if_rum.c revision 1.3 1 1.1 joerg /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 1.3 christos /* $NetBSD: if_rum.c,v 1.3 2006/11/25 21:35:08 christos Exp $ */
3 1.1 joerg
4 1.1 joerg /*-
5 1.1 joerg * Copyright (c) 2005, 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 1.1 joerg * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 1.1 joerg *
8 1.1 joerg * Permission to use, copy, modify, and distribute this software for any
9 1.1 joerg * purpose with or without fee is hereby granted, provided that the above
10 1.1 joerg * copyright notice and this permission notice appear in all copies.
11 1.1 joerg *
12 1.1 joerg * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 1.1 joerg * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 1.1 joerg * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 1.1 joerg * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 1.1 joerg * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 1.1 joerg * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 1.1 joerg * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 1.1 joerg */
20 1.1 joerg
21 1.1 joerg /*-
22 1.1 joerg * Ralink Technology RT2501USB/RT2601USB chipset driver
23 1.1 joerg * http://www.ralinktech.com/
24 1.1 joerg */
25 1.1 joerg
26 1.2 xtraeme #include <sys/cdefs.h>
27 1.3 christos __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.3 2006/11/25 21:35:08 christos Exp $");
28 1.2 xtraeme
29 1.1 joerg #include "bpfilter.h"
30 1.1 joerg
31 1.1 joerg #include <sys/param.h>
32 1.1 joerg #include <sys/sockio.h>
33 1.1 joerg #include <sys/sysctl.h>
34 1.1 joerg #include <sys/mbuf.h>
35 1.1 joerg #include <sys/kernel.h>
36 1.1 joerg #include <sys/socket.h>
37 1.1 joerg #include <sys/systm.h>
38 1.1 joerg #include <sys/malloc.h>
39 1.1 joerg #include <sys/conf.h>
40 1.1 joerg #include <sys/device.h>
41 1.1 joerg
42 1.1 joerg #include <machine/bus.h>
43 1.1 joerg #include <machine/endian.h>
44 1.1 joerg #include <machine/intr.h>
45 1.1 joerg
46 1.1 joerg #if NBPFILTER > 0
47 1.1 joerg #include <net/bpf.h>
48 1.1 joerg #endif
49 1.1 joerg #include <net/if.h>
50 1.1 joerg #include <net/if_arp.h>
51 1.1 joerg #include <net/if_dl.h>
52 1.1 joerg #include <net/if_ether.h>
53 1.1 joerg #include <net/if_media.h>
54 1.1 joerg #include <net/if_types.h>
55 1.1 joerg
56 1.1 joerg #include <netinet/in.h>
57 1.1 joerg #include <netinet/in_systm.h>
58 1.1 joerg #include <netinet/in_var.h>
59 1.1 joerg #include <netinet/ip.h>
60 1.1 joerg
61 1.1 joerg #include <net80211/ieee80211_netbsd.h>
62 1.1 joerg #include <net80211/ieee80211_var.h>
63 1.1 joerg #include <net80211/ieee80211_amrr.h>
64 1.1 joerg #include <net80211/ieee80211_radiotap.h>
65 1.1 joerg
66 1.1 joerg #include <dev/firmload.h>
67 1.1 joerg
68 1.1 joerg #include <dev/usb/usb.h>
69 1.1 joerg #include <dev/usb/usbdi.h>
70 1.1 joerg #include <dev/usb/usbdi_util.h>
71 1.1 joerg #include <dev/usb/usbdevs.h>
72 1.1 joerg
73 1.1 joerg #include <dev/usb/if_rumreg.h>
74 1.1 joerg #include <dev/usb/if_rumvar.h>
75 1.1 joerg
76 1.1 joerg #ifdef USB_DEBUG
77 1.1 joerg #define RUM_DEBUG
78 1.1 joerg #endif
79 1.1 joerg
80 1.1 joerg #ifdef RUM_DEBUG
81 1.1 joerg #define DPRINTF(x) do { if (rum_debug) logprintf x; } while (0)
82 1.1 joerg #define DPRINTFN(n, x) do { if (rum_debug >= (n)) logprintf x; } while (0)
83 1.1 joerg int rum_debug = 0;
84 1.1 joerg #else
85 1.1 joerg #define DPRINTF(x)
86 1.1 joerg #define DPRINTFN(n, x)
87 1.1 joerg #endif
88 1.1 joerg
89 1.1 joerg /* various supported device vendors/products */
90 1.1 joerg static const struct usb_devno rum_devs[] = {
91 1.1 joerg { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573 },
92 1.1 joerg { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
93 1.1 joerg { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
94 1.1 joerg { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
95 1.1 joerg { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
96 1.1 joerg { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
97 1.1 joerg { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
98 1.1 joerg { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
99 1.1 joerg { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
100 1.1 joerg { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
101 1.1 joerg { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
102 1.1 joerg { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
103 1.1 joerg { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
104 1.1 joerg { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
105 1.1 joerg { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
106 1.1 joerg { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
107 1.1 joerg { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
108 1.1 joerg { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
109 1.1 joerg { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
110 1.1 joerg { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
111 1.3 christos { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2573 },
112 1.1 joerg { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
113 1.1 joerg { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
114 1.1 joerg { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
115 1.1 joerg { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }
116 1.1 joerg };
117 1.1 joerg
118 1.1 joerg Static int rum_attachhook(void *);
119 1.1 joerg Static int rum_alloc_tx_list(struct rum_softc *);
120 1.1 joerg Static void rum_free_tx_list(struct rum_softc *);
121 1.1 joerg Static int rum_alloc_rx_list(struct rum_softc *);
122 1.1 joerg Static void rum_free_rx_list(struct rum_softc *);
123 1.1 joerg Static int rum_media_change(struct ifnet *);
124 1.1 joerg Static void rum_next_scan(void *);
125 1.1 joerg Static void rum_task(void *);
126 1.1 joerg Static int rum_newstate(struct ieee80211com *,
127 1.1 joerg enum ieee80211_state, int);
128 1.1 joerg Static void rum_txeof(usbd_xfer_handle, usbd_private_handle,
129 1.1 joerg usbd_status);
130 1.1 joerg Static void rum_rxeof(usbd_xfer_handle, usbd_private_handle,
131 1.1 joerg usbd_status);
132 1.1 joerg #if NBPFILTER > 0
133 1.1 joerg Static uint8_t rum_rxrate(struct rum_rx_desc *);
134 1.1 joerg #endif
135 1.1 joerg Static int rum_ack_rate(struct ieee80211com *, int);
136 1.1 joerg Static uint16_t rum_txtime(int, int, uint32_t);
137 1.1 joerg Static uint8_t rum_plcp_signal(int);
138 1.1 joerg Static void rum_setup_tx_desc(struct rum_softc *,
139 1.1 joerg struct rum_tx_desc *, uint32_t, uint16_t, int,
140 1.1 joerg int);
141 1.1 joerg Static int rum_tx_mgt(struct rum_softc *, struct mbuf *,
142 1.1 joerg struct ieee80211_node *);
143 1.1 joerg Static int rum_tx_data(struct rum_softc *, struct mbuf *,
144 1.1 joerg struct ieee80211_node *);
145 1.1 joerg Static void rum_start(struct ifnet *);
146 1.1 joerg Static void rum_watchdog(struct ifnet *);
147 1.1 joerg Static int rum_ioctl(struct ifnet *, u_long, caddr_t);
148 1.1 joerg Static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
149 1.1 joerg int);
150 1.1 joerg Static uint32_t rum_read(struct rum_softc *, uint16_t);
151 1.1 joerg Static void rum_read_multi(struct rum_softc *, uint16_t, void *,
152 1.1 joerg int);
153 1.1 joerg Static void rum_write(struct rum_softc *, uint16_t, uint32_t);
154 1.1 joerg Static void rum_write_multi(struct rum_softc *, uint16_t, void *,
155 1.1 joerg size_t);
156 1.1 joerg Static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
157 1.1 joerg Static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
158 1.1 joerg Static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
159 1.1 joerg Static void rum_select_antenna(struct rum_softc *);
160 1.1 joerg Static void rum_enable_mrr(struct rum_softc *);
161 1.1 joerg Static void rum_set_txpreamble(struct rum_softc *);
162 1.1 joerg Static void rum_set_basicrates(struct rum_softc *);
163 1.1 joerg Static void rum_select_band(struct rum_softc *,
164 1.1 joerg struct ieee80211_channel *);
165 1.1 joerg Static void rum_set_chan(struct rum_softc *,
166 1.1 joerg struct ieee80211_channel *);
167 1.1 joerg Static void rum_enable_tsf_sync(struct rum_softc *);
168 1.1 joerg Static void rum_update_slot(struct rum_softc *);
169 1.1 joerg Static void rum_set_bssid(struct rum_softc *, const uint8_t *);
170 1.1 joerg Static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
171 1.1 joerg Static void rum_update_promisc(struct rum_softc *);
172 1.1 joerg Static const char *rum_get_rf(int);
173 1.1 joerg Static void rum_read_eeprom(struct rum_softc *);
174 1.1 joerg Static int rum_bbp_init(struct rum_softc *);
175 1.1 joerg Static int rum_init(struct ifnet *);
176 1.1 joerg Static void rum_stop(struct ifnet *, int);
177 1.1 joerg Static int rum_load_microcode(struct rum_softc *, const u_char *,
178 1.1 joerg size_t);
179 1.1 joerg Static int rum_prepare_beacon(struct rum_softc *);
180 1.1 joerg Static void rum_amrr_start(struct rum_softc *,
181 1.1 joerg struct ieee80211_node *);
182 1.1 joerg Static void rum_amrr_timeout(void *);
183 1.1 joerg Static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
184 1.1 joerg usbd_status status);
185 1.1 joerg
186 1.1 joerg /*
187 1.1 joerg * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
188 1.1 joerg */
189 1.1 joerg static const struct ieee80211_rateset rum_rateset_11a =
190 1.1 joerg { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
191 1.1 joerg
192 1.1 joerg static const struct ieee80211_rateset rum_rateset_11b =
193 1.1 joerg { 4, { 2, 4, 11, 22 } };
194 1.1 joerg
195 1.1 joerg static const struct ieee80211_rateset rum_rateset_11g =
196 1.1 joerg { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
197 1.1 joerg
198 1.1 joerg static const struct {
199 1.1 joerg uint32_t reg;
200 1.1 joerg uint32_t val;
201 1.1 joerg } rum_def_mac[] = {
202 1.1 joerg RT2573_DEF_MAC
203 1.1 joerg };
204 1.1 joerg
205 1.1 joerg static const struct {
206 1.1 joerg uint8_t reg;
207 1.1 joerg uint8_t val;
208 1.1 joerg } rum_def_bbp[] = {
209 1.1 joerg RT2573_DEF_BBP
210 1.1 joerg };
211 1.1 joerg
212 1.1 joerg static const struct rfprog {
213 1.1 joerg uint8_t chan;
214 1.1 joerg uint32_t r1, r2, r3, r4;
215 1.1 joerg } rum_rf5226[] = {
216 1.1 joerg RT2573_RF5226
217 1.1 joerg }, rum_rf5225[] = {
218 1.1 joerg RT2573_RF5225
219 1.1 joerg };
220 1.1 joerg
221 1.1 joerg USB_DECLARE_DRIVER(rum);
222 1.1 joerg
223 1.1 joerg USB_MATCH(rum)
224 1.1 joerg {
225 1.1 joerg USB_MATCH_START(rum, uaa);
226 1.1 joerg
227 1.1 joerg if (uaa->iface != NULL)
228 1.1 joerg return UMATCH_NONE;
229 1.1 joerg
230 1.1 joerg return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
231 1.1 joerg UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
232 1.1 joerg }
233 1.1 joerg
234 1.1 joerg Static int
235 1.1 joerg rum_attachhook(void *xsc)
236 1.1 joerg {
237 1.1 joerg struct rum_softc *sc = xsc;
238 1.1 joerg firmware_handle_t fwh;
239 1.1 joerg const char *name = "rum-rt2573";
240 1.1 joerg u_char *ucode;
241 1.1 joerg size_t size;
242 1.1 joerg int error;
243 1.1 joerg
244 1.1 joerg if ((error = firmware_open("rum", name, &fwh)) != 0) {
245 1.1 joerg printf("%s: failed loadfirmware of file %s (error %d)\n",
246 1.1 joerg USBDEVNAME(sc->sc_dev), name, error);
247 1.1 joerg return error;
248 1.1 joerg }
249 1.1 joerg size = firmware_get_size(fwh);
250 1.1 joerg ucode = firmware_malloc(size);
251 1.1 joerg if (ucode == NULL) {
252 1.1 joerg printf("%s: failed to allocate firmware memory\n",
253 1.1 joerg USBDEVNAME(sc->sc_dev));
254 1.1 joerg firmware_close(fwh);
255 1.1 joerg return ENOMEM;;
256 1.1 joerg }
257 1.1 joerg error = firmware_read(fwh, 0, ucode, size);
258 1.1 joerg firmware_close(fwh);
259 1.1 joerg if (error != 0) {
260 1.1 joerg printf("%s: failed to read firmware (error %d)\n",
261 1.1 joerg USBDEVNAME(sc->sc_dev), error);
262 1.1 joerg firmware_free(ucode, 0);
263 1.1 joerg return error;
264 1.1 joerg }
265 1.1 joerg
266 1.1 joerg if (rum_load_microcode(sc, ucode, size) != 0) {
267 1.1 joerg printf("%s: could not load 8051 microcode\n",
268 1.1 joerg USBDEVNAME(sc->sc_dev));
269 1.1 joerg firmware_free(ucode, 0);
270 1.1 joerg return ENXIO;
271 1.1 joerg }
272 1.1 joerg
273 1.1 joerg firmware_free(ucode, 0);
274 1.1 joerg sc->sc_flags |= RT2573_FWLOADED;
275 1.1 joerg
276 1.1 joerg return 0;
277 1.1 joerg }
278 1.1 joerg
279 1.1 joerg USB_ATTACH(rum)
280 1.1 joerg {
281 1.1 joerg USB_ATTACH_START(rum, sc, uaa);
282 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
283 1.1 joerg struct ifnet *ifp = &sc->sc_if;
284 1.1 joerg usb_interface_descriptor_t *id;
285 1.1 joerg usb_endpoint_descriptor_t *ed;
286 1.1 joerg usbd_status error;
287 1.1 joerg char *devinfop;
288 1.1 joerg int i, ntries;
289 1.1 joerg uint32_t tmp;
290 1.1 joerg
291 1.1 joerg sc->sc_udev = uaa->device;
292 1.1 joerg sc->sc_flags = 0;
293 1.1 joerg
294 1.1 joerg devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
295 1.1 joerg USB_ATTACH_SETUP;
296 1.1 joerg printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
297 1.1 joerg usbd_devinfo_free(devinfop);
298 1.1 joerg
299 1.1 joerg if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
300 1.1 joerg printf("%s: could not set configuration no\n",
301 1.1 joerg USBDEVNAME(sc->sc_dev));
302 1.1 joerg USB_ATTACH_ERROR_RETURN;
303 1.1 joerg }
304 1.1 joerg
305 1.1 joerg /* get the first interface handle */
306 1.1 joerg error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
307 1.1 joerg &sc->sc_iface);
308 1.1 joerg if (error != 0) {
309 1.1 joerg printf("%s: could not get interface handle\n",
310 1.1 joerg USBDEVNAME(sc->sc_dev));
311 1.1 joerg USB_ATTACH_ERROR_RETURN;
312 1.1 joerg }
313 1.1 joerg
314 1.1 joerg /*
315 1.1 joerg * Find endpoints.
