Home | History | Annotate | Line # | Download | only in usb
if_rum.c revision 1.48.4.2
      1      1.19  jmcneill /*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
      2  1.48.4.2       snj /*	$NetBSD: if_rum.c,v 1.48.4.2 2018/02/19 19:33:06 snj Exp $	*/
      3       1.1     joerg 
      4       1.1     joerg /*-
      5      1.18  kiyohara  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini (at) free.fr>
      6       1.1     joerg  * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
      7       1.1     joerg  *
      8       1.1     joerg  * Permission to use, copy, modify, and distribute this software for any
      9       1.1     joerg  * purpose with or without fee is hereby granted, provided that the above
     10       1.1     joerg  * copyright notice and this permission notice appear in all copies.
     11       1.1     joerg  *
     12       1.1     joerg  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     13       1.1     joerg  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     14       1.1     joerg  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     15       1.1     joerg  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     16       1.1     joerg  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     17       1.1     joerg  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     18       1.1     joerg  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     19       1.1     joerg  */
     20       1.1     joerg 
     21       1.1     joerg /*-
     22       1.1     joerg  * Ralink Technology RT2501USB/RT2601USB chipset driver
     23      1.18  kiyohara  * http://www.ralinktech.com.tw/
     24       1.1     joerg  */
     25       1.1     joerg 
     26       1.2   xtraeme #include <sys/cdefs.h>
     27  1.48.4.2       snj __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.48.4.2 2018/02/19 19:33:06 snj Exp $");
     28  1.48.4.1       snj 
     29  1.48.4.1       snj #ifdef _KERNEL_OPT
     30  1.48.4.1       snj #include "opt_usb.h"
     31  1.48.4.1       snj #endif
     32       1.1     joerg 
     33       1.1     joerg #include <sys/param.h>
     34       1.1     joerg #include <sys/sockio.h>
     35       1.1     joerg #include <sys/sysctl.h>
     36       1.1     joerg #include <sys/mbuf.h>
     37       1.1     joerg #include <sys/kernel.h>
     38       1.1     joerg #include <sys/socket.h>
     39       1.1     joerg #include <sys/systm.h>
     40      1.38  pgoyette #include <sys/module.h>
     41       1.1     joerg #include <sys/conf.h>
     42       1.1     joerg #include <sys/device.h>
     43       1.1     joerg 
     44      1.16        ad #include <sys/bus.h>
     45       1.1     joerg #include <machine/endian.h>
     46      1.16        ad #include <sys/intr.h>
     47       1.1     joerg 
     48       1.1     joerg #include <net/bpf.h>
     49       1.1     joerg #include <net/if.h>
     50       1.1     joerg #include <net/if_arp.h>
     51       1.1     joerg #include <net/if_dl.h>
     52       1.1     joerg #include <net/if_ether.h>
     53       1.1     joerg #include <net/if_media.h>
     54       1.1     joerg #include <net/if_types.h>
     55       1.1     joerg 
     56       1.1     joerg #include <netinet/in.h>
     57       1.1     joerg #include <netinet/in_systm.h>
     58       1.1     joerg #include <netinet/in_var.h>
     59       1.1     joerg #include <netinet/ip.h>
     60       1.1     joerg 
     61       1.1     joerg #include <net80211/ieee80211_netbsd.h>
     62       1.1     joerg #include <net80211/ieee80211_var.h>
     63       1.1     joerg #include <net80211/ieee80211_amrr.h>
     64       1.1     joerg #include <net80211/ieee80211_radiotap.h>
     65       1.1     joerg 
     66       1.1     joerg #include <dev/firmload.h>
     67       1.1     joerg 
     68       1.1     joerg #include <dev/usb/usb.h>
     69       1.1     joerg #include <dev/usb/usbdi.h>
     70       1.1     joerg #include <dev/usb/usbdi_util.h>
     71       1.1     joerg #include <dev/usb/usbdevs.h>
     72       1.1     joerg 
     73       1.1     joerg #include <dev/usb/if_rumreg.h>
     74       1.1     joerg #include <dev/usb/if_rumvar.h>
     75       1.1     joerg 
     76       1.1     joerg #ifdef RUM_DEBUG
     77      1.33    dyoung #define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
     78      1.33    dyoung #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
     79      1.11   xtraeme int rum_debug = 1;
     80       1.1     joerg #else
     81       1.1     joerg #define DPRINTF(x)
     82       1.1     joerg #define DPRINTFN(n, x)
     83       1.1     joerg #endif
     84       1.1     joerg 
     85       1.1     joerg /* various supported device vendors/products */
     86       1.1     joerg static const struct usb_devno rum_devs[] = {
     87      1.11   xtraeme 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
     88      1.11   xtraeme 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
     89      1.11   xtraeme 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
     90      1.11   xtraeme 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
     91      1.18  kiyohara 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
     92      1.11   xtraeme 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
     93      1.10   xtraeme 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
     94      1.11   xtraeme 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
     95       1.1     joerg 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
     96       1.1     joerg 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
     97      1.43       chs 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050C },
     98      1.43       chs 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB200 },
     99       1.1     joerg 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
    100      1.11   xtraeme 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
    101       1.1     joerg 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
    102      1.43       chs 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_RT2573 },
    103      1.18  kiyohara 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
    104      1.23       jun 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
    105       1.1     joerg 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
    106       1.1     joerg 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
    107       1.1     joerg 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
    108       1.1     joerg 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
    109      1.40  christos 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA110 },
    110      1.29     pooka 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
    111      1.43       chs 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7318 },
    112      1.43       chs 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7618 },
    113       1.1     joerg 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
    114      1.11   xtraeme 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
    115       1.1     joerg 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
    116       1.1     joerg 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
    117      1.11   xtraeme 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
    118      1.11   xtraeme 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
    119       1.1     joerg 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
    120      1.11   xtraeme 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
    121       1.4      elad 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
    122      1.43       chs 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HG },
    123      1.27  tshiozak 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_WLIUCG },
    124       1.1     joerg 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
    125       1.1     joerg 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
    126       1.1     joerg 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
    127      1.11   xtraeme 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
    128      1.11   xtraeme 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
    129      1.11   xtraeme 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
    130       1.4      elad 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
    131       1.1     joerg 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
    132       1.1     joerg 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
    133       1.1     joerg 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
    134      1.22  uebayasi 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
    135       1.1     joerg 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
    136       1.1     joerg 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
    137       1.1     joerg 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
    138       1.1     joerg 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
    139      1.43       chs 	{ USB_VENDOR_SPARKLAN,		USB_PRODUCT_SPARKLAN_RT2573 },
    140      1.43       chs 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 },
    141      1.43       chs 	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_RT2573 }
    142       1.1     joerg };
    143       1.1     joerg 
    144      1.35  jmcneill static int		rum_attachhook(void *);
    145      1.35  jmcneill static int		rum_alloc_tx_list(struct rum_softc *);
    146      1.35  jmcneill static void		rum_free_tx_list(struct rum_softc *);
    147      1.35  jmcneill static int		rum_alloc_rx_list(struct rum_softc *);
    148      1.35  jmcneill static void		rum_free_rx_list(struct rum_softc *);
    149      1.35  jmcneill static int		rum_media_change(struct ifnet *);
    150      1.35  jmcneill static void		rum_next_scan(void *);
    151      1.35  jmcneill static void		rum_task(void *);
    152      1.35  jmcneill static int		rum_newstate(struct ieee80211com *,
    153       1.1     joerg 			    enum ieee80211_state, int);
    154  1.48.4.1       snj static void		rum_txeof(struct usbd_xfer *, void *,
    155       1.1     joerg 			    usbd_status);
    156  1.48.4.1       snj static void		rum_rxeof(struct usbd_xfer *, void *,
    157       1.1     joerg 			    usbd_status);
    158      1.35  jmcneill static uint8_t		rum_rxrate(const struct rum_rx_desc *);
    159      1.35  jmcneill static int		rum_ack_rate(struct ieee80211com *, int);
    160      1.35  jmcneill static uint16_t		rum_txtime(int, int, uint32_t);
