICE; 1429 1.1 joerg req.bRequest = RT2573_READ_MULTI_MAC; 1430 1.1 joerg USETW(req.wValue, 0); 1431 1.1 joerg USETW(req.wIndex, reg); 1432 1.1 joerg USETW(req.wLength, len); 1433 1.1 joerg 1434 1.1 joerg error = usbd_do_request(sc->sc_udev, &req, buf); 1435 1.1 joerg if (error != 0) { 1436 1.1 joerg printf("%s: could not multi read MAC register: %s\n", 1437 1.33 dyoung device_xname(sc->sc_dev), usbd_errstr(error)); 1438 1.70 riastrad memset(buf, 0, len); 1439 1.1 joerg } 1440 1.1 joerg } 1441 1.1 joerg 1442 1.35 jmcneill static void 1443 1.1 joerg rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1444 1.1 joerg { 1445 1.1 joerg uint32_t tmp = htole32(val); 1446 1.1 joerg 1447 1.52 skrll rum_write_multi(sc, reg, &tmp, sizeof(tmp)); 1448 1.1 joerg } 1449 1.1 joerg 1450 1.35 jmcneill static void 1451 1.1 joerg rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1452 1.1 joerg { 1453 1.1 joerg usb_device_request_t req; 1454 1.1 joerg usbd_status error; 1455 1.48 zafer int offset; 1456 1.1 joerg 1457 1.1 joerg req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1458 1.1 joerg req.bRequest = RT2573_WRITE_MULTI_MAC; 1459 1.1 joerg USETW(req.wValue, 0); 1460 1.1 joerg 1461 1.48 zafer /* write at most 64 bytes at a time */ 1462 1.48 zafer for (offset = 0; offset < len; offset += 64) { 1463 1.48 zafer USETW(req.wIndex, reg + offset); 1464 1.48 zafer USETW(req.wLength, MIN(len - offset, 64)); 1465 1.48 zafer 1466 1.48 zafer error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset); 1467 1.48 zafer if (error != 0) { 1468 1.48 zafer printf("%s: could not multi write MAC register: %s\n", 1469 1.48 zafer device_xname(sc->sc_dev), usbd_errstr(error)); 1470 1.48 zafer } 1471 1.1 joerg } 1472 1.1 joerg } 1473 1.1 joerg 1474 1.35 jmcneill static void 1475 1.1 joerg rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1476 1.1 joerg { 1477 1.1 joerg uint32_t tmp; 1478 1.1 joerg int ntries; 1479 1.1 joerg 1480 1.1 joerg for (ntries = 0; ntries < 5; ntries++) { 1481 1.1 joerg if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1482 1.1 joerg break; 1483 1.1 joerg } 1484 1.1 joerg if (ntries == 5) { 1485 1.33 dyoung printf("%s: could not write to BBP\n", device_xname(sc->sc_dev)); 1486 1.1 joerg return; 1487 1.1 joerg } 1488 1.1 joerg 1489 1.1 joerg tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1490 1.1 joerg rum_write(sc, RT2573_PHY_CSR3, tmp); 1491 1.1 joerg } 1492 1.1 joerg 1493 1.35 jmcneill static uint8_t 1494 1.1 joerg rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1495 1.1 joerg { 1496 1.1 joerg uint32_t val; 1497 1.1 joerg int ntries; 1498 1.1 joerg 1499 1.1 joerg for (ntries = 0; ntries < 5; ntries++) { 1500 1.1 joerg if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1501 1.1 joerg break; 1502 1.1 joerg } 1503 1.1 joerg if (ntries == 5) { 1504 1.33 dyoung printf("%s: could not read BBP\n", device_xname(sc->sc_dev)); 1505 1.1 joerg return 0; 1506 1.1 joerg } 1507 1.1 joerg 1508 1.1 joerg val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1509 1.1 joerg rum_write(sc, RT2573_PHY_CSR3, val); 1510 1.1 joerg 1511 1.1 joerg for (ntries = 0; ntries < 100; ntries++) { 1512 1.1 joerg val = rum_read(sc, RT2573_PHY_CSR3); 1513 1.1 joerg if (!(val & RT2573_BBP_BUSY)) 1514 1.1 joerg return val & 0xff; 1515 1.1 joerg DELAY(1); 1516 1.1 joerg } 1517 1.1 joerg 1518 1.33 dyoung printf("%s: could not read BBP\n", device_xname(sc->sc_dev)); 1519 1.1 joerg return 0; 1520 1.1 joerg } 1521 1.1 joerg 1522 1.35 jmcneill static void 1523 1.1 joerg rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1524 1.1 joerg { 1525 1.1 joerg uint32_t tmp; 1526 1.1 joerg int ntries; 1527 1.1 joerg 1528 1.1 joerg for (ntries = 0; ntries < 5; ntries++) { 1529 1.1 joerg if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1530 1.1 joerg break; 1531 1.1 joerg } 1532 1.1 joerg if (ntries == 5) { 1533 1.33 dyoung printf("%s: could not write to RF\n", device_xname(sc->sc_dev)); 1534 1.1 joerg return; 1535 1.1 joerg } 1536 1.1 joerg 1537 1.1 joerg tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1538 1.1 joerg (reg & 3); 1539 1.1 joerg rum_write(sc, RT2573_PHY_CSR4, tmp); 1540 1.1 joerg 1541 1.1 joerg /* remember last written value in sc */ 1542 1.1 joerg sc->rf_regs[reg] = val; 1543 1.1 joerg 1544 1.68 christos DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff)); 1545 1.1 joerg } 1546 1.1 joerg 1547 1.35 jmcneill static void 1548 1.1 joerg rum_select_antenna(struct rum_softc *sc) 1549 1.1 joerg { 1550 1.1 joerg uint8_t bbp4, bbp77; 1551 1.1 joerg uint32_t tmp; 1552 1.1 joerg 1553 1.1 joerg bbp4 = rum_bbp_read(sc, 4); 1554 1.1 joerg bbp77 = rum_bbp_read(sc, 77); 1555 1.1 joerg 1556 1.1 joerg /* TBD */ 1557 1.1 joerg 1558 1.1 joerg /* make sure Rx is disabled before switching antenna */ 1559 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR0); 1560 1.1 joerg rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1561 1.1 joerg 1562 1.1 joerg rum_bbp_write(sc, 4, bbp4); 1563 1.1 joerg rum_bbp_write(sc, 77, bbp77); 1564 1.1 joerg 1565 1.1 joerg rum_write(sc, RT2573_TXRX_CSR0, tmp); 1566 1.1 joerg } 1567 1.1 joerg 1568 1.1 joerg /* 1569 1.1 joerg * Enable multi-rate retries for frames sent at OFDM rates. 1570 1.1 joerg * In 802.11b/g mode, allow fallback to CCK rates. 1571 1.1 joerg */ 1572 1.35 jmcneill static void 1573 1.1 joerg rum_enable_mrr(struct rum_softc *sc) 1574 1.1 joerg { 1575 1.1 joerg struct ieee80211com *ic = &sc->sc_ic; 1576 1.1 joerg uint32_t tmp; 1577 1.1 joerg 1578 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR4); 1579 1.1 joerg 1580 1.1 joerg tmp &= ~RT2573_MRR_CCK_FALLBACK; 1581 1.1 joerg if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 1582 1.1 joerg tmp |= RT2573_MRR_CCK_FALLBACK; 1583 1.1 joerg tmp |= RT2573_MRR_ENABLED; 1584 1.1 joerg 1585 1.1 joerg rum_write(sc, RT2573_TXRX_CSR4, tmp); 1586 1.1 joerg } 1587 1.1 joerg 1588 1.35 jmcneill static void 1589 1.1 joerg rum_set_txpreamble(struct rum_softc *sc) 1590 1.1 joerg { 1591 1.1 joerg uint32_t tmp; 1592 1.1 joerg 1593 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR4); 1594 1.1 joerg 1595 1.1 joerg tmp &= ~RT2573_SHORT_PREAMBLE; 1596 1.1 joerg if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1597 1.1 joerg tmp |= RT2573_SHORT_PREAMBLE; 1598 1.1 joerg 1599 1.1 joerg rum_write(sc, RT2573_TXRX_CSR4, tmp); 1600 1.1 joerg } 1601 1.1 joerg 1602 1.35 jmcneill static void 1603 1.1 joerg rum_set_basicrates(struct rum_softc *sc) 1604 1.1 joerg { 1605 1.1 joerg struct ieee80211com *ic = &sc->sc_ic; 1606 1.1 joerg 1607 1.1 joerg /* update basic rate set */ 1608 1.1 joerg if (ic->ic_curmode == IEEE80211_MODE_11B) { 1609 1.1 joerg /* 11b basic rates: 1, 2Mbps */ 1610 1.1 joerg rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1611 1.18 kiyohara } else if (ic->ic_curmode == IEEE80211_MODE_11A) { 1612 1.1 joerg /* 11a basic rates: 6, 12, 24Mbps */ 1613 1.1 joerg rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1614 1.1 joerg } else { 1615 1.18 kiyohara /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1616 1.18 kiyohara rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1617 1.1 joerg } 1618 1.1 joerg } 1619 1.1 joerg 1620 1.1 joerg /* 1621 1.1 joerg * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1622 1.1 joerg * driver. 1623 1.1 joerg */ 1624 1.35 jmcneill static void 1625 1.1 joerg rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1626 1.1 joerg { 1627 1.1 joerg uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1628 1.1 joerg uint32_t tmp; 1629 1.1 joerg 1630 1.1 joerg /* update all BBP registers that depend on the band */ 1631 1.1 joerg bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1632 1.1 joerg bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1633 1.1 joerg if (IEEE80211_IS_CHAN_5GHZ(c)) { 1634 1.1 joerg bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1635 1.1 joerg bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1636 1.1 joerg } 1637 1.1 joerg if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1638 1.1 joerg (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1639 1.1 joerg bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1640 1.1 joerg } 1641 1.1 joerg 1642 1.1 joerg sc->bbp17 = bbp17; 1643 1.1 joerg rum_bbp_write(sc, 17, bbp17); 1644 1.1 joerg rum_bbp_write(sc, 96, bbp96); 1645 1.1 joerg rum_bbp_write(sc, 104, bbp104); 1646 1.1 joerg 1647 1.1 joerg if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1648 1.1 joerg (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1649 1.1 joerg rum_bbp_write(sc, 75, 0x80); 1650 1.1 joerg rum_bbp_write(sc, 86, 0x80); 1651 1.1 joerg rum_bbp_write(sc, 88, 0x80); 