316 1.1 joerg */
317 1.1 joerg id = usbd_get_interface_descriptor(sc->sc_iface);
318 1.1 joerg
319 1.1 joerg sc->sc_rx_no = sc->sc_tx_no = -1;
320 1.1 joerg for (i = 0; i < id->bNumEndpoints; i++) {
321 1.1 joerg ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
322 1.1 joerg if (ed == NULL) {
323 1.1 joerg printf("%s: no endpoint descriptor for iface %d\n",
324 1.1 joerg USBDEVNAME(sc->sc_dev), i);
325 1.1 joerg USB_ATTACH_ERROR_RETURN;
326 1.1 joerg }
327 1.1 joerg
328 1.1 joerg if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
329 1.1 joerg UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
330 1.1 joerg sc->sc_rx_no = ed->bEndpointAddress;
331 1.1 joerg else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
332 1.1 joerg UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
333 1.1 joerg sc->sc_tx_no = ed->bEndpointAddress;
334 1.1 joerg }
335 1.1 joerg if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
336 1.1 joerg printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
337 1.1 joerg USB_ATTACH_ERROR_RETURN;
338 1.1 joerg }
339 1.1 joerg
340 1.1 joerg usb_init_task(&sc->sc_task, rum_task, sc);
341 1.1 joerg callout_init(&sc->scan_ch);
342 1.1 joerg
343 1.1 joerg sc->amrr.amrr_min_success_threshold = 1;
344 1.1 joerg sc->amrr.amrr_max_success_threshold = 10;
345 1.1 joerg callout_init(&sc->amrr_ch);
346 1.1 joerg
347 1.1 joerg /* retrieve RT2573 rev. no */
348 1.1 joerg for (ntries = 0; ntries < 1000; ntries++) {
349 1.1 joerg if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
350 1.1 joerg break;
351 1.1 joerg DELAY(1000);
352 1.1 joerg }
353 1.1 joerg if (ntries == 1000) {
354 1.1 joerg printf("%s: timeout waiting for chip to settle\n",
355 1.1 joerg USBDEVNAME(sc->sc_dev));
356 1.1 joerg USB_ATTACH_ERROR_RETURN;
357 1.1 joerg }
358 1.1 joerg
359 1.1 joerg /* retrieve MAC address and various other things from EEPROM */
360 1.1 joerg rum_read_eeprom(sc);
361 1.1 joerg
362 1.1 joerg printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
363 1.1 joerg USBDEVNAME(sc->sc_dev), sc->macbbp_rev, tmp,
364 1.1 joerg rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
365 1.1 joerg
366 1.1 joerg ic->ic_ifp = ifp;
367 1.1 joerg ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
368 1.1 joerg ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
369 1.1 joerg ic->ic_state = IEEE80211_S_INIT;
370 1.1 joerg
371 1.1 joerg /* set device capabilities */
372 1.1 joerg ic->ic_caps =
373 1.1 joerg IEEE80211_C_IBSS | /* IBSS mode supported */
374 1.1 joerg IEEE80211_C_MONITOR | /* monitor mode supported */
375 1.1 joerg IEEE80211_C_HOSTAP | /* HostAp mode supported */
376 1.1 joerg IEEE80211_C_TXPMGT | /* tx power management */
377 1.1 joerg IEEE80211_C_SHPREAMBLE | /* short preamble supported */
378 1.1 joerg IEEE80211_C_SHSLOT | /* short slot time supported */
379 1.1 joerg IEEE80211_C_WPA; /* 802.11i */
380 1.1 joerg
381 1.1 joerg if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
382 1.1 joerg /* set supported .11a rates */
383 1.1 joerg ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
384 1.1 joerg
385 1.1 joerg /* set supported .11a channels */
386 1.1 joerg for (i = 34; i <= 46; i += 4) {
387 1.1 joerg ic->ic_channels[i].ic_freq =
388 1.1 joerg ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
389 1.1 joerg ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
390 1.1 joerg }
391 1.1 joerg for (i = 36; i <= 64; i += 4) {
392 1.1 joerg ic->ic_channels[i].ic_freq =
393 1.1 joerg ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
394 1.1 joerg ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
395 1.1 joerg }
396 1.1 joerg for (i = 100; i <= 140; i += 4) {
397 1.1 joerg ic->ic_channels[i].ic_freq =
398 1.1 joerg ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
399 1.1 joerg ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
400 1.1 joerg }
401 1.1 joerg for (i = 149; i <= 165; i += 4) {
402 1.1 joerg ic->ic_channels[i].ic_freq =
403 1.1 joerg ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
404 1.1 joerg ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
405 1.1 joerg }
406 1.1 joerg }
407 1.1 joerg
408 1.1 joerg /* set supported .11b and .11g rates */
409 1.1 joerg ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
410 1.1 joerg ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
411 1.1 joerg
412 1.1 joerg /* set supported .11b and .11g channels (1 through 14) */
413 1.1 joerg for (i = 1; i <= 14; i++) {
414 1.1 joerg ic->ic_channels[i].ic_freq =
415 1.1 joerg ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
416 1.1 joerg ic->ic_channels[i].ic_flags =
417 1.1 joerg IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
418 1.1 joerg IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
419 1.1 joerg }
420 1.1 joerg
421 1.1 joerg ifp->if_softc = sc;
422 1.1 joerg ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
423 1.1 joerg ifp->if_init = rum_init;
424 1.1 joerg ifp->if_ioctl = rum_ioctl;
425 1.1 joerg ifp->if_start = rum_start;
426 1.1 joerg ifp->if_watchdog = rum_watchdog;
427 1.1 joerg IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
428 1.1 joerg IFQ_SET_READY(&ifp->if_snd);
429 1.1 joerg memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
430 1.1 joerg
431 1.1 joerg if_attach(ifp);
432 1.1 joerg ieee80211_ifattach(ic);
433 1.1 joerg
434 1.1 joerg /* override state transition machine */
435 1.1 joerg sc->sc_newstate = ic->ic_newstate;
436 1.1 joerg ic->ic_newstate = rum_newstate;
437 1.1 joerg ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
438 1.1 joerg
439 1.1 joerg #if NBPFILTER > 0
440 1.1 joerg bpfattach2(ifp, DLT_IEEE802_11_RADIO,
441 1.1 joerg sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf);
442 1.1 joerg
443 1.1 joerg sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
444 1.1 joerg sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
445 1.1 joerg sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
446 1.1 joerg
447 1.1 joerg sc->sc_txtap_len = sizeof sc->sc_txtapu;
448 1.1 joerg sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
449 1.1 joerg sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
450 1.1 joerg #endif
451 1.1 joerg
452 1.1 joerg ieee80211_announce(ic);
453 1.1 joerg
454 1.1 joerg usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
455 1.1 joerg USBDEV(sc->sc_dev));
456 1.1 joerg
457 1.1 joerg USB_ATTACH_SUCCESS_RETURN;
458 1.1 joerg }
459 1.1 joerg
460 1.1 joerg USB_DETACH(rum)
461 1.1 joerg {
462 1.1 joerg USB_DETACH_START(rum, sc);
463 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
464 1.1 joerg struct ifnet *ifp = &sc->sc_if;
465 1.1 joerg int s;
466 1.1 joerg
467 1.1 joerg s = splusb();
468 1.1 joerg
469 1.1 joerg rum_stop(ifp, 1);
470 1.1 joerg usb_rem_task(sc->sc_udev, &sc->sc_task);
471 1.1 joerg callout_stop(&sc->scan_ch);
472 1.1 joerg callout_stop(&sc->amrr_ch);
473 1.1 joerg
474 1.1 joerg if (sc->amrr_xfer != NULL) {
475 1.1 joerg usbd_free_xfer(sc->amrr_xfer);
476 1.1 joerg sc->amrr_xfer = NULL;
477 1.1 joerg }
478 1.1 joerg
479 1.1 joerg if (sc->sc_rx_pipeh != NULL) {
480 1.1 joerg usbd_abort_pipe(sc->sc_rx_pipeh);
481 1.1 joerg usbd_close_pipe(sc->sc_rx_pipeh);
482 1.1 joerg }
483 1.1 joerg
484 1.1 joerg if (sc->sc_tx_pipeh != NULL) {
485 1.1 joerg usbd_abort_pipe(sc->sc_tx_pipeh);
486 1.1 joerg usbd_close_pipe(sc->sc_tx_pipeh);
487 1.1 joerg }
488 1.1 joerg
489 1.1 joerg rum_free_rx_list(sc);
490 1.1 joerg rum_free_tx_list(sc);
491 1.1 joerg
492 1.1 joerg #if NBPFILTER > 0
493 1.1 joerg bpfdetach(ifp);
494 1.1 joerg #endif
495 1.1 joerg ieee80211_ifdetach(ic); /* free all nodes */
496 1.1 joerg if_detach(ifp);
497 1.1 joerg
498 1.1 joerg splx(s);
499 1.1 joerg
500 1.1 joerg usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
501 1.1 joerg USBDEV(sc->sc_dev));
502 1.1 joerg
503 1.1 joerg return 0;
504 1.1 joerg }
505 1.1 joerg
506 1.1 joerg Static int
507 1.1 joerg rum_alloc_tx_list(struct rum_softc *sc)
508 1.1 joerg {
509 1.1 joerg struct rum_tx_data *data;
510 1.1 joerg int i, error;
511 1.1 joerg
512 1.1 joerg sc->tx_queued = 0;
513 1.1 joerg
514 1.1 joerg for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
515 1.1 joerg data = &sc->tx_data[i];
516 1.1 joerg
517 1.1 joerg data->sc = sc;
518 1.1 joerg
519 1.1 joerg data->xfer = usbd_alloc_xfer(sc->sc_udev);
520 1.1 joerg if (data->xfer == NULL) {
521 1.1 joerg printf("%s: could not allocate tx xfer\n",
522 1.1 joerg USBDEVNAME(sc->sc_dev));
523 1.1 joerg error = ENOMEM;
524 1.1 joerg goto fail;
525 1.1 joerg }
526 1.1 joerg
527 1.1 joerg data->buf = usbd_alloc_buffer(data->xfer,
528 1.1 joerg RT2573_TX_DESC_SIZE + MCLBYTES);
529 1.1 joerg if (data->buf == NULL) {
530 1.1 joerg printf("%s: could not allocate tx buffer\n",
531 1.1 joerg USBDEVNAME(sc->sc_dev));
532 1.1 joerg error = ENOMEM;
533 1.1 joerg goto fail;
534 1.1 joerg }
535 1.1 joerg
536 1.1 joerg /* clean Tx descriptor */
537 1.1 joerg bzero(data->buf, RT2573_TX_DESC_SIZE);
538 1.1 joerg }
539 1.1 joerg
540 1.1 joerg return 0;
541 1.1 joerg
542 1.1 joerg fail: rum_free_tx_list(sc);
543 1.1 joerg return error;
544 1.1 joerg }
545 1.1 joerg
546 1.1 joerg Static void
547 1.1 joerg rum_free_tx_list(struct rum_softc *sc)
548 1.1 joerg {
549 1.1 joerg struct rum_tx_data *data;
550 1.1 joerg int i;
551 1.1 joerg
552 1.1 joerg for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