    161      1.35  jmcneill static uint8_t		rum_plcp_signal(int);
    162      1.35  jmcneill static void		rum_setup_tx_desc(struct rum_softc *,
    163       1.1     joerg 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
    164       1.1     joerg 			    int);
    165      1.35  jmcneill static int		rum_tx_data(struct rum_softc *, struct mbuf *,
    166       1.1     joerg 			    struct ieee80211_node *);
    167      1.35  jmcneill static void		rum_start(struct ifnet *);
    168      1.35  jmcneill static void		rum_watchdog(struct ifnet *);
    169      1.35  jmcneill static int		rum_ioctl(struct ifnet *, u_long, void *);
    170      1.35  jmcneill static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
    171       1.1     joerg 			    int);
    172      1.35  jmcneill static uint32_t		rum_read(struct rum_softc *, uint16_t);
    173      1.35  jmcneill static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
    174       1.1     joerg 			    int);
    175      1.35  jmcneill static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
    176      1.35  jmcneill static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
    177       1.1     joerg 			    size_t);
    178      1.35  jmcneill static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
    179      1.35  jmcneill static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
    180      1.35  jmcneill static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
    181      1.35  jmcneill static void		rum_select_antenna(struct rum_softc *);
    182      1.35  jmcneill static void		rum_enable_mrr(struct rum_softc *);
    183      1.35  jmcneill static void		rum_set_txpreamble(struct rum_softc *);
    184      1.35  jmcneill static void		rum_set_basicrates(struct rum_softc *);
    185      1.35  jmcneill static void		rum_select_band(struct rum_softc *,
    186       1.1     joerg 			    struct ieee80211_channel *);
    187      1.35  jmcneill static void		rum_set_chan(struct rum_softc *,
    188       1.1     joerg 			    struct ieee80211_channel *);
    189      1.35  jmcneill static void		rum_enable_tsf_sync(struct rum_softc *);
    190      1.35  jmcneill static void		rum_update_slot(struct rum_softc *);
    191      1.35  jmcneill static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
    192      1.35  jmcneill static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
    193      1.35  jmcneill static void		rum_update_promisc(struct rum_softc *);
    194      1.35  jmcneill static const char	*rum_get_rf(int);
    195      1.35  jmcneill static void		rum_read_eeprom(struct rum_softc *);
    196      1.35  jmcneill static int		rum_bbp_init(struct rum_softc *);
    197      1.35  jmcneill static int		rum_init(struct ifnet *);
    198      1.35  jmcneill static void		rum_stop(struct ifnet *, int);
    199      1.35  jmcneill static int		rum_load_microcode(struct rum_softc *, const u_char *,
    200       1.1     joerg 			    size_t);
    201      1.35  jmcneill static int		rum_prepare_beacon(struct rum_softc *);
    202      1.35  jmcneill static void		rum_newassoc(struct ieee80211_node *, int);
    203      1.35  jmcneill static void		rum_amrr_start(struct rum_softc *,
    204       1.1     joerg 			    struct ieee80211_node *);
    205      1.35  jmcneill static void		rum_amrr_timeout(void *);
    206  1.48.4.1       snj static void		rum_amrr_update(struct usbd_xfer *, void *,
    207  1.48.4.1       snj 			    usbd_status);
    208       1.1     joerg 
    209       1.1     joerg /*
    210       1.1     joerg  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    211       1.1     joerg  */
    212       1.1     joerg static const struct ieee80211_rateset rum_rateset_11a =
    213       1.1     joerg 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    214       1.1     joerg 
    215       1.1     joerg static const struct ieee80211_rateset rum_rateset_11b =
    216       1.1     joerg 	{ 4, { 2, 4, 11, 22 } };
    217       1.1     joerg 
    218       1.1     joerg static const struct ieee80211_rateset rum_rateset_11g =
    219       1.1     joerg 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    220       1.1     joerg 
    221       1.1     joerg static const struct {
    222       1.1     joerg 	uint32_t	reg;
    223       1.1     joerg 	uint32_t	val;
    224       1.1     joerg } rum_def_mac[] = {
    225       1.1     joerg 	RT2573_DEF_MAC
    226       1.1     joerg };
    227       1.1     joerg 
    228       1.1     joerg static const struct {
    229       1.1     joerg 	uint8_t	reg;
    230       1.1     joerg 	uint8_t	val;
    231       1.1     joerg } rum_def_bbp[] = {
    232       1.1     joerg 	RT2573_DEF_BBP
    233       1.1     joerg };
    234       1.1     joerg 
    235       1.1     joerg static const struct rfprog {
    236       1.1     joerg 	uint8_t		chan;
    237       1.1     joerg 	uint32_t	r1, r2, r3, r4;
    238       1.1     joerg }  rum_rf5226[] = {
    239       1.1     joerg 	RT2573_RF5226
    240       1.1     joerg }, rum_rf5225[] = {
    241       1.1     joerg 	RT2573_RF5225
    242       1.1     joerg };
    243       1.1     joerg 
    244      1.35  jmcneill static int rum_match(device_t, cfdata_t, void *);
    245      1.35  jmcneill static void rum_attach(device_t, device_t, void *);
    246      1.35  jmcneill static int rum_detach(device_t, int);
    247      1.35  jmcneill static int rum_activate(device_t, enum devact);
    248      1.33    dyoung extern struct cfdriver rum_cd;
    249      1.33    dyoung CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
    250      1.33    dyoung     rum_detach, rum_activate);
    251       1.1     joerg 
    252      1.35  jmcneill static int
    253      1.33    dyoung rum_match(device_t parent, cfdata_t match, void *aux)
    254       1.1     joerg {
    255      1.33    dyoung 	struct usb_attach_arg *uaa = aux;
    256       1.1     joerg 
    257  1.48.4.1       snj 	return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
    258       1.1     joerg 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
    259       1.1     joerg }
    260       1.1     joerg 
    261      1.35  jmcneill static int
    262       1.1     joerg rum_attachhook(void *xsc)
    263       1.1     joerg {
    264       1.1     joerg 	struct rum_softc *sc = xsc;
    265       1.1     joerg 	firmware_handle_t fwh;
    266       1.1     joerg 	const char *name = "rum-rt2573";
    267       1.1     joerg 	u_char *ucode;
    268       1.1     joerg 	size_t size;
    269       1.1     joerg 	int error;
    270       1.1     joerg 
    271       1.1     joerg 	if ((error = firmware_open("rum", name, &fwh)) != 0) {
    272  1.48.4.1       snj 		printf("%s: failed firmware_open of file %s (error %d)\n",
    273      1.33    dyoung 		    device_xname(sc->sc_dev), name, error);
    274       1.1     joerg 		return error;
    275       1.1     joerg 	}
    276       1.1     joerg 	size = firmware_get_size(fwh);
    277       1.1     joerg 	ucode = firmware_malloc(size);
    278       1.1     joerg 	if (ucode == NULL) {
    279       1.1     joerg 		printf("%s: failed to allocate firmware memory\n",
    280      1.33    dyoung 		    device_xname(sc->sc_dev));
    281       1.1     joerg 		firmware_close(fwh);
    282      1.25      yamt 		return ENOMEM;
    283       1.1     joerg 	}
    284       1.1     joerg 	error = firmware_read(fwh, 0, ucode, size);
    285       1.1     joerg 	firmware_close(fwh);
    286       1.1     joerg 	if (error != 0) {
    287       1.1     joerg 		printf("%s: failed to read firmware (error %d)\n",
    288      1.33    dyoung 		    device_xname(sc->sc_dev), error);
    289  1.48.4.1       snj 		firmware_free(ucode, size);
    290       1.1     joerg 		return error;
    291       1.1     joerg 	}
    292       1.1     joerg 
    293       1.1     joerg 	if (rum_load_microcode(sc, ucode, size) != 0) {
    294       1.1     joerg 		printf("%s: could not load 8051 microcode\n",
    295      1.33    dyoung 		    device_xname(sc->sc_dev));
    296  1.48.4.1       snj 		firmware_free(ucode, size);
    297       1.1     joerg 		return ENXIO;
    298       1.1     joerg 	}
    299       1.1     joerg 
    300  1.48.4.1       snj 	firmware_free(ucode, size);
    301       1.1     joerg 	sc->sc_flags |= RT2573_FWLOADED;
    302       1.1     joerg 
    303       1.1     joerg 	return 0;
    304       1.1     joerg }
    305       1.1     joerg 
    306      1.35  jmcneill static void
    307      1.33    dyoung rum_attach(device_t parent, device_t self, void *aux)
    308       1.1     joerg {
    309      1.33    dyoung 	struct rum_softc *sc = device_private(self);
    310      1.33    dyoung 	struct usb_attach_arg *uaa = aux;
    311       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    312       1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    313       1.1     joerg 	usb_interface_descriptor_t *id;
    314       1.1     joerg 	usb_endpoint_descriptor_t *ed;
    315       1.1     joerg 	usbd_status error;
    316       1.1     joerg 	char *devinfop;
    317       1.1     joerg 	int i, ntries;
    318       1.1     joerg 	uint32_t tmp;
    319       1.1     joerg 
    320      1.21      cube 	sc->sc_dev = self;
    321  1.48.4.1       snj 	sc->sc_udev = uaa->uaa_device;
    322       1.1     joerg 	sc->sc_flags = 0;
    323       1.1     joerg 
    324      1.28    plunky 	aprint_naive("\n");
    325      1.28    plunky 	aprint_normal("\n");
    326      1.28    plunky 
    327       1.1     joerg 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
    328      1.21      cube 	aprint_normal_dev(self, "%s\n", devinfop);
    329       1.1     joerg 	usbd_devinfo_free(devinfop);
    330       1.1     joerg 
    331      1.44     skrll 	error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
    332      1.44     skrll 	if (error != 0) {
    333      1.44     skrll 		aprint_error_dev(self, "failed to set configuration"
    334      1.44     skrll 		    ", err=%s\n", usbd_errstr(error));
    335      1.33    dyoung 		return;
    336       1.1     joerg 	}
    337       1.1     joerg 
    338       1.1     joerg 	/* get the first interface handle */
    339       1.1     joerg 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
    340       1.1     joerg 	    &sc->sc_iface);
    341       1.1     joerg 	if (error != 0) {
    342      1.21      cube 		aprint_error_dev(self, "could not get interface handle\n");
    343      1.33    dyoung 		return;
    344       1.1     joerg 	}
    345       1.1     joerg 
    346       1.1     joerg 	/*
    347       1.1     joerg 	 * Find endpoints.