1652 1.1 joerg } 1653 1.1 joerg 1654 1.1 joerg rum_bbp_write(sc, 35, bbp35); 1655 1.1 joerg rum_bbp_write(sc, 97, bbp97); 1656 1.1 joerg rum_bbp_write(sc, 98, bbp98); 1657 1.1 joerg 1658 1.1 joerg tmp = rum_read(sc, RT2573_PHY_CSR0); 1659 1.1 joerg tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1660 1.1 joerg if (IEEE80211_IS_CHAN_2GHZ(c)) 1661 1.1 joerg tmp |= RT2573_PA_PE_2GHZ; 1662 1.1 joerg else 1663 1.1 joerg tmp |= RT2573_PA_PE_5GHZ; 1664 1.1 joerg rum_write(sc, RT2573_PHY_CSR0, tmp); 1665 1.1 joerg 1666 1.1 joerg /* 802.11a uses a 16 microseconds short interframe space */ 1667 1.1 joerg sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; 1668 1.1 joerg } 1669 1.1 joerg 1670 1.35 jmcneill static void 1671 1.1 joerg rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1672 1.1 joerg { 1673 1.1 joerg struct ieee80211com *ic = &sc->sc_ic; 1674 1.1 joerg const struct rfprog *rfprog; 1675 1.1 joerg uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1676 1.1 joerg int8_t power; 1677 1.1 joerg u_int i, chan; 1678 1.1 joerg 1679 1.1 joerg chan = ieee80211_chan2ieee(ic, c); 1680 1.1 joerg if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1681 1.1 joerg return; 1682 1.1 joerg 1683 1.1 joerg /* select the appropriate RF settings based on what EEPROM says */ 1684 1.1 joerg rfprog = (sc->rf_rev == RT2573_RF_5225 || 1685 1.1 joerg sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1686 1.1 joerg 1687 1.1 joerg /* find the settings for this channel (we know it exists) */ 1688 1.1 joerg for (i = 0; rfprog[i].chan != chan; i++); 1689 1.1 joerg 1690 1.1 joerg power = sc->txpow[i]; 1691 1.1 joerg if (power < 0) { 1692 1.1 joerg bbp94 += power; 1693 1.1 joerg power = 0; 1694 1.1 joerg } else if (power > 31) { 1695 1.1 joerg bbp94 += power - 31; 1696 1.1 joerg power = 31; 1697 1.1 joerg } 1698 1.1 joerg 1699 1.1 joerg /* 1700 1.1 joerg * If we are switching from the 2GHz band to the 5GHz band or 1701 1.1 joerg * vice-versa, BBP registers need to be reprogrammed. 1702 1.1 joerg */ 1703 1.1 joerg if (c->ic_flags != ic->ic_curchan->ic_flags) { 1704 1.1 joerg rum_select_band(sc, c); 1705 1.1 joerg rum_select_antenna(sc); 1706 1.1 joerg } 1707 1.1 joerg ic->ic_curchan = c; 1708 1.1 joerg 1709 1.1 joerg rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1710 1.1 joerg rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1711 1.1 joerg rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1712 1.1 joerg rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1713 1.1 joerg 1714 1.1 joerg rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1715 1.1 joerg rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1716 1.1 joerg rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1717 1.1 joerg rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1718 1.1 joerg 1719 1.1 joerg rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1720 1.1 joerg rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1721 1.1 joerg rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1722 1.1 joerg rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1723 1.1 joerg 1724 1.1 joerg DELAY(10); 1725 1.1 joerg 1726 1.1 joerg /* enable smart mode for MIMO-capable RFs */ 1727 1.1 joerg bbp3 = rum_bbp_read(sc, 3); 1728 1.1 joerg 1729 1.1 joerg bbp3 &= ~RT2573_SMART_MODE; 1730 1.1 joerg if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1731 1.1 joerg bbp3 |= RT2573_SMART_MODE; 1732 1.1 joerg 1733 1.1 joerg rum_bbp_write(sc, 3, bbp3); 1734 1.1 joerg 1735 1.1 joerg if (bbp94 != RT2573_BBPR94_DEFAULT) 1736 1.1 joerg rum_bbp_write(sc, 94, bbp94); 1737 1.1 joerg } 1738 1.1 joerg 1739 1.1 joerg /* 1740 1.1 joerg * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1741 1.1 joerg * and HostAP operating modes. 1742 1.1 joerg */ 1743 1.35 jmcneill static void 1744 1.1 joerg rum_enable_tsf_sync(struct rum_softc *sc) 1745 1.1 joerg { 1746 1.1 joerg struct ieee80211com *ic = &sc->sc_ic; 1747 1.1 joerg uint32_t tmp; 1748 1.1 joerg 1749 1.1 joerg if (ic->ic_opmode != IEEE80211_M_STA) { 1750 1.1 joerg /* 1751 1.1 joerg * Change default 16ms TBTT adjustment to 8ms. 1752 1.1 joerg * Must be done before enabling beacon generation. 