553 1.1 joerg data = &sc->tx_data[i];
554 1.1 joerg
555 1.1 joerg if (data->xfer != NULL) {
556 1.1 joerg usbd_free_xfer(data->xfer);
557 1.1 joerg data->xfer = NULL;
558 1.1 joerg }
559 1.1 joerg
560 1.1 joerg if (data->ni != NULL) {
561 1.1 joerg ieee80211_free_node(data->ni);
562 1.1 joerg data->ni = NULL;
563 1.1 joerg }
564 1.1 joerg }
565 1.1 joerg }
566 1.1 joerg
567 1.1 joerg Static int
568 1.1 joerg rum_alloc_rx_list(struct rum_softc *sc)
569 1.1 joerg {
570 1.1 joerg struct rum_rx_data *data;
571 1.1 joerg int i, error;
572 1.1 joerg
573 1.1 joerg for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
574 1.1 joerg data = &sc->rx_data[i];
575 1.1 joerg
576 1.1 joerg data->sc = sc;
577 1.1 joerg
578 1.1 joerg data->xfer = usbd_alloc_xfer(sc->sc_udev);
579 1.1 joerg if (data->xfer == NULL) {
580 1.1 joerg printf("%s: could not allocate rx xfer\n",
581 1.1 joerg USBDEVNAME(sc->sc_dev));
582 1.1 joerg error = ENOMEM;
583 1.1 joerg goto fail;
584 1.1 joerg }
585 1.1 joerg
586 1.1 joerg if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
587 1.1 joerg printf("%s: could not allocate rx buffer\n",
588 1.1 joerg USBDEVNAME(sc->sc_dev));
589 1.1 joerg error = ENOMEM;
590 1.1 joerg goto fail;
591 1.1 joerg }
592 1.1 joerg
593 1.1 joerg MGETHDR(data->m, M_DONTWAIT, MT_DATA);
594 1.1 joerg if (data->m == NULL) {
595 1.1 joerg printf("%s: could not allocate rx mbuf\n",
596 1.1 joerg USBDEVNAME(sc->sc_dev));
597 1.1 joerg error = ENOMEM;
598 1.1 joerg goto fail;
599 1.1 joerg }
600 1.1 joerg
601 1.1 joerg MCLGET(data->m, M_DONTWAIT);
602 1.1 joerg if (!(data->m->m_flags & M_EXT)) {
603 1.1 joerg printf("%s: could not allocate rx mbuf cluster\n",
604 1.1 joerg USBDEVNAME(sc->sc_dev));
605 1.1 joerg error = ENOMEM;
606 1.1 joerg goto fail;
607 1.1 joerg }
608 1.1 joerg
609 1.1 joerg data->buf = mtod(data->m, uint8_t *);
610 1.1 joerg }
611 1.1 joerg
612 1.1 joerg return 0;
613 1.1 joerg
614 1.1 joerg fail: rum_free_tx_list(sc);
615 1.1 joerg return error;
616 1.1 joerg }
617 1.1 joerg
618 1.1 joerg Static void
619 1.1 joerg rum_free_rx_list(struct rum_softc *sc)
620 1.1 joerg {
621 1.1 joerg struct rum_rx_data *data;
622 1.1 joerg int i;
623 1.1 joerg
624 1.1 joerg for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
625 1.1 joerg data = &sc->rx_data[i];
626 1.1 joerg
627 1.1 joerg if (data->xfer != NULL) {
628 1.1 joerg usbd_free_xfer(data->xfer);
629 1.1 joerg data->xfer = NULL;
630 1.1 joerg }
631 1.1 joerg
632 1.1 joerg if (data->m != NULL) {
633 1.1 joerg m_freem(data->m);
634 1.1 joerg data->m = NULL;
635 1.1 joerg }
636 1.1 joerg }
637 1.1 joerg }
638 1.1 joerg
639 1.1 joerg Static int
640 1.1 joerg rum_media_change(struct ifnet *ifp)
641 1.1 joerg {
642 1.1 joerg int error;
643 1.1 joerg
644 1.1 joerg error = ieee80211_media_change(ifp);
645 1.1 joerg if (error != ENETRESET)
646 1.1 joerg return error;
647 1.1 joerg
648 1.1 joerg if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
649 1.1 joerg rum_init(ifp);
650 1.1 joerg
651 1.1 joerg return 0;
652 1.1 joerg }
653 1.1 joerg
654 1.1 joerg /*
655 1.1 joerg * This function is called periodically (every 200ms) during scanning to
656 1.1 joerg * switch from one channel to another.
657 1.1 joerg */
658 1.1 joerg Static void
659 1.1 joerg rum_next_scan(void *arg)
660 1.1 joerg {
661 1.1 joerg struct rum_softc *sc = arg;
662 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
663 1.1 joerg
664 1.1 joerg if (ic->ic_state == IEEE80211_S_SCAN)
665 1.1 joerg ieee80211_next_scan(ic);
666 1.1 joerg }
667 1.1 joerg
668 1.1 joerg Static void
669 1.1 joerg rum_task(void *arg)
670 1.1 joerg {
671 1.1 joerg struct rum_softc *sc = arg;
672 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
673 1.1 joerg enum ieee80211_state ostate;
674 1.1 joerg struct ieee80211_node *ni;
675 1.1 joerg uint32_t tmp;
676 1.1 joerg
677 1.1 joerg ostate = ic->ic_state;
678 1.1 joerg
679 1.1 joerg switch (sc->sc_state) {
680 1.1 joerg case IEEE80211_S_INIT:
681 1.1 joerg if (ostate == IEEE80211_S_RUN) {
682 1.1 joerg /* abort TSF synchronization */
683 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR9);
684 1.1 joerg rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
685 1.1 joerg }
686 1.1 joerg break;
687 1.1 joerg
688 1.1 joerg case IEEE80211_S_SCAN:
689 1.1 joerg rum_set_chan(sc, ic->ic_curchan);
690 1.1 joerg callout_reset(&sc->scan_ch, hz / 5, rum_next_scan, sc);
691 1.1 joerg break;
692 1.1 joerg
693 1.1 joerg case IEEE80211_S_AUTH:
694 1.1 joerg rum_set_chan(sc, ic->ic_curchan);
695 1.1 joerg break;
696 1.1 joerg
697 1.1 joerg case IEEE80211_S_ASSOC:
698 1.1 joerg rum_set_chan(sc, ic->ic_curchan);
699 1.1 joerg break;
700 1.1 joerg
701 1.1 joerg case IEEE80211_S_RUN:
702 1.1 joerg rum_set_chan(sc, ic->ic_curchan);
703 1.1 joerg
704 1.1 joerg ni = ic->ic_bss;
705 1.1 joerg
706 1.1 joerg if (ic->ic_opmode != IEEE80211_M_MONITOR) {
707 1.1 joerg rum_update_slot(sc);
708 1.1 joerg rum_enable_mrr(sc);
709 1.1 joerg rum_set_txpreamble(sc);
710 1.1 joerg rum_set_basicrates(sc);
711 1.1 joerg rum_set_bssid(sc, ni->ni_bssid);
712 1.1 joerg }
713 1.1 joerg
714 1.1 joerg if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
715 1.1 joerg ic->ic_opmode == IEEE80211_M_IBSS)
716 1.1 joerg rum_prepare_beacon(sc);
717 1.1 joerg
718 1.1 joerg if (ic->ic_opmode != IEEE80211_M_MONITOR)
719 1.1 joerg rum_enable_tsf_sync(sc);
720 1.1 joerg
721 1.1 joerg /* enable automatic rate adaptation in STA mode */
722 1.1 joerg if (ic->ic_opmode == IEEE80211_M_STA &&
723 1.1 joerg ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
724 1.1 joerg rum_amrr_start(sc, ni);
725 1.1 joerg
726 1.1 joerg break;
727 1.1 joerg }
728 1.1 joerg
729 1.1 joerg sc->sc_newstate(ic, sc->sc_state, -1);
730 1.1 joerg }
731 1.1 joerg
732 1.1 joerg Static int
733 1.1 joerg rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
734 1.1 joerg {
735 1.1 joerg struct rum_softc *sc = ic->ic_ifp->if_softc;
736 1.1 joerg
737 1.1 joerg usb_rem_task(sc->sc_udev, &sc->sc_task);
738 1.1 joerg callout_stop(&sc->scan_ch);
739 1.1 joerg callout_stop(&sc->amrr_ch);
740 1.1 joerg
741 1.1 joerg /* do it in a process context */
742 1.1 joerg sc->sc_state = nstate;
743 1.1 joerg usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
744 1.1 joerg
745 1.1 joerg return 0;
746 1.1 joerg }
747 1.1 joerg
748 1.1 joerg /* quickly determine if a given rate is CCK or OFDM */
749 1.1 joerg #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
750 1.1 joerg
751 1.1 joerg #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
752 1.1 joerg #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
753 1.1 joerg
754 1.1 joerg Static void
755 1.1 joerg rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
756 1.1 joerg {
757 1.1 joerg struct rum_tx_data *data = priv;
758 1.1 joerg struct rum_softc *sc = data->sc;
759 1.1 joerg struct ifnet *ifp = &sc->sc_if;
760 1.1 joerg int s;
761 1.1 joerg
762 1.1 joerg if (status != USBD_NORMAL_COMPLETION) {
763 1.1 joerg if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
764 1.1 joerg return;
765 1.1 joerg
766 1.1 joerg printf("%s: could not transmit buffer: %s\n",
767 1.1 joerg USBDEVNAME(sc->sc_dev), usbd_errstr(status));
768 1.1 joerg
769 1.1 joerg if (status == USBD_STALLED)
770 1.1 joerg usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
771 1.1 joerg
772 1.1 joerg ifp->if_oerrors++;
773 1.1 joerg return;
774 1.1 joerg }
775 1.1 joerg
776 1.1 joerg s = splnet();
777 1.1 joerg
778 1.1 joerg m_freem(data->m);
779 1.1 joerg data->m = NULL;
780 1.1 joerg ieee80211_free_node(data->ni);
781 1.1 joerg data->ni = NULL;
782 1.1 joerg
783 1.1 joerg sc->tx_queued--;
784 1.1 joerg ifp->if_opackets++;
785 1.1 joerg
786 1.1 joerg DPRINTFN(10, ("tx done\n"));
787 1.1 joerg
788 1.1 joerg sc->sc_tx_timer = 0;
789 1.1 joerg ifp->if_flags &= ~IFF_OACTIVE;
790 1.1 joerg rum_start(ifp);
791 1.1 joerg
792 1.1 joerg splx(s);
793 1.1 joerg }
794 1.1 joerg
795 1.1 joerg Static void
796 1.1 joerg rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
797 1.1 joerg {
798 1.1 joerg struct rum_rx_data *data = priv;
799 1.1 joerg struct rum_softc *sc = data->sc;
800 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
801 1.1 joerg struct ifnet *ifp = &sc->sc_if;
802 1.1 joerg struct rum_rx_desc *desc;
803 1.1 joerg struct ieee80211_frame *wh;
804 1.1 joerg struct ieee80211_node *ni;
805 1.1 joerg struct mbuf *mnew, *m;
806 1.1 joerg int s, len;
807 1.1 joerg
808 1.1 joerg if (status != USBD_NORMAL_COMPLETION) {
809 1.1 joerg if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
810 1.1 joerg return;
811 1.1 joerg
812 1.1 joerg if (status == USBD_STALLED)
813 1.1 joerg usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
814 1.1 joerg goto skip;
815 1.1 joerg }
816 1.1 joerg
817 1.1 joerg usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
818 1.1 joerg
819 1.1 joerg if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
820 1.1 joerg DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
821 1.1 joerg len));
822 1.1 joerg ifp->if_ierrors++;
823 1.1 joerg goto skip;
824 1.1 joerg }
825 1.1 joerg
826 1.1 joerg desc = (struct rum_rx_desc *)data->buf;
827 1.1 joerg
828 1.1 joerg if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
829 1.1 joerg /*
830 1.1 joerg * This should not happen since we did not request to receive
831 1.1 joerg * those frames when we filled RT2573_TXRX_CSR0.