    348       1.1     joerg 	 */
    349       1.1     joerg 	id = usbd_get_interface_descriptor(sc->sc_iface);
    350       1.1     joerg 
    351       1.1     joerg 	sc->sc_rx_no = sc->sc_tx_no = -1;
    352       1.1     joerg 	for (i = 0; i < id->bNumEndpoints; i++) {
    353       1.1     joerg 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
    354       1.1     joerg 		if (ed == NULL) {
    355      1.21      cube 			aprint_error_dev(self,
    356      1.21      cube 			    "no endpoint descriptor for iface %d\n", i);
    357      1.33    dyoung 			return;
    358       1.1     joerg 		}
    359       1.1     joerg 
    360       1.1     joerg 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
    361       1.1     joerg 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    362       1.1     joerg 			sc->sc_rx_no = ed->bEndpointAddress;
    363       1.1     joerg 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
    364       1.1     joerg 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    365       1.1     joerg 			sc->sc_tx_no = ed->bEndpointAddress;
    366       1.1     joerg 	}
    367       1.1     joerg 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
    368      1.21      cube 		aprint_error_dev(self, "missing endpoint\n");
    369      1.33    dyoung 		return;
    370       1.1     joerg 	}
    371       1.1     joerg 
    372      1.47  jmcneill 	usb_init_task(&sc->sc_task, rum_task, sc, 0);
    373      1.33    dyoung 	callout_init(&sc->sc_scan_ch, 0);
    374       1.1     joerg 
    375       1.1     joerg 	sc->amrr.amrr_min_success_threshold =  1;
    376       1.1     joerg 	sc->amrr.amrr_max_success_threshold = 10;
    377      1.33    dyoung 	callout_init(&sc->sc_amrr_ch, 0);
    378       1.1     joerg 
    379       1.1     joerg 	/* retrieve RT2573 rev. no */
    380       1.1     joerg 	for (ntries = 0; ntries < 1000; ntries++) {
    381       1.1     joerg 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
    382       1.1     joerg 			break;
    383       1.1     joerg 		DELAY(1000);
    384       1.1     joerg 	}
    385       1.1     joerg 	if (ntries == 1000) {
    386      1.21      cube 		aprint_error_dev(self, "timeout waiting for chip to settle\n");
    387      1.33    dyoung 		return;
    388       1.1     joerg 	}
    389       1.1     joerg 
    390       1.1     joerg 	/* retrieve MAC address and various other things from EEPROM */
    391       1.1     joerg 	rum_read_eeprom(sc);
    392       1.1     joerg 
    393      1.21      cube 	aprint_normal_dev(self,
    394      1.21      cube 	    "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
    395      1.21      cube 	    sc->macbbp_rev, tmp,
    396       1.1     joerg 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
    397       1.1     joerg 
    398       1.1     joerg 	ic->ic_ifp = ifp;
    399       1.1     joerg 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    400       1.1     joerg 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    401       1.1     joerg 	ic->ic_state = IEEE80211_S_INIT;
    402       1.1     joerg 
    403       1.1     joerg 	/* set device capabilities */
    404       1.1     joerg 	ic->ic_caps =
    405       1.1     joerg 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
    406       1.1     joerg 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    407       1.1     joerg 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
    408       1.1     joerg 	    IEEE80211_C_TXPMGT |	/* tx power management */
    409       1.1     joerg 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    410       1.1     joerg 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    411       1.1     joerg 	    IEEE80211_C_WPA;		/* 802.11i */
    412       1.1     joerg 
    413       1.1     joerg 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
    414       1.1     joerg 		/* set supported .11a rates */
    415       1.1     joerg 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
    416       1.1     joerg 
    417       1.1     joerg 		/* set supported .11a channels */
    418       1.1     joerg 		for (i = 34; i <= 46; i += 4) {
    419       1.1     joerg 			ic->ic_channels[i].ic_freq =
    420       1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    421       1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    422       1.1     joerg 		}
    423       1.1     joerg 		for (i = 36; i <= 64; i += 4) {
    424       1.1     joerg 			ic->ic_channels[i].ic_freq =
    425       1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    426       1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    427       1.1     joerg 		}
    428       1.1     joerg 		for (i = 100; i <= 140; i += 4) {
    429       1.1     joerg 			ic->ic_channels[i].ic_freq =
    430       1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    431       1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    432       1.1     joerg 		}
    433       1.1     joerg 		for (i = 149; i <= 165; i += 4) {
    434       1.1     joerg 			ic->ic_channels[i].ic_freq =
    435       1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    436       1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    437       1.1     joerg 		}
    438       1.1     joerg 	}
    439       1.1     joerg 
    440       1.1     joerg 	/* set supported .11b and .11g rates */
    441       1.1     joerg 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
    442       1.1     joerg 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
    443       1.1     joerg 
    444       1.1     joerg 	/* set supported .11b and .11g channels (1 through 14) */
    445       1.1     joerg 	for (i = 1; i <= 14; i++) {
    446       1.1     joerg 		ic->ic_channels[i].ic_freq =
    447       1.1     joerg 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    448       1.1     joerg 		ic->ic_channels[i].ic_flags =
    449       1.1     joerg 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    450       1.1     joerg 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    451       1.1     joerg 	}
    452       1.1     joerg 
    453       1.1     joerg 	ifp->if_softc = sc;
    454       1.1     joerg 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    455       1.1     joerg 	ifp->if_init = rum_init;
    456       1.1     joerg 	ifp->if_ioctl = rum_ioctl;
    457       1.1     joerg 	ifp->if_start = rum_start;
    458       1.1     joerg 	ifp->if_watchdog = rum_watchdog;
    459       1.1     joerg 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
    460       1.1     joerg 	IFQ_SET_READY(&ifp->if_snd);
    461      1.33    dyoung 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    462       1.1     joerg 
    463       1.1     joerg 	if_attach(ifp);
    464       1.1     joerg 	ieee80211_ifattach(ic);
    465      1.18  kiyohara 	ic->ic_newassoc = rum_newassoc;
    466       1.1     joerg 
    467       1.1     joerg 	/* override state transition machine */
    468       1.1     joerg 	sc->sc_newstate = ic->ic_newstate;
    469       1.1     joerg 	ic->ic_newstate = rum_newstate;
    470       1.1     joerg 	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
    471       1.1     joerg 
    472      1.32     joerg 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    473  1.48.4.1       snj 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    474      1.31     pooka 	    &sc->sc_drvbpf);
    475       1.1     joerg 
    476  1.48.4.1       snj 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
    477       1.1     joerg 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    478       1.1     joerg 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
    479       1.1     joerg 
    480  1.48.4.1       snj 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
    481       1.1     joerg 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    482       1.1     joerg 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
    483       1.1     joerg 
    484       1.1     joerg 	ieee80211_announce(ic);
    485       1.1     joerg 
