Home | History | Annotate | Line # | Download | only in usb
if_rum.c revision 1.40.2.3
      1      1.19  jmcneill /*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
      2  1.40.2.3      yamt /*	$NetBSD: if_rum.c,v 1.40.2.3 2014/05/22 11:40:36 yamt Exp $	*/
      3       1.1     joerg 
      4       1.1     joerg /*-
      5      1.18  kiyohara  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini (at) free.fr>
      6       1.1     joerg  * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
      7       1.1     joerg  *
      8       1.1     joerg  * Permission to use, copy, modify, and distribute this software for any
      9       1.1     joerg  * purpose with or without fee is hereby granted, provided that the above
     10       1.1     joerg  * copyright notice and this permission notice appear in all copies.
     11       1.1     joerg  *
     12       1.1     joerg  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     13       1.1     joerg  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     14       1.1     joerg  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     15       1.1     joerg  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     16       1.1     joerg  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     17       1.1     joerg  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     18       1.1     joerg  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     19       1.1     joerg  */
     20       1.1     joerg 
     21       1.1     joerg /*-
     22       1.1     joerg  * Ralink Technology RT2501USB/RT2601USB chipset driver
     23      1.18  kiyohara  * http://www.ralinktech.com.tw/
     24       1.1     joerg  */
     25       1.1     joerg 
     26       1.2   xtraeme #include <sys/cdefs.h>
     27  1.40.2.3      yamt __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.40.2.3 2014/05/22 11:40:36 yamt Exp $");
     28       1.1     joerg 
     29       1.1     joerg #include <sys/param.h>
     30       1.1     joerg #include <sys/sockio.h>
     31       1.1     joerg #include <sys/sysctl.h>
     32       1.1     joerg #include <sys/mbuf.h>
     33       1.1     joerg #include <sys/kernel.h>
     34       1.1     joerg #include <sys/socket.h>
     35       1.1     joerg #include <sys/systm.h>
     36       1.1     joerg #include <sys/malloc.h>
     37      1.38  pgoyette #include <sys/module.h>
     38       1.1     joerg #include <sys/conf.h>
     39       1.1     joerg #include <sys/device.h>
     40       1.1     joerg 
     41      1.16        ad #include <sys/bus.h>
     42       1.1     joerg #include <machine/endian.h>
     43      1.16        ad #include <sys/intr.h>
     44       1.1     joerg 
     45       1.1     joerg #include <net/bpf.h>
     46       1.1     joerg #include <net/if.h>
     47       1.1     joerg #include <net/if_arp.h>
     48       1.1     joerg #include <net/if_dl.h>
     49       1.1     joerg #include <net/if_ether.h>
     50       1.1     joerg #include <net/if_media.h>
     51       1.1     joerg #include <net/if_types.h>
     52       1.1     joerg 
     53       1.1     joerg #include <netinet/in.h>
     54       1.1     joerg #include <netinet/in_systm.h>
     55       1.1     joerg #include <netinet/in_var.h>
     56       1.1     joerg #include <netinet/ip.h>
     57       1.1     joerg 
     58       1.1     joerg #include <net80211/ieee80211_netbsd.h>
     59       1.1     joerg #include <net80211/ieee80211_var.h>
     60       1.1     joerg #include <net80211/ieee80211_amrr.h>
     61       1.1     joerg #include <net80211/ieee80211_radiotap.h>
     62       1.1     joerg 
     63       1.1     joerg #include <dev/firmload.h>
     64       1.1     joerg 
     65       1.1     joerg #include <dev/usb/usb.h>
     66       1.1     joerg #include <dev/usb/usbdi.h>
     67       1.1     joerg #include <dev/usb/usbdi_util.h>
     68       1.1     joerg #include <dev/usb/usbdevs.h>
     69       1.1     joerg 
     70       1.1     joerg #include <dev/usb/if_rumreg.h>
     71       1.1     joerg #include <dev/usb/if_rumvar.h>
     72       1.1     joerg 
     73       1.1     joerg #ifdef RUM_DEBUG
     74      1.33    dyoung #define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
     75      1.33    dyoung #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
     76      1.11   xtraeme int rum_debug = 1;
     77       1.1     joerg #else
     78       1.1     joerg #define DPRINTF(x)
     79       1.1     joerg #define DPRINTFN(n, x)
     80       1.1     joerg #endif
     81       1.1     joerg 
     82       1.1     joerg /* various supported device vendors/products */
     83       1.1     joerg static const struct usb_devno rum_devs[] = {
     84      1.11   xtraeme 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
     85      1.11   xtraeme 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
     86      1.11   xtraeme 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
     87      1.11   xtraeme 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
     88      1.18  kiyohara 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
     89      1.11   xtraeme 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
     90      1.10   xtraeme 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
     91      1.11   xtraeme 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
     92       1.1     joerg 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
     93       1.1     joerg 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
     94  1.40.2.1      yamt 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050C },
     95  1.40.2.1      yamt 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB200 },
     96       1.1     joerg 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
     97      1.11   xtraeme 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
     98       1.1     joerg 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
     99  1.40.2.1      yamt 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_RT2573 },
    100      1.18  kiyohara 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
    101      1.23       jun 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
    102       1.1     joerg 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
    103       1.1     joerg 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
    104       1.1     joerg 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
    105       1.1     joerg 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
    106      1.40  christos 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA110 },
    107      1.29     pooka 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
    108  1.40.2.1      yamt 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7318 },
    109  1.40.2.1      yamt 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7618 },
    110       1.1     joerg 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
    111      1.11   xtraeme 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
    112       1.1     joerg 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
    113       1.1     joerg 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
    114      1.11   xtraeme 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
    115      1.11   xtraeme 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
    116       1.1     joerg 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
    117      1.11   xtraeme 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
    118       1.4      elad 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
    119  1.40.2.1      yamt 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HG },
    120      1.27  tshiozak 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_WLIUCG },
    121       1.1     joerg 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
    122       1.1     joerg 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
    123       1.1     joerg 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
    124      1.11   xtraeme 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
    125      1.11   xtraeme 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
    126      1.11   xtraeme 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
    127       1.4      elad 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
    128       1.1     joerg 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
    129       1.1     joerg 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
    130       1.1     joerg 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
    131      1.22  uebayasi 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
    132       1.1     joerg 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
    133       1.1     joerg 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
    134       1.1     joerg 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
    135       1.1     joerg 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
    136  1.40.2.1      yamt 	{ USB_VENDOR_SPARKLAN,		USB_PRODUCT_SPARKLAN_RT2573 },
    137  1.40.2.1      yamt 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 },
    138  1.40.2.1      yamt 	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_RT2573 }
    139       1.1     joerg };
    140       1.1     joerg 
    141      1.35  jmcneill static int		rum_attachhook(void *);
    142      1.35  jmcneill static int		rum_alloc_tx_list(struct rum_softc *);
    143      1.35  jmcneill static void		rum_free_tx_list(struct rum_softc *);
    144      1.35  jmcneill static int		rum_alloc_rx_list(struct rum_softc *);
    145      1.35  jmcneill static void		rum_free_rx_list(struct rum_softc *);
    146      1.35  jmcneill static int		rum_media_change(struct ifnet *);
    147      1.35  jmcneill static void		rum_next_scan(void *);
    148      1.35  jmcneill static void		rum_task(void *);
    149      1.35  jmcneill static int		rum_newstate(struct ieee80211com *,
    150       1.1     joerg 			    enum ieee80211_state, int);
    151      1.35  jmcneill static void		rum_txeof(usbd_xfer_handle, usbd_private_handle,
    152       1.1     joerg 			    usbd_status);
    153      1.35  jmcneill static void		rum_rxeof(usbd_xfer_handle, usbd_private_handle,
    154       1.1     joerg 			    usbd_status);
    155      1.35  jmcneill static uint8_t		rum_rxrate(const struct rum_rx_desc *);
    156      1.35  jmcneill static int		rum_ack_rate(struct ieee80211com *, int);
    157      1.35  jmcneill static uint16_t		rum_txtime(int, int, uint32_t);
    158      1.35  jmcneill static uint8_t		rum_plcp_signal(int);
    159      1.35  jmcneill static void		rum_setup_tx_desc(struct rum_softc *,
    160       1.1     joerg 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
    161       1.1     joerg 			    int);
    162      1.35  jmcneill static int		rum_tx_data(struct rum_softc *, struct mbuf *,
    163       1.1     joerg 			    struct ieee80211_node *);
    164      1.35  jmcneill static void		rum_start(struct ifnet *);
    165      1.35  jmcneill static void		rum_watchdog(struct ifnet *);
    166      1.35  jmcneill static int		rum_ioctl(struct ifnet *, u_long, void *);
    167      1.35  jmcneill static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
    168       1.1     joerg 			    int);
    169      1.35  jmcneill static uint32_t		rum_read(struct rum_softc *, uint16_t);
    170      1.35  jmcneill static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
    171       1.1     joerg 			    int);
    172      1.35  jmcneill static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
    173      1.35  jmcneill static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
    174       1.1     joerg 			    size_t);
    175      1.35  jmcneill static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
    176      1.35  jmcneill static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
    177      1.35  jmcneill static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
    178      1.35  jmcneill static void		rum_select_antenna(struct rum_softc *);
    179      1.35  jmcneill static void		rum_enable_mrr(struct rum_softc *);
    180      1.35  jmcneill static void		rum_set_txpreamble(struct rum_softc *);
    181      1.35  jmcneill static void		rum_set_basicrates(struct rum_softc *);
    182      1.35  jmcneill static void		rum_select_band(struct rum_softc *,
    183       1.1     joerg 			    struct ieee80211_channel *);
    184      1.35  jmcneill static void		rum_set_chan(struct rum_softc *,
    185       1.1     joerg 			    struct ieee80211_channel *);
    186      1.35  jmcneill static void		rum_enable_tsf_sync(struct rum_softc *);
    187      1.35  jmcneill static void		rum_update_slot(struct rum_softc *);
    188      1.35  jmcneill static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
    189      1.35  jmcneill static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
    190      1.35  jmcneill static void		rum_update_promisc(struct rum_softc *);
    191      1.35  jmcneill static const char	*rum_get_rf(int);
    192      1.35  jmcneill static void		rum_read_eeprom(struct rum_softc *);
    193      1.35  jmcneill static int		rum_bbp_init(struct rum_softc *);
    194      1.35  jmcneill static int		rum_init(struct ifnet *);
    195      1.35  jmcneill static void		rum_stop(struct ifnet *, int);
    196      1.35  jmcneill static int		rum_load_microcode(struct rum_softc *, const u_char *,
    197       1.1     joerg 			    size_t);
    198      1.35  jmcneill static int		rum_prepare_beacon(struct rum_softc *);
    199      1.35  jmcneill static void		rum_newassoc(struct ieee80211_node *, int);
    200      1.35  jmcneill static void		rum_amrr_start(struct rum_softc *,
    201       1.1     joerg 			    struct ieee80211_node *);
    202      1.35  jmcneill static void		rum_amrr_timeout(void *);
    203      1.35  jmcneill static void		rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
    204       1.1     joerg 			    usbd_status status);
    205       1.1     joerg 
    206       1.1     joerg /*
    207       1.1     joerg  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    208       1.1     joerg  */
    209       1.1     joerg static const struct ieee80211_rateset rum_rateset_11a =
    210       1.1     joerg 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    211       1.1     joerg 
    212       1.1     joerg static const struct ieee80211_rateset rum_rateset_11b =
    213       1.1     joerg 	{ 4, { 2, 4, 11, 22 } };
    214       1.1     joerg 
    215       1.1     joerg static const struct ieee80211_rateset rum_rateset_11g =
    216       1.1     joerg 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    217       1.1     joerg 
    218       1.1     joerg static const struct {
    219       1.1     joerg 	uint32_t	reg;
    220       1.1     joerg 	uint32_t	val;
    221       1.1     joerg } rum_def_mac[] = {
    222       1.1     joerg 	RT2573_DEF_MAC
    223       1.1     joerg };
    224       1.1     joerg 
    225       1.1     joerg static const struct {
    226       1.1     joerg 	uint8_t	reg;
    227       1.1     joerg 	uint8_t	val;
    228       1.1     joerg } rum_def_bbp[] = {
    229       1.1     joerg 	RT2573_DEF_BBP
    230       1.1     joerg };
    231       1.1     joerg 
    232       1.1     joerg static const struct rfprog {
    233       1.1     joerg 	uint8_t		chan;
    234       1.1     joerg 	uint32_t	r1, r2, r3, r4;
    235       1.1     joerg }  rum_rf5226[] = {
    236       1.1     joerg 	RT2573_RF5226
    237       1.1     joerg }, rum_rf5225[] = {
    238       1.1     joerg 	RT2573_RF5225
    239       1.1     joerg };
    240       1.1     joerg 
    241      1.35  jmcneill static int rum_match(device_t, cfdata_t, void *);
    242      1.35  jmcneill static void rum_attach(device_t, device_t, void *);
    243      1.35  jmcneill static int rum_detach(device_t, int);
    244      1.35  jmcneill static int rum_activate(device_t, enum devact);
    245      1.33    dyoung extern struct cfdriver rum_cd;
    246      1.33    dyoung CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
    247      1.33    dyoung     rum_detach, rum_activate);
    248       1.1     joerg 
    249      1.35  jmcneill static int
    250      1.33    dyoung rum_match(device_t parent, cfdata_t match, void *aux)
    251       1.1     joerg {
    252      1.33    dyoung 	struct usb_attach_arg *uaa = aux;
    253       1.1     joerg 
    254       1.1     joerg 	return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
    255       1.1     joerg 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
    256       1.1     joerg }
    257       1.1     joerg 
    258      1.35  jmcneill static int
    259       1.1     joerg rum_attachhook(void *xsc)
    260       1.1     joerg {
    261       1.1     joerg 	struct rum_softc *sc = xsc;
    262       1.1     joerg 	firmware_handle_t fwh;
    263       1.1     joerg 	const char *name = "rum-rt2573";
    264       1.1     joerg 	u_char *ucode;
    265       1.1     joerg 	size_t size;
    266       1.1     joerg 	int error;
    267       1.1     joerg 
    268       1.1     joerg 	if ((error = firmware_open("rum", name, &fwh)) != 0) {
    269       1.1     joerg 		printf("%s: failed loadfirmware of file %s (error %d)\n",
    270      1.33    dyoung 		    device_xname(sc->sc_dev), name, error);
    271       1.1     joerg 		return error;
    272       1.1     joerg 	}
    273       1.1     joerg 	size = firmware_get_size(fwh);
    274       1.1     joerg 	ucode = firmware_malloc(size);
    275       1.1     joerg 	if (ucode == NULL) {
    276       1.1     joerg 		printf("%s: failed to allocate firmware memory\n",
    277      1.33    dyoung 		    device_xname(sc->sc_dev));
    278       1.1     joerg 		firmware_close(fwh);
    279      1.25      yamt 		return ENOMEM;
    280       1.1     joerg 	}
    281       1.1     joerg 	error = firmware_read(fwh, 0, ucode, size);
    282       1.1     joerg 	firmware_close(fwh);
    283       1.1     joerg 	if (error != 0) {
    284       1.1     joerg 		printf("%s: failed to read firmware (error %d)\n",
    285      1.33    dyoung 		    device_xname(sc->sc_dev), error);
    286       1.1     joerg 		firmware_free(ucode, 0);
    287       1.1     joerg 		return error;
    288       1.1     joerg 	}
    289       1.1     joerg 
    290       1.1     joerg 	if (rum_load_microcode(sc, ucode, size) != 0) {
    291       1.1     joerg 		printf("%s: could not load 8051 microcode\n",
    292      1.33    dyoung 		    device_xname(sc->sc_dev));
    293       1.1     joerg 		firmware_free(ucode, 0);
    294       1.1     joerg 		return ENXIO;
    295       1.1     joerg 	}
    296       1.1     joerg 
    297       1.1     joerg 	firmware_free(ucode, 0);
    298       1.1     joerg 	sc->sc_flags |= RT2573_FWLOADED;
    299       1.1     joerg 
    300       1.1     joerg 	return 0;
    301       1.1     joerg }
    302       1.1     joerg 
    303      1.35  jmcneill static void
    304      1.33    dyoung rum_attach(device_t parent, device_t self, void *aux)
    305       1.1     joerg {
    306      1.33    dyoung 	struct rum_softc *sc = device_private(self);
    307      1.33    dyoung 	struct usb_attach_arg *uaa = aux;
    308       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    309       1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    310       1.1     joerg 	usb_interface_descriptor_t *id;
    311       1.1     joerg 	usb_endpoint_descriptor_t *ed;
    312       1.1     joerg 	usbd_status error;
    313       1.1     joerg 	char *devinfop;
    314       1.1     joerg 	int i, ntries;
    315       1.1     joerg 	uint32_t tmp;
    316       1.1     joerg 
    317      1.21      cube 	sc->sc_dev = self;
    318       1.1     joerg 	sc->sc_udev = uaa->device;
    319       1.1     joerg 	sc->sc_flags = 0;
    320       1.1     joerg 
    321      1.28    plunky 	aprint_naive("\n");
    322      1.28    plunky 	aprint_normal("\n");
    323      1.28    plunky 
    324       1.1     joerg 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
    325      1.21      cube 	aprint_normal_dev(self, "%s\n", devinfop);
    326       1.1     joerg 	usbd_devinfo_free(devinfop);
    327       1.1     joerg 
    328  1.40.2.2      yamt 	error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
    329  1.40.2.2      yamt 	if (error != 0) {
    330  1.40.2.2      yamt 		aprint_error_dev(self, "failed to set configuration"
    331  1.40.2.2      yamt 		    ", err=%s\n", usbd_errstr(error));
    332      1.33    dyoung 		return;
    333       1.1     joerg 	}
    334       1.1     joerg 
    335       1.1     joerg 	/* get the first interface handle */
    336       1.1     joerg 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
    337       1.1     joerg 	    &sc->sc_iface);
    338       1.1     joerg 	if (error != 0) {
    339      1.21      cube 		aprint_error_dev(self, "could not get interface handle\n");
    340      1.33    dyoung 		return;
    341       1.1     joerg 	}
    342       1.1     joerg 
    343       1.1     joerg 	/*
    344       1.1     joerg 	 * Find endpoints.