832 1.1 joerg */
833 1.1 joerg DPRINTFN(5, ("CRC error\n"));
834 1.1 joerg ifp->if_ierrors++;
835 1.1 joerg goto skip;
836 1.1 joerg }
837 1.1 joerg
838 1.1 joerg MGETHDR(mnew, M_DONTWAIT, MT_DATA);
839 1.1 joerg if (mnew == NULL) {
840 1.1 joerg printf("%s: could not allocate rx mbuf\n",
841 1.1 joerg USBDEVNAME(sc->sc_dev));
842 1.1 joerg ifp->if_ierrors++;
843 1.1 joerg goto skip;
844 1.1 joerg }
845 1.1 joerg
846 1.1 joerg MCLGET(mnew, M_DONTWAIT);
847 1.1 joerg if (!(mnew->m_flags & M_EXT)) {
848 1.1 joerg printf("%s: could not allocate rx mbuf cluster\n",
849 1.1 joerg USBDEVNAME(sc->sc_dev));
850 1.1 joerg m_freem(mnew);
851 1.1 joerg ifp->if_ierrors++;
852 1.1 joerg goto skip;
853 1.1 joerg }
854 1.1 joerg
855 1.1 joerg m = data->m;
856 1.1 joerg data->m = mnew;
857 1.1 joerg data->buf = mtod(data->m, uint8_t *);
858 1.1 joerg
859 1.1 joerg /* finalize mbuf */
860 1.1 joerg m->m_pkthdr.rcvif = ifp;
861 1.1 joerg m->m_data = (caddr_t)(desc + 1);
862 1.1 joerg m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
863 1.1 joerg
864 1.1 joerg s = splnet();
865 1.1 joerg
866 1.1 joerg #if NBPFILTER > 0
867 1.1 joerg if (sc->sc_drvbpf != NULL) {
868 1.1 joerg struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
869 1.1 joerg
870 1.1 joerg tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
871 1.1 joerg tap->wr_rate = rum_rxrate(desc);
872 1.1 joerg tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
873 1.1 joerg tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
874 1.1 joerg tap->wr_antenna = sc->rx_ant;
875 1.1 joerg tap->wr_antsignal = desc->rssi;
876 1.1 joerg
877 1.1 joerg bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
878 1.1 joerg }
879 1.1 joerg #endif
880 1.1 joerg
881 1.1 joerg wh = mtod(m, struct ieee80211_frame *);
882 1.1 joerg ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
883 1.1 joerg
884 1.1 joerg /* send the frame to the 802.11 layer */
885 1.1 joerg ieee80211_input(ic, m, ni, desc->rssi, 0);
886 1.1 joerg
887 1.1 joerg /* node is no longer needed */
888 1.1 joerg ieee80211_free_node(ni);
889 1.1 joerg
890 1.1 joerg splx(s);
891 1.1 joerg
892 1.1 joerg DPRINTFN(15, ("rx done\n"));
893 1.1 joerg
894 1.1 joerg skip: /* setup a new transfer */
895 1.1 joerg usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
896 1.1 joerg USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
897 1.1 joerg usbd_transfer(xfer);
898 1.1 joerg }
899 1.1 joerg
900 1.1 joerg /*
901 1.1 joerg * This function is only used by the Rx radiotap code. It returns the rate at
902 1.1 joerg * which a given frame was received.
903 1.1 joerg */
904 1.1 joerg #if NBPFILTER > 0
905 1.1 joerg Static uint8_t
906 1.1 joerg rum_rxrate(struct rum_rx_desc *desc)
907 1.1 joerg {
908 1.1 joerg if (le32toh(desc->flags) & RT2573_RX_OFDM) {
909 1.1 joerg /* reverse function of rum_plcp_signal */
910 1.1 joerg switch (desc->rate) {
911 1.1 joerg case 0xb: return 12;
912 1.1 joerg case 0xf: return 18;
913 1.1 joerg case 0xa: return 24;
914 1.1 joerg case 0xe: return 36;
915 1.1 joerg case 0x9: return 48;
916 1.1 joerg case 0xd: return 72;
917 1.1 joerg case 0x8: return 96;
918 1.1 joerg case 0xc: return 108;
919 1.1 joerg }
920 1.1 joerg } else {
921 1.1 joerg if (desc->rate == 10)
922 1.1 joerg return 2;
923 1.1 joerg if (desc->rate == 20)
924 1.1 joerg return 4;
925 1.1 joerg if (desc->rate == 55)
926 1.1 joerg return 11;
927 1.1 joerg if (desc->rate == 110)
928 1.1 joerg return 22;
929 1.1 joerg }
930 1.1 joerg return 2; /* should not get there */
931 1.1 joerg }
932 1.1 joerg #endif
933 1.1 joerg
934 1.1 joerg /*
935 1.1 joerg * Return the expected ack rate for a frame transmitted at rate `rate'.
936 1.1 joerg * XXX: this should depend on the destination node basic rate set.
937 1.1 joerg */
938 1.1 joerg Static int
939 1.1 joerg rum_ack_rate(struct ieee80211com *ic, int rate)
940 1.1 joerg {
941 1.1 joerg switch (rate) {
942 1.1 joerg /* CCK rates */
943 1.1 joerg case 2:
944 1.1 joerg return 2;
945 1.1 joerg case 4:
946 1.1 joerg case 11:
947 1.1 joerg case 22:
948 1.1 joerg return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
949 1.1 joerg
950 1.1 joerg /* OFDM rates */
951 1.1 joerg case 12:
952 1.1 joerg case 18:
953 1.1 joerg return 12;
954 1.1 joerg case 24:
955 1.1 joerg case 36:
956 1.1 joerg return 24;
957 1.1 joerg case 48:
958 1.1 joerg case 72:
959 1.1 joerg case 96:
960 1.1 joerg case 108:
961 1.1 joerg return 48;
962 1.1 joerg }
963 1.1 joerg
964 1.1 joerg /* default to 1Mbps */
965 1.1 joerg return 2;
966 1.1 joerg }
967 1.1 joerg
968 1.1 joerg /*
969 1.1 joerg * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
970 1.1 joerg * The function automatically determines the operating mode depending on the
971 1.1 joerg * given rate. `flags' indicates whether short preamble is in use or not.
972 1.1 joerg */
973 1.1 joerg Static uint16_t
974 1.1 joerg rum_txtime(int len, int rate, uint32_t flags)
975 1.1 joerg {
976 1.1 joerg uint16_t txtime;
977 1.1 joerg
978 1.1 joerg if (RUM_RATE_IS_OFDM(rate)) {
979 1.1 joerg /* IEEE Std 802.11a-1999, pp. 37 */
980 1.1 joerg txtime = (8 + 4 * len + 3 + rate - 1) / rate;
981 1.1 joerg txtime = 16 + 4 + 4 * txtime + 6;
982 1.1 joerg } else {
983 1.1 joerg /* IEEE Std 802.11b-1999, pp. 28 */
984 1.1 joerg txtime = (16 * len + rate - 1) / rate;
985 1.1 joerg if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
986 1.1 joerg txtime += 72 + 24;
987 1.1 joerg else
988 1.1 joerg txtime += 144 + 48;
989 1.1 joerg }
990 1.1 joerg return txtime;
991 1.1 joerg }
992 1.1 joerg
993 1.1 joerg Static uint8_t
994 1.1 joerg rum_plcp_signal(int rate)
995 1.1 joerg {
996 1.1 joerg switch (rate) {
997 1.1 joerg /* CCK rates (returned values are device-dependent) */
998 1.1 joerg case 2: return 0x0;
999 1.1 joerg case 4: return 0x1;
1000 1.1 joerg case 11: return 0x2;
1001 1.1 joerg case 22: return 0x3;
1002 1.1 joerg
1003 1.1 joerg /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1004 1.1 joerg case 12: return 0xb;
1005 1.1 joerg case 18: return 0xf;
1006 1.1 joerg case 24: return 0xa;
1007 1.1 joerg case 36: return 0xe;
1008 1.1 joerg case 48: return 0x9;
1009 1.1 joerg case 72: return 0xd;
1010 1.1 joerg case 96: return 0x8;
1011 1.1 joerg case 108: return 0xc;
1012 1.1 joerg
1013 1.1 joerg /* unsupported rates (should not get there) */
1014 1.1 joerg default: return 0xff;
1015 1.1 joerg }
1016 1.1 joerg }
1017 1.1 joerg
1018 1.1 joerg Static void
1019 1.1 joerg rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1020 1.1 joerg uint32_t flags, uint16_t xflags, int len, int rate)
1021 1.1 joerg {
1022 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1023 1.1 joerg uint16_t plcp_length;
1024 1.1 joerg int remainder;
1025 1.1 joerg
1026 1.1 joerg desc->flags = htole32(flags);
1027 1.1 joerg desc->flags |= htole32(RT2573_TX_VALID);
1028 1.1 joerg desc->flags |= htole32(len << 16);
1029 1.1 joerg
1030 1.1 joerg desc->xflags = htole16(xflags);
1031 1.1 joerg
1032 1.1 joerg desc->wme = htole16(
1033 1.1 joerg RT2573_QID(0) |
1034 1.1 joerg RT2573_AIFSN(2) |
1035 1.1 joerg RT2573_LOGCWMIN(4) |
1036 1.1 joerg RT2573_LOGCWMAX(10));
1037 1.1 joerg
1038 1.1 joerg /* setup PLCP fields */
1039 1.1 joerg desc->plcp_signal = rum_plcp_signal(rate);
1040 1.1 joerg desc->plcp_service = 4;
1041 1.1 joerg
1042 1.1 joerg len += IEEE80211_CRC_LEN;
1043 1.1 joerg if (RUM_RATE_IS_OFDM(rate)) {
1044 1.1 joerg desc->flags |= htole32(RT2573_TX_OFDM);
1045 1.1 joerg
1046 1.1 joerg plcp_length = len & 0xfff;
1047 1.1 joerg desc->plcp_length_hi = plcp_length >> 6;
1048 1.1 joerg desc->plcp_length_lo = plcp_length & 0x3f;
1049 1.1 joerg } else {
1050 1.1 joerg plcp_length = (16 * len + rate - 1) / rate;
1051 1.1 joerg if (rate == 22) {
1052 1.1 joerg remainder = (16 * len) % 22;
1053 1.1 joerg if (remainder != 0 && remainder < 7)
1054 1.1 joerg desc->plcp_service |= RT2573_PLCP_LENGEXT;
1055 1.1 joerg }
1056 1.1 joerg desc->plcp_length_hi = plcp_length >> 8;
1057 1.1 joerg desc->plcp_length_lo = plcp_length & 0xff;
1058 1.1 joerg
1059 1.1 joerg if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1060 1.1 joerg desc->plcp_signal |= 0x08;
1061 1.1 joerg }
1062 1.1 joerg }
1063 1.1 joerg
1064 1.1 joerg #define RUM_TX_TIMEOUT 5000
1065 1.1 joerg
1066 1.1 joerg Static int
1067 1.1 joerg rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1068 1.1 joerg {
1069 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1070 1.1 joerg struct rum_tx_desc *desc;
1071 1.1 joerg struct rum_tx_data *data;
1072 1.1 joerg struct ieee80211_frame *wh;
1073 1.1 joerg uint32_t flags = 0;
1074 1.1 joerg uint16_t dur;
1075 1.1 joerg usbd_status error;
1076 1.1 joerg int xferlen, rate;
1077 1.1 joerg
1078 1.1 joerg data = &sc->tx_data[0];
1079 1.1 joerg desc = (struct rum_tx_desc *)data->buf;
1080 1.1 joerg
1081 1.1 joerg rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1082 1.1 joerg
1083 1.1 joerg data->m = m0;
1084 1.1 joerg data->ni = ni;
1085 1.1 joerg
1086 1.1 joerg wh = mtod(m0, struct ieee80211_frame *);
1087 1.1 joerg
1088 1.1 joerg if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1089 1.1 joerg flags |= RT2573_TX_ACK;
1090 1.1 joerg
1091 1.1 joerg dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1092 1.1 joerg ic->ic_flags) + sc->sifs;
1093 1.1 joerg *(uint16_t *)wh->i_dur = htole16(dur);
1094 1.1 joerg
1095 1.1 joerg /* tell hardware to set timestamp in probe responses */
1096 1.1 joerg if ((wh->i_fc[0] &
1097 1.1 joerg (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1098 1.1 joerg (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1099 1.1 joerg flags |= RT2573_TX_TIMESTAMP;
1100 1.1 joerg }
1101 1.1 joerg
1102 1.1 joerg #if NBPFILTER > 0
1103 1.1 joerg if (sc->sc_drvbpf != NULL) {
1104 1.1 joerg struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1105 1.1 joerg
1106 1.1 joerg tap->wt_flags = 0;
1107 1.1 joerg tap->wt_rate = rate;
1108 1.1 joerg tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1109 1.1 joerg tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1110 1.1 joerg tap->wt_antenna = sc->tx_ant;
1111 1.1 joerg
1112 1.1 joerg bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1113 1.1 joerg }
1114 1.1 joerg #endif
1115 1.1 joerg
1116 1.1 joerg m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1117 1.1 joerg rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1118 1.1 joerg
1119 1.1 joerg /* align end on a 4-bytes boundary */
1120 1.1 joerg xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1121 1.1 joerg
1122 1.1 joerg /*
1123 1.1 joerg * No space left in the last URB to store the extra 4 bytes, force
1124 1.1 joerg * sending of another URB.