    486  1.48.4.1       snj 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
    487  1.48.4.1       snj 
    488  1.48.4.1       snj 	if (!pmf_device_register(self, NULL, NULL))
    489  1.48.4.1       snj 		aprint_error_dev(self, "couldn't establish power handler\n");
    490       1.1     joerg 
    491      1.33    dyoung 	return;
    492       1.1     joerg }
    493       1.1     joerg 
    494      1.35  jmcneill static int
    495      1.33    dyoung rum_detach(device_t self, int flags)
    496       1.1     joerg {
    497      1.33    dyoung 	struct rum_softc *sc = device_private(self);
    498       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    499       1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    500       1.1     joerg 	int s;
    501       1.1     joerg 
    502      1.13  drochner 	if (!ifp->if_softc)
    503      1.13  drochner 		return 0;
    504      1.13  drochner 
    505  1.48.4.1       snj 	pmf_device_deregister(self);
    506  1.48.4.1       snj 
    507       1.1     joerg 	s = splusb();
    508       1.1     joerg 
    509       1.1     joerg 	rum_stop(ifp, 1);
    510       1.1     joerg 	usb_rem_task(sc->sc_udev, &sc->sc_task);
    511      1.33    dyoung 	callout_stop(&sc->sc_scan_ch);
    512      1.33    dyoung 	callout_stop(&sc->sc_amrr_ch);
    513       1.1     joerg 
    514      1.32     joerg 	bpf_detach(ifp);
    515       1.1     joerg 	ieee80211_ifdetach(ic);	/* free all nodes */
    516       1.1     joerg 	if_detach(ifp);
    517       1.1     joerg 
    518       1.1     joerg 	splx(s);
    519       1.1     joerg 
    520      1.33    dyoung 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
    521       1.1     joerg 
    522       1.1     joerg 	return 0;
    523       1.1     joerg }
    524       1.1     joerg 
    525      1.35  jmcneill static int
    526       1.1     joerg rum_alloc_tx_list(struct rum_softc *sc)
    527       1.1     joerg {
    528       1.1     joerg 	struct rum_tx_data *data;
    529       1.1     joerg 	int i, error;
    530       1.1     joerg 
    531      1.35  jmcneill 	sc->tx_cur = sc->tx_queued = 0;
    532       1.1     joerg 
    533      1.18  kiyohara 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
    534       1.1     joerg 		data = &sc->tx_data[i];
    535       1.1     joerg 
    536       1.1     joerg 		data->sc = sc;
    537       1.1     joerg 
    538  1.48.4.1       snj 		error = usbd_create_xfer(sc->sc_tx_pipeh,
    539  1.48.4.1       snj 		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN,
    540  1.48.4.1       snj 		    USBD_FORCE_SHORT_XFER, 0, &data->xfer);
    541  1.48.4.1       snj 		if (error) {
    542       1.1     joerg 			printf("%s: could not allocate tx xfer\n",
    543      1.33    dyoung 			    device_xname(sc->sc_dev));
    544       1.1     joerg 			goto fail;
    545       1.1     joerg 		}
    546  1.48.4.1       snj 		data->buf = usbd_get_buffer(data->xfer);
    547       1.1     joerg 
    548       1.1     joerg 		/* clean Tx descriptor */
    549      1.26    cegger 		memset(data->buf, 0, RT2573_TX_DESC_SIZE);
    550       1.1     joerg 	}
    551       1.1     joerg 
    552       1.1     joerg 	return 0;
    553       1.1     joerg 
    554       1.1     joerg fail:	rum_free_tx_list(sc);
    555       1.1     joerg 	return error;
    556       1.1     joerg }
    557       1.1     joerg 
    558      1.35  jmcneill static void
    559       1.1     joerg rum_free_tx_list(struct rum_softc *sc)
    560       1.1     joerg {
    561       1.1     joerg 	struct rum_tx_data *data;
    562       1.1     joerg 	int i;
    563       1.1     joerg 
    564      1.18  kiyohara 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
    565       1.1     joerg 		data = &sc->tx_data[i];
    566       1.1     joerg 
    567       1.1     joerg 		if (data->xfer != NULL) {
    568  1.48.4.1       snj 			usbd_destroy_xfer(data->xfer);
    569       1.1     joerg 			data->xfer = NULL;
    570       1.1     joerg 		}
    571       1.1     joerg 
    572       1.1     joerg 		if (data->ni != NULL) {
    573       1.1     joerg 			ieee80211_free_node(data->ni);
    574       1.1     joerg 			data->ni = NULL;
    575       1.1     joerg 		}
    576       1.1     joerg 	}
    577       1.1     joerg }
    578       1.1     joerg 
    579      1.35  jmcneill static int
    580       1.1     joerg rum_alloc_rx_list(struct rum_softc *sc)
    581       1.1     joerg {
    582       1.1     joerg 	struct rum_rx_data *data;
    583       1.1     joerg 	int i, error;
    584       1.1     joerg 
    585      1.18  kiyohara 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
    586       1.1     joerg 		data = &sc->rx_data[i];
    587       1.1     joerg 
    588       1.1     joerg 		data->sc = sc;
    589       1.1     joerg 
    590  1.48.4.1       snj 		error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
    591  1.48.4.2       snj 		    0, 0, &data->xfer);
    592  1.48.4.1       snj 		if (error) {
    593       1.1     joerg 			printf("%s: could not allocate rx xfer\n",
    594      1.33    dyoung 			    device_xname(sc->sc_dev));
    595       1.1     joerg 			goto fail;
    596       1.1     joerg 		}
    597       1.1     joerg 
    598       1.1     joerg 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    599       1.1     joerg 		if (data->m == NULL) {
    600       1.1     joerg 			printf("%s: could not allocate rx mbuf\n",
    601      1.33    dyoung 			    device_xname(sc->sc_dev));
    602       1.1     joerg 			error = ENOMEM;
    603       1.1     joerg 			goto fail;
    604       1.1     joerg 		}
    605       1.1     joerg 
    606       1.1     joerg 		MCLGET(data->m, M_DONTWAIT);
    607       1.1     joerg 		if (!(data->m->m_flags & M_EXT)) {
    608       1.1     joerg 			printf("%s: could not allocate rx mbuf cluster\n",
    609      1.33    dyoung 			    device_xname(sc->sc_dev));
    610       1.1     joerg 			error = ENOMEM;
    611       1.1     joerg 			goto fail;
    612       1.1     joerg 		}
    613       1.1     joerg 
    614       1.1     joerg 		data->buf = mtod(data->m, uint8_t *);
    615       1.1     joerg 	}
    616       1.1     joerg 
    617       1.1     joerg 	return 0;
    618       1.1     joerg 
    619      1.34  dholland fail:	rum_free_rx_list(sc);
    620       1.1     joerg 	return error;
    621       1.1     joerg }
    622       1.1     joerg 
    623      1.35  jmcneill static void
    624       1.1     joerg rum_free_rx_list(struct rum_softc *sc)
    625       1.1     joerg {
    626       1.1     joerg 	struct rum_rx_data *data;
    627       1.1     joerg 	int i;
    628       1.1     joerg 
    629      1.18  kiyohara 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
    630       1.1     joerg 		data = &sc->rx_data[i];
    631       1.1     joerg 
    632       1.1     joerg 		if (data->xfer != NULL) {
    633  1.48.4.1       snj 			usbd_destroy_xfer(data->xfer);
    634       1.1     joerg 			data->xfer = NULL;
    635       1.1     joerg 		}
    636       1.1     joerg 
    637       1.1     joerg 		if (data->m != NULL) {
    638       1.1     joerg 			m_freem(data->m);
    639       1.1     joerg 			data->m = NULL;
    640       1.1     joerg 		}
    641       1.1     joerg 	}
    642       1.1     joerg }
    643       1.1     joerg 
    644      1.35  jmcneill static int
    645       1.1     joerg rum_media_change(struct ifnet *ifp)
    646       1.1     joerg {
    647       1.1     joerg 	int error;
    648       1.1     joerg 
    649       1.1     joerg 	error = ieee80211_media_change(ifp);
    650       1.1     joerg 	if (error != ENETRESET)
    651       1.1     joerg 		return error;
    652       1.1     joerg 
    653       1.1     joerg 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    654       1.1     joerg 		rum_init(ifp);
    655       1.1     joerg 
    656       1.1     joerg 	return 0;
    657       1.1     joerg }
    658       1.1     joerg 
    659       1.1     joerg /*
    660       1.1     joerg  * This function is called periodically (every 200ms) during scanning to
    661       1.1     joerg  * switch from one channel to another.
