Home | History | Annotate | Line # | Download | only in usb
if_rum.c revision 1.48.10.1
      1       1.19  jmcneill /*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
      2  1.48.10.1     skrll /*	$NetBSD: if_rum.c,v 1.48.10.1 2016/09/06 20:33:08 skrll Exp $	*/
      3        1.1     joerg 
      4        1.1     joerg /*-
      5       1.18  kiyohara  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini (at) free.fr>
      6        1.1     joerg  * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
      7        1.1     joerg  *
      8        1.1     joerg  * Permission to use, copy, modify, and distribute this software for any
      9        1.1     joerg  * purpose with or without fee is hereby granted, provided that the above
     10        1.1     joerg  * copyright notice and this permission notice appear in all copies.
     11        1.1     joerg  *
     12        1.1     joerg  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     13        1.1     joerg  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     14        1.1     joerg  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     15        1.1     joerg  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     16        1.1     joerg  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     17        1.1     joerg  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     18        1.1     joerg  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     19        1.1     joerg  */
     20        1.1     joerg 
     21        1.1     joerg /*-
     22        1.1     joerg  * Ralink Technology RT2501USB/RT2601USB chipset driver
     23       1.18  kiyohara  * http://www.ralinktech.com.tw/
     24        1.1     joerg  */
     25        1.1     joerg 
     26        1.2   xtraeme #include <sys/cdefs.h>
     27  1.48.10.1     skrll __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.48.10.1 2016/09/06 20:33:08 skrll Exp $");
     28        1.1     joerg 
     29        1.1     joerg #include <sys/param.h>
     30        1.1     joerg #include <sys/sockio.h>
     31        1.1     joerg #include <sys/sysctl.h>
     32        1.1     joerg #include <sys/mbuf.h>
     33        1.1     joerg #include <sys/kernel.h>
     34        1.1     joerg #include <sys/socket.h>
     35        1.1     joerg #include <sys/systm.h>
     36       1.38  pgoyette #include <sys/module.h>
     37        1.1     joerg #include <sys/conf.h>
     38        1.1     joerg #include <sys/device.h>
     39        1.1     joerg 
     40       1.16        ad #include <sys/bus.h>
     41        1.1     joerg #include <machine/endian.h>
     42       1.16        ad #include <sys/intr.h>
     43        1.1     joerg 
     44        1.1     joerg #include <net/bpf.h>
     45        1.1     joerg #include <net/if.h>
     46        1.1     joerg #include <net/if_arp.h>
     47        1.1     joerg #include <net/if_dl.h>
     48        1.1     joerg #include <net/if_ether.h>
     49        1.1     joerg #include <net/if_media.h>
     50        1.1     joerg #include <net/if_types.h>
     51        1.1     joerg 
     52        1.1     joerg #include <netinet/in.h>
     53        1.1     joerg #include <netinet/in_systm.h>
     54        1.1     joerg #include <netinet/in_var.h>
     55        1.1     joerg #include <netinet/ip.h>
     56        1.1     joerg 
     57        1.1     joerg #include <net80211/ieee80211_netbsd.h>
     58        1.1     joerg #include <net80211/ieee80211_var.h>
     59        1.1     joerg #include <net80211/ieee80211_amrr.h>
     60        1.1     joerg #include <net80211/ieee80211_radiotap.h>
     61        1.1     joerg 
     62        1.1     joerg #include <dev/firmload.h>
     63        1.1     joerg 
     64        1.1     joerg #include <dev/usb/usb.h>
     65        1.1     joerg #include <dev/usb/usbdi.h>
     66        1.1     joerg #include <dev/usb/usbdi_util.h>
     67        1.1     joerg #include <dev/usb/usbdevs.h>
     68        1.1     joerg 
     69        1.1     joerg #include <dev/usb/if_rumreg.h>
     70        1.1     joerg #include <dev/usb/if_rumvar.h>
     71        1.1     joerg 
     72        1.1     joerg #ifdef RUM_DEBUG
     73       1.33    dyoung #define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
     74       1.33    dyoung #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
     75       1.11   xtraeme int rum_debug = 1;
     76        1.1     joerg #else
     77        1.1     joerg #define DPRINTF(x)
     78        1.1     joerg #define DPRINTFN(n, x)
     79        1.1     joerg #endif
     80        1.1     joerg 
     81        1.1     joerg /* various supported device vendors/products */
     82        1.1     joerg static const struct usb_devno rum_devs[] = {
     83       1.11   xtraeme 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
     84       1.11   xtraeme 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
     85       1.11   xtraeme 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
     86       1.11   xtraeme 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
     87       1.18  kiyohara 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
     88       1.11   xtraeme 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
     89       1.10   xtraeme 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
     90       1.11   xtraeme 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
     91        1.1     joerg 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
     92        1.1     joerg 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
     93       1.43       chs 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050C },
     94       1.43       chs 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB200 },
     95        1.1     joerg 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
     96       1.11   xtraeme 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
     97        1.1     joerg 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
     98       1.43       chs 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_RT2573 },
     99       1.18  kiyohara 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
    100       1.23       jun 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
    101        1.1     joerg 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
    102        1.1     joerg 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
    103        1.1     joerg 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
    104        1.1     joerg 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
    105       1.40  christos 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA110 },
    106       1.29     pooka 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
    107       1.43       chs 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7318 },
    108       1.43       chs 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7618 },
    109        1.1     joerg 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
    110       1.11   xtraeme 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
    111        1.1     joerg 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
    112        1.1     joerg 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
    113       1.11   xtraeme 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
    114       1.11   xtraeme 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
    115        1.1     joerg 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
    116       1.11   xtraeme 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
    117        1.4      elad 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
    118       1.43       chs 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HG },
    119       1.27  tshiozak 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_WLIUCG },
    120        1.1     joerg 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
    121        1.1     joerg 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
    122        1.1     joerg 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
    123       1.11   xtraeme 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
    124       1.11   xtraeme 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
    125       1.11   xtraeme 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
    126        1.4      elad 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
    127        1.1     joerg 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
    128        1.1     joerg 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
    129        1.1     joerg 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
    130       1.22  uebayasi 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
    131        1.1     joerg 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
    132        1.1     joerg 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
    133        1.1     joerg 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
    134        1.1     joerg 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
    135       1.43       chs 	{ USB_VENDOR_SPARKLAN,		USB_PRODUCT_SPARKLAN_RT2573 },
    136       1.43       chs 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 },
    137       1.43       chs 	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_RT2573 }
    138        1.1     joerg };
    139        1.1     joerg 
    140       1.35  jmcneill static int		rum_attachhook(void *);
    141       1.35  jmcneill static int		rum_alloc_tx_list(struct rum_softc *);
    142       1.35  jmcneill static void		rum_free_tx_list(struct rum_softc *);
    143       1.35  jmcneill static int		rum_alloc_rx_list(struct rum_softc *);
    144       1.35  jmcneill static void		rum_free_rx_list(struct rum_softc *);
    145       1.35  jmcneill static int		rum_media_change(struct ifnet *);
    146       1.35  jmcneill static void		rum_next_scan(void *);
    147       1.35  jmcneill static void		rum_task(void *);
    148       1.35  jmcneill static int		rum_newstate(struct ieee80211com *,
    149        1.1     joerg 			    enum ieee80211_state, int);
    150  1.48.10.1     skrll static void		rum_txeof(struct usbd_xfer *, void *,
    151        1.1     joerg 			    usbd_status);
    152  1.48.10.1     skrll static void		rum_rxeof(struct usbd_xfer *, void *,
    153        1.1     joerg 			    usbd_status);
    154       1.35  jmcneill static uint8_t		rum_rxrate(const struct rum_rx_desc *);
    155       1.35  jmcneill static int		rum_ack_rate(struct ieee80211com *, int);
    156       1.35  jmcneill static uint16_t		rum_txtime(int, int, uint32_t);
    157       1.35  jmcneill static uint8_t		rum_plcp_signal(int);
    158       1.35  jmcneill static void		rum_setup_tx_desc(struct rum_softc *,
    159        1.1     joerg 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
    160        1.1     joerg 			    int);
    161       1.35  jmcneill static int		rum_tx_data(struct rum_softc *, struct mbuf *,
    162        1.1     joerg 			    struct ieee80211_node *);
    163       1.35  jmcneill static void		rum_start(struct ifnet *);
    164       1.35  jmcneill static void		rum_watchdog(struct ifnet *);
    165       1.35  jmcneill static int		rum_ioctl(struct ifnet *, u_long, void *);
    166       1.35  jmcneill static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
    167        1.1     joerg 			    int);
    168       1.35  jmcneill static uint32_t		rum_read(struct rum_softc *, uint16_t);
    169       1.35  jmcneill static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
    170        1.1     joerg 			    int);
    171       1.35  jmcneill static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
    172       1.35  jmcneill static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
    173        1.1     joerg 			    size_t);
    174       1.35  jmcneill static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
    175       1.35  jmcneill static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
    176       1.35  jmcneill static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
    177       1.35  jmcneill static void		rum_select_antenna(struct rum_softc *);
    178       1.35  jmcneill static void		rum_enable_mrr(struct rum_softc *);
    179       1.35  jmcneill static void		rum_set_txpreamble(struct rum_softc *);
    180       1.35  jmcneill static void		rum_set_basicrates(struct rum_softc *);
    181       1.35  jmcneill static void		rum_select_band(struct rum_softc *,
    182        1.1     joerg 			    struct ieee80211_channel *);
    183       1.35  jmcneill static void		rum_set_chan(struct rum_softc *,
    184        1.1     joerg 			    struct ieee80211_channel *);
    185       1.35  jmcneill static void		rum_enable_tsf_sync(struct rum_softc *);
    186       1.35  jmcneill static void		rum_update_slot(struct rum_softc *);
    187       1.35  jmcneill static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
    188       1.35  jmcneill static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
    189       1.35  jmcneill static void		rum_update_promisc(struct rum_softc *);
    190       1.35  jmcneill static const char	*rum_get_rf(int);
    191       1.35  jmcneill static void		rum_read_eeprom(struct rum_softc *);
    192       1.35  jmcneill static int		rum_bbp_init(struct rum_softc *);
    193       1.35  jmcneill static int		rum_init(struct ifnet *);
    194       1.35  jmcneill static void		rum_stop(struct ifnet *, int);
    195       1.35  jmcneill static int		rum_load_microcode(struct rum_softc *, const u_char *,
    196        1.1     joerg 			    size_t);
    197       1.35  jmcneill static int		rum_prepare_beacon(struct rum_softc *);
    198       1.35  jmcneill static void		rum_newassoc(struct ieee80211_node *, int);
    199       1.35  jmcneill static void		rum_amrr_start(struct rum_softc *,
    200        1.1     joerg 			    struct ieee80211_node *);
    201       1.35  jmcneill static void		rum_amrr_timeout(void *);
    202  1.48.10.1     skrll static void		rum_amrr_update(struct usbd_xfer *, void *,
    203  1.48.10.1     skrll 			    usbd_status);
    204        1.1     joerg 
    205        1.1     joerg /*
    206        1.1     joerg  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    207        1.1     joerg  */
    208        1.1     joerg static const struct ieee80211_rateset rum_rateset_11a =
    209        1.1     joerg 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    210        1.1     joerg 
    211        1.1     joerg static const struct ieee80211_rateset rum_rateset_11b =
    212        1.1     joerg 	{ 4, { 2, 4, 11, 22 } };
    213        1.1     joerg 
    214        1.1     joerg static const struct ieee80211_rateset rum_rateset_11g =
    215        1.1     joerg 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    216        1.1     joerg 
    217        1.1     joerg static const struct {
    218        1.1     joerg 	uint32_t	reg;
    219        1.1     joerg 	uint32_t	val;
    220        1.1     joerg } rum_def_mac[] = {
    221        1.1     joerg 	RT2573_DEF_MAC
    222        1.1     joerg };
    223        1.1     joerg 
    224        1.1     joerg static const struct {
    225        1.1     joerg 	uint8_t	reg;
    226        1.1     joerg 	uint8_t	val;
    227        1.1     joerg } rum_def_bbp[] = {
    228        1.1     joerg 	RT2573_DEF_BBP
    229        1.1     joerg };
    230        1.1     joerg 
    231        1.1     joerg static const struct rfprog {
    232        1.1     joerg 	uint8_t		chan;
    233        1.1     joerg 	uint32_t	r1, r2, r3, r4;
    234        1.1     joerg }  rum_rf5226[] = {
    235        1.1     joerg 	RT2573_RF5226
    236        1.1     joerg }, rum_rf5225[] = {
    237        1.1     joerg 	RT2573_RF5225
    238        1.1     joerg };
    239        1.1     joerg 
    240       1.35  jmcneill static int rum_match(device_t, cfdata_t, void *);
    241       1.35  jmcneill static void rum_attach(device_t, device_t, void *);
    242       1.35  jmcneill static int rum_detach(device_t, int);
    243       1.35  jmcneill static int rum_activate(device_t, enum devact);
    244       1.33    dyoung extern struct cfdriver rum_cd;
    245       1.33    dyoung CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
    246       1.33    dyoung     rum_detach, rum_activate);
    247        1.1     joerg 
    248       1.35  jmcneill static int
    249       1.33    dyoung rum_match(device_t parent, cfdata_t match, void *aux)
    250        1.1     joerg {
    251       1.33    dyoung 	struct usb_attach_arg *uaa = aux;
    252        1.1     joerg 
    253  1.48.10.1     skrll 	return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
    254        1.1     joerg 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
    255        1.1     joerg }
    256        1.1     joerg 
    257       1.35  jmcneill static int
    258        1.1     joerg rum_attachhook(void *xsc)
    259        1.1     joerg {
    260        1.1     joerg 	struct rum_softc *sc = xsc;
    261        1.1     joerg 	firmware_handle_t fwh;
    262        1.1     joerg 	const char *name = "rum-rt2573";
    263        1.1     joerg 	u_char *ucode;
    264        1.1     joerg 	size_t size;
    265        1.1     joerg 	int error;
    266        1.1     joerg 
    267        1.1     joerg 	if ((error = firmware_open("rum", name, &fwh)) != 0) {
    268  1.48.10.1     skrll 		printf("%s: failed firmware_open of file %s (error %d)\n",
    269       1.33    dyoung 		    device_xname(sc->sc_dev), name, error);
    270        1.1     joerg 		return error;
    271        1.1     joerg 	}
    272        1.1     joerg 	size = firmware_get_size(fwh);
    273        1.1     joerg 	ucode = firmware_malloc(size);
    274        1.1     joerg 	if (ucode == NULL) {
    275        1.1     joerg 		printf("%s: failed to allocate firmware memory\n",
    276       1.33    dyoung 		    device_xname(sc->sc_dev));
    277        1.1     joerg 		firmware_close(fwh);
    278       1.25      yamt 		return ENOMEM;
    279        1.1     joerg 	}
    280        1.1     joerg 	error = firmware_read(fwh, 0, ucode, size);
    281        1.1     joerg 	firmware_close(fwh);
    282        1.1     joerg 	if (error != 0) {
    283        1.1     joerg 		printf("%s: failed to read firmware (error %d)\n",
    284       1.33    dyoung 		    device_xname(sc->sc_dev), error);
    285  1.48.10.1     skrll 		firmware_free(ucode, size);
    286        1.1     joerg 		return error;
    287        1.1     joerg 	}
    288        1.1     joerg 
    289        1.1     joerg 	if (rum_load_microcode(sc, ucode, size) != 0) {
    290        1.1     joerg 		printf("%s: could not load 8051 microcode\n",
    291       1.33    dyoung 		    device_xname(sc->sc_dev));
    292  1.48.10.1     skrll 		firmware_free(ucode, size);
    293        1.1     joerg 		return ENXIO;
    294        1.1     joerg 	}
    295        1.1     joerg 
    296  1.48.10.1     skrll 	firmware_free(ucode, size);
    297        1.1     joerg 	sc->sc_flags |= RT2573_FWLOADED;
    298        1.1     joerg 
    299        1.1     joerg 	return 0;
    300        1.1     joerg }
    301        1.1     joerg 
    302       1.35  jmcneill static void
    303       1.33    dyoung rum_attach(device_t parent, device_t self, void *aux)
    304        1.1     joerg {
    305       1.33    dyoung 	struct rum_softc *sc = device_private(self);
    306       1.33    dyoung 	struct usb_attach_arg *uaa = aux;
    307        1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    308        1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    309        1.1     joerg 	usb_interface_descriptor_t *id;
    310        1.1     joerg 	usb_endpoint_descriptor_t *ed;
    311        1.1     joerg 	usbd_status error;
    312        1.1     joerg 	char *devinfop;
    313        1.1     joerg 	int i, ntries;
    314        1.1     joerg 	uint32_t tmp;
    315        1.1     joerg 
    316       1.21      cube 	sc->sc_dev = self;
    317  1.48.10.1     skrll 	sc->sc_udev = uaa->uaa_device;
    318        1.1     joerg 	sc->sc_flags = 0;
    319        1.1     joerg 
    320       1.28    plunky 	aprint_naive("\n");
    321       1.28    plunky 	aprint_normal("\n");
    322       1.28    plunky 
    323        1.1     joerg 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
    324       1.21      cube 	aprint_normal_dev(self, "%s\n", devinfop);
    325        1.1     joerg 	usbd_devinfo_free(devinfop);
    326        1.1     joerg 
    327       1.44     skrll 	error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
    328       1.44     skrll 	if (error != 0) {
    329       1.44     skrll 		aprint_error_dev(self, "failed to set configuration"
    330       1.44     skrll 		    ", err=%s\n", usbd_errstr(error));
    331       1.33    dyoung 		return;
    332        1.1     joerg 	}
    333        1.1     joerg 
    334        1.1     joerg 	/* get the first interface handle */
    335        1.1     joerg 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
    336        1.1     joerg 	    &sc->sc_iface);
    337        1.1     joerg 	if (error != 0) {
    338       1.21      cube 		aprint_error_dev(self, "could not get interface handle\n");
    339       1.33    dyoung 		return;
    340        1.1     joerg 	}
    341        1.1     joerg 
    342        1.1     joerg 	/*
    343        1.1     joerg 	 * Find endpoints.