1753 1.1 joerg */ 1754 1.1 joerg rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1755 1.1 joerg } 1756 1.1 joerg 1757 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1758 1.1 joerg 1759 1.1 joerg /* set beacon interval (in 1/16ms unit) */ 1760 1.1 joerg tmp |= ic->ic_bss->ni_intval * 16; 1761 1.1 joerg 1762 1.1 joerg tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1763 1.1 joerg if (ic->ic_opmode == IEEE80211_M_STA) 1764 1.1 joerg tmp |= RT2573_TSF_MODE(1); 1765 1.1 joerg else 1766 1.1 joerg tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1767 1.1 joerg 1768 1.1 joerg rum_write(sc, RT2573_TXRX_CSR9, tmp); 1769 1.1 joerg } 1770 1.1 joerg 1771 1.35 jmcneill static void 1772 1.1 joerg rum_update_slot(struct rum_softc *sc) 1773 1.1 joerg { 1774 1.1 joerg struct ieee80211com *ic = &sc->sc_ic; 1775 1.1 joerg uint8_t slottime; 1776 1.1 joerg uint32_t tmp; 1777 1.1 joerg 1778 1.1 joerg slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1779 1.1 joerg 1780 1.1 joerg tmp = rum_read(sc, RT2573_MAC_CSR9); 1781 1.1 joerg tmp = (tmp & ~0xff) | slottime; 1782 1.1 joerg rum_write(sc, RT2573_MAC_CSR9, tmp); 1783 1.1 joerg 1784 1.1 joerg DPRINTF(("setting slot time to %uus\n", slottime)); 1785 1.1 joerg } 1786 1.1 joerg 1787 1.35 jmcneill static void 1788 1.1 joerg rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1789 1.1 joerg { 1790 1.1 joerg uint32_t tmp; 1791 1.1 joerg 1792 1.1 joerg tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1793 1.1 joerg rum_write(sc, RT2573_MAC_CSR4, tmp); 1794 1.1 joerg 1795 1.1 joerg tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1796 1.1 joerg rum_write(sc, RT2573_MAC_CSR5, tmp); 1797 1.1 joerg } 1798 1.1 joerg 1799 1.35 jmcneill static void 1800 1.1 joerg rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1801 1.1 joerg { 1802 1.1 joerg uint32_t tmp; 1803 1.1 joerg 1804 1.1 joerg tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1805 1.1 joerg rum_write(sc, RT2573_MAC_CSR2, tmp); 1806 1.1 joerg 1807 1.1 joerg tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1808 1.1 joerg rum_write(sc, RT2573_MAC_CSR3, tmp); 1809 1.1 joerg } 1810 1.1 joerg 1811 1.35 jmcneill static void 1812 1.1 joerg rum_update_promisc(struct rum_softc *sc) 1813 1.1 joerg { 1814 1.1 joerg struct ifnet *ifp = sc->sc_ic.ic_ifp; 1815 1.1 joerg uint32_t tmp; 1816 1.1 joerg 1817 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR0); 1818 1.1 joerg 1819 1.1 joerg tmp &= ~RT2573_DROP_NOT_TO_ME; 1820 1.1 joerg if (!(ifp->if_flags & IFF_PROMISC)) 1821 1.1 joerg tmp |= RT2573_DROP_NOT_TO_ME; 1822 1.1 joerg 1823 1.1 joerg rum_write(sc, RT2573_TXRX_CSR0, tmp); 1824 1.1 joerg 1825 1.1 joerg DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1826 1.1 joerg "entering" : "leaving")); 1827 1.1 joerg } 1828 1.1 joerg 1829 1.35 jmcneill static const char * 1830 1.1 joerg rum_get_rf(int rev) 1831 1.1 joerg { 1832 1.1 joerg switch (rev) { 1833 1.1 joerg case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1834 1.1 joerg case RT2573_RF_2528: return "RT2528"; 1835 1.1 joerg case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1836 1.1 joerg case RT2573_RF_5226: return "RT5226"; 1837 1.1 joerg default: return "unknown"; 1838 1.1 joerg } 1839 1.1 joerg } 1840 1.1 joerg 1841 1.35 jmcneill static void 1842 1.1 joerg rum_read_eeprom(struct rum_softc *sc) 1843 1.1 joerg { 1844 1.1 joerg struct ieee80211com *ic = &sc->sc_ic; 1845 1.1 joerg uint16_t val; 1846 1.1 joerg #ifdef RUM_DEBUG 1847 1.1 joerg int i; 1848 1.1 joerg #endif 1849 1.1 joerg 1850 1.1 joerg /* read MAC/BBP type */ 1851 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2); 1852 1.1 joerg sc->macbbp_rev = le16toh(val); 1853 1.1 joerg 1854 1.1 joerg /* read MAC address */ 1855 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6); 1856 1.1 joerg 1857 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1858 1.1 joerg val = le16toh(val); 1859 1.1 joerg sc->rf_rev = (val >> 11) & 0x1f; 1860 1.1 joerg sc->hw_radio = (val >> 10) & 0x1; 1861 1.1 joerg sc->rx_ant = (val >> 4) & 0x3; 1862 1.1 joerg sc->tx_ant = (val >> 2) & 0x3; 1863 1.1 joerg sc->nb_ant = val & 0x3; 1864 1.1 joerg 1865 1.1 joerg DPRINTF(("RF revision=%d\n", sc->rf_rev)); 1866 1.1 joerg 1867 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1868 1.1 joerg val = le16toh(val); 1869 1.1 joerg sc->ext_5ghz_lna = (val >> 6) & 0x1; 1870 1.1 joerg sc->ext_2ghz_lna = (val >> 4) & 0x1; 1871 1.1 joerg 1872 1.1 joerg DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1873 1.1 joerg sc->ext_2ghz_lna, sc->ext_5ghz_lna)); 1874 1.1 joerg 1875 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1876 1.1 joerg val = le16toh(val); 1877 1.1 joerg if ((val & 0xff) != 0xff) 1878 1.1 joerg sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1879 1.1 joerg 1880 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1881 1.1 joerg val = le16toh(val); 1882 1.1 joerg if ((val & 0xff) != 0xff) 1883 1.1 joerg sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1884 1.1 joerg 1885 1.1 joerg DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1886 1.1 joerg sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); 1887 1.1 joerg 1888 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1889 1.1 joerg val = le16toh(val); 1890 1.1 joerg if ((val & 0xff) != 0xff) 1891 1.1 joerg sc->rffreq = val & 0xff; 1892 1.1 joerg 1893 1.1 joerg DPRINTF(("RF freq=%d\n", sc->rffreq)); 1894 1.1 joerg 1895 1.1 joerg /* read Tx power for all a/b/g channels */ 1896 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1897 1.1 joerg /* XXX default Tx power for 802.11a channels */ 1898 1.52 skrll memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14); 1899 1.1 joerg #ifdef RUM_DEBUG 1900 1.1 joerg for (i = 0; i < 14; i++) 1901 1.1 joerg DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i])); 1902 1.1 joerg #endif 1903 1.1 joerg 1904 1.1 joerg /* read default values for BBP registers */ 1905 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1906 1.1 joerg #ifdef RUM_DEBUG 1907 1.1 joerg for (i = 0; i < 14; i++) { 1908 1.1 joerg if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1909 1.1 joerg continue; 1910 1.1 joerg DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1911 1.1 joerg sc->bbp_prom[i].val)); 1912 1.1 joerg } 1913 1.1 joerg #endif 1914 1.1 joerg } 1915 1.1 joerg 1916 1.35 jmcneill static int 1917 1.1 joerg rum_bbp_init(struct rum_softc *sc) 1918 1.1 joerg { 1919 1.37 pgoyette unsigned int i, ntries; 1920 1.1 joerg uint8_t val; 1921 1.1 joerg 1922 1.1 joerg /* wait for BBP to be ready */ 1923 1.1 joerg for (ntries = 0; ntries < 100; ntries++) { 1924 1.1 joerg val = rum_bbp_read(sc, 0); 1925 1.1 joerg if (val != 0 && val != 0xff) 1926 1.1 joerg break; 1927 1.1 joerg DELAY(1000); 1928 1.1 joerg } 1929 1.1 joerg if (ntries == 100) { 1930 1.1 joerg printf("%s: timeout waiting for BBP\n", 1931 1.33 dyoung device_xname(sc->sc_dev)); 1932 1.1 joerg return EIO; 1933 1.1 joerg } 1934 1.1 joerg 1935 1.1 joerg /* initialize BBP registers to default values */ 1936 1.52 skrll for (i = 0; i < __arraycount(rum_def_bbp); i++) 1937 1.1 joerg rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1938 1.1 joerg 1939 1.1 joerg /* write vendor-specific BBP values (from EEPROM) */ 1940 1.1 joerg for (i = 0; i < 16; i++) { 1941 1.1 joerg if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1942 1.1 joerg continue; 1943 1.1 joerg rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1944 1.1 joerg } 1945 1.1 joerg 1946 1.1 joerg return 0; 1947 1.1 joerg } 1948 1.1 joerg 1949 1.35 jmcneill static int 1950 1.1 joerg rum_init(struct ifnet *ifp) 1951 1.1 joerg { 1952 1.1 joerg struct rum_softc *sc = ifp->if_softc; 1953 1.1 joerg struct ieee80211com *ic = &sc->sc_ic; 1954 1.1 joerg uint32_t tmp; 1955 1.1 joerg usbd_status error = 0; 1956 1.37 pgoyette unsigned int i, ntries; 1957 1.1 joerg 1958 1.1 joerg if ((sc->sc_flags & RT2573_FWLOADED) == 0) { 1959 1.1 joerg if (rum_attachhook(sc)) 1960 1.1 joerg goto fail; 1961 1.1 joerg } 1962 1.1 joerg 1963 1.1 joerg rum_stop(ifp, 0); 1964 1.1 joerg 1965 1.1 joerg /* initialize MAC registers to default values */ 1966 1.52 skrll for (i = 0; i < __arraycount(rum_def_mac); i++) 1967 1.1 joerg rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1968 1.1 joerg 1969 1.1 joerg /* set host ready */ 1970 1.1 joerg rum_write(sc, RT2573_MAC_CSR1, 3); 1971 1.1 joerg rum_write(sc, RT2573_MAC_CSR1, 0); 1972 1.1 joerg 1973 1.1 joerg /* wait for BBP/RF to wakeup */ 1974 1.1 joerg for (ntries = 0; ntries < 1000; ntries++) { 1975 1.1 joerg if (rum_read(sc, RT2573_MAC_CSR12) & 8) 1976 1.1 joerg break; 1977 1.1 joerg rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 1978 1.1 joerg DELAY(1000); 1979 1.1 joerg } 1980 1.1 joerg if (ntries == 1000) { 1981 1.1 joerg