    345       1.1     joerg 	 */
    346       1.1     joerg 	id = usbd_get_interface_descriptor(sc->sc_iface);
    347       1.1     joerg 
    348       1.1     joerg 	sc->sc_rx_no = sc->sc_tx_no = -1;
    349       1.1     joerg 	for (i = 0; i < id->bNumEndpoints; i++) {
    350       1.1     joerg 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
    351       1.1     joerg 		if (ed == NULL) {
    352      1.21      cube 			aprint_error_dev(self,
    353      1.21      cube 			    "no endpoint descriptor for iface %d\n", i);
    354      1.33    dyoung 			return;
    355       1.1     joerg 		}
    356       1.1     joerg 
    357       1.1     joerg 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
    358       1.1     joerg 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    359       1.1     joerg 			sc->sc_rx_no = ed->bEndpointAddress;
    360       1.1     joerg 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
    361       1.1     joerg 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    362       1.1     joerg 			sc->sc_tx_no = ed->bEndpointAddress;
    363       1.1     joerg 	}
    364       1.1     joerg 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
    365      1.21      cube 		aprint_error_dev(self, "missing endpoint\n");
    366      1.33    dyoung 		return;
    367       1.1     joerg 	}
    368       1.1     joerg 
    369  1.40.2.2      yamt 	usb_init_task(&sc->sc_task, rum_task, sc, 0);
    370      1.33    dyoung 	callout_init(&sc->sc_scan_ch, 0);
    371       1.1     joerg 
    372       1.1     joerg 	sc->amrr.amrr_min_success_threshold =  1;
    373       1.1     joerg 	sc->amrr.amrr_max_success_threshold = 10;
    374      1.33    dyoung 	callout_init(&sc->sc_amrr_ch, 0);
    375       1.1     joerg 
    376       1.1     joerg 	/* retrieve RT2573 rev. no */
    377       1.1     joerg 	for (ntries = 0; ntries < 1000; ntries++) {
    378       1.1     joerg 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
    379       1.1     joerg 			break;
    380       1.1     joerg 		DELAY(1000);
    381       1.1     joerg 	}
    382       1.1     joerg 	if (ntries == 1000) {
    383      1.21      cube 		aprint_error_dev(self, "timeout waiting for chip to settle\n");
    384      1.33    dyoung 		return;
    385       1.1     joerg 	}
    386       1.1     joerg 
    387       1.1     joerg 	/* retrieve MAC address and various other things from EEPROM */
    388       1.1     joerg 	rum_read_eeprom(sc);
    389       1.1     joerg 
    390      1.21      cube 	aprint_normal_dev(self,
    391      1.21      cube 	    "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
    392      1.21      cube 	    sc->macbbp_rev, tmp,
    393       1.1     joerg 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
    394       1.1     joerg 
    395       1.1     joerg 	ic->ic_ifp = ifp;
    396       1.1     joerg 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    397       1.1     joerg 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    398       1.1     joerg 	ic->ic_state = IEEE80211_S_INIT;
    399       1.1     joerg 
    400       1.1     joerg 	/* set device capabilities */
    401       1.1     joerg 	ic->ic_caps =
    402       1.1     joerg 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
    403       1.1     joerg 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    404       1.1     joerg 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
    405       1.1     joerg 	    IEEE80211_C_TXPMGT |	/* tx power management */
    406       1.1     joerg 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    407       1.1     joerg 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    408       1.1     joerg 	    IEEE80211_C_WPA;		/* 802.11i */
    409       1.1     joerg 
    410       1.1     joerg 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
    411       1.1     joerg 		/* set supported .11a rates */
    412       1.1     joerg 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
    413       1.1     joerg 
    414       1.1     joerg 		/* set supported .11a channels */
    415       1.1     joerg 		for (i = 34; i <= 46; i += 4) {
    416       1.1     joerg 			ic->ic_channels[i].ic_freq =
    417       1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    418       1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    419       1.1     joerg 		}
    420       1.1     joerg 		for (i = 36; i <= 64; i += 4) {
    421       1.1     joerg 			ic->ic_channels[i].ic_freq =
    422       1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    423       1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    424       1.1     joerg 		}
    425       1.1     joerg 		for (i = 100; i <= 140; i += 4) {
    426       1.1     joerg 			ic->ic_channels[i].ic_freq =
    427       1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    428       1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    429       1.1     joerg 		}
    430       1.1     joerg 		for (i = 149; i <= 165; i += 4) {
    431       1.1     joerg 			ic->ic_channels[i].ic_freq =
    432       1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    433       1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    434       1.1     joerg 		}
    435       1.1     joerg 	}
    436       1.1     joerg 
    437       1.1     joerg 	/* set supported .11b and .11g rates */
    438       1.1     joerg 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
    439       1.1     joerg 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
    440       1.1     joerg 
    441       1.1     joerg 	/* set supported .11b and .11g channels (1 through 14) */
    442       1.1     joerg 	for (i = 1; i <= 14; i++) {
    443       1.1     joerg 		ic->ic_channels[i].ic_freq =
    444       1.1     joerg 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    445       1.1     joerg 		ic->ic_channels[i].ic_flags =
    446       1.1     joerg 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    447       1.1     joerg 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    448       1.1     joerg 	}
    449       1.1     joerg 
    450       1.1     joerg 	ifp->if_softc = sc;
    451       1.1     joerg 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    452       1.1     joerg 	ifp->if_init = rum_init;
    453       1.1     joerg 	ifp->if_ioctl = rum_ioctl;
    454       1.1     joerg 	ifp->if_start = rum_start;
    455       1.1     joerg 	ifp->if_watchdog = rum_watchdog;
    456       1.1     joerg 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
    457       1.1     joerg 	IFQ_SET_READY(&ifp->if_snd);
    458      1.33    dyoung 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    459       1.1     joerg 
    460       1.1     joerg 	if_attach(ifp);
    461       1.1     joerg 	ieee80211_ifattach(ic);
    462      1.18  kiyohara 	ic->ic_newassoc = rum_newassoc;
    463       1.1     joerg 
    464       1.1     joerg 	/* override state transition machine */
    465       1.1     joerg 	sc->sc_newstate = ic->ic_newstate;
    466       1.1     joerg 	ic->ic_newstate = rum_newstate;
    467       1.1     joerg 	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
    468       1.1     joerg 
    469      1.32     joerg 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    470      1.31     pooka 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    471      1.31     pooka 	    &sc->sc_drvbpf);
    472       1.1     joerg 
    473       1.1     joerg 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    474       1.1     joerg 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    475       1.1     joerg 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
    476       1.1     joerg 
    477       1.1     joerg 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    478       1.1     joerg 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    479       1.1     joerg 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
    480       1.1     joerg 
    481       1.1     joerg 	ieee80211_announce(ic);
    482       1.1     joerg 
    483       1.1     joerg 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
    484      1.33    dyoung 	    sc->sc_dev);
    485       1.1     joerg 
    486      1.33    dyoung 	return;
    487       1.1     joerg }
    488       1.1     joerg 
    489      1.35  jmcneill static int
    490      1.33    dyoung rum_detach(device_t self, int flags)
    491       1.1     joerg {
    492      1.33    dyoung 	struct rum_softc *sc = device_private(self);
    493       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    494       1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    495       1.1     joerg 	int s;
    496       1.1     joerg 
    497      1.13  drochner 	if (!ifp->if_softc)
    498      1.13  drochner 		return 0;
    499      1.13  drochner 
    500       1.1     joerg 	s = splusb();
    501       1.1     joerg 
    502       1.1     joerg 	rum_stop(ifp, 1);
    503       1.1     joerg 	usb_rem_task(sc->sc_udev, &sc->sc_task);
    504      1.33    dyoung 	callout_stop(&sc->sc_scan_ch);
    505      1.33    dyoung 	callout_stop(&sc->sc_amrr_ch);
    506       1.1     joerg 
    507       1.1     joerg 	if (sc->amrr_xfer != NULL) {
    508       1.1     joerg 		usbd_free_xfer(sc->amrr_xfer);
    509       1.1     joerg 		sc->amrr_xfer = NULL;
    510       1.1     joerg 	}
    511       1.1     joerg 
    512       1.1     joerg 	if (sc->sc_rx_pipeh != NULL) {
    513       1.1     joerg 		usbd_abort_pipe(sc->sc_rx_pipeh);
    514       1.1     joerg 		usbd_close_pipe(sc->sc_rx_pipeh);
    515       1.1     joerg 	}
    516       1.1     joerg 
    517       1.1     joerg 	if (sc->sc_tx_pipeh != NULL) {
    518       1.1     joerg 		usbd_abort_pipe(sc->sc_tx_pipeh);
    519       1.1     joerg 		usbd_close_pipe(sc->sc_tx_pipeh);
    520       1.1     joerg 	}
    521       1.1     joerg 
    522      1.32     joerg 	bpf_detach(ifp);
    523       1.1     joerg 	ieee80211_ifdetach(ic);	/* free all nodes */
    524       1.1     joerg 	if_detach(ifp);
    525       1.1     joerg 
    526       1.1     joerg 	splx(s);
    527       1.1     joerg 
    528      1.33    dyoung 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
    529       1.1     joerg 
    530       1.1     joerg 	return 0;
    531       1.1     joerg }
    532       1.1     joerg 
    533      1.35  jmcneill static int
    534       1.1     joerg rum_alloc_tx_list(struct rum_softc *sc)
    535       1.1     joerg {
    536       1.1     joerg 	struct rum_tx_data *data;
    537       1.1     joerg 	int i, error;
    538       1.1     joerg 
    539      1.35  jmcneill 	sc->tx_cur = sc->tx_queued = 0;
    540       1.1     joerg 
    541      1.18  kiyohara 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
    542       1.1     joerg 		data = &sc->tx_data[i];
    543       1.1     joerg 
    544       1.1     joerg 		data->sc = sc;
    545       1.1     joerg 
    546       1.1     joerg 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
    547       1.1     joerg 		if (data->xfer == NULL) {
    548       1.1     joerg 			printf("%s: could not allocate tx xfer\n",
    549      1.33    dyoung 			    device_xname(sc->sc_dev));
    550       1.1     joerg 			error = ENOMEM;
    551       1.1     joerg 			goto fail;
    552       1.1     joerg 		}
    553       1.1     joerg 
    554       1.1     joerg 		data->buf = usbd_alloc_buffer(data->xfer,
    555      1.35  jmcneill 		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
    556       1.1     joerg 		if (data->buf == NULL) {
    557       1.1     joerg 			printf("%s: could not allocate tx buffer\n",
    558      1.33    dyoung 			    device_xname(sc->sc_dev));
    559       1.1     joerg 			error = ENOMEM;
    560       1.1     joerg 			goto fail;
    561       1.1     joerg 		}
    562       1.1     joerg 
    563       1.1     joerg 		/* clean Tx descriptor */
    564      1.26    cegger 		memset(data->buf, 0, RT2573_TX_DESC_SIZE);
    565       1.1     joerg 	}
    566       1.1     joerg 
    567       1.1     joerg 	return 0;
    568       1.1     joerg 
    569       1.1     joerg fail:	rum_free_tx_list(sc);
    570       1.1     joerg 	return error;
    571       1.1     joerg }
    572       1.1     joerg 
    573      1.35  jmcneill static void
    574       1.1     joerg rum_free_tx_list(struct rum_softc *sc)
    575       1.1     joerg {
    576       1.1     joerg 	struct rum_tx_data *data;
    577       1.1     joerg 	int i;
    578       1.1     joerg 
    579      1.18  kiyohara 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
    580       1.1     joerg 		data = &sc->tx_data[i];
    581       1.1     joerg 
    582       1.1     joerg 		if (data->xfer != NULL) {
    583       1.1     joerg 			usbd_free_xfer(data->xfer);
    584       1.1     joerg 			data->xfer = NULL;
    585       1.1     joerg 		}
    586       1.1     joerg 
    587       1.1     joerg 		if (data->ni != NULL) {
    588       1.1     joerg 			ieee80211_free_node(data->ni);
    589       1.1     joerg 			data->ni = NULL;
    590       1.1     joerg 		}
    591       1.1     joerg 	}
    592       1.1     joerg }
    593       1.1     joerg 
    594      1.35  jmcneill static int