    662       1.1     joerg  */
    663      1.35  jmcneill static void
    664       1.1     joerg rum_next_scan(void *arg)
    665       1.1     joerg {
    666       1.1     joerg 	struct rum_softc *sc = arg;
    667       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    668      1.35  jmcneill 	int s;
    669       1.1     joerg 
    670      1.35  jmcneill 	s = splnet();
    671       1.1     joerg 	if (ic->ic_state == IEEE80211_S_SCAN)
    672       1.1     joerg 		ieee80211_next_scan(ic);
    673      1.35  jmcneill 	splx(s);
    674       1.1     joerg }
    675       1.1     joerg 
    676      1.35  jmcneill static void
    677       1.1     joerg rum_task(void *arg)
    678       1.1     joerg {
    679       1.1     joerg 	struct rum_softc *sc = arg;
    680       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    681       1.1     joerg 	enum ieee80211_state ostate;
    682       1.1     joerg 	struct ieee80211_node *ni;
    683       1.1     joerg 	uint32_t tmp;
    684       1.1     joerg 
    685       1.1     joerg 	ostate = ic->ic_state;
    686       1.1     joerg 
    687       1.1     joerg 	switch (sc->sc_state) {
    688       1.1     joerg 	case IEEE80211_S_INIT:
    689       1.1     joerg 		if (ostate == IEEE80211_S_RUN) {
    690       1.1     joerg 			/* abort TSF synchronization */
    691       1.1     joerg 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
    692       1.1     joerg 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
    693       1.1     joerg 		}
    694       1.1     joerg 		break;
    695       1.1     joerg 
    696       1.1     joerg 	case IEEE80211_S_SCAN:
    697       1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    698      1.33    dyoung 		callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
    699       1.1     joerg 		break;
    700       1.1     joerg 
    701       1.1     joerg 	case IEEE80211_S_AUTH:
    702       1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    703       1.1     joerg 		break;
    704       1.1     joerg 
    705       1.1     joerg 	case IEEE80211_S_ASSOC:
    706       1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    707       1.1     joerg 		break;
    708       1.1     joerg 
    709       1.1     joerg 	case IEEE80211_S_RUN:
    710       1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    711       1.1     joerg 
    712       1.1     joerg 		ni = ic->ic_bss;
    713       1.1     joerg 
    714       1.1     joerg 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    715       1.1     joerg 			rum_update_slot(sc);
    716       1.1     joerg 			rum_enable_mrr(sc);
    717       1.1     joerg 			rum_set_txpreamble(sc);
    718       1.1     joerg 			rum_set_basicrates(sc);
    719       1.1     joerg 			rum_set_bssid(sc, ni->ni_bssid);
    720       1.1     joerg 		}
    721       1.1     joerg 
    722       1.1     joerg 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
    723       1.1     joerg 		    ic->ic_opmode == IEEE80211_M_IBSS)
    724       1.1     joerg 			rum_prepare_beacon(sc);
    725       1.1     joerg 
    726       1.1     joerg 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
    727       1.1     joerg 			rum_enable_tsf_sync(sc);
    728       1.1     joerg 
    729      1.18  kiyohara 		if (ic->ic_opmode == IEEE80211_M_STA) {
    730      1.18  kiyohara 			/* fake a join to init the tx rate */
    731      1.18  kiyohara 			rum_newassoc(ic->ic_bss, 1);
    732      1.18  kiyohara 
    733      1.18  kiyohara 			/* enable automatic rate adaptation in STA mode */
    734      1.18  kiyohara 			if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
    735      1.18  kiyohara 				rum_amrr_start(sc, ni);
    736      1.18  kiyohara 		}
    737       1.1     joerg 
    738       1.1     joerg 		break;
    739       1.1     joerg 	}
    740       1.1     joerg 
    741      1.35  jmcneill 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
    742       1.1     joerg }
    743       1.1     joerg 
    744      1.35  jmcneill static int
    745       1.1     joerg rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    746       1.1     joerg {
    747       1.1     joerg 	struct rum_softc *sc = ic->ic_ifp->if_softc;
    748       1.1     joerg 
    749       1.1     joerg 	usb_rem_task(sc->sc_udev, &sc->sc_task);
    750      1.33    dyoung 	callout_stop(&sc->sc_scan_ch);
    751      1.33    dyoung 	callout_stop(&sc->sc_amrr_ch);
    752       1.1     joerg 
    753       1.1     joerg 	/* do it in a process context */
    754       1.1     joerg 	sc->sc_state = nstate;
    755      1.35  jmcneill 	sc->sc_arg = arg;
    756       1.1     joerg 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
    757       1.1     joerg 
    758       1.1     joerg 	return 0;
    759       1.1     joerg }
    760       1.1     joerg 
    761       1.1     joerg /* quickly determine if a given rate is CCK or OFDM */
    762       1.1     joerg #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
    763       1.1     joerg 
    764       1.1     joerg #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
    765       1.1     joerg #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
    766       1.1     joerg 
    767      1.35  jmcneill static void
    768  1.48.4.1       snj rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
    769       1.1     joerg {
    770       1.1     joerg 	struct rum_tx_data *data = priv;
    771       1.1     joerg 	struct rum_softc *sc = data->sc;
    772       1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    773       1.1     joerg 	int s;
    774       1.1     joerg 
    775       1.1     joerg 	if (status != USBD_NORMAL_COMPLETION) {
    776       1.1     joerg 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
    777       1.1     joerg 			return;
    778       1.1     joerg 
    779       1.1     joerg 		printf("%s: could not transmit buffer: %s\n",
    780      1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(status));
    781       1.1     joerg 
    782       1.1     joerg 		if (status == USBD_STALLED)
    783       1.1     joerg 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
    784       1.1     joerg 
    785       1.1     joerg 		ifp->if_oerrors++;
    786       1.1     joerg 		return;
    787       1.1     joerg 	}
    788       1.1     joerg 
    789       1.1     joerg 	s = splnet();
    790       1.1     joerg 
    791       1.1     joerg 	ieee80211_free_node(data->ni);
    792       1.1     joerg 	data->ni = NULL;
    793       1.1     joerg 
    794       1.1     joerg 	sc->tx_queued--;
    795       1.1     joerg 	ifp->if_opackets++;
    796       1.1     joerg 
    797       1.1     joerg 	DPRINTFN(10, ("tx done\n"));
    798       1.1     joerg 
    799       1.1     joerg 	sc->sc_tx_timer = 0;
    800       1.1     joerg 	ifp->if_flags &= ~IFF_OACTIVE;
    801       1.1     joerg 	rum_start(ifp);
    802       1.1     joerg 
    803       1.1     joerg 	splx(s);
    804       1.1     joerg }
    805       1.1     joerg 
    806      1.35  jmcneill static void
    807  1.48.4.1       snj rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
    808       1.1     joerg {
    809       1.1     joerg 	struct rum_rx_data *data = priv;
    810       1.1     joerg 	struct rum_softc *sc = data->sc;
    811       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    812       1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    813       1.1     joerg 	struct rum_rx_desc *desc;
    814       1.1     joerg 	struct ieee80211_frame *wh;
    815       1.1     joerg 	struct ieee80211_node *ni;
    816       1.1     joerg 	struct mbuf *mnew, *m;
    817       1.1     joerg 	int s, len;
    818       1.1     joerg 
    819       1.1     joerg 	if (status != USBD_NORMAL_COMPLETION) {
    820       1.1     joerg 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
    821       1.1     joerg 			return;
    822       1.1     joerg 
    823       1.1     joerg 		if (status == USBD_STALLED)
    824       1.1     joerg 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
    825       1.1     joerg 		goto skip;
    826       1.1     joerg 	}
    827       1.1     joerg 
    828       1.1     joerg 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
    829       1.1     joerg 
    830      1.37  pgoyette 	if (len < (int)(RT2573_RX_DESC_SIZE +
    831      1.37  pgoyette 		        sizeof(struct ieee80211_frame_min))) {
    832      1.33    dyoung 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
    833       1.1     joerg 		    len));
    834       1.1     joerg 		ifp->if_ierrors++;
    835       1.1     joerg 		goto skip;
    836       1.1     joerg 	}
    837       1.1     joerg 
    838       1.1     joerg 	desc = (struct rum_rx_desc *)data->buf;
    839       1.1     joerg 
    840       1.1     joerg 	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
    841       1.1     joerg 		/*
    842       1.1     joerg 		 * This should not happen since we did not request to receive
    843       1.1     joerg 		 * those frames when we filled RT2573_TXRX_CSR0.