    344        1.1     joerg 	 */
    345        1.1     joerg 	id = usbd_get_interface_descriptor(sc->sc_iface);
    346        1.1     joerg 
    347        1.1     joerg 	sc->sc_rx_no = sc->sc_tx_no = -1;
    348        1.1     joerg 	for (i = 0; i < id->bNumEndpoints; i++) {
    349        1.1     joerg 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
    350        1.1     joerg 		if (ed == NULL) {
    351       1.21      cube 			aprint_error_dev(self,
    352       1.21      cube 			    "no endpoint descriptor for iface %d\n", i);
    353       1.33    dyoung 			return;
    354        1.1     joerg 		}
    355        1.1     joerg 
    356        1.1     joerg 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
    357        1.1     joerg 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    358        1.1     joerg 			sc->sc_rx_no = ed->bEndpointAddress;
    359        1.1     joerg 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
    360        1.1     joerg 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    361        1.1     joerg 			sc->sc_tx_no = ed->bEndpointAddress;
    362        1.1     joerg 	}
    363        1.1     joerg 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
    364       1.21      cube 		aprint_error_dev(self, "missing endpoint\n");
    365       1.33    dyoung 		return;
    366        1.1     joerg 	}
    367        1.1     joerg 
    368       1.47  jmcneill 	usb_init_task(&sc->sc_task, rum_task, sc, 0);
    369       1.33    dyoung 	callout_init(&sc->sc_scan_ch, 0);
    370        1.1     joerg 
    371        1.1     joerg 	sc->amrr.amrr_min_success_threshold =  1;
    372        1.1     joerg 	sc->amrr.amrr_max_success_threshold = 10;
    373       1.33    dyoung 	callout_init(&sc->sc_amrr_ch, 0);
    374        1.1     joerg 
    375        1.1     joerg 	/* retrieve RT2573 rev. no */
    376        1.1     joerg 	for (ntries = 0; ntries < 1000; ntries++) {
    377        1.1     joerg 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
    378        1.1     joerg 			break;
    379        1.1     joerg 		DELAY(1000);
    380        1.1     joerg 	}
    381        1.1     joerg 	if (ntries == 1000) {
    382       1.21      cube 		aprint_error_dev(self, "timeout waiting for chip to settle\n");
    383       1.33    dyoung 		return;
    384        1.1     joerg 	}
    385        1.1     joerg 
    386        1.1     joerg 	/* retrieve MAC address and various other things from EEPROM */
    387        1.1     joerg 	rum_read_eeprom(sc);
    388        1.1     joerg 
    389       1.21      cube 	aprint_normal_dev(self,
    390       1.21      cube 	    "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
    391       1.21      cube 	    sc->macbbp_rev, tmp,
    392        1.1     joerg 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
    393        1.1     joerg 
    394        1.1     joerg 	ic->ic_ifp = ifp;
    395        1.1     joerg 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    396        1.1     joerg 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    397        1.1     joerg 	ic->ic_state = IEEE80211_S_INIT;
    398        1.1     joerg 
    399        1.1     joerg 	/* set device capabilities */
    400        1.1     joerg 	ic->ic_caps =
    401        1.1     joerg 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
    402        1.1     joerg 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    403        1.1     joerg 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
    404        1.1     joerg 	    IEEE80211_C_TXPMGT |	/* tx power management */
    405        1.1     joerg 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    406        1.1     joerg 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    407        1.1     joerg 	    IEEE80211_C_WPA;		/* 802.11i */
    408        1.1     joerg 
    409        1.1     joerg 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
    410        1.1     joerg 		/* set supported .11a rates */
    411        1.1     joerg 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
    412        1.1     joerg 
    413        1.1     joerg 		/* set supported .11a channels */
    414        1.1     joerg 		for (i = 34; i <= 46; i += 4) {
    415        1.1     joerg 			ic->ic_channels[i].ic_freq =
    416        1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    417        1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    418        1.1     joerg 		}
    419        1.1     joerg 		for (i = 36; i <= 64; i += 4) {
    420        1.1     joerg 			ic->ic_channels[i].ic_freq =
    421        1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    422        1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    423        1.1     joerg 		}
    424        1.1     joerg 		for (i = 100; i <= 140; i += 4) {
    425        1.1     joerg 			ic->ic_channels[i].ic_freq =
    426        1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    427        1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    428        1.1     joerg 		}
    429        1.1     joerg 		for (i = 149; i <= 165; i += 4) {
    430        1.1     joerg 			ic->ic_channels[i].ic_freq =
    431        1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    432        1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    433        1.1     joerg 		}
    434        1.1     joerg 	}
    435        1.1     joerg 
    436        1.1     joerg 	/* set supported .11b and .11g rates */
    437        1.1     joerg 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
    438        1.1     joerg 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
    439        1.1     joerg 
    440        1.1     joerg 	/* set supported .11b and .11g channels (1 through 14) */
    441        1.1     joerg 	for (i = 1; i <= 14; i++) {
    442        1.1     joerg 		ic->ic_channels[i].ic_freq =
    443        1.1     joerg 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    444        1.1     joerg 		ic->ic_channels[i].ic_flags =
    445        1.1     joerg 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    446        1.1     joerg 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    447        1.1     joerg 	}
    448        1.1     joerg 
    449        1.1     joerg 	ifp->if_softc = sc;
    450        1.1     joerg 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    451        1.1     joerg 	ifp->if_init = rum_init;
    452        1.1     joerg 	ifp->if_ioctl = rum_ioctl;
    453        1.1     joerg 	ifp->if_start = rum_start;
    454        1.1     joerg 	ifp->if_watchdog = rum_watchdog;
    455        1.1     joerg 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
    456        1.1     joerg 	IFQ_SET_READY(&ifp->if_snd);
    457       1.33    dyoung 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    458        1.1     joerg 
    459        1.1     joerg 	if_attach(ifp);
    460        1.1     joerg 	ieee80211_ifattach(ic);
    461       1.18  kiyohara 	ic->ic_newassoc = rum_newassoc;
    462        1.1     joerg 
    463        1.1     joerg 	/* override state transition machine */
    464        1.1     joerg 	sc->sc_newstate = ic->ic_newstate;
    465        1.1     joerg 	ic->ic_newstate = rum_newstate;
    466        1.1     joerg 	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
    467        1.1     joerg 
    468       1.32     joerg 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    469  1.48.10.1     skrll 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    470       1.31     pooka 	    &sc->sc_drvbpf);
    471        1.1     joerg 
    472  1.48.10.1     skrll 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
    473        1.1     joerg 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    474        1.1     joerg 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
    475        1.1     joerg 
    476  1.48.10.1     skrll 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
    477        1.1     joerg 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    478        1.1     joerg 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
    479        1.1     joerg 
    480        1.1     joerg 	ieee80211_announce(ic);
    481        1.1     joerg 
    482  1.48.10.1     skrll 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
    483  1.48.10.1     skrll 
    484  1.48.10.1     skrll 	if (!pmf_device_register(self, NULL, NULL))
    485  1.48.10.1     skrll 		aprint_error_dev(self, "couldn't establish power handler\n");
    486        1.1     joerg 
    487       1.33    dyoung 	return;
    488        1.1     joerg }
    489        1.1     joerg 
    490       1.35  jmcneill static int
    491       1.33    dyoung rum_detach(device_t self, int flags)
    492        1.1     joerg {
    493       1.33    dyoung 	struct rum_softc *sc = device_private(self);
    494        1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    495        1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    496        1.1     joerg 	int s;
    497        1.1     joerg 
    498       1.13  drochner 	if (!ifp->if_softc)
    499       1.13  drochner 		return 0;
    500       1.13  drochner 
    501  1.48.10.1     skrll 	pmf_device_deregister(self);
    502  1.48.10.1     skrll 
    503        1.1     joerg 	s = splusb();
    504        1.1     joerg 
    505        1.1     joerg 	rum_stop(ifp, 1);
    506        1.1     joerg 	usb_rem_task(sc->sc_udev, &sc->sc_task);
    507       1.33    dyoung 	callout_stop(&sc->sc_scan_ch);
    508       1.33    dyoung 	callout_stop(&sc->sc_amrr_ch);
    509        1.1     joerg 
    510       1.32     joerg 	bpf_detach(ifp);
    511        1.1     joerg 	ieee80211_ifdetach(ic);	/* free all nodes */
    512        1.1     joerg 	if_detach(ifp);
    513        1.1     joerg 
    514        1.1     joerg 	splx(s);
    515        1.1     joerg 
    516       1.33    dyoung 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
    517        1.1     joerg 
    518        1.1     joerg 	return 0;
    519        1.1     joerg }
    520        1.1     joerg 
    521       1.35  jmcneill static int
    522        1.1     joerg rum_alloc_tx_list(struct rum_softc *sc)
    523        1.1     joerg {
    524        1.1     joerg 	struct rum_tx_data *data;
    525        1.1     joerg 	int i, error;
    526        1.1     joerg 
    527       1.35  jmcneill 	sc->tx_cur = sc->tx_queued = 0;
    528        1.1     joerg 
    529       1.18  kiyohara 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
    530        1.1     joerg 		data = &sc->tx_data[i];
    531        1.1     joerg 
    532        1.1     joerg 		data->sc = sc;
    533        1.1     joerg 
    534  1.48.10.1     skrll 		error = usbd_create_xfer(sc->sc_tx_pipeh,
    535  1.48.10.1     skrll 		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN,
    536  1.48.10.1     skrll 		    USBD_FORCE_SHORT_XFER, 0, &data->xfer);
    537  1.48.10.1     skrll 		if (error) {
    538        1.1     joerg 			printf("%s: could not allocate tx xfer\n",
    539       1.33    dyoung 			    device_xname(sc->sc_dev));
    540        1.1     joerg 			goto fail;
    541        1.1     joerg 		}
    542  1.48.10.1     skrll 		data->buf = usbd_get_buffer(data->xfer);
    543        1.1     joerg 
    544        1.1     joerg 		/* clean Tx descriptor */
    545       1.26    cegger 		memset(data->buf, 0, RT2573_TX_DESC_SIZE);
    546        1.1     joerg 	}
    547        1.1     joerg 
    548        1.1     joerg 	return 0;
    549        1.1     joerg 
    550        1.1     joerg fail:	rum_free_tx_list(sc);
    551        1.1     joerg 	return error;
    552        1.1     joerg }
    553        1.1     joerg 
    554       1.35  jmcneill static void
    555        1.1     joerg rum_free_tx_list(struct rum_softc *sc)
    556        1.1     joerg {
    557        1.1     joerg 	struct rum_tx_data *data;
    558        1.1     joerg 	int i;
    559        1.1     joerg 
    560       1.18  kiyohara 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
    561        1.1     joerg 		data = &sc->tx_data[i];
    562        1.1     joerg 
    563        1.1     joerg 		if (data->xfer != NULL) {
    564  1.48.10.1     skrll 			usbd_destroy_xfer(data->xfer);
    565        1.1     joerg 			data->xfer = NULL;
    566        1.1     joerg 		}
    567        1.1     joerg 
    568        1.1     joerg 		if (data->ni != NULL) {
    569        1.1     joerg 			ieee80211_free_node(data->ni);
    570        1.1     joerg 			data->ni = NULL;
    571        1.1     joerg 		}
    572        1.1     joerg 	}
    573        1.1     joerg }
    574        1.1     joerg 
    575       1.35  jmcneill static int
    576        1.1     joerg rum_alloc_rx_list(struct rum_softc *sc)
    577        1.1     joerg {
    578        1.1     joerg 	struct rum_rx_data *data;
    579        1.1     joerg 	int i, error;
    580        1.1     joerg 
    581       1.18  kiyohara 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
    582        1.1     joerg 		data = &sc->rx_data[i];
    583        1.1     joerg 
    584        1.1     joerg 		data->sc = sc;
    585        1.1     joerg 
    586  1.48.10.1     skrll 		error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
    587  1.48.10.1     skrll 		    USBD_SHORT_XFER_OK, 0, &data->xfer);
    588  1.48.10.1     skrll 		if (error) {
    589        1.1     joerg 			printf("%s: could not allocate rx xfer\n",
    590       1.33    dyoung 			    device_xname(sc->sc_dev));
    591        1.1     joerg 			goto fail;
    592        1.1     joerg 		}
    593        1.1     joerg 
    594        1.1     joerg 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    595        1.1     joerg 		if (data->m == NULL) {
    596        1.1     joerg 			printf("%s: could not allocate rx mbuf\n",
    597       1.33    dyoung 			    device_xname(sc->sc_dev));
    598        1.1     joerg 			error = ENOMEM;
    599        1.1     joerg 			goto fail;
    600        1.1     joerg 		}
    601        1.1     joerg 
    602        1.1     joerg 		MCLGET(data->m, M_DONTWAIT);
    603        1.1     joerg 		if (!(data->m->m_flags & M_EXT)) {
    604        1.1     joerg 			printf("%s: could not allocate rx mbuf cluster\n",
    605       1.33    dyoung 			    device_xname(sc->sc_dev));
    606        1.1     joerg 			error = ENOMEM;
    607        1.1     joerg 			goto fail;
    608        1.1     joerg 		}
    609        1.1     joerg 
    610        1.1     joerg 		data->buf = mtod(data->m, uint8_t *);
    611        1.1     joerg 	}
    612        1.1     joerg 
    613        1.1     joerg 	return 0;
    614        1.1     joerg 
    615       1.34  dholland fail:	rum_free_rx_list(sc);
    616        1.1     joerg 	return error;
    617        1.1     joerg }
    618        1.1     joerg 
    619       1.35  jmcneill static void
    620        1.1     joerg rum_free_rx_list(struct rum_softc *sc)
    621        1.1     joerg {
    622        1.1     joerg 	struct rum_rx_data *data;
    623        1.1     joerg 	int i;
    624        1.1     joerg 
    625       1.18  kiyohara 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
    626        1.1     joerg 		data = &sc->rx_data[i];
    627        1.1     joerg 
    628        1.1     joerg 		if (data->xfer != NULL) {
    629  1.48.10.1     skrll 			usbd_destroy_xfer(data->xfer);
    630        1.1     joerg 			data->xfer = NULL;
    631        1.1     joerg 		}
    632        1.1     joerg 
    633        1.1     joerg 		if (data->m != NULL) {
    634        1.1     joerg 			m_freem(data->m);
    635        1.1     joerg 			data->m = NULL;
    636        1.1     joerg 		}
    637        1.1     joerg 	}
    638        1.1     joerg }
    639        1.1     joerg 
    640       1.35  jmcneill static int
    641        1.1     joerg rum_media_change(struct ifnet *ifp)
    642        1.1     joerg {
    643        1.1     joerg 	int error;
    644        1.1     joerg 
    645        1.1     joerg 	error = ieee80211_media_change(ifp);
    646        1.1     joerg 	if (error != ENETRESET)
    647        1.1     joerg 		return error;
    648        1.1     joerg 
    649        1.1     joerg 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    650        1.1     joerg 		rum_init(ifp);
    651        1.1     joerg 
    652        1.1     joerg 	return 0;
    653        1.1     joerg }
    654        1.1     joerg 
    655        1.1     joerg /*
    656        1.1     joerg  * This function is called periodically (every 200ms) during scanning to
    657        1.1     joerg  * switch from one channel to another.