    595       1.1     joerg rum_alloc_rx_list(struct rum_softc *sc)
    596       1.1     joerg {
    597       1.1     joerg 	struct rum_rx_data *data;
    598       1.1     joerg 	int i, error;
    599       1.1     joerg 
    600      1.18  kiyohara 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
    601       1.1     joerg 		data = &sc->rx_data[i];
    602       1.1     joerg 
    603       1.1     joerg 		data->sc = sc;
    604       1.1     joerg 
    605       1.1     joerg 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
    606       1.1     joerg 		if (data->xfer == NULL) {
    607       1.1     joerg 			printf("%s: could not allocate rx xfer\n",
    608      1.33    dyoung 			    device_xname(sc->sc_dev));
    609       1.1     joerg 			error = ENOMEM;
    610       1.1     joerg 			goto fail;
    611       1.1     joerg 		}
    612       1.1     joerg 
    613       1.1     joerg 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
    614       1.1     joerg 			printf("%s: could not allocate rx buffer\n",
    615      1.33    dyoung 			    device_xname(sc->sc_dev));
    616       1.1     joerg 			error = ENOMEM;
    617       1.1     joerg 			goto fail;
    618       1.1     joerg 		}
    619       1.1     joerg 
    620       1.1     joerg 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    621       1.1     joerg 		if (data->m == NULL) {
    622       1.1     joerg 			printf("%s: could not allocate rx mbuf\n",
    623      1.33    dyoung 			    device_xname(sc->sc_dev));
    624       1.1     joerg 			error = ENOMEM;
    625       1.1     joerg 			goto fail;
    626       1.1     joerg 		}
    627       1.1     joerg 
    628       1.1     joerg 		MCLGET(data->m, M_DONTWAIT);
    629       1.1     joerg 		if (!(data->m->m_flags & M_EXT)) {
    630       1.1     joerg 			printf("%s: could not allocate rx mbuf cluster\n",
    631      1.33    dyoung 			    device_xname(sc->sc_dev));
    632       1.1     joerg 			error = ENOMEM;
    633       1.1     joerg 			goto fail;
    634       1.1     joerg 		}
    635       1.1     joerg 
    636       1.1     joerg 		data->buf = mtod(data->m, uint8_t *);
    637       1.1     joerg 	}
    638       1.1     joerg 
    639       1.1     joerg 	return 0;
    640       1.1     joerg 
    641      1.34  dholland fail:	rum_free_rx_list(sc);
    642       1.1     joerg 	return error;
    643       1.1     joerg }
    644       1.1     joerg 
    645      1.35  jmcneill static void
    646       1.1     joerg rum_free_rx_list(struct rum_softc *sc)
    647       1.1     joerg {
    648       1.1     joerg 	struct rum_rx_data *data;
    649       1.1     joerg 	int i;
    650       1.1     joerg 
    651      1.18  kiyohara 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
    652       1.1     joerg 		data = &sc->rx_data[i];
    653       1.1     joerg 
    654       1.1     joerg 		if (data->xfer != NULL) {
    655       1.1     joerg 			usbd_free_xfer(data->xfer);
    656       1.1     joerg 			data->xfer = NULL;
    657       1.1     joerg 		}
    658       1.1     joerg 
    659       1.1     joerg 		if (data->m != NULL) {
    660       1.1     joerg 			m_freem(data->m);
    661       1.1     joerg 			data->m = NULL;
    662       1.1     joerg 		}
    663       1.1     joerg 	}
    664       1.1     joerg }
    665       1.1     joerg 
    666      1.35  jmcneill static int
    667       1.1     joerg rum_media_change(struct ifnet *ifp)
    668       1.1     joerg {
    669       1.1     joerg 	int error;
    670       1.1     joerg 
    671       1.1     joerg 	error = ieee80211_media_change(ifp);
    672       1.1     joerg 	if (error != ENETRESET)
    673       1.1     joerg 		return error;
    674       1.1     joerg 
    675       1.1     joerg 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    676       1.1     joerg 		rum_init(ifp);
    677       1.1     joerg 
    678       1.1     joerg 	return 0;
    679       1.1     joerg }
    680       1.1     joerg 
    681       1.1     joerg /*
    682       1.1     joerg  * This function is called periodically (every 200ms) during scanning to
    683       1.1     joerg  * switch from one channel to another.
    684       1.1     joerg  */
    685      1.35  jmcneill static void
    686       1.1     joerg rum_next_scan(void *arg)
    687       1.1     joerg {
    688       1.1     joerg 	struct rum_softc *sc = arg;
    689       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    690      1.35  jmcneill 	int s;
    691       1.1     joerg 
    692      1.35  jmcneill 	s = splnet();
    693       1.1     joerg 	if (ic->ic_state == IEEE80211_S_SCAN)
    694       1.1     joerg 		ieee80211_next_scan(ic);
    695      1.35  jmcneill 	splx(s);
    696       1.1     joerg }
    697       1.1     joerg 
    698      1.35  jmcneill static void
    699       1.1     joerg rum_task(void *arg)
    700       1.1     joerg {
    701       1.1     joerg 	struct rum_softc *sc = arg;
    702       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    703       1.1     joerg 	enum ieee80211_state ostate;
    704       1.1     joerg 	struct ieee80211_node *ni;
    705       1.1     joerg 	uint32_t tmp;
    706       1.1     joerg 
    707       1.1     joerg 	ostate = ic->ic_state;
    708       1.1     joerg 
    709       1.1     joerg 	switch (sc->sc_state) {
    710       1.1     joerg 	case IEEE80211_S_INIT:
    711       1.1     joerg 		if (ostate == IEEE80211_S_RUN) {
    712       1.1     joerg 			/* abort TSF synchronization */
    713       1.1     joerg 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
    714       1.1     joerg 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
    715       1.1     joerg 		}
    716       1.1     joerg 		break;
    717       1.1     joerg 
    718       1.1     joerg 	case IEEE80211_S_SCAN:
    719       1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    720      1.33    dyoung 		callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
    721       1.1     joerg 		break;
    722       1.1     joerg 
    723       1.1     joerg 	case IEEE80211_S_AUTH:
    724       1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    725       1.1     joerg 		break;
    726       1.1     joerg 
    727       1.1     joerg 	case IEEE80211_S_ASSOC:
    728       1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    729       1.1     joerg 		break;
    730       1.1     joerg 
    731       1.1     joerg 	case IEEE80211_S_RUN:
    732       1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    733       1.1     joerg 
    734       1.1     joerg 		ni = ic->ic_bss;
    735       1.1     joerg 
    736       1.1     joerg 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    737       1.1     joerg 			rum_update_slot(sc);
    738       1.1     joerg 			rum_enable_mrr(sc);
    739       1.1     joerg 			rum_set_txpreamble(sc);
    740       1.1     joerg 			rum_set_basicrates(sc);
    741       1.1     joerg 			rum_set_bssid(sc, ni->ni_bssid);
    742       1.1     joerg 		}
    743       1.1     joerg 
    744       1.1     joerg 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
    745       1.1     joerg 		    ic->ic_opmode == IEEE80211_M_IBSS)
    746       1.1     joerg 			rum_prepare_beacon(sc);
    747       1.1     joerg 
    748       1.1     joerg 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
    749       1.1     joerg 			rum_enable_tsf_sync(sc);
    750       1.1     joerg 
    751      1.18  kiyohara 		if (ic->ic_opmode == IEEE80211_M_STA) {
    752      1.18  kiyohara 			/* fake a join to init the tx rate */
    753      1.18  kiyohara 			rum_newassoc(ic->ic_bss, 1);
    754      1.18  kiyohara 
    755      1.18  kiyohara 			/* enable automatic rate adaptation in STA mode */
    756      1.18  kiyohara 			if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
    757      1.18  kiyohara 				rum_amrr_start(sc, ni);
    758      1.18  kiyohara 		}
    759       1.1     joerg 
    760       1.1     joerg 		break;
    761       1.1     joerg 	}
    762       1.1     joerg 
    763      1.35  jmcneill 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
    764       1.1     joerg }
    765       1.1     joerg 
    766      1.35  jmcneill static int
    767       1.1     joerg rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    768       1.1     joerg {
    769       1.1     joerg 	struct rum_softc *sc = ic->ic_ifp->if_softc;
    770       1.1     joerg 
    771       1.1     joerg 	usb_rem_task(sc->sc_udev, &sc->sc_task);
    772      1.33    dyoung 	callout_stop(&sc->sc_scan_ch);
    773      1.33    dyoung 	callout_stop(&sc->sc_amrr_ch);
    774       1.1     joerg 
    775       1.1     joerg 	/* do it in a process context */
    776       1.1     joerg 	sc->sc_state = nstate;
    777      1.35  jmcneill 	sc->sc_arg = arg;
    778       1.1     joerg 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
    779       1.1     joerg 
    780       1.1     joerg 	return 0;
    781       1.1     joerg }
    782       1.1     joerg 
    783       1.1     joerg /* quickly determine if a given rate is CCK or OFDM */
    784       1.1     joerg #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
    785       1.1     joerg 
    786       1.1     joerg #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
    787       1.1     joerg #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
    788       1.1     joerg 
    789      1.35  jmcneill static void
    790       1.1     joerg rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
    791       1.1     joerg {
    792       1.1     joerg 	struct rum_tx_data *data = priv;
    793       1.1     joerg 	struct rum_softc *sc = data->sc;
    794       1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    795       1.1     joerg 	int s;
    796       1.1     joerg 
    797       1.1     joerg 	if (status != USBD_NORMAL_COMPLETION) {
    798       1.1     joerg 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
    799       1.1     joerg 			return;
    800       1.1     joerg 
    801       1.1     joerg 		printf("%s: could not transmit buffer: %s\n",
    802      1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(status));
    803       1.1     joerg 
    804       1.1     joerg 		if (status == USBD_STALLED)
    805       1.1     joerg 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
    806       1.1     joerg 
    807       1.1     joerg 		ifp->if_oerrors++;
    808       1.1     joerg 		return;
    809       1.1     joerg 	}
    810       1.1     joerg 
    811       1.1     joerg 	s = splnet();
    812       1.1     joerg 
    813       1.1     joerg 	ieee80211_free_node(data->ni);
    814       1.1     joerg 	data->ni = NULL;
    815       1.1     joerg 
    816       1.1     joerg 	sc->tx_queued--;
    817       1.1     joerg 	ifp->if_opackets++;
    818       1.1     joerg 
    819       1.1     joerg 	DPRINTFN(10, ("tx done\n"));
    820       1.1     joerg 
    821       1.1     joerg 	sc->sc_tx_timer = 0;
    822       1.1     joerg 	ifp->if_flags &= ~IFF_OACTIVE;
    823       1.1     joerg 	rum_start(ifp);
    824       1.1     joerg 
    825       1.1     joerg 	splx(s);
    826       1.1     joerg }
    827       1.1     joerg 
    828      1.35  jmcneill static void
    829       1.1     joerg rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
    830       1.1     joerg {
    831       1.1     joerg 	struct rum_rx_data *data = priv;
    832       1.1     joerg 	struct rum_softc *sc = data->sc;
    833       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    834       1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    835       1.1     joerg 	struct rum_rx_desc *desc;
    836       1.1     joerg 	struct ieee80211_frame *wh;
    837       1.1     joerg 	struct ieee80211_node *ni;
    838       1.1     joerg 	struct mbuf *mnew, *m;
    839       1.1     joerg 	int s, len;
    840       1.1     joerg 
    841       1.1     joerg 	if (status != USBD_NORMAL_COMPLETION) {
    842       1.1     joerg 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
    843       1.1     joerg 			return;
    844       1.1     joerg 
    845       1.1     joerg 		if (status == USBD_STALLED)
    846       1.1     joerg 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
    847       1.1     joerg 		goto skip;
    848       1.1     joerg 	}
    849       1.1     joerg 
    850       1.1     joerg 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
    851       1.1     joerg 
    852      1.37  pgoyette 	if (len < (int)(RT2573_RX_DESC_SIZE +
    853      1.37  pgoyette 		        sizeof(struct ieee80211_frame_min))) {
    854      1.33    dyoung 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
    855       1.1     joerg 		    len));
    856       1.1     joerg 		ifp->if_ierrors++;
    857       1.1     joerg 		goto skip;
    858       1.1     joerg 	}
    859       1.1     joerg 
    860       1.1     joerg 	desc = (struct rum_rx_desc *)data->buf;
    861       1.1     joerg 
    862       1.1     joerg 	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
    863       1.1     joerg 		/*
    864       1.1     joerg 		 * This should not happen since we did not request to receive
    865       1.1     joerg 		 * those frames when we filled RT2573_TXRX_CSR0.