1125 1.1 joerg */
1126 1.1 joerg if ((xferlen % 64) == 0)
1127 1.1 joerg xferlen += 4;
1128 1.1 joerg
1129 1.1 joerg DPRINTFN(10, ("sending msg frame len=%u rate=%u xfer len=%u\n",
1130 1.1 joerg m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
1131 1.1 joerg
1132 1.1 joerg usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1133 1.1 joerg USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1134 1.1 joerg
1135 1.1 joerg error = usbd_transfer(data->xfer);
1136 1.1 joerg if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1137 1.1 joerg m_freem(m0);
1138 1.1 joerg return error;
1139 1.1 joerg }
1140 1.1 joerg
1141 1.1 joerg sc->tx_queued++;
1142 1.1 joerg
1143 1.1 joerg return 0;
1144 1.1 joerg }
1145 1.1 joerg
1146 1.1 joerg Static int
1147 1.1 joerg rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1148 1.1 joerg {
1149 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1150 1.1 joerg struct rum_tx_desc *desc;
1151 1.1 joerg struct rum_tx_data *data;
1152 1.1 joerg struct ieee80211_frame *wh;
1153 1.1 joerg struct ieee80211_key *k;
1154 1.1 joerg uint32_t flags = 0;
1155 1.1 joerg uint16_t dur;
1156 1.1 joerg usbd_status error;
1157 1.1 joerg int xferlen, rate;
1158 1.1 joerg
1159 1.1 joerg wh = mtod(m0, struct ieee80211_frame *);
1160 1.1 joerg
1161 1.1 joerg if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1162 1.1 joerg rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1163 1.1 joerg else
1164 1.1 joerg rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1165 1.1 joerg rate &= IEEE80211_RATE_VAL;
1166 1.1 joerg
1167 1.1 joerg if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1168 1.1 joerg k = ieee80211_crypto_encap(ic, ni, m0);
1169 1.1 joerg if (k == NULL) {
1170 1.1 joerg m_freem(m0);
1171 1.1 joerg return ENOBUFS;
1172 1.1 joerg }
1173 1.1 joerg
1174 1.1 joerg /* packet header may have moved, reset our local pointer */
1175 1.1 joerg wh = mtod(m0, struct ieee80211_frame *);
1176 1.1 joerg }
1177 1.1 joerg
1178 1.1 joerg data = &sc->tx_data[0];
1179 1.1 joerg desc = (struct rum_tx_desc *)data->buf;
1180 1.1 joerg
1181 1.1 joerg data->m = m0;
1182 1.1 joerg data->ni = ni;
1183 1.1 joerg
1184 1.1 joerg if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1185 1.1 joerg flags |= RT2573_TX_ACK;
1186 1.1 joerg
1187 1.1 joerg dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1188 1.1 joerg ic->ic_flags) + sc->sifs;
1189 1.1 joerg *(uint16_t *)wh->i_dur = htole16(dur);
1190 1.1 joerg }
1191 1.1 joerg
1192 1.1 joerg #if NBPFILTER > 0
1193 1.1 joerg if (sc->sc_drvbpf != NULL) {
1194 1.1 joerg struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1195 1.1 joerg
1196 1.1 joerg tap->wt_flags = 0;
1197 1.1 joerg tap->wt_rate = rate;
1198 1.1 joerg tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1199 1.1 joerg tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1200 1.1 joerg tap->wt_antenna = sc->tx_ant;
1201 1.1 joerg
1202 1.1 joerg bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1203 1.1 joerg }
1204 1.1 joerg #endif
1205 1.1 joerg
1206 1.1 joerg m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1207 1.1 joerg rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1208 1.1 joerg
1209 1.1 joerg /* align end on a 4-bytes boundary */
1210 1.1 joerg xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1211 1.1 joerg
1212 1.1 joerg /*
1213 1.1 joerg * No space left in the last URB to store the extra 4 bytes, force
1214 1.1 joerg * sending of another URB.
1215 1.1 joerg */
1216 1.1 joerg if ((xferlen % 64) == 0)
1217 1.1 joerg xferlen += 4;
1218 1.1 joerg
1219 1.1 joerg DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1220 1.1 joerg m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
1221 1.1 joerg
1222 1.1 joerg usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1223 1.1 joerg USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1224 1.1 joerg
1225 1.1 joerg error = usbd_transfer(data->xfer);
1226 1.1 joerg if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1227 1.1 joerg m_freem(m0);
1228 1.1 joerg return error;
1229 1.1 joerg }
1230 1.1 joerg
1231 1.1 joerg sc->tx_queued++;
1232 1.1 joerg
1233 1.1 joerg return 0;
1234 1.1 joerg }
1235 1.1 joerg
1236 1.1 joerg Static void
1237 1.1 joerg rum_start(struct ifnet *ifp)
1238 1.1 joerg {
1239 1.1 joerg struct rum_softc *sc = ifp->if_softc;
1240 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1241 1.1 joerg struct ether_header *eh;
1242 1.1 joerg struct ieee80211_node *ni;
1243 1.1 joerg struct mbuf *m0;
1244 1.1 joerg
1245 1.1 joerg for (;;) {
1246 1.1 joerg IF_POLL(&ic->ic_mgtq, m0);
1247 1.1 joerg if (m0 != NULL) {
1248 1.1 joerg if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1249 1.1 joerg ifp->if_flags |= IFF_OACTIVE;
1250 1.1 joerg break;
1251 1.1 joerg }
1252 1.1 joerg IF_DEQUEUE(&ic->ic_mgtq, m0);
1253 1.1 joerg
1254 1.1 joerg ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1255 1.1 joerg m0->m_pkthdr.rcvif = NULL;
1256 1.1 joerg #if NBPFILTER > 0
1257 1.1 joerg if (ic->ic_rawbpf != NULL)
1258 1.1 joerg bpf_mtap(ic->ic_rawbpf, m0);
1259 1.1 joerg #endif
1260 1.1 joerg if (rum_tx_mgt(sc, m0, ni) != 0)
1261 1.1 joerg break;
1262 1.1 joerg
1263 1.1 joerg } else {
1264 1.1 joerg if (ic->ic_state != IEEE80211_S_RUN)
1265 1.1 joerg break;
1266 1.1 joerg IFQ_POLL(&ifp->if_snd, m0);
1267 1.1 joerg if (m0 == NULL)
1268 1.1 joerg break;
1269 1.1 joerg if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1270 1.1 joerg ifp->if_flags |= IFF_OACTIVE;
1271 1.1 joerg break;
1272 1.1 joerg }
1273 1.1 joerg IFQ_DEQUEUE(&ifp->if_snd, m0);
1274 1.1 joerg if (m0->m_len < sizeof(struct ether_header) &&
1275 1.1 joerg !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1276 1.1 joerg continue;
1277 1.1 joerg
1278 1.1 joerg eh = mtod(m0, struct ether_header *);
1279 1.1 joerg ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1280 1.1 joerg if (ni == NULL) {
1281 1.1 joerg m_freem(m0);
1282 1.1 joerg continue;
1283 1.1 joerg }
1284 1.1 joerg #if NBPFILTER > 0
1285 1.1 joerg if (ifp->if_bpf != NULL)
1286 1.1 joerg bpf_mtap(ifp->if_bpf, m0);
1287 1.1 joerg #endif
1288 1.1 joerg m0 = ieee80211_encap(ic, m0, ni);
1289 1.1 joerg if (m0 == NULL) {
1290 1.1 joerg ieee80211_free_node(ni);
1291 1.1 joerg continue;
1292 1.1 joerg }
1293 1.1 joerg #if NBPFILTER > 0
1294 1.1 joerg if (ic->ic_rawbpf != NULL)
1295 1.1 joerg bpf_mtap(ic->ic_rawbpf, m0);
1296 1.1 joerg #endif
1297 1.1 joerg if (rum_tx_data(sc, m0, ni) != 0) {
1298 1.1 joerg ieee80211_free_node(ni);
1299 1.1 joerg ifp->if_oerrors++;
1300 1.1 joerg break;
1301 1.1 joerg }
1302 1.1 joerg }
1303 1.1 joerg
1304 1.1 joerg sc->sc_tx_timer = 5;
1305 1.1 joerg ifp->if_timer = 1;
1306 1.1 joerg }
1307 1.1 joerg }
1308 1.1 joerg
1309 1.1 joerg Static void
1310 1.1 joerg rum_watchdog(struct ifnet *ifp)
1311 1.1 joerg {
1312 1.1 joerg struct rum_softc *sc = ifp->if_softc;
1313 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1314 1.1 joerg
1315 1.1 joerg ifp->if_timer = 0;
1316 1.1 joerg
1317 1.1 joerg if (sc->sc_tx_timer > 0) {
1318 1.1 joerg if (--sc->sc_tx_timer == 0) {
1319 1.1 joerg printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1320 1.1 joerg /*rum_init(ifp); XXX needs a process context! */
1321 1.1 joerg ifp->if_oerrors++;
1322 1.1 joerg return;
1323 1.1 joerg }
1324 1.1 joerg ifp->if_timer = 1;
1325 1.1 joerg }
1326 1.1 joerg
1327 1.1 joerg ieee80211_watchdog(ic);
1328 1.1 joerg }
1329 1.1 joerg
1330 1.1 joerg Static int
1331 1.1 joerg rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1332 1.1 joerg {
1333 1.1 joerg struct rum_softc *sc = ifp->if_softc;
1334 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1335 1.1 joerg int s, error = 0;
1336 1.1 joerg
1337 1.1 joerg s = splnet();
1338 1.1 joerg
1339 1.1 joerg switch (cmd) {
1340 1.1 joerg case SIOCSIFFLAGS:
1341 1.1 joerg if (ifp->if_flags & IFF_UP) {
1342 1.1 joerg if (ifp->if_flags & IFF_RUNNING)
1343 1.1 joerg rum_update_promisc(sc);
1344 1.1 joerg else
1345 1.1 joerg rum_init(ifp);
1346 1.1 joerg } else {
1347 1.1 joerg if (ifp->if_flags & IFF_RUNNING)
1348 1.1 joerg rum_stop(ifp, 1);
1349 1.1 joerg }
1350 1.1 joerg break;
1351 1.1 joerg
1352 1.1 joerg default:
1353 1.1 joerg error = ieee80211_ioctl(ic, cmd, data);
1354 1.1 joerg }
1355 1.1 joerg
1356 1.1 joerg if (error == ENETRESET) {
1357 1.1 joerg if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1358 1.1 joerg (IFF_UP | IFF_RUNNING))
1359 1.1 joerg rum_init(ifp);
1360 1.1 joerg error = 0;
1361 1.1 joerg }
1362 1.1 joerg
1363 1.1 joerg splx(s);
1364 1.1 joerg
1365 1.1 joerg return error;
1366 1.1 joerg }
1367 1.1 joerg
1368 1.1 joerg Static void
1369 1.1 joerg rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1370 1.1 joerg {
1371 1.1 joerg usb_device_request_t req;
1372 1.1 joerg usbd_status error;
1373 1.1 joerg
1374 1.1 joerg req.bmRequestType = UT_READ_VENDOR_DEVICE;
1375 1.1 joerg req.bRequest = RT2573_READ_EEPROM;
1376 1.1 joerg USETW(req.wValue, 0);
1377 1.1 joerg USETW(req.wIndex, addr);
1378 1.1 joerg USETW(req.wLength, len);
1379 1.1 joerg
1380 1.1 joerg error = usbd_do_request(sc->sc_udev, &req, buf);
1381 1.1 joerg if (error != 0) {
1382 1.1 joerg printf("%s: could not read EEPROM: %s\n",
1383 1.1 joerg USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1384 1.1 joerg }
1385 1.1 joerg }
1386 1.1 joerg
1387 1.1 joerg Static uint32_t
1388 1.1 joerg rum_read(struct rum_softc *sc, uint16_t reg)
1389 1.1 joerg {
1390 1.1 joerg uint32_t val;
1391 1.1 joerg
1392 1.1 joerg rum_read_multi(sc, reg, &val, sizeof val);
1393 1.1 joerg
1394 1.1 joerg return le32toh(val);
1395 1.1 joerg }
1396 1.1 joerg
1397 1.1 joerg Static void
1398 1.1 joerg rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1399 1.1 joerg {
1400 1.1 joerg usb_device_request_t req;
1401 1.1 joerg usbd_status error;
1402 1.1 joerg
1403 1.1 joerg req.bmRequestType = UT_READ_VENDOR_DEVICE;
1404 1.1 joerg req.bRequest = RT2573_READ_MULTI_MAC;
1405 1.1 joerg USETW(req.wValue, 0);
1406 1.1 joerg USETW(req.wIndex, reg);
1407 1.1 joerg USETW(req.wLength, len);
1408 1.1 joerg