    658        1.1     joerg  */
    659       1.35  jmcneill static void
    660        1.1     joerg rum_next_scan(void *arg)
    661        1.1     joerg {
    662        1.1     joerg 	struct rum_softc *sc = arg;
    663        1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    664       1.35  jmcneill 	int s;
    665        1.1     joerg 
    666       1.35  jmcneill 	s = splnet();
    667        1.1     joerg 	if (ic->ic_state == IEEE80211_S_SCAN)
    668        1.1     joerg 		ieee80211_next_scan(ic);
    669       1.35  jmcneill 	splx(s);
    670        1.1     joerg }
    671        1.1     joerg 
    672       1.35  jmcneill static void
    673        1.1     joerg rum_task(void *arg)
    674        1.1     joerg {
    675        1.1     joerg 	struct rum_softc *sc = arg;
    676        1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    677        1.1     joerg 	enum ieee80211_state ostate;
    678        1.1     joerg 	struct ieee80211_node *ni;
    679        1.1     joerg 	uint32_t tmp;
    680        1.1     joerg 
    681        1.1     joerg 	ostate = ic->ic_state;
    682        1.1     joerg 
    683        1.1     joerg 	switch (sc->sc_state) {
    684        1.1     joerg 	case IEEE80211_S_INIT:
    685        1.1     joerg 		if (ostate == IEEE80211_S_RUN) {
    686        1.1     joerg 			/* abort TSF synchronization */
    687        1.1     joerg 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
    688        1.1     joerg 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
    689        1.1     joerg 		}
    690        1.1     joerg 		break;
    691        1.1     joerg 
    692        1.1     joerg 	case IEEE80211_S_SCAN:
    693        1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    694       1.33    dyoung 		callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
    695        1.1     joerg 		break;
    696        1.1     joerg 
    697        1.1     joerg 	case IEEE80211_S_AUTH:
    698        1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    699        1.1     joerg 		break;
    700        1.1     joerg 
    701        1.1     joerg 	case IEEE80211_S_ASSOC:
    702        1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    703        1.1     joerg 		break;
    704        1.1     joerg 
    705        1.1     joerg 	case IEEE80211_S_RUN:
    706        1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    707        1.1     joerg 
    708        1.1     joerg 		ni = ic->ic_bss;
    709        1.1     joerg 
    710        1.1     joerg 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    711        1.1     joerg 			rum_update_slot(sc);
    712        1.1     joerg 			rum_enable_mrr(sc);
    713        1.1     joerg 			rum_set_txpreamble(sc);
    714        1.1     joerg 			rum_set_basicrates(sc);
    715        1.1     joerg 			rum_set_bssid(sc, ni->ni_bssid);
    716        1.1     joerg 		}
    717        1.1     joerg 
    718        1.1     joerg 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
    719        1.1     joerg 		    ic->ic_opmode == IEEE80211_M_IBSS)
    720        1.1     joerg 			rum_prepare_beacon(sc);
    721        1.1     joerg 
    722        1.1     joerg 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
    723        1.1     joerg 			rum_enable_tsf_sync(sc);
    724        1.1     joerg 
    725       1.18  kiyohara 		if (ic->ic_opmode == IEEE80211_M_STA) {
    726       1.18  kiyohara 			/* fake a join to init the tx rate */
    727       1.18  kiyohara 			rum_newassoc(ic->ic_bss, 1);
    728       1.18  kiyohara 
    729       1.18  kiyohara 			/* enable automatic rate adaptation in STA mode */
    730       1.18  kiyohara 			if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
    731       1.18  kiyohara 				rum_amrr_start(sc, ni);
    732       1.18  kiyohara 		}
    733        1.1     joerg 
    734        1.1     joerg 		break;
    735        1.1     joerg 	}
    736        1.1     joerg 
    737       1.35  jmcneill 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
    738        1.1     joerg }
    739        1.1     joerg 
    740       1.35  jmcneill static int
    741        1.1     joerg rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    742        1.1     joerg {
    743        1.1     joerg 	struct rum_softc *sc = ic->ic_ifp->if_softc;
    744        1.1     joerg 
    745        1.1     joerg 	usb_rem_task(sc->sc_udev, &sc->sc_task);
    746       1.33    dyoung 	callout_stop(&sc->sc_scan_ch);
    747       1.33    dyoung 	callout_stop(&sc->sc_amrr_ch);
    748        1.1     joerg 
    749        1.1     joerg 	/* do it in a process context */
    750        1.1     joerg 	sc->sc_state = nstate;
    751       1.35  jmcneill 	sc->sc_arg = arg;
    752        1.1     joerg 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
    753        1.1     joerg 
    754        1.1     joerg 	return 0;
    755        1.1     joerg }
    756        1.1     joerg 
    757        1.1     joerg /* quickly determine if a given rate is CCK or OFDM */
    758        1.1     joerg #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
    759        1.1     joerg 
    760        1.1     joerg #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
    761        1.1     joerg #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
    762        1.1     joerg 
    763       1.35  jmcneill static void
    764  1.48.10.1     skrll rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
    765        1.1     joerg {
    766        1.1     joerg 	struct rum_tx_data *data = priv;
    767        1.1     joerg 	struct rum_softc *sc = data->sc;
    768        1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    769        1.1     joerg 	int s;
    770        1.1     joerg 
    771        1.1     joerg 	if (status != USBD_NORMAL_COMPLETION) {
    772        1.1     joerg 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
    773        1.1     joerg 			return;
    774        1.1     joerg 
    775        1.1     joerg 		printf("%s: could not transmit buffer: %s\n",
    776       1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(status));
    777        1.1     joerg 
    778        1.1     joerg 		if (status == USBD_STALLED)
    779        1.1     joerg 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
    780        1.1     joerg 
    781        1.1     joerg 		ifp->if_oerrors++;
    782        1.1     joerg 		return;
    783        1.1     joerg 	}
    784        1.1     joerg 
    785        1.1     joerg 	s = splnet();
    786        1.1     joerg 
    787        1.1     joerg 	ieee80211_free_node(data->ni);
    788        1.1     joerg 	data->ni = NULL;
    789        1.1     joerg 
    790        1.1     joerg 	sc->tx_queued--;
    791        1.1     joerg 	ifp->if_opackets++;
    792        1.1     joerg 
    793        1.1     joerg 	DPRINTFN(10, ("tx done\n"));
    794        1.1     joerg 
    795        1.1     joerg 	sc->sc_tx_timer = 0;
    796        1.1     joerg 	ifp->if_flags &= ~IFF_OACTIVE;
    797        1.1     joerg 	rum_start(ifp);
    798        1.1     joerg 
    799        1.1     joerg 	splx(s);
    800        1.1     joerg }
    801        1.1     joerg 
    802       1.35  jmcneill static void
    803  1.48.10.1     skrll rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
    804        1.1     joerg {
    805        1.1     joerg 	struct rum_rx_data *data = priv;
    806        1.1     joerg 	struct rum_softc *sc = data->sc;
    807        1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    808        1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    809        1.1     joerg 	struct rum_rx_desc *desc;
    810        1.1     joerg 	struct ieee80211_frame *wh;
    811        1.1     joerg 	struct ieee80211_node *ni;
    812        1.1     joerg 	struct mbuf *mnew, *m;
    813        1.1     joerg 	int s, len;
    814        1.1     joerg 
    815        1.1     joerg 	if (status != USBD_NORMAL_COMPLETION) {
    816        1.1     joerg 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
    817        1.1     joerg 			return;
    818        1.1     joerg 
    819        1.1     joerg 		if (status == USBD_STALLED)
    820        1.1     joerg 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
    821        1.1     joerg 		goto skip;
    822        1.1     joerg 	}
    823        1.1     joerg 
    824        1.1     joerg 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
    825        1.1     joerg 
    826       1.37  pgoyette 	if (len < (int)(RT2573_RX_DESC_SIZE +
    827       1.37  pgoyette 		        sizeof(struct ieee80211_frame_min))) {
    828       1.33    dyoung 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
    829        1.1     joerg 		    len));
    830        1.1     joerg 		ifp->if_ierrors++;
    831        1.1     joerg 		goto skip;
    832        1.1     joerg 	}
    833        1.1     joerg 
    834        1.1     joerg 	desc = (struct rum_rx_desc *)data->buf;
    835        1.1     joerg 
    836        1.1     joerg 	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
    837        1.1     joerg 		/*
    838        1.1     joerg 		 * This should not happen since we did not request to receive
    839        1.1     joerg 		 * those frames when we filled RT2573_TXRX_CSR0.