    866       1.1     joerg 		 */
    867       1.1     joerg 		DPRINTFN(5, ("CRC error\n"));
    868       1.1     joerg 		ifp->if_ierrors++;
    869       1.1     joerg 		goto skip;
    870       1.1     joerg 	}
    871       1.1     joerg 
    872       1.1     joerg 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
    873       1.1     joerg 	if (mnew == NULL) {
    874       1.1     joerg 		printf("%s: could not allocate rx mbuf\n",
    875      1.33    dyoung 		    device_xname(sc->sc_dev));
    876       1.1     joerg 		ifp->if_ierrors++;
    877       1.1     joerg 		goto skip;
    878       1.1     joerg 	}
    879       1.1     joerg 
    880       1.1     joerg 	MCLGET(mnew, M_DONTWAIT);
    881       1.1     joerg 	if (!(mnew->m_flags & M_EXT)) {
    882       1.1     joerg 		printf("%s: could not allocate rx mbuf cluster\n",
    883      1.33    dyoung 		    device_xname(sc->sc_dev));
    884       1.1     joerg 		m_freem(mnew);
    885       1.1     joerg 		ifp->if_ierrors++;
    886       1.1     joerg 		goto skip;
    887       1.1     joerg 	}
    888       1.1     joerg 
    889       1.1     joerg 	m = data->m;
    890       1.1     joerg 	data->m = mnew;
    891       1.1     joerg 	data->buf = mtod(data->m, uint8_t *);
    892       1.1     joerg 
    893       1.1     joerg 	/* finalize mbuf */
    894       1.1     joerg 	m->m_pkthdr.rcvif = ifp;
    895       1.7  christos 	m->m_data = (void *)(desc + 1);
    896       1.1     joerg 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
    897       1.1     joerg 
    898       1.1     joerg 	s = splnet();
    899       1.1     joerg 
    900       1.1     joerg 	if (sc->sc_drvbpf != NULL) {
    901       1.1     joerg 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
    902       1.1     joerg 
    903       1.1     joerg 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
    904       1.1     joerg 		tap->wr_rate = rum_rxrate(desc);
    905       1.1     joerg 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
    906       1.1     joerg 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
    907       1.1     joerg 		tap->wr_antenna = sc->rx_ant;
    908       1.1     joerg 		tap->wr_antsignal = desc->rssi;
    909       1.1     joerg 
    910      1.32     joerg 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
    911       1.1     joerg 	}
    912       1.1     joerg 
    913       1.1     joerg 	wh = mtod(m, struct ieee80211_frame *);
    914       1.1     joerg 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
    915       1.1     joerg 
    916       1.1     joerg 	/* send the frame to the 802.11 layer */
    917       1.1     joerg 	ieee80211_input(ic, m, ni, desc->rssi, 0);
    918       1.1     joerg 
    919       1.1     joerg 	/* node is no longer needed */
    920       1.1     joerg 	ieee80211_free_node(ni);
    921       1.1     joerg 
    922       1.1     joerg 	splx(s);
    923       1.1     joerg 
    924       1.1     joerg 	DPRINTFN(15, ("rx done\n"));
    925       1.1     joerg 
    926       1.1     joerg skip:	/* setup a new transfer */
    927       1.1     joerg 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
    928       1.1     joerg 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
    929       1.1     joerg 	usbd_transfer(xfer);
    930       1.1     joerg }
    931       1.1     joerg 
    932       1.1     joerg /*
    933       1.1     joerg  * This function is only used by the Rx radiotap code. It returns the rate at
    934       1.1     joerg  * which a given frame was received.
    935       1.1     joerg  */
    936      1.35  jmcneill static uint8_t
    937      1.18  kiyohara rum_rxrate(const struct rum_rx_desc *desc)
    938       1.1     joerg {
    939       1.1     joerg 	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
    940       1.1     joerg 		/* reverse function of rum_plcp_signal */
    941       1.1     joerg 		switch (desc->rate) {
    942       1.1     joerg 		case 0xb:	return 12;
    943       1.1     joerg 		case 0xf:	return 18;
    944       1.1     joerg 		case 0xa:	return 24;
    945       1.1     joerg 		case 0xe:	return 36;
    946       1.1     joerg 		case 0x9:	return 48;
    947       1.1     joerg 		case 0xd:	return 72;
    948       1.1     joerg 		case 0x8:	return 96;
    949       1.1     joerg 		case 0xc:	return 108;
    950       1.1     joerg 		}
    951       1.1     joerg 	} else {
    952       1.1     joerg 		if (desc->rate == 10)
    953       1.1     joerg 			return 2;
    954       1.1     joerg 		if (desc->rate == 20)
    955       1.1     joerg 			return 4;
    956       1.1     joerg 		if (desc->rate == 55)
    957       1.1     joerg 			return 11;
    958       1.1     joerg 		if (desc->rate == 110)
    959       1.1     joerg 			return 22;
    960       1.1     joerg 	}
    961       1.1     joerg 	return 2;	/* should not get there */
    962       1.1     joerg }
    963       1.1     joerg 
    964       1.1     joerg /*
    965       1.1     joerg  * Return the expected ack rate for a frame transmitted at rate `rate'.
    966       1.1     joerg  * XXX: this should depend on the destination node basic rate set.
    967       1.1     joerg  */
    968      1.35  jmcneill static int
    969       1.1     joerg rum_ack_rate(struct ieee80211com *ic, int rate)
    970       1.1     joerg {
    971       1.1     joerg 	switch (rate) {
    972       1.1     joerg 	/* CCK rates */
    973       1.1     joerg 	case 2:
    974       1.1     joerg 		return 2;
    975       1.1     joerg 	case 4:
    976       1.1     joerg 	case 11:
    977       1.1     joerg 	case 22:
    978       1.1     joerg 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
    979       1.1     joerg 
    980       1.1     joerg 	/* OFDM rates */
    981       1.1     joerg 	case 12:
    982       1.1     joerg 	case 18:
    983       1.1     joerg 		return 12;
    984       1.1     joerg 	case 24:
    985       1.1     joerg 	case 36:
    986       1.1     joerg 		return 24;
    987       1.1     joerg 	case 48:
    988       1.1     joerg 	case 72:
    989       1.1     joerg 	case 96:
    990       1.1     joerg 	case 108:
    991       1.1     joerg 		return 48;
    992       1.1     joerg 	}
    993       1.1     joerg 
    994       1.1     joerg 	/* default to 1Mbps */
    995       1.1     joerg 	return 2;
    996       1.1     joerg }
    997       1.1     joerg 
    998       1.1     joerg /*
    999       1.1     joerg  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
   1000       1.1     joerg  * The function automatically determines the operating mode depending on the
   1001       1.1     joerg  * given rate. `flags' indicates whether short preamble is in use or not.
   1002       1.1     joerg  */
   1003      1.35  jmcneill static uint16_t
   1004       1.1     joerg rum_txtime(int len, int rate, uint32_t flags)
   1005       1.1     joerg {
   1006       1.1     joerg 	uint16_t txtime;
   1007       1.1     joerg 
   1008       1.1     joerg 	if (RUM_RATE_IS_OFDM(rate)) {
   1009       1.1     joerg 		/* IEEE Std 802.11a-1999, pp. 37 */
   1010       1.1     joerg 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
   1011       1.1     joerg 		txtime = 16 + 4 + 4 * txtime + 6;
   1012       1.1     joerg 	} else {
   1013       1.1     joerg 		/* IEEE Std 802.11b-1999, pp. 28 */
   1014       1.1     joerg 		txtime = (16 * len + rate - 1) / rate;
   1015       1.1     joerg 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
   1016       1.1     joerg 			txtime +=  72 + 24;
   1017       1.1     joerg 		else
   1018       1.1     joerg 			txtime += 144 + 48;
   1019       1.1     joerg 	}
   1020       1.1     joerg 	return txtime;
   1021       1.1     joerg }
   1022       1.1     joerg 
   1023      1.35  jmcneill static uint8_t
   1024       1.1     joerg rum_plcp_signal(int rate)
   1025       1.1     joerg {
   1026       1.1     joerg 	switch (rate) {
   1027       1.1     joerg 	/* CCK rates (returned values are device-dependent) */
   1028       1.1     joerg 	case 2:		return 0x0;
   1029       1.1     joerg 	case 4:		return 0x1;
   1030       1.1     joerg 	case 11:	return 0x2;
   1031       1.1     joerg 	case 22:	return 0x3;
   1032       1.1     joerg 
   1033       1.1     joerg 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1034       1.1     joerg 	case 12:	return 0xb;
   1035       1.1     joerg 	case 18:	return 0xf;
   1036       1.1     joerg 	case 24:	return 0xa;
   1037       1.1     joerg 	case 36:	return 0xe;
   1038       1.1     joerg 	case 48:	return 0x9;
   1039       1.1     joerg 	case 72:	return 0xd;
   1040       1.1     joerg 	case 96:	return 0x8;
   1041       1.1     joerg 	case 108:	return 0xc;
   1042       1.1     joerg 
   1043       1.1     joerg 	/* unsupported rates (should not get there) */
   1044       1.1     joerg 	default:	return 0xff;
   1045       1.1     joerg 	}
   1046       1.1     joerg }
   1047       1.1     joerg 
   1048      1.35  jmcneill static void
   1049       1.1     joerg rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
   1050       1.1     joerg     uint32_t flags, uint16_t xflags, int len, int rate)
   1051       1.1     joerg {
   1052       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1053       1.1     joerg 	uint16_t plcp_length;
   1054       1.1     joerg 	int remainder;
   1055       1.1     joerg 
   1056       1.1     joerg 	desc->flags = htole32(flags);
   1057       1.1     joerg 	desc->flags |= htole32(RT2573_TX_VALID);
   1058       1.1     joerg 	desc->flags |= htole32(len << 16);
   1059       1.1     joerg 
   1060       1.1     joerg 	desc->xflags = htole16(xflags);
   1061       1.1     joerg 
   1062       1.1     joerg 	desc->wme = htole16(
   1063       1.1     joerg 	    RT2573_QID(0) |
   1064       1.1     joerg 	    RT2573_AIFSN(2) |
   1065       1.1     joerg 	    RT2573_LOGCWMIN(4) |
   1066       1.1     joerg 	    RT2573_LOGCWMAX(10));
   1067       1.1     joerg 
   1068       1.1     joerg 	/* setup PLCP fields */
   1069       1.1     joerg 	desc->plcp_signal  = rum_plcp_signal(rate);
   1070       1.1     joerg 	desc->plcp_service = 4;
   1071       1.1     joerg 
   1072       1.1     joerg 	len += IEEE80211_CRC_LEN;
   1073       1.1     joerg 	if (RUM_RATE_IS_OFDM(rate)) {
   1074       1.1     joerg 		desc->flags |= htole32(RT2573_TX_OFDM);
   1075       1.1     joerg 
   1076       1.1     joerg 		plcp_length = len & 0xfff;
   1077       1.1     joerg 		desc->plcp_length_hi = plcp_length >> 6;
   1078       1.1     joerg 		desc->plcp_length_lo = plcp_length & 0x3f;
   1079       1.1     joerg 	} else {
   1080       1.1     joerg 		plcp_length = (16 * len + rate - 1) / rate;
   1081       1.1     joerg 		if (rate == 22) {
   1082       1.1     joerg 			remainder = (16 * len) % 22;
   1083       1.1     joerg 			if (remainder != 0 && remainder < 7)
   1084       1.1     joerg 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
   1085       1.1     joerg 		}
   1086       1.1     joerg 		desc->plcp_length_hi = plcp_length >> 8;
   1087       1.1     joerg 		desc->plcp_length_lo = plcp_length & 0xff;
   1088       1.1     joerg 
   1089       1.1     joerg 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1090       1.1     joerg 			desc->plcp_signal |= 0x08;
   1091       1.1     joerg 	}
   1092       1.1     joerg }
   1093       1.1     joerg 
   1094       1.1     joerg #define RUM_TX_TIMEOUT	5000
   1095       1.1     joerg 
   1096      1.35  jmcneill static int
   1097      1.35  jmcneill rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
   1098       1.1     joerg {
   1099       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1100       1.1     joerg 	struct rum_tx_desc *desc;
   1101       1.1     joerg 	struct rum_tx_data *data;
   1102       1.1     joerg 	struct ieee80211_frame *wh;
   1103      1.17  degroote 	struct ieee80211_key *k;
   1104       1.1     joerg 	uint32_t flags = 0;
   1105       1.1     joerg 	uint16_t dur;
   1106       1.1     joerg 	usbd_status error;
   1107      1.35  jmcneill 	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
   1108       1.1     joerg 
   1109       1.1     joerg 	wh = mtod(m0, struct ieee80211_frame *);
   1110       1.1     joerg 
   1111      1.17  degroote 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1112      1.17  degroote 		k = ieee80211_crypto_encap(ic, ni, m0);
   1113      1.17  degroote 		if (k == NULL) {
   1114      1.17  degroote 			m_freem(m0);
   1115      1.17  degroote 			return ENOBUFS;
   1116      1.17  degroote 		}
   1117      1.17  degroote 
   1118      1.35  jmcneill 		/* packet header may have moved, reset our local pointer */
   1119      1.35  jmcneill 		wh = mtod(m0, struct ieee80211_frame *);
   1120       1.1     joerg 	}
   1121       1.1     joerg 
   1122      1.35  jmcneill 	/* compute actual packet length (including CRC and crypto overhead) */
   1123      1.35  jmcneill 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
   1124       1.1     joerg 
   1125      1.35  jmcneill 	/* pickup a rate */
   1126      1.35  jmcneill 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   1127      1.35  jmcneill 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1128      1.35  jmcneill 	     IEEE80211_FC0_TYPE_MGT)) {
   1129      1.35  jmcneill 		/* mgmt/multicast frames are sent at the lowest avail. rate */
   1130      1.35  jmcneill 		rate = ni->ni_rates.rs_rates[0];
   1131      1.35  jmcneill 	} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
   1132      1.35  jmcneill 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
   1133      1.35  jmcneill 	} else
   1134      1.35  jmcneill 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1135      1.35  jmcneill 	if (rate == 0)
   1136      1.35  jmcneill 		rate = 2;	/* XXX should not happen */
   1137      1.35  jmcneill 	rate &= IEEE80211_RATE_VAL;
   1138       1.1     joerg 
   1139      1.35  jmcneill 	/* check if RTS/CTS or CTS-to-self protection must be used */
   1140      1.35  jmcneill 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1141      1.35  jmcneill 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
   1142      1.35  jmcneill 		if (pktlen > ic->ic_rtsthreshold) {
   1143      1.35  jmcneill 			needrts = 1;	/* RTS/CTS based on frame length */
   1144      1.35  jmcneill 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   1145      1.35  jmcneill 		    RUM_RATE_IS_OFDM(rate)) {
   1146      1.35  jmcneill 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   1147      1.35  jmcneill 				needcts = 1;	/* CTS-to-self */
   1148      1.35  jmcneill 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   1149      1.35  jmcneill 				needrts = 1;	/* RTS/CTS */