printf("%s: timeout waiting for BBP/RF to wakeup\n", 1982 1.33 dyoung device_xname(sc->sc_dev)); 1983 1.1 joerg goto fail; 1984 1.1 joerg } 1985 1.1 joerg 1986 1.1 joerg if ((error = rum_bbp_init(sc)) != 0) 1987 1.1 joerg goto fail; 1988 1.1 joerg 1989 1.1 joerg /* select default channel */ 1990 1.1 joerg rum_select_band(sc, ic->ic_curchan); 1991 1.1 joerg rum_select_antenna(sc); 1992 1.1 joerg rum_set_chan(sc, ic->ic_curchan); 1993 1.1 joerg 1994 1.1 joerg /* clear STA registers */ 1995 1.52 skrll rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 1996 1.1 joerg 1997 1.15 dyoung IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 1998 1.1 joerg rum_set_macaddr(sc, ic->ic_myaddr); 1999 1.1 joerg 2000 1.1 joerg /* initialize ASIC */ 2001 1.1 joerg rum_write(sc, RT2573_MAC_CSR1, 4); 2002 1.1 joerg 2003 1.1 joerg /* 2004 1.1 joerg * Allocate xfer for AMRR statistics requests. 2005 1.1 joerg */ 2006 1.52 skrll struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev); 2007 1.52 skrll error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0, 2008 1.52 skrll &sc->amrr_xfer); 2009 1.52 skrll if (error) { 2010 1.1 joerg printf("%s: could not allocate AMRR xfer\n", 2011 1.33 dyoung device_xname(sc->sc_dev)); 2012 1.1 joerg goto fail; 2013 1.1 joerg } 2014 1.1 joerg 2015 1.1 joerg /* 2016 1.1 joerg * Open Tx and Rx USB bulk pipes. 2017 1.1 joerg */ 2018 1.1 joerg error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 2019 1.1 joerg &sc->sc_tx_pipeh); 2020 1.1 joerg if (error != 0) { 2021 1.1 joerg printf("%s: could not open Tx pipe: %s\n", 2022 1.33 dyoung device_xname(sc->sc_dev), usbd_errstr(error)); 2023 1.1 joerg goto fail; 2024 1.1 joerg } 2025 1.1 joerg 2026 1.1 joerg error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 2027 1.1 joerg &sc->sc_rx_pipeh); 2028 1.1 joerg if (error != 0) { 2029 1.1 joerg printf("%s: could not open Rx pipe: %s\n", 2030 1.33 dyoung device_xname(sc->sc_dev), usbd_errstr(error)); 2031 1.1 joerg goto fail; 2032 1.1 joerg } 2033 1.1 joerg 2034 1.1 joerg /* 2035 1.1 joerg * Allocate Tx and Rx xfer queues. 2036 1.1 joerg */ 2037 1.1 joerg error = rum_alloc_tx_list(sc); 2038 1.1 joerg if (error != 0) { 2039 1.1 joerg printf("%s: could not allocate Tx list\n", 2040 1.33 dyoung device_xname(sc->sc_dev)); 2041 1.1 joerg goto fail; 2042 1.1 joerg } 2043 1.1 joerg 2044 1.1 joerg error = rum_alloc_rx_list(sc); 2045 1.1 joerg if (error != 0) { 2046 1.1 joerg printf("%s: could not allocate Rx list\n", 2047 1.33 dyoung device_xname(sc->sc_dev)); 2048 1.1 joerg goto fail; 2049 1.1 joerg } 2050 1.1 joerg 2051 1.1 joerg /* 2052 1.1 joerg * Start up the receive pipe. 2053 1.1 joerg */ 2054 1.18 kiyohara for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 2055 1.52 skrll struct rum_rx_data *data; 2056 1.52 skrll 2057 1.1 joerg data = &sc->rx_data[i]; 2058 1.1 joerg 2059 1.52 skrll usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES, 2060 1.52 skrll USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 2061 1.18 kiyohara error = usbd_transfer(data->xfer); 2062 1.18 kiyohara if (error != USBD_NORMAL_COMPLETION && 2063 1.18 kiyohara error != USBD_IN_PROGRESS) { 2064 1.18 kiyohara printf("%s: could not queue Rx transfer\n", 2065 1.33 dyoung device_xname(sc->sc_dev)); 2066 1.18 kiyohara goto fail; 2067 1.18 kiyohara } 2068 1.1 joerg } 2069 1.1 joerg 2070 1.1 joerg /* update Rx filter */ 2071 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2072 1.1 joerg 2073 1.1 joerg tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2074 1.1 joerg if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2075 1.1 joerg tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2076 1.1 joerg RT2573_DROP_ACKCTS; 2077 1.1 joerg if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2078 1.1 joerg tmp |= RT2573_DROP_TODS; 2079 1.1 joerg if (!