1409 1.1 joerg error = usbd_do_request(sc->sc_udev, &req, buf);
1410 1.1 joerg if (error != 0) {
1411 1.1 joerg printf("%s: could not multi read MAC register: %s\n",
1412 1.1 joerg USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1413 1.1 joerg }
1414 1.1 joerg }
1415 1.1 joerg
1416 1.1 joerg Static void
1417 1.1 joerg rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1418 1.1 joerg {
1419 1.1 joerg uint32_t tmp = htole32(val);
1420 1.1 joerg
1421 1.1 joerg rum_write_multi(sc, reg, &tmp, sizeof tmp);
1422 1.1 joerg }
1423 1.1 joerg
1424 1.1 joerg Static void
1425 1.1 joerg rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1426 1.1 joerg {
1427 1.1 joerg usb_device_request_t req;
1428 1.1 joerg usbd_status error;
1429 1.1 joerg
1430 1.1 joerg req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1431 1.1 joerg req.bRequest = RT2573_WRITE_MULTI_MAC;
1432 1.1 joerg USETW(req.wValue, 0);
1433 1.1 joerg USETW(req.wIndex, reg);
1434 1.1 joerg USETW(req.wLength, len);
1435 1.1 joerg
1436 1.1 joerg error = usbd_do_request(sc->sc_udev, &req, buf);
1437 1.1 joerg if (error != 0) {
1438 1.1 joerg printf("%s: could not multi write MAC register: %s\n",
1439 1.1 joerg USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1440 1.1 joerg }
1441 1.1 joerg }
1442 1.1 joerg
1443 1.1 joerg Static void
1444 1.1 joerg rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1445 1.1 joerg {
1446 1.1 joerg uint32_t tmp;
1447 1.1 joerg int ntries;
1448 1.1 joerg
1449 1.1 joerg for (ntries = 0; ntries < 5; ntries++) {
1450 1.1 joerg if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1451 1.1 joerg break;
1452 1.1 joerg }
1453 1.1 joerg if (ntries == 5) {
1454 1.1 joerg printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1455 1.1 joerg return;
1456 1.1 joerg }
1457 1.1 joerg
1458 1.1 joerg tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1459 1.1 joerg rum_write(sc, RT2573_PHY_CSR3, tmp);
1460 1.1 joerg }
1461 1.1 joerg
1462 1.1 joerg Static uint8_t
1463 1.1 joerg rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1464 1.1 joerg {
1465 1.1 joerg uint32_t val;
1466 1.1 joerg int ntries;
1467 1.1 joerg
1468 1.1 joerg for (ntries = 0; ntries < 5; ntries++) {
1469 1.1 joerg if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1470 1.1 joerg break;
1471 1.1 joerg }
1472 1.1 joerg if (ntries == 5) {
1473 1.1 joerg printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1474 1.1 joerg return 0;
1475 1.1 joerg }
1476 1.1 joerg
1477 1.1 joerg val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1478 1.1 joerg rum_write(sc, RT2573_PHY_CSR3, val);
1479 1.1 joerg
1480 1.1 joerg for (ntries = 0; ntries < 100; ntries++) {
1481 1.1 joerg val = rum_read(sc, RT2573_PHY_CSR3);
1482 1.1 joerg if (!(val & RT2573_BBP_BUSY))
1483 1.1 joerg return val & 0xff;
1484 1.1 joerg DELAY(1);
1485 1.1 joerg }
1486 1.1 joerg
1487 1.1 joerg printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1488 1.1 joerg return 0;
1489 1.1 joerg }
1490 1.1 joerg
1491 1.1 joerg Static void
1492 1.1 joerg rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1493 1.1 joerg {
1494 1.1 joerg uint32_t tmp;
1495 1.1 joerg int ntries;
1496 1.1 joerg
1497 1.1 joerg for (ntries = 0; ntries < 5; ntries++) {
1498 1.1 joerg if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1499 1.1 joerg break;
1500 1.1 joerg }
1501 1.1 joerg if (ntries == 5) {
1502 1.1 joerg printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1503 1.1 joerg return;
1504 1.1 joerg }
1505 1.1 joerg
1506 1.1 joerg tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1507 1.1 joerg (reg & 3);
1508 1.1 joerg rum_write(sc, RT2573_PHY_CSR4, tmp);
1509 1.1 joerg
1510 1.1 joerg /* remember last written value in sc */
1511 1.1 joerg sc->rf_regs[reg] = val;
1512 1.1 joerg
1513 1.1 joerg DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1514 1.1 joerg }
1515 1.1 joerg
1516 1.1 joerg Static void
1517 1.1 joerg rum_select_antenna(struct rum_softc *sc)
1518 1.1 joerg {
1519 1.1 joerg uint8_t bbp4, bbp77;
1520 1.1 joerg uint32_t tmp;
1521 1.1 joerg
1522 1.1 joerg bbp4 = rum_bbp_read(sc, 4);
1523 1.1 joerg bbp77 = rum_bbp_read(sc, 77);
1524 1.1 joerg
1525 1.1 joerg /* TBD */
1526 1.1 joerg
1527 1.1 joerg /* make sure Rx is disabled before switching antenna */
1528 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR0);
1529 1.1 joerg rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1530 1.1 joerg
1531 1.1 joerg rum_bbp_write(sc, 4, bbp4);
1532 1.1 joerg rum_bbp_write(sc, 77, bbp77);
1533 1.1 joerg
1534 1.1 joerg rum_write(sc, RT2573_TXRX_CSR0, tmp);
1535 1.1 joerg }
1536 1.1 joerg
1537 1.1 joerg /*
1538 1.1 joerg * Enable multi-rate retries for frames sent at OFDM rates.
1539 1.1 joerg * In 802.11b/g mode, allow fallback to CCK rates.
1540 1.1 joerg */
1541 1.1 joerg Static void
1542 1.1 joerg rum_enable_mrr(struct rum_softc *sc)
1543 1.1 joerg {
1544 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1545 1.1 joerg uint32_t tmp;
1546 1.1 joerg
1547 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR4);
1548 1.1 joerg
1549 1.1 joerg tmp &= ~RT2573_MRR_CCK_FALLBACK;
1550 1.1 joerg if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1551 1.1 joerg tmp |= RT2573_MRR_CCK_FALLBACK;
1552 1.1 joerg tmp |= RT2573_MRR_ENABLED;
1553 1.1 joerg
1554 1.1 joerg rum_write(sc, RT2573_TXRX_CSR4, tmp);
1555 1.1 joerg }
1556 1.1 joerg
1557 1.1 joerg Static void
1558 1.1 joerg rum_set_txpreamble(struct rum_softc *sc)
1559 1.1 joerg {
1560 1.1 joerg uint32_t tmp;
1561 1.1 joerg
1562 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR4);
1563 1.1 joerg
1564 1.1 joerg tmp &= ~RT2573_SHORT_PREAMBLE;
1565 1.1 joerg if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1566 1.1 joerg tmp |= RT2573_SHORT_PREAMBLE;
1567 1.1 joerg
1568 1.1 joerg rum_write(sc, RT2573_TXRX_CSR4, tmp);
1569 1.1 joerg }
1570 1.1 joerg
1571 1.1 joerg Static void
1572 1.1 joerg rum_set_basicrates(struct rum_softc *sc)
1573 1.1 joerg {
1574 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1575 1.1 joerg
1576 1.1 joerg /* update basic rate set */
1577 1.1 joerg if (ic->ic_curmode == IEEE80211_MODE_11B) {
1578 1.1 joerg /* 11b basic rates: 1, 2Mbps */
1579 1.1 joerg rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1580 1.1 joerg } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1581 1.1 joerg /* 11a basic rates: 6, 12, 24Mbps */
1582 1.1 joerg rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1583 1.1 joerg } else {
1584 1.1 joerg /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1585 1.1 joerg rum_write(sc, RT2573_TXRX_CSR5, 0x15f);
1586 1.1 joerg }
1587 1.1 joerg }
1588 1.1 joerg
1589 1.1 joerg /*
1590 1.1 joerg * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1591 1.1 joerg * driver.
1592 1.1 joerg */
1593 1.1 joerg Static void
1594 1.1 joerg rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1595 1.1 joerg {
1596 1.1 joerg uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1597 1.1 joerg uint32_t tmp;
1598 1.1 joerg
1599 1.1 joerg /* update all BBP registers that depend on the band */
1600 1.1 joerg bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1601 1.1 joerg bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1602 1.1 joerg if (IEEE80211_IS_CHAN_5GHZ(c)) {
1603 1.1 joerg bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1604 1.1 joerg bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1605 1.1 joerg }
1606 1.1 joerg if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1607 1.1 joerg (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1608 1.1 joerg bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1609 1.1 joerg }
1610 1.1 joerg
1611 1.1 joerg sc->bbp17 = bbp17;
1612 1.1 joerg rum_bbp_write(sc, 17, bbp17);
1613 1.1 joerg rum_bbp_write(sc, 96, bbp96);
1614 1.1 joerg rum_bbp_write(sc, 104, bbp104);
1615 1.1 joerg
1616 1.1 joerg if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1617 1.1 joerg (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1618 1.1 joerg rum_bbp_write(sc, 75, 0x80);
1619 1.1 joerg rum_bbp_write(sc, 86, 0x80);
1620 1.1 joerg rum_bbp_write(sc, 88, 0x80);
1621 1.1 joerg }
1622 1.1 joerg
1623 1.1 joerg rum_bbp_write(sc, 35, bbp35);
1624 1.1 joerg rum_bbp_write(sc, 97, bbp97);
1625 1.1 joerg rum_bbp_write(sc, 98, bbp98);
1626 1.1 joerg
1627 1.1 joerg tmp = rum_read(sc, RT2573_PHY_CSR0);
1628 1.1 joerg tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1629 1.1 joerg if (IEEE80211_IS_CHAN_2GHZ(c))
1630 1.1 joerg tmp |= RT2573_PA_PE_2GHZ;
1631 1.1 joerg else
1632 1.1 joerg tmp |= RT2573_PA_PE_5GHZ;
1633 1.1 joerg rum_write(sc, RT2573_PHY_CSR0, tmp);
1634 1.1 joerg
1635 1.1 joerg /* 802.11a uses a 16 microseconds short interframe space */
1636 1.1 joerg sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1637 1.1 joerg }
1638 1.1 joerg
1639 1.1 joerg Static void
1640 1.1 joerg rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1641 1.1 joerg {
1642 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1643 1.1 joerg const struct rfprog *rfprog;
1644 1.1 joerg uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1645 1.1 joerg int8_t power;
1646 1.1 joerg u_int i, chan;
1647 1.1 joerg
1648 1.1 joerg chan = ieee80211_chan2ieee(ic, c);
1649 1.1 joerg if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1650 1.1 joerg return;
1651 1.1 joerg
1652 1.1 joerg /* select the appropriate RF settings based on what EEPROM says */
1653 1.1 joerg rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1654 1.1 joerg sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1655 1.1 joerg
1656 1.1 joerg /* find the settings for this channel (we know it exists) */
1657 1.1 joerg for (i = 0; rfprog[i].chan != chan; i++);
1658 1.1 joerg
1659 1.1 joerg power = sc->txpow[i];
1660 1.1 joerg if (power < 0) {
1661 1.1 joerg bbp94 += power;
1662 1.1 joerg power = 0;
1663 1.1 joerg } else if (power > 31) {
1664 1.1 joerg bbp94 += power - 31;
1665 1.1 joerg power = 31;
1666 1.1 joerg }
1667 1.1 joerg
1668 1.1 joerg /*
1669 1.1 joerg * If we are switching from the 2GHz band to the 5GHz band or
1670 1.1 joerg * vice-versa, BBP registers need to be reprogrammed.