   1150      1.35  jmcneill 		}
   1151      1.35  jmcneill 	}
   1152      1.35  jmcneill 	if (needrts || needcts) {
   1153      1.35  jmcneill 		struct mbuf *mprot;
   1154      1.35  jmcneill 		int protrate, ackrate;
   1155      1.35  jmcneill 
   1156      1.35  jmcneill 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
   1157      1.35  jmcneill 		ackrate  = rum_ack_rate(ic, rate);
   1158      1.35  jmcneill 
   1159      1.35  jmcneill 		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
   1160      1.35  jmcneill 		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
   1161      1.35  jmcneill 		      2 * sc->sifs;
   1162      1.35  jmcneill 		if (needrts) {
   1163      1.35  jmcneill 			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
   1164      1.35  jmcneill 			    protrate), ic->ic_flags) + sc->sifs;
   1165      1.35  jmcneill 			mprot = ieee80211_get_rts(ic, wh, dur);
   1166      1.35  jmcneill 		} else {
   1167      1.35  jmcneill 			mprot = ieee80211_get_cts_to_self(ic, dur);
   1168      1.35  jmcneill 		}
   1169      1.35  jmcneill 		if (mprot == NULL) {
   1170      1.35  jmcneill 			aprint_error_dev(sc->sc_dev,
   1171      1.35  jmcneill 			    "couldn't allocate protection frame\n");
   1172      1.35  jmcneill 			m_freem(m0);
   1173      1.35  jmcneill 			return ENOBUFS;
   1174      1.35  jmcneill 		}
   1175       1.1     joerg 
   1176      1.35  jmcneill 		data = &sc->tx_data[sc->tx_cur];
   1177      1.35  jmcneill 		desc = (struct rum_tx_desc *)data->buf;
   1178       1.1     joerg 
   1179      1.35  jmcneill 		/* avoid multiple free() of the same node for each fragment */
   1180      1.35  jmcneill 		data->ni = ieee80211_ref_node(ni);
   1181       1.1     joerg 
   1182      1.35  jmcneill 		m_copydata(mprot, 0, mprot->m_pkthdr.len,
   1183      1.35  jmcneill 		    data->buf + RT2573_TX_DESC_SIZE);
   1184      1.35  jmcneill 		rum_setup_tx_desc(sc, desc,
   1185      1.35  jmcneill 		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
   1186      1.35  jmcneill 		    0, mprot->m_pkthdr.len, protrate);
   1187       1.1     joerg 
   1188      1.35  jmcneill 		/* no roundup necessary here */
   1189      1.35  jmcneill 		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
   1190       1.1     joerg 
   1191      1.35  jmcneill 		/* XXX may want to pass the protection frame to BPF */
   1192       1.1     joerg 
   1193      1.35  jmcneill 		/* mbuf is no longer needed */
   1194      1.35  jmcneill 		m_freem(mprot);
   1195       1.1     joerg 
   1196      1.35  jmcneill 		usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
   1197      1.35  jmcneill 		    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
   1198      1.35  jmcneill 		    RUM_TX_TIMEOUT, rum_txeof);
   1199      1.35  jmcneill 		error = usbd_transfer(data->xfer);
   1200      1.35  jmcneill 		if (error != USBD_NORMAL_COMPLETION &&
   1201      1.35  jmcneill 		    error != USBD_IN_PROGRESS) {
   1202       1.1     joerg 			m_freem(m0);
   1203      1.35  jmcneill 			return error;
   1204       1.1     joerg 		}
   1205       1.1     joerg 
   1206      1.35  jmcneill 		sc->tx_queued++;
   1207      1.35  jmcneill 		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
   1208      1.35  jmcneill 
   1209      1.35  jmcneill 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
   1210       1.1     joerg 	}
   1211       1.1     joerg 
   1212      1.35  jmcneill 	data = &sc->tx_data[sc->tx_cur];
   1213       1.1     joerg 	desc = (struct rum_tx_desc *)data->buf;
   1214       1.1     joerg 
   1215       1.1     joerg 	data->ni = ni;
   1216       1.1     joerg 
   1217       1.1     joerg 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1218      1.18  kiyohara 		flags |= RT2573_TX_NEED_ACK;
   1219       1.1     joerg 
   1220       1.1     joerg 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
   1221       1.1     joerg 		    ic->ic_flags) + sc->sifs;
   1222       1.1     joerg 		*(uint16_t *)wh->i_dur = htole16(dur);
   1223      1.35  jmcneill 
   1224      1.35  jmcneill 		/* tell hardware to set timestamp in probe responses */
   1225      1.35  jmcneill 		if ((wh->i_fc[0] &
   1226      1.35  jmcneill 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1227      1.35  jmcneill 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1228      1.35  jmcneill 			flags |= RT2573_TX_TIMESTAMP;
   1229       1.1     joerg 	}
   1230       1.1     joerg 
   1231       1.1     joerg 	if (sc->sc_drvbpf != NULL) {
   1232       1.1     joerg 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
   1233       1.1     joerg 
   1234       1.1     joerg 		tap->wt_flags = 0;
   1235       1.1     joerg 		tap->wt_rate = rate;
   1236       1.1     joerg 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1237       1.1     joerg 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1238       1.1     joerg 		tap->wt_antenna = sc->tx_ant;
   1239       1.1     joerg 
   1240      1.32     joerg 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1241       1.1     joerg 	}
   1242       1.1     joerg 
   1243       1.1     joerg 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
   1244       1.1     joerg 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
   1245       1.1     joerg 
   1246       1.1     joerg 	/* align end on a 4-bytes boundary */
   1247       1.1     joerg 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
   1248       1.1     joerg 
   1249       1.1     joerg 	/*
   1250       1.1     joerg 	 * No space left in the last URB to store the extra 4 bytes, force
   1251       1.1     joerg 	 * sending of another URB.
   1252       1.1     joerg 	 */
   1253       1.1     joerg 	if ((xferlen % 64) == 0)
   1254       1.1     joerg 		xferlen += 4;
   1255       1.1     joerg 
   1256       1.8   mlelstv 	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
   1257       1.8   mlelstv 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
   1258       1.6       wiz 	    rate, xferlen));
   1259       1.1     joerg 
   1260      1.18  kiyohara 	/* mbuf is no longer needed */
   1261      1.18  kiyohara 	m_freem(m0);
   1262      1.18  kiyohara 
   1263       1.1     joerg 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
   1264       1.1     joerg 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
   1265       1.1     joerg 	error = usbd_transfer(data->xfer);
   1266      1.18  kiyohara 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
   1267       1.1     joerg 		return error;
   1268       1.1     joerg 
   1269       1.1     joerg 	sc->tx_queued++;
   1270      1.35  jmcneill 	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
   1271       1.1     joerg 
   1272       1.1     joerg 	return 0;
   1273       1.1     joerg }
   1274       1.1     joerg 
   1275      1.35  jmcneill static void
   1276       1.1     joerg rum_start(struct ifnet *ifp)
   1277       1.1     joerg {
   1278       1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1279       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1280       1.1     joerg 	struct ether_header *eh;
   1281       1.1     joerg 	struct ieee80211_node *ni;
   1282       1.1     joerg 	struct mbuf *m0;
   1283       1.1     joerg 
   1284      1.35  jmcneill 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1285      1.35  jmcneill 		return;
   1286      1.35  jmcneill 
   1287       1.1     joerg 	for (;;) {
   1288       1.1     joerg 		IF_POLL(&ic->ic_mgtq, m0);
   1289       1.1     joerg 		if (m0 != NULL) {
   1290      1.35  jmcneill 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
   1291       1.1     joerg 				ifp->if_flags |= IFF_OACTIVE;
   1292       1.1     joerg 				break;
   1293       1.1     joerg 			}
   1294       1.1     joerg 			IF_DEQUEUE(&ic->ic_mgtq, m0);
   1295       1.1     joerg 
   1296       1.1     joerg 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   1297       1.1     joerg 			m0->m_pkthdr.rcvif = NULL;
   1298      1.32     joerg 			bpf_mtap3(ic->ic_rawbpf, m0);
   1299      1.35  jmcneill 			if (rum_tx_data(sc, m0, ni) != 0)
   1300       1.1     joerg 				break;
   1301       1.1     joerg 
   1302       1.1     joerg 		} else {
   1303       1.1     joerg 			if (ic->ic_state != IEEE80211_S_RUN)
   1304       1.1     joerg 				break;
   1305       1.1     joerg 			IFQ_POLL(&ifp->if_snd, m0);
   1306       1.1     joerg 			if (m0 == NULL)
   1307       1.1     joerg 				break;
   1308      1.35  jmcneill 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
   1309       1.1     joerg 				ifp->if_flags |= IFF_OACTIVE;
   1310       1.1     joerg 				break;
   1311       1.1     joerg 			}
   1312       1.1     joerg 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1313      1.37  pgoyette 			if (m0->m_len < (int)sizeof(struct ether_header) &&
   1314       1.1     joerg 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
   1315       1.1     joerg 				continue;
   1316       1.1     joerg 
   1317       1.1     joerg 			eh = mtod(m0, struct ether_header *);
   1318       1.1     joerg 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1319       1.1     joerg 			if (ni == NULL) {
   1320       1.1     joerg 				m_freem(m0);
   1321       1.1     joerg 				continue;
   1322       1.1     joerg 			}
   1323      1.32     joerg 			bpf_mtap(ifp, m0);
   1324       1.1     joerg 			m0 = ieee80211_encap(ic, m0, ni);
   1325       1.1     joerg 			if (m0 == NULL) {
   1326       1.1     joerg 				ieee80211_free_node(ni);
   1327       1.1     joerg 				continue;
   1328       1.1     joerg 			}
   1329      1.32     joerg 			bpf_mtap3(ic->ic_rawbpf, m0);
   1330       1.1     joerg 			if (rum_tx_data(sc, m0, ni) != 0) {
   1331       1.1     joerg 				ieee80211_free_node(ni);
   1332       1.1     joerg 				ifp->if_oerrors++;
   1333       1.1     joerg 				break;
   1334       1.1     joerg 			}
   1335       1.1     joerg 		}
   1336       1.1     joerg 
   1337       1.1     joerg 		sc->sc_tx_timer = 5;
   1338       1.1     joerg 		ifp->if_timer = 1;
   1339       1.1     joerg 	}
   1340       1.1     joerg }
   1341       1.1     joerg 
   1342      1.35  jmcneill static void
   1343       1.1     joerg rum_watchdog(struct ifnet *ifp)
   1344       1.1     joerg {
   1345       1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1346       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1347       1.1     joerg 
   1348       1.1     joerg 	ifp->if_timer = 0;
   1349       1.1     joerg 
   1350       1.1     joerg 	if (sc->sc_tx_timer > 0) {
   1351       1.1     joerg 		if (--sc->sc_tx_timer == 0) {
   1352      1.33    dyoung 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
   1353       1.1     joerg 			/*rum_init(ifp); XXX needs a process context! */
   1354       1.1     joerg 			ifp->if_oerrors++;
   1355       1.1     joerg 			return;
   1356       1.1     joerg 		}
   1357       1.1     joerg 		ifp->if_timer = 1;
   1358       1.1     joerg 	}
   1359       1.1     joerg 
   1360       1.1     joerg 	ieee80211_watchdog(ic);
   1361       1.1     joerg }
   1362       1.1     joerg 
   1363      1.35  jmcneill static int
   1364       1.7  christos rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1365       1.1     joerg {
   1366      1.36  jmcneill #define IS_RUNNING(ifp) \
   1367      1.36  jmcneill 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
   1368      1.36  jmcneill 
   1369       1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1370       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1371       1.1     joerg 	int s, error = 0;
   1372       1.1     joerg 
   1373       1.1     joerg 	s = splnet();
   1374       1.1     joerg 
   1375       1.1     joerg 	switch (cmd) {
   1376       1.1     joerg 	case SIOCSIFFLAGS:
   1377      1.24    dyoung 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1378      1.24    dyoung 			break;
   1379      1.24    dyoung 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   1380      1.24    dyoung 		case IFF_UP|IFF_RUNNING:
   1381      1.24    dyoung 			rum_update_promisc(sc);
   1382      1.24    dyoung 			break;
   1383      1.24    dyoung 		case IFF_UP:
   1384      1.24    dyoung 			rum_init(ifp);
   1385      1.24    dyoung 			break;
   1386      1.24    dyoung 		case IFF_RUNNING:
   1387      1.24    dyoung 			rum_stop(ifp, 1);
   1388      1.24    dyoung 			break;
   1389      1.24    dyoung 		case 0:
   1390      1.24    dyoung 			break;
   1391       1.1     joerg 		}
   1392       1.1     joerg 		break;
   1393       1.1     joerg 
   1394      1.36  jmcneill 	case SIOCADDMULTI:
   1395      1.36  jmcneill 	case SIOCDELMULTI:
   1396      1.36  jmcneill 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   1397      1.36  jmcneill 			error = 0;
   1398      1.36  jmcneill 		}
   1399      1.36  jmcneill 		break;
   1400      1.36  jmcneill 
   1401       1.1     joerg 	default:
   1402       1.1     joerg 		error = ieee80211_ioctl(ic, cmd, data);
   1403       1.1     joerg 	}
   1404       1.1     joerg 
   1405       1.1     joerg 	if (error == ENETRESET) {
   1406      1.36  jmcneill 		if (IS_RUNNING(ifp) &&
   1407      1.36  jmcneill 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   1408       1.1     joerg 			rum_init(ifp);
   1409       1.1     joerg 		error = 0;
   1410       1.1     joerg 	}
   1411       1.1     joerg 
   1412       1.1     joerg 	splx(s);
   1413       1.1     joerg 
   1414       1.1     joerg 	return error;
   1415      1.36  jmcneill #undef IS_RUNNING
   1416       1.1     joerg }
   1417       1.1     joerg 
   1418      1.35  jmcneill static void
   1419       1.1     joerg rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
   1420       1.1     joerg {
   1421       1.1     joerg 	usb_device_request_t req;
   1422       1.1     joerg 	usbd_status error;
   1423       1.1     joerg 
   1424       1.1     joerg 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
   1425       1.1     joerg 	req.bRequest = RT2573_READ_EEPROM;
   1426       1.1     joerg 	USETW(req.wValue, 0);
   1427       1.1     joerg 	USETW(req.wIndex, addr);
   1428       1.1     joerg 	USETW(req.wLength, len);
   1429       1.1     joerg 
   1430       1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, buf);
   1431       1.1     joerg 	if (error != 0) {
   1432       1.1     joerg 		printf("%s: could not read EEPROM: %s\n",
   1433      1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   1434       1.1     joerg 	}
   1435       1.1     joerg }
   1436       1.1     joerg 
   1437      1.35  jmcneill static uint32_t
   1438       1.1     joerg rum_read(struct rum_softc *sc, uint16_t reg)
   1439       1.1     joerg {