    840        1.1     joerg 		 */
    841        1.1     joerg 		DPRINTFN(5, ("CRC error\n"));
    842        1.1     joerg 		ifp->if_ierrors++;
    843        1.1     joerg 		goto skip;
    844        1.1     joerg 	}
    845        1.1     joerg 
    846        1.1     joerg 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
    847        1.1     joerg 	if (mnew == NULL) {
    848        1.1     joerg 		printf("%s: could not allocate rx mbuf\n",
    849       1.33    dyoung 		    device_xname(sc->sc_dev));
    850        1.1     joerg 		ifp->if_ierrors++;
    851        1.1     joerg 		goto skip;
    852        1.1     joerg 	}
    853        1.1     joerg 
    854        1.1     joerg 	MCLGET(mnew, M_DONTWAIT);
    855        1.1     joerg 	if (!(mnew->m_flags & M_EXT)) {
    856        1.1     joerg 		printf("%s: could not allocate rx mbuf cluster\n",
    857       1.33    dyoung 		    device_xname(sc->sc_dev));
    858        1.1     joerg 		m_freem(mnew);
    859        1.1     joerg 		ifp->if_ierrors++;
    860        1.1     joerg 		goto skip;
    861        1.1     joerg 	}
    862        1.1     joerg 
    863        1.1     joerg 	m = data->m;
    864        1.1     joerg 	data->m = mnew;
    865        1.1     joerg 	data->buf = mtod(data->m, uint8_t *);
    866        1.1     joerg 
    867        1.1     joerg 	/* finalize mbuf */
    868        1.1     joerg 	m->m_pkthdr.rcvif = ifp;
    869        1.7  christos 	m->m_data = (void *)(desc + 1);
    870        1.1     joerg 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
    871        1.1     joerg 
    872        1.1     joerg 	s = splnet();
    873        1.1     joerg 
    874        1.1     joerg 	if (sc->sc_drvbpf != NULL) {
    875        1.1     joerg 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
    876        1.1     joerg 
    877        1.1     joerg 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
    878        1.1     joerg 		tap->wr_rate = rum_rxrate(desc);
    879        1.1     joerg 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
    880        1.1     joerg 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
    881        1.1     joerg 		tap->wr_antenna = sc->rx_ant;
    882        1.1     joerg 		tap->wr_antsignal = desc->rssi;
    883        1.1     joerg 
    884       1.32     joerg 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
    885        1.1     joerg 	}
    886        1.1     joerg 
    887        1.1     joerg 	wh = mtod(m, struct ieee80211_frame *);
    888        1.1     joerg 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
    889        1.1     joerg 
    890        1.1     joerg 	/* send the frame to the 802.11 layer */
    891        1.1     joerg 	ieee80211_input(ic, m, ni, desc->rssi, 0);
    892        1.1     joerg 
    893        1.1     joerg 	/* node is no longer needed */
    894        1.1     joerg 	ieee80211_free_node(ni);
    895        1.1     joerg 
    896        1.1     joerg 	splx(s);
    897        1.1     joerg 
    898        1.1     joerg 	DPRINTFN(15, ("rx done\n"));
    899        1.1     joerg 
    900        1.1     joerg skip:	/* setup a new transfer */
    901  1.48.10.1     skrll 	usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK,
    902  1.48.10.1     skrll 	    USBD_NO_TIMEOUT, rum_rxeof);
    903        1.1     joerg 	usbd_transfer(xfer);
    904        1.1     joerg }
    905        1.1     joerg 
    906        1.1     joerg /*
    907        1.1     joerg  * This function is only used by the Rx radiotap code. It returns the rate at
    908        1.1     joerg  * which a given frame was received.
    909        1.1     joerg  */
    910       1.35  jmcneill static uint8_t
    911       1.18  kiyohara rum_rxrate(const struct rum_rx_desc *desc)
    912        1.1     joerg {
    913        1.1     joerg 	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
    914        1.1     joerg 		/* reverse function of rum_plcp_signal */
    915        1.1     joerg 		switch (desc->rate) {
    916        1.1     joerg 		case 0xb:	return 12;
    917        1.1     joerg 		case 0xf:	return 18;
    918        1.1     joerg 		case 0xa:	return 24;
    919        1.1     joerg 		case 0xe:	return 36;
    920        1.1     joerg 		case 0x9:	return 48;
    921        1.1     joerg 		case 0xd:	return 72;
    922        1.1     joerg 		case 0x8:	return 96;
    923        1.1     joerg 		case 0xc:	return 108;
    924        1.1     joerg 		}
    925        1.1     joerg 	} else {
    926        1.1     joerg 		if (desc->rate == 10)
    927        1.1     joerg 			return 2;
    928        1.1     joerg 		if (desc->rate == 20)
    929        1.1     joerg 			return 4;
    930        1.1     joerg 		if (desc->rate == 55)
    931        1.1     joerg 			return 11;
    932        1.1     joerg 		if (desc->rate == 110)
    933        1.1     joerg 			return 22;
    934        1.1     joerg 	}
    935        1.1     joerg 	return 2;	/* should not get there */
    936        1.1     joerg }
    937        1.1     joerg 
    938        1.1     joerg /*
    939        1.1     joerg  * Return the expected ack rate for a frame transmitted at rate `rate'.
    940        1.1     joerg  * XXX: this should depend on the destination node basic rate set.
    941        1.1     joerg  */
    942       1.35  jmcneill static int
    943        1.1     joerg rum_ack_rate(struct ieee80211com *ic, int rate)
    944        1.1     joerg {
    945        1.1     joerg 	switch (rate) {
    946        1.1     joerg 	/* CCK rates */
    947        1.1     joerg 	case 2:
    948        1.1     joerg 		return 2;
    949        1.1     joerg 	case 4:
    950        1.1     joerg 	case 11:
    951        1.1     joerg 	case 22:
    952        1.1     joerg 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
    953        1.1     joerg 
    954        1.1     joerg 	/* OFDM rates */
    955        1.1     joerg 	case 12:
    956        1.1     joerg 	case 18:
    957        1.1     joerg 		return 12;
    958        1.1     joerg 	case 24:
    959        1.1     joerg 	case 36:
    960        1.1     joerg 		return 24;
    961        1.1     joerg 	case 48:
    962        1.1     joerg 	case 72:
    963        1.1     joerg 	case 96:
    964        1.1     joerg 	case 108:
    965        1.1     joerg 		return 48;
    966        1.1     joerg 	}
    967        1.1     joerg 
    968        1.1     joerg 	/* default to 1Mbps */
    969        1.1     joerg 	return 2;
    970        1.1     joerg }
    971        1.1     joerg 
    972        1.1     joerg /*
    973        1.1     joerg  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
    974        1.1     joerg  * The function automatically determines the operating mode depending on the
    975        1.1     joerg  * given rate. `flags' indicates whether short preamble is in use or not.
    976        1.1     joerg  */
    977       1.35  jmcneill static uint16_t
    978        1.1     joerg rum_txtime(int len, int rate, uint32_t flags)
    979        1.1     joerg {
    980        1.1     joerg 	uint16_t txtime;
    981        1.1     joerg 
    982        1.1     joerg 	if (RUM_RATE_IS_OFDM(rate)) {
    983        1.1     joerg 		/* IEEE Std 802.11a-1999, pp. 37 */
    984        1.1     joerg 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
    985        1.1     joerg 		txtime = 16 + 4 + 4 * txtime + 6;
    986        1.1     joerg 	} else {
    987        1.1     joerg 		/* IEEE Std 802.11b-1999, pp. 28 */
    988        1.1     joerg 		txtime = (16 * len + rate - 1) / rate;
    989        1.1     joerg 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
    990        1.1     joerg 			txtime +=  72 + 24;
    991        1.1     joerg 		else
    992        1.1     joerg 			txtime += 144 + 48;
    993        1.1     joerg 	}
    994        1.1     joerg 	return txtime;
    995        1.1     joerg }
    996        1.1     joerg 
    997       1.35  jmcneill static uint8_t
    998        1.1     joerg rum_plcp_signal(int rate)
    999        1.1     joerg {
   1000        1.1     joerg 	switch (rate) {
   1001        1.1     joerg 	/* CCK rates (returned values are device-dependent) */
   1002        1.1     joerg 	case 2:		return 0x0;
   1003        1.1     joerg 	case 4:		return 0x1;
   1004        1.1     joerg 	case 11:	return 0x2;
   1005        1.1     joerg 	case 22:	return 0x3;
   1006        1.1     joerg 
   1007        1.1     joerg 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1008        1.1     joerg 	case 12:	return 0xb;
   1009        1.1     joerg 	case 18:	return 0xf;
   1010        1.1     joerg 	case 24:	return 0xa;
   1011        1.1     joerg 	case 36:	return 0xe;
   1012        1.1     joerg 	case 48:	return 0x9;
   1013        1.1     joerg 	case 72:	return 0xd;
   1014        1.1     joerg 	case 96:	return 0x8;
   1015        1.1     joerg 	case 108:	return 0xc;
   1016        1.1     joerg 
   1017        1.1     joerg 	/* unsupported rates (should not get there) */
   1018        1.1     joerg 	default:	return 0xff;
   1019        1.1     joerg 	}
   1020        1.1     joerg }
   1021        1.1     joerg 
   1022       1.35  jmcneill static void
   1023        1.1     joerg rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
   1024        1.1     joerg     uint32_t flags, uint16_t xflags, int len, int rate)
   1025        1.1     joerg {
   1026        1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1027        1.1     joerg 	uint16_t plcp_length;
   1028        1.1     joerg 	int remainder;
   1029        1.1     joerg 
   1030        1.1     joerg 	desc->flags = htole32(flags);
   1031        1.1     joerg 	desc->flags |= htole32(RT2573_TX_VALID);
   1032        1.1     joerg 	desc->flags |= htole32(len << 16);
   1033        1.1     joerg 
   1034        1.1     joerg 	desc->xflags = htole16(xflags);
   1035        1.1     joerg 
   1036        1.1     joerg 	desc->wme = htole16(
   1037        1.1     joerg 	    RT2573_QID(0) |
   1038        1.1     joerg 	    RT2573_AIFSN(2) |
   1039        1.1     joerg 	    RT2573_LOGCWMIN(4) |
   1040        1.1     joerg 	    RT2573_LOGCWMAX(10));
   1041        1.1     joerg 
   1042        1.1     joerg 	/* setup PLCP fields */
   1043        1.1     joerg 	desc->plcp_signal  = rum_plcp_signal(rate);
   1044        1.1     joerg 	desc->plcp_service = 4;
   1045        1.1     joerg 
   1046        1.1     joerg 	len += IEEE80211_CRC_LEN;
   1047        1.1     joerg 	if (RUM_RATE_IS_OFDM(rate)) {
   1048        1.1     joerg 		desc->flags |= htole32(RT2573_TX_OFDM);
   1049        1.1     joerg 
   1050        1.1     joerg 		plcp_length = len & 0xfff;
   1051        1.1     joerg 		desc->plcp_length_hi = plcp_length >> 6;
   1052        1.1     joerg 		desc->plcp_length_lo = plcp_length & 0x3f;
   1053        1.1     joerg 	} else {
   1054        1.1     joerg 		plcp_length = (16 * len + rate - 1) / rate;
   1055        1.1     joerg 		if (rate == 22) {
   1056        1.1     joerg 			remainder = (16 * len) % 22;
   1057        1.1     joerg 			if (remainder != 0 && remainder < 7)
   1058        1.1     joerg 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
   1059        1.1     joerg 		}
   1060        1.1     joerg 		desc->plcp_length_hi = plcp_length >> 8;
   1061        1.1     joerg 		desc->plcp_length_lo = plcp_length & 0xff;
   1062        1.1     joerg 
   1063        1.1     joerg 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1064        1.1     joerg 			desc->plcp_signal |= 0x08;
   1065        1.1     joerg 	}
   1066        1.1     joerg }
   1067        1.1     joerg 
   1068        1.1     joerg #define RUM_TX_TIMEOUT	5000
   1069        1.1     joerg 
   1070       1.35  jmcneill static int
   1071       1.35  jmcneill rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
   1072        1.1     joerg {
   1073        1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1074        1.1     joerg 	struct rum_tx_desc *desc;
   1075        1.1     joerg 	struct rum_tx_data *data;
   1076        1.1     joerg 	struct ieee80211_frame *wh;
   1077       1.17  degroote 	struct ieee80211_key *k;
   1078        1.1     joerg 	uint32_t flags = 0;
   1079        1.1     joerg 	uint16_t dur;
   1080        1.1     joerg 	usbd_status error;
   1081       1.35  jmcneill 	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
   1082        1.1     joerg 
   1083        1.1     joerg 	wh = mtod(m0, struct ieee80211_frame *);
   1084        1.1     joerg 
   1085       1.17  degroote 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1086       1.17  degroote 		k = ieee80211_crypto_encap(ic, ni, m0);
   1087       1.17  degroote 		if (k == NULL) {
   1088       1.17  degroote 			m_freem(m0);
   1089       1.17  degroote 			return ENOBUFS;
   1090       1.17  degroote 		}
   1091       1.17  degroote 
   1092       1.35  jmcneill 		/* packet header may have moved, reset our local pointer */
   1093       1.35  jmcneill 		wh = mtod(m0, struct ieee80211_frame *);
   1094        1.1     joerg 	}
   1095        1.1     joerg 
   1096       1.35  jmcneill 	/* compute actual packet length (including CRC and crypto overhead) */
   1097       1.35  jmcneill 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
   1098        1.1     joerg 
   1099       1.35  jmcneill 	/* pickup a rate */
   1100       1.35  jmcneill 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   1101       1.35  jmcneill 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1102       1.35  jmcneill 	     IEEE80211_FC0_TYPE_MGT)) {
   1103       1.35  jmcneill 		/* mgmt/multicast frames are sent at the lowest avail. rate */
   1104       1.35  jmcneill 		rate = ni->ni_rates.rs_rates[0];
   1105       1.35  jmcneill 	} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
   1106       1.35  jmcneill 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
   1107       1.35  jmcneill 	} else
   1108       1.35  jmcneill 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1109       1.35  jmcneill 	if (rate == 0)
   1110       1.35  jmcneill 		rate = 2;	/* XXX should not happen */
   1111       1.35  jmcneill 	rate &= IEEE80211_RATE_VAL;
   1112        1.1     joerg 
   1113       1.35  jmcneill 	/* check if RTS/CTS or CTS-to-self protection must be used */
   1114       1.35  jmcneill 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1115       1.35  jmcneill 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
   1116       1.35  jmcneill 		if (pktlen > ic->ic_rtsthreshold) {
   1117       1.35  jmcneill 			needrts = 1;	/* RTS/CTS based on frame length */
   1118       1.35  jmcneill 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   1119       1.35  jmcneill 		    RUM_RATE_IS_OFDM(rate)) {
   1120       1.35  jmcneill 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   1121       1.35  jmcneill 				needcts = 1;	/* CTS-to-self */
   1122       1.35  jmcneill 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   1123       1.35  jmcneill 				needrts = 1;	/* RTS/CTS */
   1124       1.35  jmcneill 		}
   1125       1.35  jmcneill 	}
   1126       1.35  jmcneill 	if (needrts || needcts) {
   1127       1.35  jmcneill 		struct mbuf *mprot;
   1128       1.35  jmcneill 		int protrate, ackrate;
   1129       1.35  jmcneill 
   1130       1.35  jmcneill 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
   1131       1.35  jmcneill 		ackrate  = rum_ack_rate(ic, rate);
   1132       1.35  jmcneill 
   1133       1.35  jmcneill 		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
   1134       1.35  jmcneill 		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
   1135       1.35  jmcneill 		      2 * sc->sifs;
   1136       1.35  jmcneill 		if (needrts) {
   1137       1.35  jmcneill 			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