    844       1.1     joerg 		 */
    845       1.1     joerg 		DPRINTFN(5, ("CRC error\n"));
    846       1.1     joerg 		ifp->if_ierrors++;
    847       1.1     joerg 		goto skip;
    848       1.1     joerg 	}
    849       1.1     joerg 
    850       1.1     joerg 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
    851       1.1     joerg 	if (mnew == NULL) {
    852       1.1     joerg 		printf("%s: could not allocate rx mbuf\n",
    853      1.33    dyoung 		    device_xname(sc->sc_dev));
    854       1.1     joerg 		ifp->if_ierrors++;
    855       1.1     joerg 		goto skip;
    856       1.1     joerg 	}
    857       1.1     joerg 
    858       1.1     joerg 	MCLGET(mnew, M_DONTWAIT);
    859       1.1     joerg 	if (!(mnew->m_flags & M_EXT)) {
    860       1.1     joerg 		printf("%s: could not allocate rx mbuf cluster\n",
    861      1.33    dyoung 		    device_xname(sc->sc_dev));
    862       1.1     joerg 		m_freem(mnew);
    863       1.1     joerg 		ifp->if_ierrors++;
    864       1.1     joerg 		goto skip;
    865       1.1     joerg 	}
    866       1.1     joerg 
    867       1.1     joerg 	m = data->m;
    868       1.1     joerg 	data->m = mnew;
    869       1.1     joerg 	data->buf = mtod(data->m, uint8_t *);
    870       1.1     joerg 
    871       1.1     joerg 	/* finalize mbuf */
    872       1.1     joerg 	m->m_pkthdr.rcvif = ifp;
    873       1.7  christos 	m->m_data = (void *)(desc + 1);
    874       1.1     joerg 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
    875       1.1     joerg 
    876       1.1     joerg 	s = splnet();
    877       1.1     joerg 
    878       1.1     joerg 	if (sc->sc_drvbpf != NULL) {
    879       1.1     joerg 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
    880       1.1     joerg 
    881       1.1     joerg 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
    882       1.1     joerg 		tap->wr_rate = rum_rxrate(desc);
    883       1.1     joerg 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
    884       1.1     joerg 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
    885       1.1     joerg 		tap->wr_antenna = sc->rx_ant;
    886       1.1     joerg 		tap->wr_antsignal = desc->rssi;
    887       1.1     joerg 
    888      1.32     joerg 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
    889       1.1     joerg 	}
    890       1.1     joerg 
    891       1.1     joerg 	wh = mtod(m, struct ieee80211_frame *);
    892       1.1     joerg 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
    893       1.1     joerg 
    894       1.1     joerg 	/* send the frame to the 802.11 layer */
    895       1.1     joerg 	ieee80211_input(ic, m, ni, desc->rssi, 0);
    896       1.1     joerg 
    897       1.1     joerg 	/* node is no longer needed */
    898       1.1     joerg 	ieee80211_free_node(ni);
    899       1.1     joerg 
    900       1.1     joerg 	splx(s);
    901       1.1     joerg 
    902       1.1     joerg 	DPRINTFN(15, ("rx done\n"));
    903       1.1     joerg 
    904       1.1     joerg skip:	/* setup a new transfer */
    905  1.48.4.1       snj 	usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK,
    906  1.48.4.1       snj 	    USBD_NO_TIMEOUT, rum_rxeof);
    907       1.1     joerg 	usbd_transfer(xfer);
    908       1.1     joerg }
    909       1.1     joerg 
    910       1.1     joerg /*
    911       1.1     joerg  * This function is only used by the Rx radiotap code. It returns the rate at
    912       1.1     joerg  * which a given frame was received.
    913       1.1     joerg  */
    914      1.35  jmcneill static uint8_t
    915      1.18  kiyohara rum_rxrate(const struct rum_rx_desc *desc)
    916       1.1     joerg {
    917       1.1     joerg 	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
    918       1.1     joerg 		/* reverse function of rum_plcp_signal */
    919       1.1     joerg 		switch (desc->rate) {
    920       1.1     joerg 		case 0xb:	return 12;
    921       1.1     joerg 		case 0xf:	return 18;
    922       1.1     joerg 		case 0xa:	return 24;
    923       1.1     joerg 		case 0xe:	return 36;
    924       1.1     joerg 		case 0x9:	return 48;
    925       1.1     joerg 		case 0xd:	return 72;
    926       1.1     joerg 		case 0x8:	return 96;
    927       1.1     joerg 		case 0xc:	return 108;
    928       1.1     joerg 		}
    929       1.1     joerg 	} else {
    930       1.1     joerg 		if (desc->rate == 10)
    931       1.1     joerg 			return 2;
    932       1.1     joerg 		if (desc->rate == 20)
    933       1.1     joerg 			return 4;
    934       1.1     joerg 		if (desc->rate == 55)
    935       1.1     joerg 			return 11;
    936       1.1     joerg 		if (desc->rate == 110)
    937       1.1     joerg 			return 22;
    938       1.1     joerg 	}
    939       1.1     joerg 	return 2;	/* should not get there */
    940       1.1     joerg }
    941       1.1     joerg 
    942       1.1     joerg /*
    943       1.1     joerg  * Return the expected ack rate for a frame transmitted at rate `rate'.
    944       1.1     joerg  * XXX: this should depend on the destination node basic rate set.
    945       1.1     joerg  */
    946      1.35  jmcneill static int
    947       1.1     joerg rum_ack_rate(struct ieee80211com *ic, int rate)
    948       1.1     joerg {
    949       1.1     joerg 	switch (rate) {
    950       1.1     joerg 	/* CCK rates */
    951       1.1     joerg 	case 2:
    952       1.1     joerg 		return 2;
    953       1.1     joerg 	case 4:
    954       1.1     joerg 	case 11:
    955       1.1     joerg 	case 22:
    956       1.1     joerg 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
    957       1.1     joerg 
    958       1.1     joerg 	/* OFDM rates */
    959       1.1     joerg 	case 12:
    960       1.1     joerg 	case 18:
    961       1.1     joerg 		return 12;
    962       1.1     joerg 	case 24:
    963       1.1     joerg 	case 36:
    964       1.1     joerg 		return 24;
    965       1.1     joerg 	case 48:
    966       1.1     joerg 	case 72:
    967       1.1     joerg 	case 96:
    968       1.1     joerg 	case 108:
    969       1.1     joerg 		return 48;
    970       1.1     joerg 	}
    971       1.1     joerg 
    972       1.1     joerg 	/* default to 1Mbps */
    973       1.1     joerg 	return 2;
    974       1.1     joerg }
    975       1.1     joerg 
    976       1.1     joerg /*
    977       1.1     joerg  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
    978       1.1     joerg  * The function automatically determines the operating mode depending on the
    979       1.1     joerg  * given rate. `flags' indicates whether short preamble is in use or not.