   1440       1.1     joerg 	uint32_t val;
   1441       1.1     joerg 
   1442       1.1     joerg 	rum_read_multi(sc, reg, &val, sizeof val);
   1443       1.1     joerg 
   1444       1.1     joerg 	return le32toh(val);
   1445       1.1     joerg }
   1446       1.1     joerg 
   1447      1.35  jmcneill static void
   1448       1.1     joerg rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
   1449       1.1     joerg {
   1450       1.1     joerg 	usb_device_request_t req;
   1451       1.1     joerg 	usbd_status error;
   1452       1.1     joerg 
   1453       1.1     joerg 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
   1454       1.1     joerg 	req.bRequest = RT2573_READ_MULTI_MAC;
   1455       1.1     joerg 	USETW(req.wValue, 0);
   1456       1.1     joerg 	USETW(req.wIndex, reg);
   1457       1.1     joerg 	USETW(req.wLength, len);
   1458       1.1     joerg 
   1459       1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, buf);
   1460       1.1     joerg 	if (error != 0) {
   1461       1.1     joerg 		printf("%s: could not multi read MAC register: %s\n",
   1462      1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   1463       1.1     joerg 	}
   1464       1.1     joerg }
   1465       1.1     joerg 
   1466      1.35  jmcneill static void
   1467       1.1     joerg rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
   1468       1.1     joerg {
   1469       1.1     joerg 	uint32_t tmp = htole32(val);
   1470       1.1     joerg 
   1471       1.1     joerg 	rum_write_multi(sc, reg, &tmp, sizeof tmp);
   1472       1.1     joerg }
   1473       1.1     joerg 
   1474      1.35  jmcneill static void
   1475       1.1     joerg rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
   1476       1.1     joerg {
   1477       1.1     joerg 	usb_device_request_t req;
   1478       1.1     joerg 	usbd_status error;
   1479  1.40.2.3      yamt 	int offset;
   1480       1.1     joerg 
   1481       1.1     joerg 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
   1482       1.1     joerg 	req.bRequest = RT2573_WRITE_MULTI_MAC;
   1483       1.1     joerg 	USETW(req.wValue, 0);
   1484       1.1     joerg 
   1485  1.40.2.3      yamt 	/* write at most 64 bytes at a time */
   1486  1.40.2.3      yamt 	for (offset = 0; offset < len; offset += 64) {
   1487  1.40.2.3      yamt 		USETW(req.wIndex, reg + offset);
   1488  1.40.2.3      yamt 		USETW(req.wLength, MIN(len - offset, 64));
   1489  1.40.2.3      yamt 
   1490  1.40.2.3      yamt 		error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
   1491  1.40.2.3      yamt 		if (error != 0) {
   1492  1.40.2.3      yamt 			printf("%s: could not multi write MAC register: %s\n",
   1493  1.40.2.3      yamt 			    device_xname(sc->sc_dev), usbd_errstr(error));
   1494  1.40.2.3      yamt 		}
   1495       1.1     joerg 	}
   1496       1.1     joerg }
   1497       1.1     joerg 
   1498      1.35  jmcneill static void
   1499       1.1     joerg rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
   1500       1.1     joerg {
   1501       1.1     joerg 	uint32_t tmp;
   1502       1.1     joerg 	int ntries;
   1503       1.1     joerg 
   1504       1.1     joerg 	for (ntries = 0; ntries < 5; ntries++) {
   1505       1.1     joerg 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
   1506       1.1     joerg 			break;
   1507       1.1     joerg 	}
   1508       1.1     joerg 	if (ntries == 5) {
   1509      1.33    dyoung 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
   1510       1.1     joerg 		return;
   1511       1.1     joerg 	}
   1512       1.1     joerg 
   1513       1.1     joerg 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
   1514       1.1     joerg 	rum_write(sc, RT2573_PHY_CSR3, tmp);
   1515       1.1     joerg }
   1516       1.1     joerg 
   1517      1.35  jmcneill static uint8_t
   1518       1.1     joerg rum_bbp_read(struct rum_softc *sc, uint8_t reg)
   1519       1.1     joerg {
   1520       1.1     joerg 	uint32_t val;
   1521       1.1     joerg 	int ntries;
   1522       1.1     joerg 
   1523       1.1     joerg 	for (ntries = 0; ntries < 5; ntries++) {
   1524       1.1     joerg 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
   1525       1.1     joerg 			break;
   1526       1.1     joerg 	}
   1527       1.1     joerg 	if (ntries == 5) {
   1528      1.33    dyoung 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
   1529       1.1     joerg 		return 0;
   1530       1.1     joerg 	}
   1531       1.1     joerg 
   1532       1.1     joerg 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
   1533       1.1     joerg 	rum_write(sc, RT2573_PHY_CSR3, val);
   1534       1.1     joerg 
   1535       1.1     joerg 	for (ntries = 0; ntries < 100; ntries++) {
   1536       1.1     joerg 		val = rum_read(sc, RT2573_PHY_CSR3);
   1537       1.1     joerg 		if (!(val & RT2573_BBP_BUSY))
   1538       1.1     joerg 			return val & 0xff;
   1539       1.1     joerg 		DELAY(1);
   1540       1.1     joerg 	}
   1541       1.1     joerg 
   1542      1.33    dyoung 	printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
   1543       1.1     joerg 	return 0;
   1544       1.1     joerg }
   1545       1.1     joerg 
   1546      1.35  jmcneill static void
   1547       1.1     joerg rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
   1548       1.1     joerg {
   1549       1.1     joerg 	uint32_t tmp;
   1550       1.1     joerg 	int ntries;
   1551       1.1     joerg 
   1552       1.1     joerg 	for (ntries = 0; ntries < 5; ntries++) {
   1553       1.1     joerg 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
   1554       1.1     joerg 			break;
   1555       1.1     joerg 	}
   1556       1.1     joerg 	if (ntries == 5) {
   1557      1.33    dyoung 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
   1558       1.1     joerg 		return;
   1559       1.1     joerg 	}
   1560       1.1     joerg 
   1561       1.1     joerg 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
   1562       1.1     joerg 	    (reg & 3);
   1563       1.1     joerg 	rum_write(sc, RT2573_PHY_CSR4, tmp);
   1564       1.1     joerg 
   1565       1.1     joerg 	/* remember last written value in sc */
   1566       1.1     joerg 	sc->rf_regs[reg] = val;
   1567       1.1     joerg 
   1568       1.1     joerg 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
   1569       1.1     joerg }
   1570       1.1     joerg 
   1571      1.35  jmcneill static void
   1572       1.1     joerg rum_select_antenna(struct rum_softc *sc)
   1573       1.1     joerg {
   1574       1.1     joerg 	uint8_t bbp4, bbp77;
   1575       1.1     joerg 	uint32_t tmp;
   1576       1.1     joerg 
   1577       1.1     joerg 	bbp4  = rum_bbp_read(sc, 4);
   1578       1.1     joerg 	bbp77 = rum_bbp_read(sc, 77);
   1579       1.1     joerg 
   1580       1.1     joerg 	/* TBD */
   1581       1.1     joerg 
   1582       1.1     joerg 	/* make sure Rx is disabled before switching antenna */
   1583       1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
   1584       1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
   1585       1.1     joerg 
   1586       1.1     joerg 	rum_bbp_write(sc,  4, bbp4);
   1587       1.1     joerg 	rum_bbp_write(sc, 77, bbp77);
   1588       1.1     joerg 
   1589       1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
   1590       1.1     joerg }
   1591       1.1     joerg 
   1592       1.1     joerg /*
   1593       1.1     joerg  * Enable multi-rate retries for frames sent at OFDM rates.
   1594       1.1     joerg  * In 802.11b/g mode, allow fallback to CCK rates.
   1595       1.1     joerg  */
   1596      1.35  jmcneill static void
   1597       1.1     joerg rum_enable_mrr(struct rum_softc *sc)
   1598       1.1     joerg {
   1599       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1600       1.1     joerg 	uint32_t tmp;
   1601       1.1     joerg 
   1602       1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
   1603       1.1     joerg 
   1604       1.1     joerg 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
   1605       1.1     joerg 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
   1606       1.1     joerg 		tmp |= RT2573_MRR_CCK_FALLBACK;
   1607       1.1     joerg 	tmp |= RT2573_MRR_ENABLED;
   1608       1.1     joerg 
   1609       1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
   1610       1.1     joerg }
   1611       1.1     joerg 
   1612      1.35  jmcneill static void
   1613       1.1     joerg rum_set_txpreamble(struct rum_softc *sc)
   1614       1.1     joerg {
   1615       1.1     joerg 	uint32_t tmp;
   1616       1.1     joerg 
   1617       1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
   1618       1.1     joerg 
   1619       1.1     joerg 	tmp &= ~RT2573_SHORT_PREAMBLE;
   1620       1.1     joerg 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
   1621       1.1     joerg 		tmp |= RT2573_SHORT_PREAMBLE;
   1622       1.1     joerg 
   1623       1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
   1624       1.1     joerg }
   1625       1.1     joerg 
   1626      1.35  jmcneill static void
   1627       1.1     joerg rum_set_basicrates(struct rum_softc *sc)
   1628       1.1     joerg {
   1629       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1630       1.1     joerg 
   1631       1.1     joerg 	/* update basic rate set */
   1632       1.1     joerg 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
   1633       1.1     joerg 		/* 11b basic rates: 1, 2Mbps */
   1634       1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
   1635      1.18  kiyohara 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
   1636       1.1     joerg 		/* 11a basic rates: 6, 12, 24Mbps */
   1637       1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
   1638       1.1     joerg 	} else {
   1639      1.18  kiyohara 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
   1640      1.18  kiyohara 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
   1641       1.1     joerg 	}
   1642       1.1     joerg }
   1643       1.1     joerg 
   1644       1.1     joerg /*
   1645       1.1     joerg  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
   1646       1.1     joerg  * driver.
   1647       1.1     joerg  */
   1648      1.35  jmcneill static void
   1649       1.1     joerg rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
   1650       1.1     joerg {
   1651       1.1     joerg 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
   1652       1.1     joerg 	uint32_t tmp;
   1653       1.1     joerg 
   1654       1.1     joerg 	/* update all BBP registers that depend on the band */
   1655       1.1     joerg 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
   1656       1.1     joerg 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
   1657       1.1     joerg 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   1658       1.1     joerg 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
   1659       1.1     joerg 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
   1660       1.1     joerg 	}
   1661       1.1     joerg 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
   1662       1.1     joerg 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
   1663       1.1     joerg 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
   1664       1.1     joerg 	}
   1665       1.1     joerg 
   1666       1.1     joerg 	sc->bbp17 = bbp17;
   1667       1.1     joerg 	rum_bbp_write(sc,  17, bbp17);
   1668       1.1     joerg 	rum_bbp_write(sc,  96, bbp96);
   1669       1.1     joerg 	rum_bbp_write(sc, 104, bbp104);
   1670       1.1     joerg 
   1671       1.1     joerg 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
   1672       1.1     joerg 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
   1673       1.1     joerg 		rum_bbp_write(sc, 75, 0x80);
   1674       1.1     joerg 		rum_bbp_write(sc, 86, 0x80);
   1675       1.1     joerg 		rum_bbp_write(sc, 88, 0x80);
   1676       1.1     joerg 	}
   1677       1.1     joerg 
   1678       1.1     joerg 	rum_bbp_write(sc, 35, bbp35);
   1679       1.1     joerg 	rum_bbp_write(sc, 97, bbp97);
   1680       1.1     joerg 	rum_bbp_write(sc, 98, bbp98);
   1681       1.1     joerg 
   1682       1.1     joerg 	tmp = rum_read(sc, RT2573_PHY_CSR0);
   1683       1.1     joerg 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
   1684       1.1     joerg 	if (IEEE80211_IS_CHAN_2GHZ(c))
   1685       1.1     joerg 		tmp |= RT2573_PA_PE_2GHZ;
   1686       1.1     joerg 	else
   1687       1.1     joerg 		tmp |= RT2573_PA_PE_5GHZ;
   1688       1.1     joerg 	rum_write(sc, RT2573_PHY_CSR0, tmp);
   1689       1.1     joerg 
   1690       1.1     joerg 	/* 802.11a uses a 16 microseconds short interframe space */
   1691       1.1     joerg 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
   1692       1.1     joerg }
   1693       1.1     joerg 
   1694      1.35  jmcneill static void
   1695       1.1     joerg rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
   1696       1.1     joerg {
   1697       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1698       1.1     joerg 	const struct rfprog *rfprog;
   1699       1.1     joerg 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
   1700       1.1     joerg 	int8_t power;
   1701       1.1     joerg 	u_int i, chan;
   1702       1.1     joerg 
   1703       1.1     joerg 	chan = ieee80211_chan2ieee(ic, c);
   1704       1.1     joerg 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
   1705       1.1     joerg 		return;
   1706       1.1     joerg 
   1707       1.1     joerg 	/* select the appropriate RF settings based on what EEPROM says */
   1708       1.1     joerg 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
   1709       1.1     joerg 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
   1710       1.1     joerg 
   1711       1.1     joerg 	/* find the settings for this channel (we know it exists) */
   1712       1.1     joerg 	for (i = 0; rfprog[i].chan != chan; i++);
   1713       1.1     joerg 
   1714       1.1     joerg 	power = sc->txpow[i];
   1715       1.1     joerg 	if (power < 0) {
   1716       1.1     joerg 		bbp94 += power;
   1717       1.1     joerg 		power = 0;
   1718       1.1     joerg 	} else if (power > 31) {
   1719       1.1     joerg 		bbp94 += power - 31;
   1720       1.1     joerg 		power = 31;
   1721       1.1     joerg 	}
   1722       1.1     joerg 
   1723       1.1     joerg 	/*
   1724       1.1     joerg 	 * If we are switching from the 2GHz band to the 5GHz band or
   1725       1.1     joerg 	 * vice-versa, BBP registers need to be reprogrammed.