1671 1.1 joerg */
1672 1.1 joerg if (c->ic_flags != ic->ic_curchan->ic_flags) {
1673 1.1 joerg rum_select_band(sc, c);
1674 1.1 joerg rum_select_antenna(sc);
1675 1.1 joerg }
1676 1.1 joerg ic->ic_curchan = c;
1677 1.1 joerg
1678 1.1 joerg rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1679 1.1 joerg rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1680 1.1 joerg rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1681 1.1 joerg rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1682 1.1 joerg
1683 1.1 joerg rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1684 1.1 joerg rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1685 1.1 joerg rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1686 1.1 joerg rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1687 1.1 joerg
1688 1.1 joerg rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1689 1.1 joerg rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1690 1.1 joerg rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1691 1.1 joerg rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1692 1.1 joerg
1693 1.1 joerg DELAY(10);
1694 1.1 joerg
1695 1.1 joerg /* enable smart mode for MIMO-capable RFs */
1696 1.1 joerg bbp3 = rum_bbp_read(sc, 3);
1697 1.1 joerg
1698 1.1 joerg bbp3 &= ~RT2573_SMART_MODE;
1699 1.1 joerg if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1700 1.1 joerg bbp3 |= RT2573_SMART_MODE;
1701 1.1 joerg
1702 1.1 joerg rum_bbp_write(sc, 3, bbp3);
1703 1.1 joerg
1704 1.1 joerg if (bbp94 != RT2573_BBPR94_DEFAULT)
1705 1.1 joerg rum_bbp_write(sc, 94, bbp94);
1706 1.1 joerg }
1707 1.1 joerg
1708 1.1 joerg /*
1709 1.1 joerg * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1710 1.1 joerg * and HostAP operating modes.
1711 1.1 joerg */
1712 1.1 joerg Static void
1713 1.1 joerg rum_enable_tsf_sync(struct rum_softc *sc)
1714 1.1 joerg {
1715 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1716 1.1 joerg uint32_t tmp;
1717 1.1 joerg
1718 1.1 joerg if (ic->ic_opmode != IEEE80211_M_STA) {
1719 1.1 joerg /*
1720 1.1 joerg * Change default 16ms TBTT adjustment to 8ms.
1721 1.1 joerg * Must be done before enabling beacon generation.
1722 1.1 joerg */
1723 1.1 joerg rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1724 1.1 joerg }
1725 1.1 joerg
1726 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1727 1.1 joerg
1728 1.1 joerg /* set beacon interval (in 1/16ms unit) */
1729 1.1 joerg tmp |= ic->ic_bss->ni_intval * 16;
1730 1.1 joerg
1731 1.1 joerg tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1732 1.1 joerg if (ic->ic_opmode == IEEE80211_M_STA)
1733 1.1 joerg tmp |= RT2573_TSF_MODE(1);
1734 1.1 joerg else
1735 1.1 joerg tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1736 1.1 joerg
1737 1.1 joerg rum_write(sc, RT2573_TXRX_CSR9, tmp);
1738 1.1 joerg }
1739 1.1 joerg
1740 1.1 joerg Static void
1741 1.1 joerg rum_update_slot(struct rum_softc *sc)
1742 1.1 joerg {
1743 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1744 1.1 joerg uint8_t slottime;
1745 1.1 joerg uint32_t tmp;
1746 1.1 joerg
1747 1.1 joerg slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1748 1.1 joerg
1749 1.1 joerg tmp = rum_read(sc, RT2573_MAC_CSR9);
1750 1.1 joerg tmp = (tmp & ~0xff) | slottime;
1751 1.1 joerg rum_write(sc, RT2573_MAC_CSR9, tmp);
1752 1.1 joerg
1753 1.1 joerg DPRINTF(("setting slot time to %uus\n", slottime));
1754 1.1 joerg }
1755 1.1 joerg
1756 1.1 joerg Static void
1757 1.1 joerg rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1758 1.1 joerg {
1759 1.1 joerg uint32_t tmp;
1760 1.1 joerg
1761 1.1 joerg tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1762 1.1 joerg rum_write(sc, RT2573_MAC_CSR4, tmp);
1763 1.1 joerg
1764 1.1 joerg tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1765 1.1 joerg rum_write(sc, RT2573_MAC_CSR5, tmp);
1766 1.1 joerg }
1767 1.1 joerg
1768 1.1 joerg Static void
1769 1.1 joerg rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1770 1.1 joerg {
1771 1.1 joerg uint32_t tmp;
1772 1.1 joerg
1773 1.1 joerg tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1774 1.1 joerg rum_write(sc, RT2573_MAC_CSR2, tmp);
1775 1.1 joerg
1776 1.1 joerg tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1777 1.1 joerg rum_write(sc, RT2573_MAC_CSR3, tmp);
1778 1.1 joerg }
1779 1.1 joerg
1780 1.1 joerg Static void
1781 1.1 joerg rum_update_promisc(struct rum_softc *sc)
1782 1.1 joerg {
1783 1.1 joerg struct ifnet *ifp = sc->sc_ic.ic_ifp;
1784 1.1 joerg uint32_t tmp;
1785 1.1 joerg
1786 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR0);
1787 1.1 joerg
1788 1.1 joerg tmp &= ~RT2573_DROP_NOT_TO_ME;
1789 1.1 joerg if (!(ifp->if_flags & IFF_PROMISC))
1790 1.1 joerg tmp |= RT2573_DROP_NOT_TO_ME;
1791 1.1 joerg
1792 1.1 joerg rum_write(sc, RT2573_TXRX_CSR0, tmp);
1793 1.1 joerg
1794 1.1 joerg DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1795 1.1 joerg "entering" : "leaving"));
1796 1.1 joerg }
1797 1.1 joerg
1798 1.1 joerg Static const char *
1799 1.1 joerg rum_get_rf(int rev)
1800 1.1 joerg {
1801 1.1 joerg switch (rev) {
1802 1.1 joerg case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1803 1.1 joerg case RT2573_RF_2528: return "RT2528";
1804 1.1 joerg case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1805 1.1 joerg case RT2573_RF_5226: return "RT5226";
1806 1.1 joerg default: return "unknown";
1807 1.1 joerg }
1808 1.1 joerg }
1809 1.1 joerg
1810 1.1 joerg Static void
1811 1.1 joerg rum_read_eeprom(struct rum_softc *sc)
1812 1.1 joerg {
1813 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1814 1.1 joerg uint16_t val;
1815 1.1 joerg #ifdef RUM_DEBUG
1816 1.1 joerg int i;
1817 1.1 joerg #endif
1818 1.1 joerg
1819 1.1 joerg /* read MAC/BBP type */
1820 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1821 1.1 joerg sc->macbbp_rev = le16toh(val);
1822 1.1 joerg
1823 1.1 joerg /* read MAC address */
1824 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1825 1.1 joerg
1826 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1827 1.1 joerg val = le16toh(val);
1828 1.1 joerg sc->rf_rev = (val >> 11) & 0x1f;
1829 1.1 joerg sc->hw_radio = (val >> 10) & 0x1;
1830 1.1 joerg sc->rx_ant = (val >> 4) & 0x3;
1831 1.1 joerg sc->tx_ant = (val >> 2) & 0x3;
1832 1.1 joerg sc->nb_ant = val & 0x3;
1833 1.1 joerg
1834 1.1 joerg DPRINTF(("RF revision=%d\n", sc->rf_rev));
1835 1.1 joerg
1836 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1837 1.1 joerg val = le16toh(val);
1838 1.1 joerg sc->ext_5ghz_lna = (val >> 6) & 0x1;
1839 1.1 joerg sc->ext_2ghz_lna = (val >> 4) & 0x1;
1840 1.1 joerg
1841 1.1 joerg DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1842 1.1 joerg sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1843 1.1 joerg
1844 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1845 1.1 joerg val = le16toh(val);
1846 1.1 joerg if ((val & 0xff) != 0xff)
1847 1.1 joerg sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1848 1.1 joerg
1849 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1850 1.1 joerg val = le16toh(val);
1851 1.1 joerg if ((val & 0xff) != 0xff)
1852 1.1 joerg sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1853 1.1 joerg
1854 1.1 joerg DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1855 1.1 joerg sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1856 1.1 joerg
1857 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1858 1.1 joerg val = le16toh(val);
1859 1.1 joerg if ((val & 0xff) != 0xff)
1860 1.1 joerg sc->rffreq = val & 0xff;
1861 1.1 joerg
1862 1.1 joerg DPRINTF(("RF freq=%d\n", sc->rffreq));
1863 1.1 joerg
1864 1.1 joerg /* read Tx power for all a/b/g channels */
1865 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1866 1.1 joerg /* XXX default Tx power for 802.11a channels */
1867 1.1 joerg memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1868 1.1 joerg #ifdef RUM_DEBUG
1869 1.1 joerg for (i = 0; i < 14; i++)
1870 1.1 joerg DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1871 1.1 joerg #endif
1872 1.1 joerg
1873 1.1 joerg /* read default values for BBP registers */
1874 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1875 1.1 joerg #ifdef RUM_DEBUG
1876 1.1 joerg for (i = 0; i < 14; i++) {
1877 1.1 joerg if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1878 1.1 joerg continue;
1879 1.1 joerg DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1880 1.1 joerg sc->bbp_prom[i].val));
1881 1.1 joerg }
1882 1.1 joerg #endif
1883 1.1 joerg }
1884 1.1 joerg
1885 1.1 joerg Static int
1886 1.1 joerg rum_bbp_init(struct rum_softc *sc)
1887 1.1 joerg {
1888 1.1 joerg #define N(a) (sizeof (a) / sizeof ((a)[0]))
1889 1.1 joerg int i, ntries;
1890 1.1 joerg uint8_t val;
1891 1.1 joerg
1892 1.1 joerg /* wait for BBP to be ready */
1893 1.1 joerg for (ntries = 0; ntries < 100; ntries++) {
1894 1.1 joerg val = rum_bbp_read(sc, 0);
1895 1.1 joerg if (val != 0 && val != 0xff)
1896 1.1 joerg break;
1897 1.1 joerg DELAY(1000);
1898 1.1 joerg }
1899 1.1 joerg if (ntries == 100) {
1900 1.1 joerg printf("%s: timeout waiting for BBP\n",
1901 1.1 joerg USBDEVNAME(sc->sc_dev));
1902 1.1 joerg return EIO;
1903 1.1 joerg }
1904 1.1 joerg
1905 1.1 joerg /* initialize BBP registers to default values */
1906 1.1 joerg for (i = 0; i < N(rum_def_bbp); i++)
1907 1.1 joerg rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1908 1.1 joerg
1909 1.1 joerg /* write vendor-specific BBP values (from EEPROM) */
1910 1.1 joerg for (i = 0; i < 16; i++) {
1911 1.1 joerg if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1912 1.1 joerg continue;
1913 1.1 joerg rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1914 1.1 joerg }
1915 1.1 joerg
1916 1.1 joerg return 0;
1917 1.1 joerg #undef N
1918 1.1 joerg }
1919 1.1 joerg
1920 1.1 joerg Static int
1921 1.1 joerg rum_init(struct ifnet *ifp)
1922 1.1 joerg {
1923 1.1 joerg #define N(a) (sizeof (a) / sizeof ((a)[0]))
1924 1.1 joerg struct rum_softc *sc = ifp->if_softc;
1925 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1926 1.1 joerg struct rum_rx_data *data;
1927 1.1 joerg uint32_t tmp;
1928 1.1 joerg usbd_status error = 0;
1929 1.1 joerg int i, ntries;
1930 1.1 joerg
1931 1.1 joerg if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1932 1.1 joerg if (rum_attachhook(sc))
1933 1.1 joerg goto fail;
1934 1.1 joerg }
1935 1.1 joerg
1936 1.1 joerg rum_stop(ifp, 0);
1937 1.1 joerg
1938 1.1 joerg /* initialize MAC registers to default values */
1939 1.1 joerg for (i = 0; i < N(rum_def_mac); i++)
1940 1.1 joerg rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1941 1.1 joerg
1942 1.1 joerg /* set host ready */
1943 1.1 joerg rum_write(sc, RT2573_MAC_CSR1, 3);
1944 1.1 joerg rum_write(sc, RT2573_MAC_CSR1, 0);
1945 1.1 joerg
1946 1.1 joerg /* wait for BBP/RF to wakeup */
1947 1.1 joerg for (ntries = 0; ntries < 1000; ntries++) {
1948 1.1 joerg if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1949 1.1 joerg break;
1950 1.1 joerg rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1951 1.1 joerg DELAY(1000);
1952 1.1 joerg }
1953 1.1 joerg if (ntries == 1000) {
1954 1.1 joerg printf("%s: timeout waiting for BBP/RF to wakeup\n",
1955 1.1 joerg USBDEVNAME(sc->sc_dev));
1956 1.1 joerg goto fail;
1957 1.1 joerg }
1958 1.1 joerg
1959 1.1 joerg if ((error = rum_bbp_init(sc)) != 0)
1960 1.1 joerg goto fail;
1961 1.1 joerg
1962 1.1 joerg /* select default channel */
1963 1.1 joerg rum_select_band(sc, ic->ic_curchan);
1964 1.1 joerg rum_select_antenna(sc);
1965 1.1 joerg rum_set_chan(sc, ic->ic_curchan);
1966 1.1 joerg
1967 1.1 joerg /* clear STA registers */
1968 1.1 joerg rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1969 1.1 joerg
1970 1.1 joerg IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1971 1.1 joerg rum_set_macaddr(sc, ic->ic_myaddr);
1972 1.1 joerg
1973 1.1 joerg /* initialize ASIC */
1974 1.1 joerg rum_write(sc, RT2573_MAC_CSR1, 4);
1975 1.1 joerg
1976 1.1 joerg /*
1977 1.1 joerg * Allocate xfer for AMRR statistics requests.