(ifp->if_flags & IFF_PROMISC)) 2080 1.1 joerg tmp |= RT2573_DROP_NOT_TO_ME; 2081 1.1 joerg } 2082 1.1 joerg rum_write(sc, RT2573_TXRX_CSR0, tmp); 2083 1.1 joerg 2084 1.1 joerg ifp->if_flags &= ~IFF_OACTIVE; 2085 1.1 joerg ifp->if_flags |= IFF_RUNNING; 2086 1.1 joerg 2087 1.1 joerg if (ic->ic_opmode == IEEE80211_M_MONITOR) 2088 1.1 joerg ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2089 1.1 joerg else 2090 1.1 joerg ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2091 1.1 joerg 2092 1.1 joerg return 0; 2093 1.1 joerg 2094 1.1 joerg fail: rum_stop(ifp, 1); 2095 1.1 joerg return error; 2096 1.1 joerg } 2097 1.1 joerg 2098 1.35 jmcneill static void 2099 1.1 joerg rum_stop(struct ifnet *ifp, int disable) 2100 1.1 joerg { 2101 1.1 joerg struct rum_softc *sc = ifp->if_softc; 2102 1.1 joerg struct ieee80211com *ic = &sc->sc_ic; 2103 1.1 joerg uint32_t tmp; 2104 1.1 joerg 2105 1.1 joerg ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2106 1.1 joerg 2107 1.1 joerg sc->sc_tx_timer = 0; 2108 1.1 joerg ifp->if_timer = 0; 2109 1.1 joerg ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2110 1.1 joerg 2111 1.1 joerg /* disable Rx */ 2112 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR0); 2113 1.1 joerg rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2114 1.1 joerg 2115 1.1 joerg /* reset ASIC */ 2116 1.1 joerg rum_write(sc, RT2573_MAC_CSR1, 3); 2117 1.1 joerg rum_write(sc, RT2573_MAC_CSR1, 0); 2118 1.1 joerg 2119 1.35 jmcneill if (sc->amrr_xfer != NULL) { 2120 1.52 skrll usbd_destroy_xfer(sc->amrr_xfer); 2121 1.35 jmcneill sc->amrr_xfer = NULL; 2122 1.35 jmcneill } 2123 1.35 jmcneill 2124 1.1 joerg if (sc->sc_rx_pipeh != NULL) { 2125 1.1 joerg usbd_abort_pipe(sc->sc_rx_pipeh); 2126 1.52 skrll } 2127 1.52 skrll 2128 1.52 skrll if (sc->sc_tx_pipeh != NULL) { 2129 1.52 skrll usbd_abort_pipe(sc->sc_tx_pipeh); 2130 1.52 skrll } 2131 1.52 skrll 2132 1.52 skrll rum_free_rx_list(sc); 2133 1.52 skrll rum_free_tx_list(sc); 2134 1.52 skrll 2135 1.52 skrll if (sc->sc_rx_pipeh != NULL) { 2136 1.1 joerg usbd_close_pipe(sc->sc_rx_pipeh); 2137 1.1 joerg sc->sc_rx_pipeh = NULL; 2138 1.1 joerg } 2139 1.1 joerg 2140 1.1 joerg if (sc->sc_tx_pipeh != NULL) { 2141 1.1 joerg usbd_close_pipe(sc->sc_tx_pipeh); 2142 1.1 joerg sc->sc_tx_pipeh = NULL; 2143 1.1 joerg } 2144 1.1 joerg } 2145 1.1 joerg 2146 1.35 jmcneill static int 2147 1.1 joerg rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size) 2148 1.1 joerg { 2149 1.1 joerg usb_device_request_t req; 2150 1.1 joerg uint16_t reg = RT2573_MCU_CODE_BASE; 2151 1.1 joerg usbd_status error; 2152 1.1 joerg 2153 1.1 joerg /* copy firmware image into NIC */ 2154 1.1 joerg for (; size >= 4; reg += 4, ucode += 4, size -= 4) 2155 1.1 joerg rum_write(sc, reg, UGETDW(ucode)); 2156 1.1 joerg 2157 1.1 joerg req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2158 1.1 joerg req.bRequest = RT2573_MCU_CNTL; 2159 1.1 joerg USETW(req.wValue, RT2573_MCU_RUN); 2160 1.1 joerg USETW(req.wIndex, 0); 2161 1.1 joerg USETW(req.wLength, 0); 2162 1.1 joerg 2163 1.1 joerg error = usbd_do_request(sc->sc_udev, &req, NULL); 2164 1.1 joerg if (error != 0) { 2165 1.1 joerg printf("%s: could not run firmware: %s\n", 2166 1.33 dyoung device_xname(sc->sc_dev), usbd_errstr(error)); 2167 1.1 joerg } 2168 1.1 joerg return error; 2169 1.1 joerg } 2170 1.1 joerg 2171 1.35 jmcneill static int 2172 1.1 joerg rum_prepare_beacon(struct rum_softc *sc) 2173 1.1 joerg { 2174 1.1 joerg struct ieee80211com *ic = &sc->sc_ic; 2175 1.1 joerg struct rum_tx_desc desc; 2176 1.1 joerg struct mbuf *m0; 2177 1.1 joerg int rate; 2178 1.1 joerg 2179 1.1 joerg m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo); 2180 1.1 joerg if (m0 == NULL) { 2181 1.21 cube aprint_error_dev(sc->sc_dev, 2182 1.21 cube "could not allocate beacon frame\n"); 2183 1.1 joerg return ENOBUFS; 2184 1.1 joerg } 2185 1.1 joerg 2186 1.1 joerg /* send beacons at the lowest available rate */ 2187 1.1 joerg rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 2188 1.1 joerg 2189 1.1 joerg rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2190 1.1 joerg m0->m_pkthdr.len, rate); 2191 1.1 joerg 2192 1.1 joerg /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2193 1.1 joerg rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2194 1.1 joerg 2195 1.1 joerg /* copy beacon header and payload into NIC memory */ 2196 1.1 joerg rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2197 1.1 joerg m0->m_pkthdr.len); 2198 1.1 joerg 2199 1.1 joerg m_freem(m0); 2200 1.1 joerg 2201 1.1 joerg return 0; 2202 1.1 joerg } 2203 1.1 joerg 2204 1.35 jmcneill static void 2205 1.18 kiyohara rum_newassoc(struct ieee80211_node *ni, int isnew) 2206 1.18 kiyohara { 2207 1.18 kiyohara /* start with lowest Tx rate */ 2208 1.18 kiyohara ni->ni_txrate = 0; 2209 