   1138       1.35  jmcneill 			    protrate), ic->ic_flags) + sc->sifs;
   1139       1.35  jmcneill 			mprot = ieee80211_get_rts(ic, wh, dur);
   1140       1.35  jmcneill 		} else {
   1141       1.35  jmcneill 			mprot = ieee80211_get_cts_to_self(ic, dur);
   1142       1.35  jmcneill 		}
   1143       1.35  jmcneill 		if (mprot == NULL) {
   1144       1.35  jmcneill 			aprint_error_dev(sc->sc_dev,
   1145       1.35  jmcneill 			    "couldn't allocate protection frame\n");
   1146       1.35  jmcneill 			m_freem(m0);
   1147       1.35  jmcneill 			return ENOBUFS;
   1148       1.35  jmcneill 		}
   1149        1.1     joerg 
   1150       1.35  jmcneill 		data = &sc->tx_data[sc->tx_cur];
   1151       1.35  jmcneill 		desc = (struct rum_tx_desc *)data->buf;
   1152        1.1     joerg 
   1153       1.35  jmcneill 		/* avoid multiple free() of the same node for each fragment */
   1154       1.35  jmcneill 		data->ni = ieee80211_ref_node(ni);
   1155        1.1     joerg 
   1156       1.35  jmcneill 		m_copydata(mprot, 0, mprot->m_pkthdr.len,
   1157       1.35  jmcneill 		    data->buf + RT2573_TX_DESC_SIZE);
   1158       1.35  jmcneill 		rum_setup_tx_desc(sc, desc,
   1159       1.35  jmcneill 		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
   1160       1.35  jmcneill 		    0, mprot->m_pkthdr.len, protrate);
   1161        1.1     joerg 
   1162       1.35  jmcneill 		/* no roundup necessary here */
   1163       1.35  jmcneill 		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
   1164        1.1     joerg 
   1165       1.35  jmcneill 		/* XXX may want to pass the protection frame to BPF */
   1166        1.1     joerg 
   1167       1.35  jmcneill 		/* mbuf is no longer needed */
   1168       1.35  jmcneill 		m_freem(mprot);
   1169        1.1     joerg 
   1170  1.48.10.1     skrll 		usbd_setup_xfer(data->xfer, data, data->buf,
   1171  1.48.10.1     skrll 		    xferlen, USBD_FORCE_SHORT_XFER,
   1172       1.35  jmcneill 		    RUM_TX_TIMEOUT, rum_txeof);
   1173       1.35  jmcneill 		error = usbd_transfer(data->xfer);
   1174       1.35  jmcneill 		if (error != USBD_NORMAL_COMPLETION &&
   1175       1.35  jmcneill 		    error != USBD_IN_PROGRESS) {
   1176        1.1     joerg 			m_freem(m0);
   1177       1.35  jmcneill 			return error;
   1178        1.1     joerg 		}
   1179        1.1     joerg 
   1180       1.35  jmcneill 		sc->tx_queued++;
   1181       1.35  jmcneill 		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
   1182       1.35  jmcneill 
   1183       1.35  jmcneill 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
   1184        1.1     joerg 	}
   1185        1.1     joerg 
   1186       1.35  jmcneill 	data = &sc->tx_data[sc->tx_cur];
   1187        1.1     joerg 	desc = (struct rum_tx_desc *)data->buf;
   1188        1.1     joerg 
   1189        1.1     joerg 	data->ni = ni;
   1190        1.1     joerg 
   1191        1.1     joerg 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1192       1.18  kiyohara 		flags |= RT2573_TX_NEED_ACK;
   1193        1.1     joerg 
   1194        1.1     joerg 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
   1195        1.1     joerg 		    ic->ic_flags) + sc->sifs;
   1196        1.1     joerg 		*(uint16_t *)wh->i_dur = htole16(dur);
   1197       1.35  jmcneill 
   1198       1.35  jmcneill 		/* tell hardware to set timestamp in probe responses */
   1199       1.35  jmcneill 		if ((wh->i_fc[0] &
   1200       1.35  jmcneill 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1201       1.35  jmcneill 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1202       1.35  jmcneill 			flags |= RT2573_TX_TIMESTAMP;
   1203        1.1     joerg 	}
   1204        1.1     joerg 
   1205        1.1     joerg 	if (sc->sc_drvbpf != NULL) {
   1206        1.1     joerg 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
   1207        1.1     joerg 
   1208        1.1     joerg 		tap->wt_flags = 0;
   1209        1.1     joerg 		tap->wt_rate = rate;
   1210        1.1     joerg 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1211        1.1     joerg 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1212        1.1     joerg 		tap->wt_antenna = sc->tx_ant;
   1213        1.1     joerg 
   1214       1.32     joerg 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1215        1.1     joerg 	}
   1216        1.1     joerg 
   1217        1.1     joerg 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
   1218        1.1     joerg 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
   1219        1.1     joerg 
   1220        1.1     joerg 	/* align end on a 4-bytes boundary */
   1221        1.1     joerg 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
   1222        1.1     joerg 
   1223        1.1     joerg 	/*
   1224        1.1     joerg 	 * No space left in the last URB to store the extra 4 bytes, force
   1225        1.1     joerg 	 * sending of another URB.
   1226        1.1     joerg 	 */
   1227        1.1     joerg 	if ((xferlen % 64) == 0)
   1228        1.1     joerg 		xferlen += 4;
   1229        1.1     joerg 
   1230        1.8   mlelstv 	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
   1231        1.8   mlelstv 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
   1232        1.6       wiz 	    rate, xferlen));
   1233        1.1     joerg 
   1234       1.18  kiyohara 	/* mbuf is no longer needed */
   1235       1.18  kiyohara 	m_freem(m0);
   1236       1.18  kiyohara 
   1237  1.48.10.1     skrll 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
   1238  1.48.10.1     skrll 	    USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof);
   1239        1.1     joerg 	error = usbd_transfer(data->xfer);
   1240       1.18  kiyohara 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
   1241        1.1     joerg 		return error;
   1242        1.1     joerg 
   1243        1.1     joerg 	sc->tx_queued++;
   1244       1.35  jmcneill 	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
   1245        1.1     joerg 
   1246        1.1     joerg 	return 0;
   1247        1.1     joerg }
   1248        1.1     joerg 
   1249       1.35  jmcneill static void
   1250        1.1     joerg rum_start(struct ifnet *ifp)
   1251        1.1     joerg {
   1252        1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1253        1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1254        1.1     joerg 	struct ether_header *eh;
   1255        1.1     joerg 	struct ieee80211_node *ni;
   1256        1.1     joerg 	struct mbuf *m0;
   1257        1.1     joerg 
   1258       1.35  jmcneill 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1259       1.35  jmcneill 		return;
   1260       1.35  jmcneill 
   1261        1.1     joerg 	for (;;) {
   1262        1.1     joerg 		IF_POLL(&ic->ic_mgtq, m0);
   1263        1.1     joerg 		if (m0 != NULL) {
   1264       1.35  jmcneill 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
   1265        1.1     joerg 				ifp->if_flags |= IFF_OACTIVE;
   1266        1.1     joerg 				break;
   1267        1.1     joerg 			}
   1268        1.1     joerg 			IF_DEQUEUE(&ic->ic_mgtq, m0);
   1269        1.1     joerg 
   1270  1.48.10.1     skrll 			ni = M_GETCTX(m0, struct ieee80211_node *);
   1271  1.48.10.1     skrll 			M_CLEARCTX(m0);
   1272       1.32     joerg 			bpf_mtap3(ic->ic_rawbpf, m0);
   1273       1.35  jmcneill 			if (rum_tx_data(sc, m0, ni) != 0)
   1274        1.1     joerg 				break;
   1275        1.1     joerg 
   1276        1.1     joerg 		} else {
   1277        1.1     joerg 			if (ic->ic_state != IEEE80211_S_RUN)
   1278        1.1     joerg 				break;
   1279        1.1     joerg 			IFQ_POLL(&ifp->if_snd, m0);
   1280        1.1     joerg 			if (m0 == NULL)
   1281        1.1     joerg 				break;
   1282       1.35  jmcneill 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
   1283        1.1     joerg 				ifp->if_flags |= IFF_OACTIVE;
   1284        1.1     joerg 				break;
   1285        1.1     joerg 			}
   1286        1.1     joerg 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1287       1.37  pgoyette 			if (m0->m_len < (int)sizeof(struct ether_header) &&
   1288        1.1     joerg 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
   1289        1.1     joerg 				continue;
   1290        1.1     joerg 
   1291        1.1     joerg 			eh = mtod(m0, struct ether_header *);
   1292        1.1     joerg 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1293        1.1     joerg 			if (ni == NULL) {
   1294        1.1     joerg 				m_freem(m0);
   1295        1.1     joerg 				continue;
   1296        1.1     joerg 			}
   1297       1.32     joerg 			bpf_mtap(ifp, m0);
   1298        1.1     joerg 			m0 = ieee80211_encap(ic, m0, ni);
   1299        1.1     joerg 			if (m0 == NULL) {
   1300        1.1     joerg 				ieee80211_free_node(ni);
   1301        1.1     joerg 				continue;
   1302        1.1     joerg 			}
   1303       1.32     joerg 			bpf_mtap3(ic->ic_rawbpf, m0);
   1304        1.1     joerg 			if (rum_tx_data(sc, m0, ni) != 0) {
   1305        1.1     joerg 				ieee80211_free_node(ni);
   1306        1.1     joerg 				ifp->if_oerrors++;
   1307        1.1     joerg 				break;
   1308        1.1     joerg 			}
   1309        1.1     joerg 		}
   1310        1.1     joerg 
   1311        1.1     joerg 		sc->sc_tx_timer = 5;
   1312        1.1     joerg 		ifp->if_timer = 1;
   1313        1.1     joerg 	}
   1314        1.1     joerg }
   1315        1.1     joerg 
   1316       1.35  jmcneill static void
   1317        1.1     joerg rum_watchdog(struct ifnet *ifp)
   1318        1.1     joerg {
   1319        1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1320        1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1321        1.1     joerg 
   1322        1.1     joerg 	ifp->if_timer = 0;
   1323        1.1     joerg 
   1324        1.1     joerg 	if (sc->sc_tx_timer > 0) {
   1325        1.1     joerg 		if (--sc->sc_tx_timer == 0) {
   1326       1.33    dyoung 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
   1327        1.1     joerg 			/*rum_init(ifp); XXX needs a process context! */
   1328        1.1     joerg 			ifp->if_oerrors++;
   1329        1.1     joerg 			return;
   1330        1.1     joerg 		}
   1331        1.1     joerg 		ifp->if_timer = 1;
   1332        1.1     joerg 	}
   1333        1.1     joerg 
   1334        1.1     joerg 	ieee80211_watchdog(ic);
   1335        1.1     joerg }
   1336        1.1     joerg 
   1337       1.35  jmcneill static int
   1338        1.7  christos rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1339        1.1     joerg {
   1340       1.36  jmcneill #define IS_RUNNING(ifp) \
   1341       1.36  jmcneill 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
   1342       1.36  jmcneill 
   1343        1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1344        1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1345        1.1     joerg 	int s, error = 0;
   1346        1.1     joerg 
   1347        1.1     joerg 	s = splnet();
   1348        1.1     joerg 
   1349        1.1     joerg 	switch (cmd) {
   1350        1.1     joerg 	case SIOCSIFFLAGS:
   1351       1.24    dyoung 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1352       1.24    dyoung 			break;
   1353       1.24    dyoung 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   1354       1.24    dyoung 		case IFF_UP|IFF_RUNNING:
   1355       1.24    dyoung 			rum_update_promisc(sc);
   1356       1.24    dyoung 			break;
   1357       1.24    dyoung 		case IFF_UP:
   1358       1.24    dyoung 			rum_init(ifp);
   1359       1.24    dyoung 			break;
   1360       1.24    dyoung 		case IFF_RUNNING:
   1361       1.24    dyoung 			rum_stop(ifp, 1);
   1362       1.24    dyoung 			break;
   1363       1.24    dyoung 		case 0:
   1364       1.24    dyoung 			break;
   1365        1.1     joerg 		}
   1366        1.1     joerg 		break;
   1367        1.1     joerg 
   1368       1.36  jmcneill 	case SIOCADDMULTI:
   1369       1.36  jmcneill 	case SIOCDELMULTI:
   1370       1.36  jmcneill 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   1371       1.36  jmcneill 			error = 0;
   1372       1.36  jmcneill 		}
   1373       1.36  jmcneill 		break;
   1374       1.36  jmcneill 
   1375        1.1     joerg 	default:
   1376        1.1     joerg 		error = ieee80211_ioctl(ic, cmd, data);
   1377        1.1     joerg 	}
   1378        1.1     joerg 
   1379        1.1     joerg 	if (error == ENETRESET) {
   1380       1.36  jmcneill 		if (IS_RUNNING(ifp) &&
   1381       1.36  jmcneill 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   1382        1.1     joerg 			rum_init(ifp);
   1383        1.1     joerg 		error = 0;
   1384        1.1     joerg 	}
   1385        1.1     joerg 
   1386        1.1     joerg 	splx(s);
   1387        1.1     joerg 
   1388        1.1     joerg 	return error;
   1389       1.36  jmcneill #undef IS_RUNNING
   1390        1.1     joerg }
   1391        1.1     joerg 
   1392       1.35  jmcneill static void
   1393        1.1     joerg rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
   1394        1.1     joerg {
   1395        1.1     joerg 	usb_device_request_t req;
   1396        1.1     joerg 	usbd_status error;
   1397        1.1     joerg 
   1398        1.1     joerg 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
   1399        1.1     joerg 	req.bRequest = RT2573_READ_EEPROM;
   1400        1.1     joerg 	USETW(req.wValue, 0);
   1401        1.1     joerg 	USETW(req.wIndex, addr);
   1402        1.1     joerg 	USETW(req.wLength, len);
   1403        1.1     joerg 
   1404        1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, buf);
   1405        1.1     joerg 	if (error != 0) {
   1406        1.1     joerg 		printf("%s: could not read EEPROM: %s\n",
   1407       1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   1408        1.1     joerg 	}
   1409        1.1     joerg }
   1410        1.1     joerg 
   1411       1.35  jmcneill static uint32_t
   1412        1.1     joerg rum_read(struct rum_softc *sc, uint16_t reg)
   1413        1.1     joerg {
   1414        1.1     joerg 	uint32_t val;
   1415        1.1     joerg 
   1416  1.48.10.1     skrll 	rum_read_multi(sc, reg, &val, sizeof(val));
   1417        1.1     joerg 
   1418        1.1     joerg 	return le32toh(val);
   1419        1.1     joerg }
   1420        1.1     joerg 
   1421       1.35  jmcneill static void
   1422        1.1     joerg rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
   1423        1.1     joerg {
   1424        1.1     joerg 	usb_device_request_t req;
   1425        1.1     joerg 	usbd_status error;
   1426        1.1     joerg 
   1427        1.1     joerg 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
   1428        1.1     joerg 	req.bRequest = RT2573_READ_MULTI_MAC;
   1429        1.1     joerg 	USETW(req.wValue, 0);
   1430        1.1     joerg 	USETW(req.wIndex, reg);
   1431        1.1     joerg 	USETW(req.wLength, len);
   1432        1.1     joerg 
   1433        1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, buf);
   1434        1.1     joerg 	if (error != 0) {
   1435        1.1     joerg 		printf("%s: could not multi read MAC register: %s\n",
   1436       1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   1437        1.1     joerg 	}
   1438        1.1     joerg }
   1439        1.1     joerg 
   1440       1.35  jmcneill static void
   1441        1.1     joerg rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
   1442        1.1     joerg {
   1443        1.1     joerg 	uint32_t tmp = htole32(val);
   1444        1.1     joerg 
   1445  1.48.10.1     skrll 	rum_write_multi(sc, reg, &tmp, sizeof(tmp));