1978 1.1 joerg */
1979 1.1 joerg sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
1980 1.1 joerg if (sc->amrr_xfer == NULL) {
1981 1.1 joerg printf("%s: could not allocate AMRR xfer\n",
1982 1.1 joerg USBDEVNAME(sc->sc_dev));
1983 1.1 joerg goto fail;
1984 1.1 joerg }
1985 1.1 joerg
1986 1.1 joerg /*
1987 1.1 joerg * Open Tx and Rx USB bulk pipes.
1988 1.1 joerg */
1989 1.1 joerg error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
1990 1.1 joerg &sc->sc_tx_pipeh);
1991 1.1 joerg if (error != 0) {
1992 1.1 joerg printf("%s: could not open Tx pipe: %s\n",
1993 1.1 joerg USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1994 1.1 joerg goto fail;
1995 1.1 joerg }
1996 1.1 joerg
1997 1.1 joerg error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
1998 1.1 joerg &sc->sc_rx_pipeh);
1999 1.1 joerg if (error != 0) {
2000 1.1 joerg printf("%s: could not open Rx pipe: %s\n",
2001 1.1 joerg USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2002 1.1 joerg goto fail;
2003 1.1 joerg }
2004 1.1 joerg
2005 1.1 joerg /*
2006 1.1 joerg * Allocate Tx and Rx xfer queues.
2007 1.1 joerg */
2008 1.1 joerg error = rum_alloc_tx_list(sc);
2009 1.1 joerg if (error != 0) {
2010 1.1 joerg printf("%s: could not allocate Tx list\n",
2011 1.1 joerg USBDEVNAME(sc->sc_dev));
2012 1.1 joerg goto fail;
2013 1.1 joerg }
2014 1.1 joerg
2015 1.1 joerg error = rum_alloc_rx_list(sc);
2016 1.1 joerg if (error != 0) {
2017 1.1 joerg printf("%s: could not allocate Rx list\n",
2018 1.1 joerg USBDEVNAME(sc->sc_dev));
2019 1.1 joerg goto fail;
2020 1.1 joerg }
2021 1.1 joerg
2022 1.1 joerg /*
2023 1.1 joerg * Start up the receive pipe.
2024 1.1 joerg */
2025 1.1 joerg for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
2026 1.1 joerg data = &sc->rx_data[i];
2027 1.1 joerg
2028 1.1 joerg usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2029 1.1 joerg MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2030 1.1 joerg usbd_transfer(data->xfer);
2031 1.1 joerg }
2032 1.1 joerg
2033 1.1 joerg /* update Rx filter */
2034 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2035 1.1 joerg
2036 1.1 joerg tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2037 1.1 joerg if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2038 1.1 joerg tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2039 1.1 joerg RT2573_DROP_ACKCTS;
2040 1.1 joerg if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2041 1.1 joerg tmp |= RT2573_DROP_TODS;
2042 1.1 joerg if (!(ifp->if_flags & IFF_PROMISC))
2043 1.1 joerg tmp |= RT2573_DROP_NOT_TO_ME;
2044 1.1 joerg }
2045 1.1 joerg rum_write(sc, RT2573_TXRX_CSR0, tmp);
2046 1.1 joerg
2047 1.1 joerg ifp->if_flags &= ~IFF_OACTIVE;
2048 1.1 joerg ifp->if_flags |= IFF_RUNNING;
2049 1.1 joerg
2050 1.1 joerg if (ic->ic_opmode == IEEE80211_M_MONITOR)
2051 1.1 joerg ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2052 1.1 joerg else
2053 1.1 joerg ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2054 1.1 joerg
2055 1.1 joerg return 0;
2056 1.1 joerg
2057 1.1 joerg fail: rum_stop(ifp, 1);
2058 1.1 joerg return error;
2059 1.1 joerg #undef N
2060 1.1 joerg }
2061 1.1 joerg
2062 1.1 joerg Static void
2063 1.1 joerg rum_stop(struct ifnet *ifp, int disable)
2064 1.1 joerg {
2065 1.1 joerg struct rum_softc *sc = ifp->if_softc;
2066 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
2067 1.1 joerg uint32_t tmp;
2068 1.1 joerg
2069 1.1 joerg ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2070 1.1 joerg
2071 1.1 joerg sc->sc_tx_timer = 0;
2072 1.1 joerg ifp->if_timer = 0;
2073 1.1 joerg ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2074 1.1 joerg
2075 1.1 joerg /* disable Rx */
2076 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR0);
2077 1.1 joerg rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2078 1.1 joerg
2079 1.1 joerg /* reset ASIC */
2080 1.1 joerg rum_write(sc, RT2573_MAC_CSR1, 3);
2081 1.1 joerg rum_write(sc, RT2573_MAC_CSR1, 0);
2082 1.1 joerg
2083 1.1 joerg if (sc->sc_rx_pipeh != NULL) {
2084 1.1 joerg usbd_abort_pipe(sc->sc_rx_pipeh);
2085 1.1 joerg usbd_close_pipe(sc->sc_rx_pipeh);
2086 1.1 joerg sc->sc_rx_pipeh = NULL;
2087 1.1 joerg }
2088 1.1 joerg
2089 1.1 joerg if (sc->sc_tx_pipeh != NULL) {
2090 1.1 joerg usbd_abort_pipe(sc->sc_tx_pipeh);
2091 1.1 joerg usbd_close_pipe(sc->sc_tx_pipeh);
2092 1.1 joerg sc->sc_tx_pipeh = NULL;
2093 1.1 joerg }
2094 1.1 joerg
2095 1.1 joerg rum_free_rx_list(sc);
2096 1.1 joerg rum_free_tx_list(sc);
2097 1.1 joerg }
2098 1.1 joerg
2099 1.1 joerg Static int
2100 1.1 joerg rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2101 1.1 joerg {
2102 1.1 joerg usb_device_request_t req;
2103 1.1 joerg uint16_t reg = RT2573_MCU_CODE_BASE;
2104 1.1 joerg usbd_status error;
2105 1.1 joerg
2106 1.1 joerg /* copy firmware image into NIC */
2107 1.1 joerg for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2108 1.1 joerg rum_write(sc, reg, UGETDW(ucode));
2109 1.1 joerg
2110 1.1 joerg req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2111 1.1 joerg req.bRequest = RT2573_MCU_CNTL;
2112 1.1 joerg USETW(req.wValue, RT2573_MCU_RUN);
2113 1.1 joerg USETW(req.wIndex, 0);
2114 1.1 joerg USETW(req.wLength, 0);
2115 1.1 joerg
2116 1.1 joerg error = usbd_do_request(sc->sc_udev, &req, NULL);
2117 1.1 joerg if (error != 0) {
2118 1.1 joerg printf("%s: could not run firmware: %s\n",
2119 1.1 joerg USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2120 1.1 joerg }
2121 1.1 joerg return error;
2122 1.1 joerg }
2123 1.1 joerg
2124 1.1 joerg Static int
2125 1.1 joerg rum_prepare_beacon(struct rum_softc *sc)
2126 1.1 joerg {
2127 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
2128 1.1 joerg struct rum_tx_desc desc;
2129 1.1 joerg struct mbuf *m0;
2130 1.1 joerg int rate;
2131 1.1 joerg
2132 1.1 joerg m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2133 1.1 joerg if (m0 == NULL) {
2134 1.1 joerg printf("%s: could not allocate beacon frame\n",
2135 1.1 joerg sc->sc_dev.dv_xname);
2136 1.1 joerg return ENOBUFS;
2137 1.1 joerg }
2138 1.1 joerg
2139 1.1 joerg /* send beacons at the lowest available rate */
2140 1.1 joerg rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2141 1.1 joerg
2142 1.1 joerg rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2143 1.1 joerg m0->m_pkthdr.len, rate);
2144 1.1 joerg
2145 1.1 joerg /* copy the first 24 bytes of Tx descriptor into NIC memory */
2146 1.1 joerg rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2147 1.1 joerg
2148 1.1 joerg /* copy beacon header and payload into NIC memory */
2149 1.1 joerg rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2150 1.1 joerg m0->m_pkthdr.len);
2151 1.1 joerg
2152 1.1 joerg m_freem(m0);
2153 1.1 joerg
2154 1.1 joerg return 0;
2155 1.1 joerg }
2156 1.1 joerg
2157 1.1 joerg Static void
2158 1.1 joerg rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2159 1.1 joerg {
2160 1.1 joerg int i;
2161 1.1 joerg
2162 1.1 joerg /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2163 1.1 joerg rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2164 1.1 joerg
2165 1.1 joerg ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2166 1.1 joerg
2167 1.1 joerg /* set rate to some reasonable initial value */
2168 1.1 joerg for (i = ni->ni_rates.rs_nrates - 1;
2169 1.1 joerg i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2170 1.1 joerg i--);
2171 1.1 joerg ni->ni_txrate = i;
2172 1.1 joerg
2173 1.1 joerg callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
2174 1.1 joerg }
2175 1.1 joerg
2176 1.1 joerg Static void
2177 1.1 joerg rum_amrr_timeout(void *arg)
2178 1.1 joerg {
2179 1.1 joerg struct rum_softc *sc = arg;
2180 1.1 joerg usb_device_request_t req;
2181 1.1 joerg int s;
2182 1.1 joerg
2183 1.1 joerg s = splusb();
2184 1.1 joerg
2185 1.1 joerg /*
2186 1.1 joerg * Asynchronously read statistic registers (cleared by read).
2187 1.1 joerg */
2188 1.1 joerg req.bmRequestType = UT_READ_VENDOR_DEVICE;
2189 1.1 joerg req.bRequest = RT2573_READ_MULTI_MAC;
2190 1.1 joerg USETW(req.wValue, 0);
2191 1.1 joerg USETW(req.wIndex, RT2573_STA_CSR0);
2192 1.1 joerg USETW(req.wLength, sizeof sc->sta);
2193 1.1 joerg
2194 1.1 joerg usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2195 1.1 joerg USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2196 1.1 joerg rum_amrr_update);
2197 1.1 joerg (void)usbd_transfer(sc->amrr_xfer);
2198 1.1 joerg
2199 1.1 joerg splx(s);
2200 1.1 joerg }
2201 1.1 joerg
2202 1.1 joerg Static void
2203 1.1 joerg rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2204 1.1 joerg usbd_status status)
2205 1.1 joerg {
2206 1.1 joerg struct rum_softc *sc = (struct rum_softc *)priv;
2207 1.1 joerg struct ifnet *ifp = sc->sc_ic.ic_ifp;
2208 1.1 joerg
2209 1.1 joerg if (status != USBD_NORMAL_COMPLETION) {
2210 1.1 joerg printf("%s: could not retrieve Tx statistics - cancelling "
2211 1.1 joerg "automatic rate control\n", USBDEVNAME(sc->sc_dev));
2212 1.1 joerg return;
2213 1.1 joerg }
2214 1.1 joerg
2215 1.1 joerg /* count TX retry-fail as Tx errors */
2216 1.1 joerg ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2217 1.1 joerg
2218 1.1 joerg sc->amn.amn_retrycnt =
2219 1.1 joerg (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2220 1.1 joerg (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2221 1.1 joerg (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2222 1.1 joerg
2223 1.1 joerg sc->amn.amn_txcnt =
2224 1.1 joerg sc->amn.amn_retrycnt +
2225 1.1 joerg (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2226 1.1 joerg
2227 1.1 joerg ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2228 1.1 joerg
2229 1.1 joerg callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
2230 1.1 joerg }
2231 1.1 joerg
2232 1.1 joerg int
2233 1.1 joerg rum_activate(device_ptr_t self, enum devact act)
2234 1.1 joerg {
2235 1.1 joerg switch (act) {
2236 1.1 joerg case DVACT_ACTIVATE:
2237 1.1 joerg return EOPNOTSUPP;
2238 1.1 joerg
2239 1.1 joerg case DVACT_DEACTIVATE:
2240 1.1 joerg /*if_deactivate(&sc->sc_ic.ic_if);*/
2241 1.1 joerg break;
2242 1.1 joerg }
2243 1.1 joerg
2244 1.1 joerg return 0;
2245 1.1 joerg }
2246