   1726       1.1     joerg 	 */
   1727       1.1     joerg 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
   1728       1.1     joerg 		rum_select_band(sc, c);
   1729       1.1     joerg 		rum_select_antenna(sc);
   1730       1.1     joerg 	}
   1731       1.1     joerg 	ic->ic_curchan = c;
   1732       1.1     joerg 
   1733       1.1     joerg 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
   1734       1.1     joerg 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
   1735       1.1     joerg 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
   1736       1.1     joerg 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
   1737       1.1     joerg 
   1738       1.1     joerg 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
   1739       1.1     joerg 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
   1740       1.1     joerg 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
   1741       1.1     joerg 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
   1742       1.1     joerg 
   1743       1.1     joerg 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
   1744       1.1     joerg 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
   1745       1.1     joerg 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
   1746       1.1     joerg 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
   1747       1.1     joerg 
   1748       1.1     joerg 	DELAY(10);
   1749       1.1     joerg 
   1750       1.1     joerg 	/* enable smart mode for MIMO-capable RFs */
   1751       1.1     joerg 	bbp3 = rum_bbp_read(sc, 3);
   1752       1.1     joerg 
   1753       1.1     joerg 	bbp3 &= ~RT2573_SMART_MODE;
   1754       1.1     joerg 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
   1755       1.1     joerg 		bbp3 |= RT2573_SMART_MODE;
   1756       1.1     joerg 
   1757       1.1     joerg 	rum_bbp_write(sc, 3, bbp3);
   1758       1.1     joerg 
   1759       1.1     joerg 	if (bbp94 != RT2573_BBPR94_DEFAULT)
   1760       1.1     joerg 		rum_bbp_write(sc, 94, bbp94);
   1761       1.1     joerg }
   1762       1.1     joerg 
   1763       1.1     joerg /*
   1764       1.1     joerg  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
   1765       1.1     joerg  * and HostAP operating modes.
   1766       1.1     joerg  */
   1767      1.35  jmcneill static void
   1768       1.1     joerg rum_enable_tsf_sync(struct rum_softc *sc)
   1769       1.1     joerg {
   1770       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1771       1.1     joerg 	uint32_t tmp;
   1772       1.1     joerg 
   1773       1.1     joerg 	if (ic->ic_opmode != IEEE80211_M_STA) {
   1774       1.1     joerg 		/*
   1775       1.1     joerg 		 * Change default 16ms TBTT adjustment to 8ms.
   1776       1.1     joerg 		 * Must be done before enabling beacon generation.
   1777       1.1     joerg 		 */
   1778       1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
   1779       1.1     joerg 	}
   1780       1.1     joerg 
   1781       1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
   1782       1.1     joerg 
   1783       1.1     joerg 	/* set beacon interval (in 1/16ms unit) */
   1784       1.1     joerg 	tmp |= ic->ic_bss->ni_intval * 16;
   1785       1.1     joerg 
   1786       1.1     joerg 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
   1787       1.1     joerg 	if (ic->ic_opmode == IEEE80211_M_STA)
   1788       1.1     joerg 		tmp |= RT2573_TSF_MODE(1);
   1789       1.1     joerg 	else
   1790       1.1     joerg 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
   1791       1.1     joerg 
   1792       1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
   1793       1.1     joerg }
   1794       1.1     joerg 
   1795      1.35  jmcneill static void
   1796       1.1     joerg rum_update_slot(struct rum_softc *sc)
   1797       1.1     joerg {
   1798       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1799       1.1     joerg 	uint8_t slottime;
   1800       1.1     joerg 	uint32_t tmp;
   1801       1.1     joerg 
   1802       1.1     joerg 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
   1803       1.1     joerg 
   1804       1.1     joerg 	tmp = rum_read(sc, RT2573_MAC_CSR9);
   1805       1.1     joerg 	tmp = (tmp & ~0xff) | slottime;
   1806       1.1     joerg 	rum_write(sc, RT2573_MAC_CSR9, tmp);
   1807       1.1     joerg 
   1808       1.1     joerg 	DPRINTF(("setting slot time to %uus\n", slottime));
   1809       1.1     joerg }
   1810       1.1     joerg 
   1811      1.35  jmcneill static void
   1812       1.1     joerg rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
   1813       1.1     joerg {
   1814       1.1     joerg 	uint32_t tmp;
   1815       1.1     joerg 
   1816       1.1     joerg 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
   1817       1.1     joerg 	rum_write(sc, RT2573_MAC_CSR4, tmp);
   1818       1.1     joerg 
   1819       1.1     joerg 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
   1820       1.1     joerg 	rum_write(sc, RT2573_MAC_CSR5, tmp);
   1821       1.1     joerg }
   1822       1.1     joerg 
   1823      1.35  jmcneill static void
   1824       1.1     joerg rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
   1825       1.1     joerg {
   1826       1.1     joerg 	uint32_t tmp;
   1827       1.1     joerg 
   1828       1.1     joerg 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
   1829       1.1     joerg 	rum_write(sc, RT2573_MAC_CSR2, tmp);
   1830       1.1     joerg 
   1831       1.1     joerg 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
   1832       1.1     joerg 	rum_write(sc, RT2573_MAC_CSR3, tmp);
   1833       1.1     joerg }
   1834       1.1     joerg 
   1835      1.35  jmcneill static void
   1836       1.1     joerg rum_update_promisc(struct rum_softc *sc)
   1837       1.1     joerg {
   1838       1.1     joerg 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1839       1.1     joerg 	uint32_t tmp;
   1840       1.1     joerg 
   1841       1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
   1842       1.1     joerg 
   1843       1.1     joerg 	tmp &= ~RT2573_DROP_NOT_TO_ME;
   1844       1.1     joerg 	if (!(ifp->if_flags & IFF_PROMISC))
   1845       1.1     joerg 		tmp |= RT2573_DROP_NOT_TO_ME;
   1846       1.1     joerg 
   1847       1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
   1848       1.1     joerg 
   1849       1.1     joerg 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
   1850       1.1     joerg 	    "entering" : "leaving"));
   1851       1.1     joerg }
   1852       1.1     joerg 
   1853      1.35  jmcneill static const char *
   1854       1.1     joerg rum_get_rf(int rev)
   1855       1.1     joerg {
   1856       1.1     joerg 	switch (rev) {
   1857       1.1     joerg 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
   1858       1.1     joerg 	case RT2573_RF_2528:	return "RT2528";
   1859       1.1     joerg 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
   1860       1.1     joerg 	case RT2573_RF_5226:	return "RT5226";
   1861       1.1     joerg 	default:		return "unknown";
   1862       1.1     joerg 	}
   1863       1.1     joerg }
   1864       1.1     joerg 
   1865      1.35  jmcneill static void
   1866       1.1     joerg rum_read_eeprom(struct rum_softc *sc)
   1867       1.1     joerg {
   1868       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1869       1.1     joerg 	uint16_t val;
   1870       1.1     joerg #ifdef RUM_DEBUG
   1871       1.1     joerg 	int i;
   1872       1.1     joerg #endif
   1873       1.1     joerg 
   1874       1.1     joerg 	/* read MAC/BBP type */
   1875       1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
   1876       1.1     joerg 	sc->macbbp_rev = le16toh(val);
   1877       1.1     joerg 
   1878       1.1     joerg 	/* read MAC address */
   1879       1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
   1880       1.1     joerg 
   1881       1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
   1882       1.1     joerg 	val = le16toh(val);
   1883       1.1     joerg 	sc->rf_rev =   (val >> 11) & 0x1f;
   1884       1.1     joerg 	sc->hw_radio = (val >> 10) & 0x1;
   1885       1.1     joerg 	sc->rx_ant =   (val >> 4)  & 0x3;
   1886       1.1     joerg 	sc->tx_ant =   (val >> 2)  & 0x3;
   1887       1.1     joerg 	sc->nb_ant =   val & 0x3;
   1888       1.1     joerg 
   1889       1.1     joerg 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
   1890       1.1     joerg 
   1891       1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
   1892       1.1     joerg 	val = le16toh(val);
   1893       1.1     joerg 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
   1894       1.1     joerg 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
   1895       1.1     joerg 
   1896       1.1     joerg 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
   1897       1.1     joerg 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
   1898       1.1     joerg 
   1899       1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
   1900       1.1     joerg 	val = le16toh(val);
   1901       1.1     joerg 	if ((val & 0xff) != 0xff)
   1902       1.1     joerg 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
   1903       1.1     joerg 
   1904       1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
   1905       1.1     joerg 	val = le16toh(val);
   1906       1.1     joerg 	if ((val & 0xff) != 0xff)
   1907       1.1     joerg 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
   1908       1.1     joerg 
   1909       1.1     joerg 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
   1910       1.1     joerg 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
   1911       1.1     joerg 
   1912       1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
   1913       1.1     joerg 	val = le16toh(val);
   1914       1.1     joerg 	if ((val & 0xff) != 0xff)
   1915       1.1     joerg 		sc->rffreq = val & 0xff;
   1916       1.1     joerg 
   1917       1.1     joerg 	DPRINTF(("RF freq=%d\n", sc->rffreq));
   1918       1.1     joerg 
   1919       1.1     joerg 	/* read Tx power for all a/b/g channels */
   1920       1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
   1921       1.1     joerg 	/* XXX default Tx power for 802.11a channels */
   1922       1.1     joerg 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
   1923       1.1     joerg #ifdef RUM_DEBUG
   1924       1.1     joerg 	for (i = 0; i < 14; i++)
   1925       1.1     joerg 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
   1926       1.1     joerg #endif
   1927       1.1     joerg 
   1928       1.1     joerg 	/* read default values for BBP registers */
   1929       1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
   1930       1.1     joerg #ifdef RUM_DEBUG
   1931       1.1     joerg 	for (i = 0; i < 14; i++) {
   1932       1.1     joerg 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
   1933       1.1     joerg 			continue;
   1934       1.1     joerg 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
   1935       1.1     joerg 		    sc->bbp_prom[i].val));
   1936       1.1     joerg 	}
   1937       1.1     joerg #endif
   1938       1.1     joerg }
   1939       1.1     joerg 
   1940      1.35  jmcneill static int
   1941       1.1     joerg rum_bbp_init(struct rum_softc *sc)
   1942       1.1     joerg {
   1943       1.1     joerg #define N(a)	(sizeof (a) / sizeof ((a)[0]))
   1944      1.37  pgoyette 	unsigned int i, ntries;
   1945       1.1     joerg 	uint8_t val;
   1946       1.1     joerg 
   1947       1.1     joerg 	/* wait for BBP to be ready */
   1948       1.1     joerg 	for (ntries = 0; ntries < 100; ntries++) {
   1949       1.1     joerg 		val = rum_bbp_read(sc, 0);
   1950       1.1     joerg 		if (val != 0 && val != 0xff)
   1951       1.1     joerg 			break;
   1952       1.1     joerg 		DELAY(1000);
   1953       1.1     joerg 	}
   1954       1.1     joerg 	if (ntries == 100) {
   1955       1.1     joerg 		printf("%s: timeout waiting for BBP\n",
   1956      1.33    dyoung 		    device_xname(sc->sc_dev));
   1957       1.1     joerg 		return EIO;
   1958       1.1     joerg 	}
   1959       1.1     joerg 
   1960       1.1     joerg 	/* initialize BBP registers to default values */
   1961       1.1     joerg 	for (i = 0; i < N(rum_def_bbp); i++)
   1962       1.1     joerg 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
   1963       1.1     joerg 
   1964       1.1     joerg 	/* write vendor-specific BBP values (from EEPROM) */
   1965       1.1     joerg 	for (i = 0; i < 16; i++) {
   1966       1.1     joerg 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
   1967       1.1     joerg 			continue;
   1968       1.1     joerg 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
   1969       1.1     joerg 	}
   1970       1.1     joerg 
   1971       1.1     joerg 	return 0;
   1972       1.1     joerg #undef N
   1973       1.1     joerg }
   1974       1.1     joerg 
   1975      1.35  jmcneill static int
   1976       1.1     joerg rum_init(struct ifnet *ifp)
   1977       1.1     joerg {
   1978       1.1     joerg #define N(a)	(sizeof (a) / sizeof ((a)[0]))
   1979       1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1980       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1981       1.1     joerg 	struct rum_rx_data *data;
   1982       1.1     joerg 	uint32_t tmp;
   1983       1.1     joerg 	usbd_status error = 0;
   1984      1.37  pgoyette 	unsigned int i, ntries;
   1985       1.1     joerg 
   1986       1.1     joerg 	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
   1987       1.1     joerg 		if (rum_attachhook(sc))
   1988       1.1     joerg 			goto fail;
   1989       1.1     joerg 	}
   1990       1.1     joerg 
   1991       1.1     joerg 	rum_stop(ifp, 0);
   1992       1.1     joerg 
   1993       1.1     joerg 	/* initialize MAC registers to default values */
   1994       1.1     joerg 	for (i = 0; i < N(rum_def_mac); i++)
   1995       1.1     joerg 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
   1996       1.1     joerg 
   1997       1.1     joerg 	/* set host ready */
   1998       1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 3);
   1999       1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 0);
   2000       1.1     joerg 
   2001       1.1     joerg 	/* wait for BBP/RF to wakeup */
   2002       1.1     joerg 	for (ntries = 0; ntries < 1000; ntries++) {
   2003       1.1     joerg 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
   2004       1.1     joerg 			break;
   2005       1.1     joerg 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
   2006       1.1     joerg 		DELAY(1000);
   2007       1.1     joerg 	}
   2008       1.1     joerg 	if (ntries == 1000) {
   2009       1.1     joerg 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
   2010      1.33    dyoung 		    device_xname(sc->sc_dev));
   2011       1.1     joerg 		goto fail;
   2012       1.1     joerg 	}
   2013       1.1     joerg 
   2014       1.1     joerg 	if ((error = rum_bbp_init(sc)) != 0)
   2015       1.1     joerg 		goto fail;
   2016       1.1     joerg 
   2017       1.1     joerg 	/* select default channel */
   2018       1.1     joerg 	rum_select_band(sc, ic->ic_curchan);
   2019       1.1     joerg 	rum_select_antenna(sc);
   2020       1.1     joerg 	rum_set_chan(sc, ic->ic_curchan);
   2021       1.1     joerg 
   2022       1.1     joerg 	/* clear STA registers */
   2023       1.1     joerg 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
   2024       1.1     joerg 
   2025      1.15    dyoung 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   2026       1.1     joerg 	rum_set_macaddr(sc, ic->ic_myaddr);
   2027       1.1     joerg 
   2028       1.1     joerg 	/* initialize ASIC */
   2029       1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 4);
   2030       1.1     joerg 
   2031       1.1     joerg 	/*
   2032       1.1     joerg 	 * Allocate xfer for AMRR statistics requests.
   2033       1.1     joerg 	 */
   2034       1.1     joerg 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
   2035       1.1     joerg 	if (sc->amrr_xfer == NULL) {
   2036       1.1     joerg 		printf("%s: could not allocate AMRR xfer\n",
   2037      1.33    dyoung 		    device_xname(sc->sc_dev));
   2038       1.1     joerg 		goto fail;
   2039       1.1     joerg 	}
   2040       1.1     joerg 
   2041       1.1     joerg 	/*
   2042       1.1     joerg 	 * Open Tx and Rx USB bulk pipes.