   1446        1.1     joerg }
   1447        1.1     joerg 
   1448       1.35  jmcneill static void
   1449        1.1     joerg rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
   1450        1.1     joerg {
   1451        1.1     joerg 	usb_device_request_t req;
   1452        1.1     joerg 	usbd_status error;
   1453       1.48     zafer 	int offset;
   1454        1.1     joerg 
   1455        1.1     joerg 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
   1456        1.1     joerg 	req.bRequest = RT2573_WRITE_MULTI_MAC;
   1457        1.1     joerg 	USETW(req.wValue, 0);
   1458        1.1     joerg 
   1459       1.48     zafer 	/* write at most 64 bytes at a time */
   1460       1.48     zafer 	for (offset = 0; offset < len; offset += 64) {
   1461       1.48     zafer 		USETW(req.wIndex, reg + offset);
   1462       1.48     zafer 		USETW(req.wLength, MIN(len - offset, 64));
   1463       1.48     zafer 
   1464       1.48     zafer 		error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
   1465       1.48     zafer 		if (error != 0) {
   1466       1.48     zafer 			printf("%s: could not multi write MAC register: %s\n",
   1467       1.48     zafer 			    device_xname(sc->sc_dev), usbd_errstr(error));
   1468       1.48     zafer 		}
   1469        1.1     joerg 	}
   1470        1.1     joerg }
   1471        1.1     joerg 
   1472       1.35  jmcneill static void
   1473        1.1     joerg rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
   1474        1.1     joerg {
   1475        1.1     joerg 	uint32_t tmp;
   1476        1.1     joerg 	int ntries;
   1477        1.1     joerg 
   1478        1.1     joerg 	for (ntries = 0; ntries < 5; ntries++) {
   1479        1.1     joerg 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
   1480        1.1     joerg 			break;
   1481        1.1     joerg 	}
   1482        1.1     joerg 	if (ntries == 5) {
   1483       1.33    dyoung 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
   1484        1.1     joerg 		return;
   1485        1.1     joerg 	}
   1486        1.1     joerg 
   1487        1.1     joerg 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
   1488        1.1     joerg 	rum_write(sc, RT2573_PHY_CSR3, tmp);
   1489        1.1     joerg }
   1490        1.1     joerg 
   1491       1.35  jmcneill static uint8_t
   1492        1.1     joerg rum_bbp_read(struct rum_softc *sc, uint8_t reg)
   1493        1.1     joerg {
   1494        1.1     joerg 	uint32_t val;
   1495        1.1     joerg 	int ntries;
   1496        1.1     joerg 
   1497        1.1     joerg 	for (ntries = 0; ntries < 5; ntries++) {
   1498        1.1     joerg 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
   1499        1.1     joerg 			break;
   1500        1.1     joerg 	}
   1501        1.1     joerg 	if (ntries == 5) {
   1502       1.33    dyoung 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
   1503        1.1     joerg 		return 0;
   1504        1.1     joerg 	}
   1505        1.1     joerg 
   1506        1.1     joerg 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
   1507        1.1     joerg 	rum_write(sc, RT2573_PHY_CSR3, val);
   1508        1.1     joerg 
   1509        1.1     joerg 	for (ntries = 0; ntries < 100; ntries++) {
   1510        1.1     joerg 		val = rum_read(sc, RT2573_PHY_CSR3);
   1511        1.1     joerg 		if (!(val & RT2573_BBP_BUSY))
   1512        1.1     joerg 			return val & 0xff;
   1513        1.1     joerg 		DELAY(1);
   1514        1.1     joerg 	}
   1515        1.1     joerg 
   1516       1.33    dyoung 	printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
   1517        1.1     joerg 	return 0;
   1518        1.1     joerg }
   1519        1.1     joerg 
   1520       1.35  jmcneill static void
   1521        1.1     joerg rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
   1522        1.1     joerg {
   1523        1.1     joerg 	uint32_t tmp;
   1524        1.1     joerg 	int ntries;
   1525        1.1     joerg 
   1526        1.1     joerg 	for (ntries = 0; ntries < 5; ntries++) {
   1527        1.1     joerg 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
   1528        1.1     joerg 			break;
   1529        1.1     joerg 	}
   1530        1.1     joerg 	if (ntries == 5) {
   1531       1.33    dyoung 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
   1532        1.1     joerg 		return;
   1533        1.1     joerg 	}
   1534        1.1     joerg 
   1535        1.1     joerg 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
   1536        1.1     joerg 	    (reg & 3);
   1537        1.1     joerg 	rum_write(sc, RT2573_PHY_CSR4, tmp);
   1538        1.1     joerg 
   1539        1.1     joerg 	/* remember last written value in sc */
   1540        1.1     joerg 	sc->rf_regs[reg] = val;
   1541        1.1     joerg 
   1542        1.1     joerg 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
   1543        1.1     joerg }
   1544        1.1     joerg 
   1545       1.35  jmcneill static void
   1546        1.1     joerg rum_select_antenna(struct rum_softc *sc)
   1547        1.1     joerg {
   1548        1.1     joerg 	uint8_t bbp4, bbp77;
   1549        1.1     joerg 	uint32_t tmp;
   1550        1.1     joerg 
   1551        1.1     joerg 	bbp4  = rum_bbp_read(sc, 4);
   1552        1.1     joerg 	bbp77 = rum_bbp_read(sc, 77);
   1553        1.1     joerg 
   1554        1.1     joerg 	/* TBD */
   1555        1.1     joerg 
   1556        1.1     joerg 	/* make sure Rx is disabled before switching antenna */
   1557        1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
   1558        1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
   1559        1.1     joerg 
   1560        1.1     joerg 	rum_bbp_write(sc,  4, bbp4);
   1561        1.1     joerg 	rum_bbp_write(sc, 77, bbp77);
   1562        1.1     joerg 
   1563        1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
   1564        1.1     joerg }
   1565        1.1     joerg 
   1566        1.1     joerg /*
   1567        1.1     joerg  * Enable multi-rate retries for frames sent at OFDM rates.
   1568        1.1     joerg  * In 802.11b/g mode, allow fallback to CCK rates.
   1569        1.1     joerg  */
   1570       1.35  jmcneill static void
   1571        1.1     joerg rum_enable_mrr(struct rum_softc *sc)
   1572        1.1     joerg {
   1573        1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1574        1.1     joerg 	uint32_t tmp;
   1575        1.1     joerg 
   1576        1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
   1577        1.1     joerg 
   1578        1.1     joerg 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
   1579        1.1     joerg 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
   1580        1.1     joerg 		tmp |= RT2573_MRR_CCK_FALLBACK;
   1581        1.1     joerg 	tmp |= RT2573_MRR_ENABLED;
   1582        1.1     joerg 
   1583        1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
   1584        1.1     joerg }
   1585        1.1     joerg 
   1586       1.35  jmcneill static void
   1587        1.1     joerg rum_set_txpreamble(struct rum_softc *sc)
   1588        1.1     joerg {
   1589        1.1     joerg 	uint32_t tmp;
   1590        1.1     joerg 
   1591        1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
   1592        1.1     joerg 
   1593        1.1     joerg 	tmp &= ~RT2573_SHORT_PREAMBLE;
   1594        1.1     joerg 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
   1595        1.1     joerg 		tmp |= RT2573_SHORT_PREAMBLE;
   1596        1.1     joerg 
   1597        1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
   1598        1.1     joerg }
   1599        1.1     joerg 
   1600       1.35  jmcneill static void
   1601        1.1     joerg rum_set_basicrates(struct rum_softc *sc)
   1602        1.1     joerg {
   1603        1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1604        1.1     joerg 
   1605        1.1     joerg 	/* update basic rate set */
   1606        1.1     joerg 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
   1607        1.1     joerg 		/* 11b basic rates: 1, 2Mbps */
   1608        1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
   1609       1.18  kiyohara 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
   1610        1.1     joerg 		/* 11a basic rates: 6, 12, 24Mbps */
   1611        1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
   1612        1.1     joerg 	} else {
   1613       1.18  kiyohara 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
   1614       1.18  kiyohara 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
   1615        1.1     joerg 	}
   1616        1.1     joerg }
   1617        1.1     joerg 
   1618        1.1     joerg /*
   1619        1.1     joerg  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
   1620        1.1     joerg  * driver.
   1621        1.1     joerg  */
   1622       1.35  jmcneill static void
   1623        1.1     joerg rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
   1624        1.1     joerg {
   1625        1.1     joerg 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
   1626        1.1     joerg 	uint32_t tmp;
   1627        1.1     joerg 
   1628        1.1     joerg 	/* update all BBP registers that depend on the band */
   1629        1.1     joerg 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
   1630        1.1     joerg 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
   1631        1.1     joerg 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   1632        1.1     joerg 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
   1633        1.1     joerg 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
   1634        1.1     joerg 	}
   1635        1.1     joerg 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
   1636        1.1     joerg 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
   1637        1.1     joerg 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
   1638        1.1     joerg 	}
   1639        1.1     joerg 
   1640        1.1     joerg 	sc->bbp17 = bbp17;
   1641        1.1     joerg 	rum_bbp_write(sc,  17, bbp17);
   1642        1.1     joerg 	rum_bbp_write(sc,  96, bbp96);
   1643        1.1     joerg 	rum_bbp_write(sc, 104, bbp104);
   1644        1.1     joerg 
   1645        1.1     joerg 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
   1646        1.1     joerg 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
   1647        1.1     joerg 		rum_bbp_write(sc, 75, 0x80);
   1648        1.1     joerg 		rum_bbp_write(sc, 86, 0x80);
   1649        1.1     joerg 		rum_bbp_write(sc, 88, 0x80);
   1650        1.1     joerg 	}
   1651        1.1     joerg 
   1652        1.1     joerg 	rum_bbp_write(sc, 35, bbp35);
   1653        1.1     joerg 	rum_bbp_write(sc, 97, bbp97);
   1654        1.1     joerg 	rum_bbp_write(sc, 98, bbp98);
   1655        1.1     joerg 
   1656        1.1     joerg 	tmp = rum_read(sc, RT2573_PHY_CSR0);
   1657        1.1     joerg 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
   1658        1.1     joerg 	if (IEEE80211_IS_CHAN_2GHZ(c))
   1659        1.1     joerg 		tmp |= RT2573_PA_PE_2GHZ;
   1660        1.1     joerg 	else
   1661        1.1     joerg 		tmp |= RT2573_PA_PE_5GHZ;
   1662        1.1     joerg 	rum_write(sc, RT2573_PHY_CSR0, tmp);
   1663        1.1     joerg 
   1664        1.1     joerg 	/* 802.11a uses a 16 microseconds short interframe space */
   1665        1.1     joerg 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
   1666        1.1     joerg }
   1667        1.1     joerg 
   1668       1.35  jmcneill static void
   1669        1.1     joerg rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
   1670        1.1     joerg {
   1671        1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1672        1.1     joerg 	const struct rfprog *rfprog;
   1673        1.1     joerg 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
   1674        1.1     joerg 	int8_t power;
   1675        1.1     joerg 	u_int i, chan;
   1676        1.1     joerg 
   1677        1.1     joerg 	chan = ieee80211_chan2ieee(ic, c);
   1678        1.1     joerg 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
   1679        1.1     joerg 		return;
   1680        1.1     joerg 
   1681        1.1     joerg 	/* select the appropriate RF settings based on what EEPROM says */
   1682        1.1     joerg 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
   1683        1.1     joerg 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
   1684        1.1     joerg 
   1685        1.1     joerg 	/* find the settings for this channel (we know it exists) */
   1686        1.1     joerg 	for (i = 0; rfprog[i].chan != chan; i++);
   1687        1.1     joerg 
   1688        1.1     joerg 	power = sc->txpow[i];
   1689        1.1     joerg 	if (power < 0) {
   1690        1.1     joerg 		bbp94 += power;
   1691        1.1     joerg 		power = 0;
   1692        1.1     joerg 	} else if (power > 31) {
   1693        1.1     joerg 		bbp94 += power - 31;
   1694        1.1     joerg 		power = 31;
   1695        1.1     joerg 	}
   1696        1.1     joerg 
   1697        1.1     joerg 	/*
   1698        1.1     joerg 	 * If we are switching from the 2GHz band to the 5GHz band or
   1699        1.1     joerg 	 * vice-versa, BBP registers need to be reprogrammed.
   1700        1.1     joerg 	 */
   1701        1.1     joerg 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
   1702        1.1     joerg 		rum_select_band(sc, c);
   1703        1.1     joerg 		rum_select_antenna(sc);
   1704        1.1     joerg 	}
   1705        1.1     joerg 	ic->ic_curchan = c;
   1706        1.1     joerg 
   1707        1.1     joerg 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
   1708        1.1     joerg 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
   1709        1.1     joerg 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
   1710        1.1     joerg 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
   1711        1.1     joerg 
   1712        1.1     joerg 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
   1713        1.1     joerg 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
   1714        1.1     joerg 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
   1715        1.1     joerg 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
   1716        1.1     joerg 
   1717        1.1     joerg 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
   1718        1.1     joerg 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
   1719        1.1     joerg 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
   1720        1.1     joerg 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
   1721        1.1     joerg 
   1722        1.1     joerg 	DELAY(10);
   1723        1.1     joerg 
   1724        1.1     joerg 	/* enable smart mode for MIMO-capable RFs */
   1725        1.1     joerg 	bbp3 = rum_bbp_read(sc, 3);
   1726        1.1     joerg 
   1727        1.1     joerg 	bbp3 &= ~RT2573_SMART_MODE;
   1728        1.1     joerg 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
   1729        1.1     joerg 		bbp3 |= RT2573_SMART_MODE;
   1730        1.1     joerg 
   1731        1.1     joerg 	rum_bbp_write(sc, 3, bbp3);
   1732        1.1     joerg 
   1733        1.1     joerg 	if (bbp94 != RT2573_BBPR94_DEFAULT)
   1734        1.1     joerg 		rum_bbp_write(sc, 94, bbp94);
   1735        1.1     joerg }
   1736        1.1     joerg 
   1737        1.1     joerg /*
   1738        1.1     joerg  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
   1739        1.1     joerg  * and HostAP operating modes.