1.18 kiyohara } 2210 1.18 kiyohara 2211 1.35 jmcneill static void 2212 1.1 joerg rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) 2213 1.1 joerg { 2214 1.1 joerg int i; 2215 1.1 joerg 2216 1.1 joerg /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2217 1.52 skrll rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 2218 1.1 joerg 2219 1.1 joerg ieee80211_amrr_node_init(&sc->amrr, &sc->amn); 2220 1.1 joerg 2221 1.1 joerg /* set rate to some reasonable initial value */ 2222 1.1 joerg for (i = ni->ni_rates.rs_nrates - 1; 2223 1.1 joerg i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2224 1.1 joerg i--); 2225 1.1 joerg ni->ni_txrate = i; 2226 1.1 joerg 2227 1.33 dyoung callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2228 1.1 joerg } 2229 1.1 joerg 2230 1.35 jmcneill static void 2231 1.1 joerg rum_amrr_timeout(void *arg) 2232 1.1 joerg { 2233 1.1 joerg struct rum_softc *sc = arg; 2234 1.1 joerg usb_device_request_t req; 2235 1.1 joerg 2236 1.1 joerg /* 2237 1.1 joerg * Asynchronously read statistic registers (cleared by read). 2238 1.1 joerg */ 2239 1.1 joerg req.bmRequestType = UT_READ_VENDOR_DEVICE; 2240 1.1 joerg req.bRequest = RT2573_READ_MULTI_MAC; 2241 1.1 joerg USETW(req.wValue, 0); 2242 1.1 joerg USETW(req.wIndex, RT2573_STA_CSR0); 2243 1.52 skrll USETW(req.wLength, sizeof(sc->sta)); 2244 1.1 joerg 2245 1.1 joerg usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, 2246 1.52 skrll USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0, 2247 1.1 joerg rum_amrr_update); 2248 1.1 joerg (void)usbd_transfer(sc->amrr_xfer); 2249 1.1 joerg } 2250 1.1 joerg 2251 1.35 jmcneill static void 2252 1.52 skrll rum_amrr_update(struct usbd_xfer *xfer, void *priv, 2253 1.1 joerg usbd_status status) 2254 1.1 joerg { 2255 1.1 joerg struct rum_softc *sc = (struct rum_softc *)priv; 2256 1.1 joerg struct ifnet *ifp = sc->sc_ic.ic_ifp; 2257 1.1 joerg 2258 1.1 joerg if (status != USBD_NORMAL_COMPLETION) { 2259 1.1 joerg printf("%s: could not retrieve Tx statistics - cancelling " 2260 1.33 dyoung "automatic rate control\n", device_xname(sc->sc_dev)); 2261 1.1 joerg return; 2262 1.1 joerg } 2263 1.1 joerg 2264 1.1 joerg /* count TX retry-fail as Tx errors */ 2265 1.66 thorpej if_statadd(ifp, if_oerrors, le32toh(sc->sta[5]) >> 16); 2266 1.1 joerg 2267 1.1 joerg sc->amn.amn_retrycnt = 2268 1.1 joerg (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */ 2269 1.1 joerg (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */ 2270 1.1 joerg (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 2271 1.1 joerg 2272 1.1 joerg sc->amn.amn_txcnt = 2273 1.1 joerg sc->amn.amn_retrycnt + 2274 1.1 joerg (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */ 2275 1.1 joerg 2276 1.1 joerg ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); 2277 1.1 joerg 2278 1.33 dyoung callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2279 1.1 joerg } 2280 1.1 joerg 2281 1.35 jmcneill static int 2282 1.33 dyoung rum_activate(device_t self, enum devact act) 2283 1.1 joerg { 2284 1.1 joerg switch (act) { 2285 1.1 joerg case DVACT_DEACTIVATE: 2286 1.1 joerg /*if_deactivate(&sc->sc_ic.ic_if);*/ 2287 1.30 dyoung return 0; 2288 1.30 dyoung default: 2289 1.35 jmcneill return 0; 2290 1.1 joerg } 2291 1.1 joerg } 2292 1.38 pgoyette 2293 1.64 christos MODULE(MODULE_CLASS_DRIVER, if_rum, NULL); 2294 1.38 pgoyette 2295 1.38 pgoyette #ifdef _MODULE 2296 1.38 pgoyette #include "ioconf.c" 2297 1.38 pgoyette #endif 2298 1.38 pgoyette 2299 1.38 pgoyette static int 2300 1.38 pgoyette if_rum_modcmd(modcmd_t cmd, void *aux) 2301 1.38 pgoyette { 2302 1.38 pgoyette int error = 0; 2303 1.38 pgoyette 2304 1.38 pgoyette switch (cmd) { 2305 1.38 pgoyette case MODULE_CMD_INIT: 2306 1.38 pgoyette #ifdef _MODULE 2307 1.39 pgoyette error = config_init_component(cfdriver_ioconf_rum, 2308 1.39 pgoyette cfattach_ioconf_rum, cfdata_ioconf_rum); 2309 1.38 pgoyette #endif 2310 1.38 pgoyette return error; 2311 1.38 pgoyette case MODULE_CMD_FINI: 2312 1.38 pgoyette #ifdef _MODULE 2313 1.39 pgoyette error = config_fini_component(cfdriver_ioconf_rum, 2314 1.39 pgoyette cfattach_ioconf_rum, cfdata_ioconf_rum); 2315 1.38 pgoyette #endif 2316 1.38 pgoyette return error; 2317 1.38 pgoyette default: 2318 1.38 pgoyette return ENOTTY; 2319 1.38 pgoyette } 2320 1.38 pgoyette } 2321