    980       1.1     joerg  */
    981      1.35  jmcneill static uint16_t
    982       1.1     joerg rum_txtime(int len, int rate, uint32_t flags)
    983       1.1     joerg {
    984       1.1     joerg 	uint16_t txtime;
    985       1.1     joerg 
    986       1.1     joerg 	if (RUM_RATE_IS_OFDM(rate)) {
    987       1.1     joerg 		/* IEEE Std 802.11a-1999, pp. 37 */
    988       1.1     joerg 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
    989       1.1     joerg 		txtime = 16 + 4 + 4 * txtime + 6;
    990       1.1     joerg 	} else {
    991       1.1     joerg 		/* IEEE Std 802.11b-1999, pp. 28 */
    992       1.1     joerg 		txtime = (16 * len + rate - 1) / rate;
    993       1.1     joerg 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
    994       1.1     joerg 			txtime +=  72 + 24;
    995       1.1     joerg 		else
    996       1.1     joerg 			txtime += 144 + 48;
    997       1.1     joerg 	}
    998       1.1     joerg 	return txtime;
    999       1.1     joerg }
   1000       1.1     joerg 
   1001      1.35  jmcneill static uint8_t
   1002       1.1     joerg rum_plcp_signal(int rate)
   1003       1.1     joerg {
   1004       1.1     joerg 	switch (rate) {
   1005       1.1     joerg 	/* CCK rates (returned values are device-dependent) */
   1006       1.1     joerg 	case 2:		return 0x0;
   1007       1.1     joerg 	case 4:		return 0x1;
   1008       1.1     joerg 	case 11:	return 0x2;
   1009       1.1     joerg 	case 22:	return 0x3;
   1010       1.1     joerg 
   1011       1.1     joerg 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1012       1.1     joerg 	case 12:	return 0xb;
   1013       1.1     joerg 	case 18:	return 0xf;
   1014       1.1     joerg 	case 24:	return 0xa;
   1015       1.1     joerg 	case 36:	return 0xe;
   1016       1.1     joerg 	case 48:	return 0x9;
   1017       1.1     joerg 	case 72:	return 0xd;
   1018       1.1     joerg 	case 96:	return 0x8;
   1019       1.1     joerg 	case 108:	return 0xc;
   1020       1.1     joerg 
   1021       1.1     joerg 	/* unsupported rates (should not get there) */
   1022       1.1     joerg 	default:	return 0xff;
   1023       1.1     joerg 	}
   1024       1.1     joerg }
   1025       1.1     joerg 
   1026      1.35  jmcneill static void
   1027       1.1     joerg rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
   1028       1.1     joerg     uint32_t flags, uint16_t xflags, int len, int rate)
   1029       1.1     joerg {
   1030       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1031       1.1     joerg 	uint16_t plcp_length;
   1032       1.1     joerg 	int remainder;
   1033       1.1     joerg 
   1034       1.1     joerg 	desc->flags = htole32(flags);
   1035       1.1     joerg 	desc->flags |= htole32(RT2573_TX_VALID);
   1036       1.1     joerg 	desc->flags |= htole32(len << 16);
   1037       1.1     joerg 
   1038       1.1     joerg 	desc->xflags = htole16(xflags);
   1039       1.1     joerg 
   1040       1.1     joerg 	desc->wme = htole16(
   1041       1.1     joerg 	    RT2573_QID(0) |
   1042       1.1     joerg 	    RT2573_AIFSN(2) |
   1043       1.1     joerg 	    RT2573_LOGCWMIN(4) |
   1044       1.1     joerg 	    RT2573_LOGCWMAX(10));
   1045       1.1     joerg 
   1046       1.1     joerg 	/* setup PLCP fields */
   1047       1.1     joerg 	desc->plcp_signal  = rum_plcp_signal(rate);
   1048       1.1     joerg 	desc->plcp_service = 4;
   1049       1.1     joerg 
   1050       1.1     joerg 	len += IEEE80211_CRC_LEN;
   1051       1.1     joerg 	if (RUM_RATE_IS_OFDM(rate)) {
   1052       1.1     joerg 		desc->flags |= htole32(RT2573_TX_OFDM);
   1053       1.1     joerg 
   1054       1.1     joerg 		plcp_length = len & 0xfff;
   1055       1.1     joerg 		desc->plcp_length_hi = plcp_length >> 6;
   1056       1.1     joerg 		desc->plcp_length_lo = plcp_length & 0x3f;
   1057       1.1     joerg 	} else {
   1058       1.1     joerg 		plcp_length = (16 * len + rate - 1) / rate;
   1059       1.1     joerg 		if (rate == 22) {
   1060       1.1     joerg 			remainder = (16 * len) % 22;
   1061       1.1     joerg 			if (remainder != 0 && remainder < 7)
   1062       1.1     joerg 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
   1063       1.1     joerg 		}
   1064       1.1     joerg 		desc->plcp_length_hi = plcp_length >> 8;
   1065       1.1     joerg 		desc->plcp_length_lo = plcp_length & 0xff;
   1066       1.1     joerg 
   1067       1.1     joerg 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1068       1.1     joerg 			desc->plcp_signal |= 0x08;
   1069       1.1     joerg 	}
   1070       1.1     joerg }
   1071       1.1     joerg 
   1072       1.1     joerg #define RUM_TX_TIMEOUT	5000
   1073       1.1     joerg 
   1074      1.35  jmcneill static int
   1075      1.35  jmcneill rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
   1076       1.1     joerg {
   1077       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1078       1.1     joerg 	struct rum_tx_desc *desc;
   1079       1.1     joerg 	struct rum_tx_data *data;
   1080       1.1     joerg 	struct ieee80211_frame *wh;
   1081      1.17  degroote 	struct ieee80211_key *k;
   1082       1.1     joerg 	uint32_t flags = 0;
   1083       1.1     joerg 	uint16_t dur;
   1084       1.1     joerg 	usbd_status error;
   1085      1.35  jmcneill 	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
   1086       1.1     joerg 
   1087       1.1     joerg 	wh = mtod(m0, struct ieee80211_frame *);
   1088       1.1     joerg 
   1089      1.17  degroote 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1090      1.17  degroote 		k = ieee80211_crypto_encap(ic, ni, m0);
   1091      1.17  degroote 		if (k == NULL) {
   1092      1.17  degroote 			m_freem(m0);
   1093      1.17  degroote 			return ENOBUFS;
   1094      1.17  degroote 		}
   1095      1.17  degroote 
   1096      1.35  jmcneill 		/* packet header may have moved, reset our local pointer */
   1097      1.35  jmcneill 		wh = mtod(m0, struct ieee80211_frame *);
   1098       1.1     joerg 	}
   1099       1.1     joerg 
   1100      1.35  jmcneill 	/* compute actual packet length (including CRC and crypto overhead) */
   1101      1.35  jmcneill 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
   1102       1.1     joerg 
   1103      1.35  jmcneill 	/* pickup a rate */
   1104      1.35  jmcneill 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   1105      1.35  jmcneill 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1106      1.35  jmcneill 	     IEEE80211_FC0_TYPE_MGT)) {
   1107      1.35  jmcneill 		/* mgmt/multicast frames are sent at the lowest avail. rate */
   1108      1.35  jmcneill 		rate = ni->ni_rates.rs_rates[0];
   1109      1.35  jmcneill 	} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
   1110      1.35  jmcneill 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
   1111      1.35  jmcneill 	} else
   1112      1.35  jmcneill 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1113      1.35  jmcneill 	if (rate == 0)
   1114      1.35  jmcneill 		rate = 2;	/* XXX should not happen */
   1115      1.35  jmcneill 	rate &= IEEE80211_RATE_VAL;
   1116       1.1     joerg 
   1117      1.35  jmcneill 	/* check if RTS/CTS or CTS-to-self protection must be used */
   1118      1.35  jmcneill 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1119      1.35  jmcneill 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
   1120      1.35  jmcneill 		if (pktlen > ic->ic_rtsthreshold) {
   1121      1.35  jmcneill 			needrts = 1;	/* RTS/CTS based on frame length */
   1122      1.35  jmcneill 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   1123      1.35  jmcneill 		    RUM_RATE_IS_OFDM(rate)) {
   1124      1.35  jmcneill 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   1125      1.35  jmcneill 				needcts = 1;	/* CTS-to-self */
   1126      1.35  jmcneill 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   1127      1.35  jmcneill 				needrts = 1;	/* RTS/CTS */
   1128      1.35  jmcneill 		}
   1129      1.35  jmcneill 	}
   1130      1.35  jmcneill 	if (needrts || needcts) {
   1131      1.35  jmcneill 		struct mbuf *mprot;
   1132      1.35  jmcneill 		int protrate, ackrate;
   1133      1.35  jmcneill 
   1134      1.35  jmcneill 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
   1135      1.35  jmcneill 		ackrate  = rum_ack_rate(ic, rate);
   1136      1.35  jmcneill 
   1137      1.35  jmcneill 		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
   1138      1.35  jmcneill 		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
   1139      1.35  jmcneill 		      2 * sc->sifs;
   1140      1.35  jmcneill 		if (needrts) {
   1141      1.35  jmcneill 			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
   1142      1.35  jmcneill 			    protrate), ic->ic_flags) + sc->sifs;
   1143      1.35  jmcneill 			mprot = ieee80211_get_rts(ic, wh, dur);
   1144      1.35  jmcneill 		} else {
   1145      1.35  jmcneill 			mprot = ieee80211_get_cts_to_self(ic, dur);
   1146      1.35  jmcneill 		}
   1147      1.35  jmcneill 		if (mprot == NULL) {