   1740        1.1     joerg  */
   1741       1.35  jmcneill static void
   1742        1.1     joerg rum_enable_tsf_sync(struct rum_softc *sc)
   1743        1.1     joerg {
   1744        1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1745        1.1     joerg 	uint32_t tmp;
   1746        1.1     joerg 
   1747        1.1     joerg 	if (ic->ic_opmode != IEEE80211_M_STA) {
   1748        1.1     joerg 		/*
   1749        1.1     joerg 		 * Change default 16ms TBTT adjustment to 8ms.
   1750        1.1     joerg 		 * Must be done before enabling beacon generation.
   1751        1.1     joerg 		 */
   1752        1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
   1753        1.1     joerg 	}
   1754        1.1     joerg 
   1755        1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
   1756        1.1     joerg 
   1757        1.1     joerg 	/* set beacon interval (in 1/16ms unit) */
   1758        1.1     joerg 	tmp |= ic->ic_bss->ni_intval * 16;
   1759        1.1     joerg 
   1760        1.1     joerg 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
   1761        1.1     joerg 	if (ic->ic_opmode == IEEE80211_M_STA)
   1762        1.1     joerg 		tmp |= RT2573_TSF_MODE(1);
   1763        1.1     joerg 	else
   1764        1.1     joerg 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
   1765        1.1     joerg 
   1766        1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
   1767        1.1     joerg }
   1768        1.1     joerg 
   1769       1.35  jmcneill static void
   1770        1.1     joerg rum_update_slot(struct rum_softc *sc)
   1771        1.1     joerg {
   1772        1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1773        1.1     joerg 	uint8_t slottime;
   1774        1.1     joerg 	uint32_t tmp;
   1775        1.1     joerg 
   1776        1.1     joerg 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
   1777        1.1     joerg 
   1778        1.1     joerg 	tmp = rum_read(sc, RT2573_MAC_CSR9);
   1779        1.1     joerg 	tmp = (tmp & ~0xff) | slottime;
   1780        1.1     joerg 	rum_write(sc, RT2573_MAC_CSR9, tmp);
   1781        1.1     joerg 
   1782        1.1     joerg 	DPRINTF(("setting slot time to %uus\n", slottime));
   1783        1.1     joerg }
   1784        1.1     joerg 
   1785       1.35  jmcneill static void
   1786        1.1     joerg rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
   1787        1.1     joerg {
   1788        1.1     joerg 	uint32_t tmp;
   1789        1.1     joerg 
   1790        1.1     joerg 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
   1791        1.1     joerg 	rum_write(sc, RT2573_MAC_CSR4, tmp);
   1792        1.1     joerg 
   1793        1.1     joerg 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
   1794        1.1     joerg 	rum_write(sc, RT2573_MAC_CSR5, tmp);
   1795        1.1     joerg }
   1796        1.1     joerg 
   1797       1.35  jmcneill static void
   1798        1.1     joerg rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
   1799        1.1     joerg {
   1800        1.1     joerg 	uint32_t tmp;
   1801        1.1     joerg 
   1802        1.1     joerg 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
   1803        1.1     joerg 	rum_write(sc, RT2573_MAC_CSR2, tmp);
   1804        1.1     joerg 
   1805        1.1     joerg 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
   1806        1.1     joerg 	rum_write(sc, RT2573_MAC_CSR3, tmp);
   1807        1.1     joerg }
   1808        1.1     joerg 
   1809       1.35  jmcneill static void
   1810        1.1     joerg rum_update_promisc(struct rum_softc *sc)
   1811        1.1     joerg {
   1812        1.1     joerg 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1813        1.1     joerg 	uint32_t tmp;
   1814        1.1     joerg 
   1815        1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
   1816        1.1     joerg 
   1817        1.1     joerg 	tmp &= ~RT2573_DROP_NOT_TO_ME;
   1818        1.1     joerg 	if (!(ifp->if_flags & IFF_PROMISC))
   1819        1.1     joerg 		tmp |= RT2573_DROP_NOT_TO_ME;
   1820        1.1     joerg 
   1821        1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
   1822        1.1     joerg 
   1823        1.1     joerg 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
   1824        1.1     joerg 	    "entering" : "leaving"));
   1825        1.1     joerg }
   1826        1.1     joerg 
   1827       1.35  jmcneill static const char *
   1828        1.1     joerg rum_get_rf(int rev)
   1829        1.1     joerg {
   1830        1.1     joerg 	switch (rev) {
   1831        1.1     joerg 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
   1832        1.1     joerg 	case RT2573_RF_2528:	return "RT2528";
   1833        1.1     joerg 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
   1834        1.1     joerg 	case RT2573_RF_5226:	return "RT5226";
   1835        1.1     joerg 	default:		return "unknown";
   1836        1.1     joerg 	}
   1837        1.1     joerg }
   1838        1.1     joerg 
   1839       1.35  jmcneill static void
   1840        1.1     joerg rum_read_eeprom(struct rum_softc *sc)
   1841        1.1     joerg {
   1842        1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1843        1.1     joerg 	uint16_t val;
   1844        1.1     joerg #ifdef RUM_DEBUG
   1845        1.1     joerg 	int i;
   1846        1.1     joerg #endif
   1847        1.1     joerg 
   1848        1.1     joerg 	/* read MAC/BBP type */
   1849        1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
   1850        1.1     joerg 	sc->macbbp_rev = le16toh(val);
   1851        1.1     joerg 
   1852        1.1     joerg 	/* read MAC address */
   1853        1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
   1854        1.1     joerg 
   1855        1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
   1856        1.1     joerg 	val = le16toh(val);
   1857        1.1     joerg 	sc->rf_rev =   (val >> 11) & 0x1f;
   1858        1.1     joerg 	sc->hw_radio = (val >> 10) & 0x1;
   1859        1.1     joerg 	sc->rx_ant =   (val >> 4)  & 0x3;
   1860        1.1     joerg 	sc->tx_ant =   (val >> 2)  & 0x3;
   1861        1.1     joerg 	sc->nb_ant =   val & 0x3;
   1862        1.1     joerg 
   1863        1.1     joerg 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
   1864        1.1     joerg 
   1865        1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
   1866        1.1     joerg 	val = le16toh(val);
   1867        1.1     joerg 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
   1868        1.1     joerg 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
   1869        1.1     joerg 
   1870        1.1     joerg 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
   1871        1.1     joerg 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
   1872        1.1     joerg 
   1873        1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
   1874        1.1     joerg 	val = le16toh(val);
   1875        1.1     joerg 	if ((val & 0xff) != 0xff)
   1876        1.1     joerg 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
   1877        1.1     joerg 
   1878        1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
   1879        1.1     joerg 	val = le16toh(val);
   1880        1.1     joerg 	if ((val & 0xff) != 0xff)
   1881        1.1     joerg 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
   1882        1.1     joerg 
   1883        1.1     joerg 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
   1884        1.1     joerg 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
   1885        1.1     joerg 
   1886        1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
   1887        1.1     joerg 	val = le16toh(val);
   1888        1.1     joerg 	if ((val & 0xff) != 0xff)
   1889        1.1     joerg 		sc->rffreq = val & 0xff;
   1890        1.1     joerg 
   1891        1.1     joerg 	DPRINTF(("RF freq=%d\n", sc->rffreq));
   1892        1.1     joerg 
   1893        1.1     joerg 	/* read Tx power for all a/b/g channels */
   1894        1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
   1895        1.1     joerg 	/* XXX default Tx power for 802.11a channels */
   1896  1.48.10.1     skrll 	memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14);
   1897        1.1     joerg #ifdef RUM_DEBUG
   1898        1.1     joerg 	for (i = 0; i < 14; i++)
   1899        1.1     joerg 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
   1900        1.1     joerg #endif
   1901        1.1     joerg 
   1902        1.1     joerg 	/* read default values for BBP registers */
   1903        1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
   1904        1.1     joerg #ifdef RUM_DEBUG
   1905        1.1     joerg 	for (i = 0; i < 14; i++) {
   1906        1.1     joerg 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
   1907        1.1     joerg 			continue;
   1908        1.1     joerg 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
   1909        1.1     joerg 		    sc->bbp_prom[i].val));
   1910        1.1     joerg 	}
   1911        1.1     joerg #endif
   1912        1.1     joerg }
   1913        1.1     joerg 
   1914       1.35  jmcneill static int
   1915        1.1     joerg rum_bbp_init(struct rum_softc *sc)
   1916        1.1     joerg {
   1917       1.37  pgoyette 	unsigned int i, ntries;
   1918        1.1     joerg 	uint8_t val;
   1919        1.1     joerg 
   1920        1.1     joerg 	/* wait for BBP to be ready */
   1921        1.1     joerg 	for (ntries = 0; ntries < 100; ntries++) {
   1922        1.1     joerg 		val = rum_bbp_read(sc, 0);
   1923        1.1     joerg 		if (val != 0 && val != 0xff)
   1924        1.1     joerg 			break;
   1925        1.1     joerg 		DELAY(1000);
   1926        1.1     joerg 	}
   1927        1.1     joerg 	if (ntries == 100) {
   1928        1.1     joerg 		printf("%s: timeout waiting for BBP\n",
   1929       1.33    dyoung 		    device_xname(sc->sc_dev));
   1930        1.1     joerg 		return EIO;
   1931        1.1     joerg 	}
   1932        1.1     joerg 
   1933        1.1     joerg 	/* initialize BBP registers to default values */
   1934  1.48.10.1     skrll 	for (i = 0; i < __arraycount(rum_def_bbp); i++)
   1935        1.1     joerg 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
   1936        1.1     joerg 
   1937        1.1     joerg 	/* write vendor-specific BBP values (from EEPROM) */
   1938        1.1     joerg 	for (i = 0; i < 16; i++) {
   1939        1.1     joerg 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
   1940        1.1     joerg 			continue;
   1941        1.1     joerg 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
   1942        1.1     joerg 	}
   1943        1.1     joerg 
   1944        1.1     joerg 	return 0;
   1945        1.1     joerg }
   1946        1.1     joerg 
   1947       1.35  jmcneill static int
   1948        1.1     joerg rum_init(struct ifnet *ifp)
   1949        1.1     joerg {
   1950        1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1951        1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1952        1.1     joerg 	uint32_t tmp;
   1953        1.1     joerg 	usbd_status error = 0;
   1954       1.37  pgoyette 	unsigned int i, ntries;
   1955        1.1     joerg 
   1956        1.1     joerg 	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
   1957        1.1     joerg 		if (rum_attachhook(sc))
   1958        1.1     joerg 			goto fail;
   1959        1.1     joerg 	}
   1960        1.1     joerg 
   1961        1.1     joerg 	rum_stop(ifp, 0);
   1962        1.1     joerg 
   1963        1.1     joerg 	/* initialize MAC registers to default values */
   1964  1.48.10.1     skrll 	for (i = 0; i < __arraycount(rum_def_mac); i++)
   1965        1.1     joerg 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
   1966        1.1     joerg 
   1967        1.1     joerg 	/* set host ready */
   1968        1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 3);
   1969        1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 0);
   1970        1.1     joerg 
   1971        1.1     joerg 	/* wait for BBP/RF to wakeup */
   1972        1.1     joerg 	for (ntries = 0; ntries < 1000; ntries++) {
   1973        1.1     joerg 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
   1974        1.1     joerg 			break;
   1975        1.1     joerg 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
   1976        1.1     joerg 		DELAY(1000);
   1977        1.1     joerg 	}
   1978        1.1     joerg 	if (ntries == 1000) {
   1979        1.1     joerg 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
   1980       1.33    dyoung 		    device_xname(sc->sc_dev));
   1981        1.1     joerg 		goto fail;
   1982        1.1     joerg 	}
   1983        1.1     joerg 
   1984        1.1     joerg 	if ((error = rum_bbp_init(sc)) != 0)
   1985        1.1     joerg 		goto fail;
   1986        1.1     joerg 
   1987        1.1     joerg 	/* select default channel */
   1988        1.1     joerg 	rum_select_band(sc, ic->ic_curchan);
   1989        1.1     joerg 	rum_select_antenna(sc);
   1990        1.1     joerg 	rum_set_chan(sc, ic->ic_curchan);
   1991        1.1     joerg 
   1992        1.1     joerg 	/* clear STA registers */
   1993  1.48.10.1     skrll 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
   1994        1.1     joerg 
   1995       1.15    dyoung 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   1996        1.1     joerg 	rum_set_macaddr(sc, ic->ic_myaddr);
   1997        1.1     joerg 
   1998        1.1     joerg 	/* initialize ASIC */
   1999        1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 4);
   2000        1.1     joerg 
   2001        1.1     joerg 	/*
   2002        1.1     joerg 	 * Allocate xfer for AMRR statistics requests.
   2003        1.1     joerg 	 */
   2004  1.48.10.1     skrll 	struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
   2005  1.48.10.1     skrll 	error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0,
   2006  1.48.10.1     skrll 	    &sc->amrr_xfer);
   2007  1.48.10.1     skrll 	if (error) {
   2008        1.1     joerg 		printf("%s: could not allocate AMRR xfer\n",
   2009       1.33    dyoung 		    device_xname(sc->sc_dev));
   2010        1.1     joerg 		goto fail;
   2011        1.1     joerg 	}
   2012        1.1     joerg 
   2013        1.1     joerg 	/*
   2014        1.1     joerg 	 * Open Tx and Rx USB bulk pipes.
   2015        1.1     joerg 	 */
   2016        1.1     joerg 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
   2017        1.1     joerg 	    &sc->sc_tx_pipeh);
   2018        1.1     joerg 	if (error != 0) {
   2019        1.1     joerg 		printf("%s: could not open Tx pipe: %s\n",
   2020       1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   2021        1.1     joerg 		goto fail;
   2022        1.1     joerg 	}
   2023        1.1     joerg 
   2024        1.1     joerg 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
   2025        1.1     joerg 	    &sc->sc_rx_pipeh);
   2026        1.1     joerg 	if (error != 0) {
   2027        1.1     joerg 		printf("%s: could not open Rx pipe: %s\n",
   2028       1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   2029        1.1     joerg 		goto fail;
   2030        1.1     joerg 	}
   2031        1.1     joerg 
   2032        1.1     joerg 	/*
   2033        1.1     joerg 	 * Allocate Tx and Rx xfer queues.