   2043       1.1     joerg 	 */
   2044       1.1     joerg 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
   2045       1.1     joerg 	    &sc->sc_tx_pipeh);
   2046       1.1     joerg 	if (error != 0) {
   2047       1.1     joerg 		printf("%s: could not open Tx pipe: %s\n",
   2048      1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   2049       1.1     joerg 		goto fail;
   2050       1.1     joerg 	}
   2051       1.1     joerg 
   2052       1.1     joerg 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
   2053       1.1     joerg 	    &sc->sc_rx_pipeh);
   2054       1.1     joerg 	if (error != 0) {
   2055       1.1     joerg 		printf("%s: could not open Rx pipe: %s\n",
   2056      1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   2057       1.1     joerg 		goto fail;
   2058       1.1     joerg 	}
   2059       1.1     joerg 
   2060       1.1     joerg 	/*
   2061       1.1     joerg 	 * Allocate Tx and Rx xfer queues.
   2062       1.1     joerg 	 */
   2063       1.1     joerg 	error = rum_alloc_tx_list(sc);
   2064       1.1     joerg 	if (error != 0) {
   2065       1.1     joerg 		printf("%s: could not allocate Tx list\n",
   2066      1.33    dyoung 		    device_xname(sc->sc_dev));
   2067       1.1     joerg 		goto fail;
   2068       1.1     joerg 	}
   2069       1.1     joerg 
   2070       1.1     joerg 	error = rum_alloc_rx_list(sc);
   2071       1.1     joerg 	if (error != 0) {
   2072       1.1     joerg 		printf("%s: could not allocate Rx list\n",
   2073      1.33    dyoung 		    device_xname(sc->sc_dev));
   2074       1.1     joerg 		goto fail;
   2075       1.1     joerg 	}
   2076       1.1     joerg 
   2077       1.1     joerg 	/*
   2078       1.1     joerg 	 * Start up the receive pipe.
   2079       1.1     joerg 	 */
   2080      1.18  kiyohara 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
   2081       1.1     joerg 		data = &sc->rx_data[i];
   2082       1.1     joerg 
   2083       1.1     joerg 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
   2084       1.1     joerg 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
   2085      1.18  kiyohara 		error = usbd_transfer(data->xfer);
   2086      1.18  kiyohara 		if (error != USBD_NORMAL_COMPLETION &&
   2087      1.18  kiyohara 		    error != USBD_IN_PROGRESS) {
   2088      1.18  kiyohara 			printf("%s: could not queue Rx transfer\n",
   2089      1.33    dyoung 			    device_xname(sc->sc_dev));
   2090      1.18  kiyohara 			goto fail;
   2091      1.18  kiyohara 		}
   2092       1.1     joerg 	}
   2093       1.1     joerg 
   2094       1.1     joerg 	/* update Rx filter */
   2095       1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
   2096       1.1     joerg 
   2097       1.1     joerg 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
   2098       1.1     joerg 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2099       1.1     joerg 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
   2100       1.1     joerg 		       RT2573_DROP_ACKCTS;
   2101       1.1     joerg 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
   2102       1.1     joerg 			tmp |= RT2573_DROP_TODS;
   2103       1.1     joerg 		if (!(ifp->if_flags & IFF_PROMISC))
   2104       1.1     joerg 			tmp |= RT2573_DROP_NOT_TO_ME;
   2105       1.1     joerg 	}
   2106       1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
   2107       1.1     joerg 
   2108       1.1     joerg 	ifp->if_flags &= ~IFF_OACTIVE;
   2109       1.1     joerg 	ifp->if_flags |= IFF_RUNNING;
   2110       1.1     joerg 
   2111       1.1     joerg 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   2112       1.1     joerg 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   2113       1.1     joerg 	else
   2114       1.1     joerg 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   2115       1.1     joerg 
   2116       1.1     joerg 	return 0;
   2117       1.1     joerg 
   2118       1.1     joerg fail:	rum_stop(ifp, 1);
   2119       1.1     joerg 	return error;
   2120       1.1     joerg #undef N
   2121       1.1     joerg }
   2122       1.1     joerg 
   2123      1.35  jmcneill static void
   2124       1.1     joerg rum_stop(struct ifnet *ifp, int disable)
   2125       1.1     joerg {
   2126       1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   2127       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   2128       1.1     joerg 	uint32_t tmp;
   2129       1.1     joerg 
   2130       1.1     joerg 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
   2131       1.1     joerg 
   2132       1.1     joerg 	sc->sc_tx_timer = 0;
   2133       1.1     joerg 	ifp->if_timer = 0;
   2134       1.1     joerg 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2135       1.1     joerg 
   2136       1.1     joerg 	/* disable Rx */
   2137       1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
   2138       1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
   2139       1.1     joerg 
   2140       1.1     joerg 	/* reset ASIC */
   2141       1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 3);
   2142       1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 0);
   2143       1.1     joerg 
   2144      1.35  jmcneill 	if (sc->amrr_xfer != NULL) {
   2145      1.35  jmcneill 		usbd_free_xfer(sc->amrr_xfer);
   2146      1.35  jmcneill 		sc->amrr_xfer = NULL;
   2147      1.35  jmcneill 	}
   2148      1.35  jmcneill 
   2149       1.1     joerg 	if (sc->sc_rx_pipeh != NULL) {
   2150       1.1     joerg 		usbd_abort_pipe(sc->sc_rx_pipeh);
   2151       1.1     joerg 		usbd_close_pipe(sc->sc_rx_pipeh);
   2152       1.1     joerg 		sc->sc_rx_pipeh = NULL;
   2153       1.1     joerg 	}
   2154       1.1     joerg 
   2155       1.1     joerg 	if (sc->sc_tx_pipeh != NULL) {
   2156       1.1     joerg 		usbd_abort_pipe(sc->sc_tx_pipeh);
   2157       1.1     joerg 		usbd_close_pipe(sc->sc_tx_pipeh);
   2158       1.1     joerg 		sc->sc_tx_pipeh = NULL;
   2159       1.1     joerg 	}
   2160       1.1     joerg 
   2161       1.1     joerg 	rum_free_rx_list(sc);
   2162       1.1     joerg 	rum_free_tx_list(sc);
   2163       1.1     joerg }
   2164       1.1     joerg 
   2165      1.35  jmcneill static int
   2166       1.1     joerg rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
   2167       1.1     joerg {
   2168       1.1     joerg 	usb_device_request_t req;
   2169       1.1     joerg 	uint16_t reg = RT2573_MCU_CODE_BASE;
   2170       1.1     joerg 	usbd_status error;
   2171       1.1     joerg 
   2172       1.1     joerg 	/* copy firmware image into NIC */
   2173       1.1     joerg 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
   2174       1.1     joerg 		rum_write(sc, reg, UGETDW(ucode));
   2175       1.1     joerg 
   2176       1.1     joerg 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
   2177       1.1     joerg 	req.bRequest = RT2573_MCU_CNTL;
   2178       1.1     joerg 	USETW(req.wValue, RT2573_MCU_RUN);
   2179       1.1     joerg 	USETW(req.wIndex, 0);
   2180       1.1     joerg 	USETW(req.wLength, 0);
   2181       1.1     joerg 
   2182       1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, NULL);
   2183       1.1     joerg 	if (error != 0) {
   2184       1.1     joerg 		printf("%s: could not run firmware: %s\n",
   2185      1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   2186       1.1     joerg 	}
   2187       1.1     joerg 	return error;
   2188       1.1     joerg }
   2189       1.1     joerg 
   2190      1.35  jmcneill static int
   2191       1.1     joerg rum_prepare_beacon(struct rum_softc *sc)
   2192       1.1     joerg {
   2193       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   2194       1.1     joerg 	struct rum_tx_desc desc;
   2195       1.1     joerg 	struct mbuf *m0;
   2196       1.1     joerg 	int rate;
   2197       1.1     joerg 
   2198       1.1     joerg 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
   2199       1.1     joerg 	if (m0 == NULL) {
   2200      1.21      cube 		aprint_error_dev(sc->sc_dev,
   2201      1.21      cube 		    "could not allocate beacon frame\n");
   2202       1.1     joerg 		return ENOBUFS;
   2203       1.1     joerg 	}
   2204       1.1     joerg 
   2205       1.1     joerg 	/* send beacons at the lowest available rate */
   2206       1.1     joerg 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
   2207       1.1     joerg 
   2208       1.1     joerg 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
   2209       1.1     joerg 	    m0->m_pkthdr.len, rate);
   2210       1.1     joerg 
   2211       1.1     joerg 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
   2212       1.1     joerg 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
   2213       1.1     joerg 
   2214       1.1     joerg 	/* copy beacon header and payload into NIC memory */
   2215       1.1     joerg 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
   2216       1.1     joerg 	    m0->m_pkthdr.len);
   2217       1.1     joerg 
   2218       1.1     joerg 	m_freem(m0);
   2219       1.1     joerg 
   2220       1.1     joerg 	return 0;
   2221       1.1     joerg }
   2222       1.1     joerg 
   2223      1.35  jmcneill static void
   2224      1.18  kiyohara rum_newassoc(struct ieee80211_node *ni, int isnew)
   2225      1.18  kiyohara {
   2226      1.18  kiyohara 	/* start with lowest Tx rate */
   2227      1.18  kiyohara 	ni->ni_txrate = 0;
   2228      1.18  kiyohara }
   2229      1.18  kiyohara 
   2230      1.35  jmcneill static void
   2231       1.1     joerg rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
   2232       1.1     joerg {
   2233       1.1     joerg 	int i;
   2234       1.1     joerg 
   2235       1.1     joerg 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
   2236       1.1     joerg 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
   2237       1.1     joerg 
   2238       1.1     joerg 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
   2239       1.1     joerg 
   2240       1.1     joerg 	/* set rate to some reasonable initial value */
   2241       1.1     joerg 	for (i = ni->ni_rates.rs_nrates - 1;
   2242       1.1     joerg 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
   2243       1.1     joerg 	     i--);
   2244       1.1     joerg 	ni->ni_txrate = i;
   2245       1.1     joerg 
   2246      1.33    dyoung 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
   2247       1.1     joerg }
   2248       1.1     joerg 
   2249      1.35  jmcneill static void
   2250       1.1     joerg rum_amrr_timeout(void *arg)
   2251       1.1     joerg {
   2252       1.1     joerg 	struct rum_softc *sc = arg;
   2253       1.1     joerg 	usb_device_request_t req;
   2254       1.1     joerg 
   2255       1.1     joerg 	/*
   2256       1.1     joerg 	 * Asynchronously read statistic registers (cleared by read).
   2257       1.1     joerg 	 */
   2258       1.1     joerg 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
   2259       1.1     joerg 	req.bRequest = RT2573_READ_MULTI_MAC;
   2260       1.1     joerg 	USETW(req.wValue, 0);
   2261       1.1     joerg 	USETW(req.wIndex, RT2573_STA_CSR0);
   2262       1.1     joerg 	USETW(req.wLength, sizeof sc->sta);
   2263       1.1     joerg 
   2264       1.1     joerg 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
   2265       1.1     joerg 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
   2266       1.1     joerg 	    rum_amrr_update);
   2267       1.1     joerg 	(void)usbd_transfer(sc->amrr_xfer);
   2268       1.1     joerg }
   2269       1.1     joerg 
   2270      1.35  jmcneill static void
   2271       1.1     joerg rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
   2272       1.1     joerg     usbd_status status)
   2273       1.1     joerg {
   2274       1.1     joerg 	struct rum_softc *sc = (struct rum_softc *)priv;
   2275       1.1     joerg 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2276       1.1     joerg 
   2277       1.1     joerg 	if (status != USBD_NORMAL_COMPLETION) {
   2278       1.1     joerg 		printf("%s: could not retrieve Tx statistics - cancelling "
   2279      1.33    dyoung 		    "automatic rate control\n", device_xname(sc->sc_dev));
   2280       1.1     joerg 		return;
   2281       1.1     joerg 	}
   2282       1.1     joerg 
   2283       1.1     joerg 	/* count TX retry-fail as Tx errors */
   2284       1.1     joerg 	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
   2285       1.1     joerg 
   2286       1.1     joerg 	sc->amn.amn_retrycnt =
   2287       1.1     joerg 	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
   2288       1.1     joerg 	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
   2289       1.1     joerg 	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
   2290       1.1     joerg 
   2291       1.1     joerg 	sc->amn.amn_txcnt =
   2292       1.1     joerg 	    sc->amn.amn_retrycnt +
   2293       1.1     joerg 	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
   2294       1.1     joerg 
   2295       1.1     joerg 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
   2296       1.1     joerg 
   2297      1.33    dyoung 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
   2298       1.1     joerg }
   2299       1.1     joerg 
   2300      1.35  jmcneill static int
   2301      1.33    dyoung rum_activate(device_t self, enum devact act)
   2302       1.1     joerg {
   2303       1.1     joerg 	switch (act) {
   2304       1.1     joerg 	case DVACT_DEACTIVATE:
   2305       1.1     joerg 		/*if_deactivate(&sc->sc_ic.ic_if);*/
   2306      1.30    dyoung 		return 0;
   2307      1.30    dyoung 	default:
   2308      1.35  jmcneill 		return 0;
   2309       1.1     joerg 	}
   2310       1.1     joerg }
   2311      1.38  pgoyette 
   2312  1.40.2.1      yamt MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf");
   2313      1.38  pgoyette 
   2314      1.38  pgoyette #ifdef _MODULE
   2315      1.38  pgoyette #include "ioconf.c"
   2316      1.38  pgoyette #endif
   2317      1.38  pgoyette 
   2318      1.38  pgoyette static int
   2319      1.38  pgoyette if_rum_modcmd(modcmd_t cmd, void *aux)
   2320      1.38  pgoyette {
   2321      1.38  pgoyette 	int error = 0;
   2322      1.38  pgoyette 
   2323      1.38  pgoyette 	switch (cmd) {
   2324      1.38  pgoyette 	case MODULE_CMD_INIT:
   2325      1.38  pgoyette #ifdef _MODULE
   2326      1.39  pgoyette 		error = config_init_component(cfdriver_ioconf_rum,
   2327      1.39  pgoyette 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
   2328      1.38  pgoyette #endif
   2329      1.38  pgoyette 		return error;
   2330      1.38  pgoyette 	case MODULE_CMD_FINI:
   2331      1.38  pgoyette #ifdef _MODULE
   2332      1.39  pgoyette 		error = config_fini_component(cfdriver_ioconf_rum,
   2333      1.39  pgoyette 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
   2334      1.38  pgoyette #endif
   2335      1.38  pgoyette 		return error;
   2336      1.38  pgoyette 	default:
   2337      1.38  pgoyette 		return ENOTTY;
   2338      1.38  pgoyette 	}
   2339      1.38  pgoyette }
   2340