   2034        1.1     joerg 	 */
   2035        1.1     joerg 	error = rum_alloc_tx_list(sc);
   2036        1.1     joerg 	if (error != 0) {
   2037        1.1     joerg 		printf("%s: could not allocate Tx list\n",
   2038       1.33    dyoung 		    device_xname(sc->sc_dev));
   2039        1.1     joerg 		goto fail;
   2040        1.1     joerg 	}
   2041        1.1     joerg 
   2042        1.1     joerg 	error = rum_alloc_rx_list(sc);
   2043        1.1     joerg 	if (error != 0) {
   2044        1.1     joerg 		printf("%s: could not allocate Rx list\n",
   2045       1.33    dyoung 		    device_xname(sc->sc_dev));
   2046        1.1     joerg 		goto fail;
   2047        1.1     joerg 	}
   2048        1.1     joerg 
   2049        1.1     joerg 	/*
   2050        1.1     joerg 	 * Start up the receive pipe.
   2051        1.1     joerg 	 */
   2052       1.18  kiyohara 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
   2053  1.48.10.1     skrll 		struct rum_rx_data *data;
   2054  1.48.10.1     skrll 
   2055        1.1     joerg 		data = &sc->rx_data[i];
   2056        1.1     joerg 
   2057  1.48.10.1     skrll 		usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
   2058  1.48.10.1     skrll 		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
   2059       1.18  kiyohara 		error = usbd_transfer(data->xfer);
   2060       1.18  kiyohara 		if (error != USBD_NORMAL_COMPLETION &&
   2061       1.18  kiyohara 		    error != USBD_IN_PROGRESS) {
   2062       1.18  kiyohara 			printf("%s: could not queue Rx transfer\n",
   2063       1.33    dyoung 			    device_xname(sc->sc_dev));
   2064       1.18  kiyohara 			goto fail;
   2065       1.18  kiyohara 		}
   2066        1.1     joerg 	}
   2067        1.1     joerg 
   2068        1.1     joerg 	/* update Rx filter */
   2069        1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
   2070        1.1     joerg 
   2071        1.1     joerg 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
   2072        1.1     joerg 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2073        1.1     joerg 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
   2074        1.1     joerg 		       RT2573_DROP_ACKCTS;
   2075        1.1     joerg 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
   2076        1.1     joerg 			tmp |= RT2573_DROP_TODS;
   2077        1.1     joerg 		if (!(ifp->if_flags & IFF_PROMISC))
   2078        1.1     joerg 			tmp |= RT2573_DROP_NOT_TO_ME;
   2079        1.1     joerg 	}
   2080        1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
   2081        1.1     joerg 
   2082        1.1     joerg 	ifp->if_flags &= ~IFF_OACTIVE;
   2083        1.1     joerg 	ifp->if_flags |= IFF_RUNNING;
   2084        1.1     joerg 
   2085        1.1     joerg 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   2086        1.1     joerg 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   2087        1.1     joerg 	else
   2088        1.1     joerg 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   2089        1.1     joerg 
   2090        1.1     joerg 	return 0;
   2091        1.1     joerg 
   2092        1.1     joerg fail:	rum_stop(ifp, 1);
   2093        1.1     joerg 	return error;
   2094        1.1     joerg }
   2095        1.1     joerg 
   2096       1.35  jmcneill static void
   2097        1.1     joerg rum_stop(struct ifnet *ifp, int disable)
   2098        1.1     joerg {
   2099        1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   2100        1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   2101        1.1     joerg 	uint32_t tmp;
   2102        1.1     joerg 
   2103        1.1     joerg 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
   2104        1.1     joerg 
   2105        1.1     joerg 	sc->sc_tx_timer = 0;
   2106        1.1     joerg 	ifp->if_timer = 0;
   2107        1.1     joerg 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2108        1.1     joerg 
   2109        1.1     joerg 	/* disable Rx */
   2110        1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
   2111        1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
   2112        1.1     joerg 
   2113        1.1     joerg 	/* reset ASIC */
   2114        1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 3);
   2115        1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 0);
   2116        1.1     joerg 
   2117       1.35  jmcneill 	if (sc->amrr_xfer != NULL) {
   2118  1.48.10.1     skrll 		usbd_destroy_xfer(sc->amrr_xfer);
   2119       1.35  jmcneill 		sc->amrr_xfer = NULL;
   2120       1.35  jmcneill 	}
   2121       1.35  jmcneill 
   2122        1.1     joerg 	if (sc->sc_rx_pipeh != NULL) {
   2123        1.1     joerg 		usbd_abort_pipe(sc->sc_rx_pipeh);
   2124        1.1     joerg 	}
   2125        1.1     joerg 
   2126        1.1     joerg 	if (sc->sc_tx_pipeh != NULL) {
   2127        1.1     joerg 		usbd_abort_pipe(sc->sc_tx_pipeh);
   2128        1.1     joerg 	}
   2129        1.1     joerg 
   2130        1.1     joerg 	rum_free_rx_list(sc);
   2131        1.1     joerg 	rum_free_tx_list(sc);
   2132  1.48.10.1     skrll 
   2133  1.48.10.1     skrll 	if (sc->sc_rx_pipeh != NULL) {
   2134  1.48.10.1     skrll 		usbd_close_pipe(sc->sc_rx_pipeh);
   2135  1.48.10.1     skrll 		sc->sc_rx_pipeh = NULL;
   2136  1.48.10.1     skrll 	}
   2137  1.48.10.1     skrll 
   2138  1.48.10.1     skrll 	if (sc->sc_tx_pipeh != NULL) {
   2139  1.48.10.1     skrll 		usbd_close_pipe(sc->sc_tx_pipeh);
   2140  1.48.10.1     skrll 		sc->sc_tx_pipeh = NULL;
   2141  1.48.10.1     skrll 	}
   2142        1.1     joerg }
   2143        1.1     joerg 
   2144       1.35  jmcneill static int
   2145        1.1     joerg rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
   2146        1.1     joerg {
   2147        1.1     joerg 	usb_device_request_t req;
   2148        1.1     joerg 	uint16_t reg = RT2573_MCU_CODE_BASE;
   2149        1.1     joerg 	usbd_status error;
   2150        1.1     joerg 
   2151        1.1     joerg 	/* copy firmware image into NIC */
   2152        1.1     joerg 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
   2153        1.1     joerg 		rum_write(sc, reg, UGETDW(ucode));
   2154        1.1     joerg 
   2155        1.1     joerg 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
   2156        1.1     joerg 	req.bRequest = RT2573_MCU_CNTL;
   2157        1.1     joerg 	USETW(req.wValue, RT2573_MCU_RUN);
   2158        1.1     joerg 	USETW(req.wIndex, 0);
   2159        1.1     joerg 	USETW(req.wLength, 0);
   2160        1.1     joerg 
   2161        1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, NULL);
   2162        1.1     joerg 	if (error != 0) {
   2163        1.1     joerg 		printf("%s: could not run firmware: %s\n",
   2164       1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   2165        1.1     joerg 	}
   2166        1.1     joerg 	return error;
   2167        1.1     joerg }
   2168        1.1     joerg 
   2169       1.35  jmcneill static int
   2170        1.1     joerg rum_prepare_beacon(struct rum_softc *sc)
   2171        1.1     joerg {
   2172        1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   2173        1.1     joerg 	struct rum_tx_desc desc;
   2174        1.1     joerg 	struct mbuf *m0;
   2175        1.1     joerg 	int rate;
   2176        1.1     joerg 
   2177        1.1     joerg 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
   2178        1.1     joerg 	if (m0 == NULL) {
   2179       1.21      cube 		aprint_error_dev(sc->sc_dev,
   2180       1.21      cube 		    "could not allocate beacon frame\n");
   2181        1.1     joerg 		return ENOBUFS;
   2182        1.1     joerg 	}
   2183        1.1     joerg 
   2184        1.1     joerg 	/* send beacons at the lowest available rate */
   2185        1.1     joerg 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
   2186        1.1     joerg 
   2187        1.1     joerg 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
   2188        1.1     joerg 	    m0->m_pkthdr.len, rate);
   2189        1.1     joerg 
   2190        1.1     joerg 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
   2191        1.1     joerg 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
   2192        1.1     joerg 
   2193        1.1     joerg 	/* copy beacon header and payload into NIC memory */
   2194        1.1     joerg 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
   2195        1.1     joerg 	    m0->m_pkthdr.len);
   2196        1.1     joerg 
   2197        1.1     joerg 	m_freem(m0);
   2198        1.1     joerg 
   2199        1.1     joerg 	return 0;
   2200        1.1     joerg }
   2201        1.1     joerg 
   2202       1.35  jmcneill static void
   2203       1.18  kiyohara rum_newassoc(struct ieee80211_node *ni, int isnew)
   2204       1.18  kiyohara {
   2205       1.18  kiyohara 	/* start with lowest Tx rate */
   2206       1.18  kiyohara 	ni->ni_txrate = 0;
   2207       1.18  kiyohara }
   2208       1.18  kiyohara 
   2209       1.35  jmcneill static void
   2210        1.1     joerg rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
   2211        1.1     joerg {
   2212        1.1     joerg 	int i;
   2213        1.1     joerg 
   2214        1.1     joerg 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
   2215  1.48.10.1     skrll 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
   2216        1.1     joerg 
   2217        1.1     joerg 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
   2218        1.1     joerg 
   2219        1.1     joerg 	/* set rate to some reasonable initial value */
   2220        1.1     joerg 	for (i = ni->ni_rates.rs_nrates - 1;
   2221        1.1     joerg 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
   2222        1.1     joerg 	     i--);
   2223        1.1     joerg 	ni->ni_txrate = i;
   2224        1.1     joerg 
   2225       1.33    dyoung 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
   2226        1.1     joerg }
   2227        1.1     joerg 
   2228       1.35  jmcneill static void
   2229        1.1     joerg rum_amrr_timeout(void *arg)
   2230        1.1     joerg {
   2231        1.1     joerg 	struct rum_softc *sc = arg;
   2232        1.1     joerg 	usb_device_request_t req;
   2233        1.1     joerg 
   2234        1.1     joerg 	/*
   2235        1.1     joerg 	 * Asynchronously read statistic registers (cleared by read).
   2236        1.1     joerg 	 */
   2237        1.1     joerg 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
   2238        1.1     joerg 	req.bRequest = RT2573_READ_MULTI_MAC;
   2239        1.1     joerg 	USETW(req.wValue, 0);
   2240        1.1     joerg 	USETW(req.wIndex, RT2573_STA_CSR0);
   2241  1.48.10.1     skrll 	USETW(req.wLength, sizeof(sc->sta));
   2242        1.1     joerg 
   2243        1.1     joerg 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
   2244  1.48.10.1     skrll 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
   2245        1.1     joerg 	    rum_amrr_update);
   2246        1.1     joerg 	(void)usbd_transfer(sc->amrr_xfer);
   2247        1.1     joerg }
   2248        1.1     joerg 
   2249       1.35  jmcneill static void
   2250  1.48.10.1     skrll rum_amrr_update(struct usbd_xfer *xfer, void *priv,
   2251        1.1     joerg     usbd_status status)
   2252        1.1     joerg {
   2253        1.1     joerg 	struct rum_softc *sc = (struct rum_softc *)priv;
   2254        1.1     joerg 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2255        1.1     joerg 
   2256        1.1     joerg 	if (status != USBD_NORMAL_COMPLETION) {
   2257        1.1     joerg 		printf("%s: could not retrieve Tx statistics - cancelling "
   2258       1.33    dyoung 		    "automatic rate control\n", device_xname(sc->sc_dev));
   2259        1.1     joerg 		return;
   2260        1.1     joerg 	}
   2261        1.1     joerg 
   2262        1.1     joerg 	/* count TX retry-fail as Tx errors */
   2263        1.1     joerg 	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
   2264        1.1     joerg 
   2265        1.1     joerg 	sc->amn.amn_retrycnt =
   2266        1.1     joerg 	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
   2267        1.1     joerg 	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
   2268        1.1     joerg 	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
   2269        1.1     joerg 
   2270        1.1     joerg 	sc->amn.amn_txcnt =
   2271        1.1     joerg 	    sc->amn.amn_retrycnt +
   2272        1.1     joerg 	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
   2273        1.1     joerg 
   2274        1.1     joerg 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
   2275        1.1     joerg 
   2276       1.33    dyoung 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
   2277        1.1     joerg }
   2278        1.1     joerg 
   2279       1.35  jmcneill static int
   2280       1.33    dyoung rum_activate(device_t self, enum devact act)
   2281        1.1     joerg {
   2282        1.1     joerg 	switch (act) {
   2283        1.1     joerg 	case DVACT_DEACTIVATE:
   2284        1.1     joerg 		/*if_deactivate(&sc->sc_ic.ic_if);*/
   2285       1.30    dyoung 		return 0;
   2286       1.30    dyoung 	default:
   2287       1.35  jmcneill 		return 0;
   2288        1.1     joerg 	}
   2289        1.1     joerg }
   2290       1.38  pgoyette 
   2291       1.42    nonaka MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf");
   2292       1.38  pgoyette 
   2293       1.38  pgoyette #ifdef _MODULE
   2294       1.38  pgoyette #include "ioconf.c"
   2295       1.38  pgoyette #endif
   2296       1.38  pgoyette 
   2297       1.38  pgoyette static int
   2298       1.38  pgoyette if_rum_modcmd(modcmd_t cmd, void *aux)
   2299       1.38  pgoyette {
   2300       1.38  pgoyette 	int error = 0;
   2301       1.38  pgoyette 
   2302       1.38  pgoyette 	switch (cmd) {
   2303       1.38  pgoyette 	case MODULE_CMD_INIT:
   2304       1.38  pgoyette #ifdef _MODULE
   2305       1.39  pgoyette 		error = config_init_component(cfdriver_ioconf_rum,
   2306       1.39  pgoyette 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
   2307       1.38  pgoyette #endif
   2308       1.38  pgoyette 		return error;
   2309       1.38  pgoyette 	case MODULE_CMD_FINI:
   2310       1.38  pgoyette #ifdef _MODULE
   2311       1.39  pgoyette 		error = config_fini_component(cfdriver_ioconf_rum,
   2312       1.39  pgoyette 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
   2313       1.38  pgoyette #endif
   2314       1.38  pgoyette 		return error;
   2315       1.38  pgoyette 	default:
   2316       1.38  pgoyette 		return ENOTTY;
   2317       1.38  pgoyette 	}
   2318       1.38  pgoyette }
   2319