   1148      1.35  jmcneill 			aprint_error_dev(sc->sc_dev,
   1149      1.35  jmcneill 			    "couldn't allocate protection frame\n");
   1150      1.35  jmcneill 			m_freem(m0);
   1151      1.35  jmcneill 			return ENOBUFS;
   1152      1.35  jmcneill 		}
   1153       1.1     joerg 
   1154      1.35  jmcneill 		data = &sc->tx_data[sc->tx_cur];
   1155      1.35  jmcneill 		desc = (struct rum_tx_desc *)data->buf;
   1156       1.1     joerg 
   1157      1.35  jmcneill 		/* avoid multiple free() of the same node for each fragment */
   1158      1.35  jmcneill 		data->ni = ieee80211_ref_node(ni);
   1159       1.1     joerg 
   1160      1.35  jmcneill 		m_copydata(mprot, 0, mprot->m_pkthdr.len,
   1161      1.35  jmcneill 		    data->buf + RT2573_TX_DESC_SIZE);
   1162      1.35  jmcneill 		rum_setup_tx_desc(sc, desc,
   1163      1.35  jmcneill 		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
   1164      1.35  jmcneill 		    0, mprot->m_pkthdr.len, protrate);
   1165       1.1     joerg 
   1166      1.35  jmcneill 		/* no roundup necessary here */
   1167      1.35  jmcneill 		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
   1168       1.1     joerg 
   1169      1.35  jmcneill 		/* XXX may want to pass the protection frame to BPF */
   1170       1.1     joerg 
   1171      1.35  jmcneill 		/* mbuf is no longer needed */
   1172      1.35  jmcneill 		m_freem(mprot);
   1173       1.1     joerg 
   1174  1.48.4.1       snj 		usbd_setup_xfer(data->xfer, data, data->buf,
   1175  1.48.4.1       snj 		    xferlen, USBD_FORCE_SHORT_XFER,
   1176      1.35  jmcneill 		    RUM_TX_TIMEOUT, rum_txeof);
   1177      1.35  jmcneill 		error = usbd_transfer(data->xfer);
   1178      1.35  jmcneill 		if (error != USBD_NORMAL_COMPLETION &&
   1179      1.35  jmcneill 		    error != USBD_IN_PROGRESS) {
   1180       1.1     joerg 			m_freem(m0);
   1181      1.35  jmcneill 			return error;
   1182       1.1     joerg 		}
   1183       1.1     joerg 
   1184      1.35  jmcneill 		sc->tx_queued++;
   1185      1.35  jmcneill 		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
   1186      1.35  jmcneill 
   1187      1.35  jmcneill 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
   1188       1.1     joerg 	}
   1189       1.1     joerg 
   1190      1.35  jmcneill 	data = &sc->tx_data[sc->tx_cur];
   1191       1.1     joerg 	desc = (struct rum_tx_desc *)data->buf;
   1192       1.1     joerg 
   1193       1.1     joerg 	data->ni = ni;
   1194       1.1     joerg 
   1195       1.1     joerg 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1196      1.18  kiyohara 		flags |= RT2573_TX_NEED_ACK;
   1197       1.1     joerg 
   1198       1.1     joerg 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
   1199       1.1     joerg 		    ic->ic_flags) + sc->sifs;
   1200       1.1     joerg 		*(uint16_t *)wh->i_dur = htole16(dur);
   1201      1.35  jmcneill 
   1202      1.35  jmcneill 		/* tell hardware to set timestamp in probe responses */
   1203      1.35  jmcneill 		if ((wh->i_fc[0] &
   1204      1.35  jmcneill 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1205      1.35  jmcneill 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1206      1.35  jmcneill 			flags |= RT2573_TX_TIMESTAMP;
   1207       1.1     joerg 	}
   1208       1.1     joerg 
   1209       1.1     joerg 	if (sc->sc_drvbpf != NULL) {
   1210       1.1     joerg 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
   1211       1.1     joerg 
   1212       1.1     joerg 		tap->wt_flags = 0;
   1213       1.1     joerg 		tap->wt_rate = rate;
   1214       1.1     joerg 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1215       1.1     joerg 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1216       1.1     joerg 		tap->wt_antenna = sc->tx_ant;
   1217       1.1     joerg 
   1218      1.32     joerg 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1219       1.1     joerg 	}
   1220       1.1     joerg 
   1221       1.1     joerg 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
   1222       1.1     joerg 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
   1223       1.1     joerg 
   1224       1.1     joerg 	/* align end on a 4-bytes boundary */
   1225       1.1     joerg 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
   1226       1.1     joerg 
   1227       1.1     joerg 	/*
   1228       1.1     joerg 	 * No space left in the last URB to store the extra 4 bytes, force
   1229       1.1     joerg 	 * sending of another URB.
   1230       1.1     joerg 	 */
   1231       1.1     joerg 	if ((xferlen % 64) == 0)
   1232       1.1     joerg 		xferlen += 4;
   1233       1.1     joerg 
   1234       1.8   mlelstv 	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
   1235       1.8   mlelstv 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
   1236       1.6       wiz 	    rate, xferlen));
   1237       1.1     joerg 
   1238      1.18  kiyohara 	/* mbuf is no longer needed */
   1239      1.18  kiyohara 	m_freem(m0);
   1240      1.18  kiyohara 
   1241  1.48.4.1       snj 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
   1242  1.48.4.1       snj 	    USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof);
   1243       1.1     joerg 	error = usbd_transfer(data->xfer);
   1244      1.18  kiyohara 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
   1245       1.1     joerg 		return error;
   1246       1.1     joerg 
   1247       1.1     joerg 	sc->tx_queued++;
   1248      1.35  jmcneill 	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
   1249       1.1     joerg 
   1250       1.1     joerg 	return 0;
   1251       1.1     joerg }
   1252       1.1     joerg 
   1253      1.35  jmcneill static void
   1254       1.1     joerg rum_start(struct ifnet *ifp)
   1255       1.1     joerg {
   1256       1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1257       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1258       1.1     joerg 	struct ether_header *eh;
   1259       1.1     joerg 	struct ieee80211_node *ni;
   1260       1.1     joerg 	struct mbuf *m0;
   1261       1.1     joerg 
   1262      1.35  jmcneill 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1263      1.35  jmcneill 		return;
   1264      1.35  jmcneill 
   1265       1.1     joerg 	for (;;) {
   1266       1.1     joerg 		IF_POLL(&ic->ic_mgtq, m0);
   1267       1.1     joerg 		if (m0 != NULL) {
   1268      1.35  jmcneill 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
   1269       1.1     joerg 				ifp->if_flags |= IFF_OACTIVE;
   1270       1.1     joerg 				break;
   1271       1.1     joerg 			}
   1272       1.1     joerg 			IF_DEQUEUE(&ic->ic_mgtq, m0);
   1273       1.1     joerg 
   1274  1.48.4.1       snj 			ni = M_GETCTX(m0, struct ieee80211_node *);
   1275  1.48.4.1       snj 			M_CLEARCTX(m0);
   1276      1.32     joerg 			bpf_mtap3(ic->ic_rawbpf, m0);
   1277      1.35  jmcneill 			if (rum_tx_data(sc, m0, ni) != 0)
   1278       1.1     joerg 				break;
   1279       1.1     joerg 
   1280       1.1     joerg 		} else {
   1281       1.1     joerg 			if (ic->ic_state != IEEE80211_S_RUN)
   1282       1.1     joerg 				break;
   1283       1.1     joerg 			IFQ_POLL(&ifp->if_snd, m0);
   1284       1.1     joerg 			if (m0 == NULL)
   1285       1.1     joerg 				break;
   1286      1.35  jmcneill 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
   1287       1.1     joerg 				ifp->if_flags |= IFF_OACTIVE;
   1288       1.1     joerg 				break;
   1289       1.1     joerg 			}
   1290       1.1     joerg 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1291      1.37  pgoyette 			if (m0->m_len < (int)sizeof(struct ether_header) &&
   1292       1.1     joerg 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
   1293       1.1     joerg 				continue;
   1294       1.1     joerg 
   1295       1.1     joerg 			eh = mtod(m0, struct ether_header *);
   1296       1.1     joerg 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1297       1.1     joerg 			if (ni == NULL) {
   1298       1.1     joerg 				m_freem(m0);
   1299       1.1     joerg 				continue;
   1300       1.1     joerg 			}
   1301      1.32     joerg 			bpf_mtap(ifp, m0);
   1302       1.1     joerg 			m0 = ieee80211_encap(ic, m0, ni);
   1303       1.1     joerg 			if (m0 == NULL) {
   1304       1.1     joerg 				ieee80211_free_node(ni);
   1305       1.1     joerg 				continue;
   1306       1.1     joerg 			}
   1307      1.32     joerg 			bpf_mtap3(ic->ic_rawbpf, m0);
   1308       1.1     joerg 			if (rum_tx_data(sc, m0, ni) != 0) {
   1309       1.1     joerg 				ieee80211_free_node(ni);
   1310       1.1     joerg 				ifp->if_oerrors++;
   1311       1.1     joerg 				break;
   1312       1.1     joerg 			}
   1313       1.1     joerg 		}
   1314       1.1     joerg 
   1315       1.1     joerg 		sc->sc_tx_timer = 5;
   1316       1.1     joerg 		ifp->if_timer = 1;
   1317       1.1     joerg 	}
   1318       1.1     joerg }
   1319       1.1     joerg 
   1320      1.35  jmcneill static void
   1321       1.1     joerg rum_watchdog(struct ifnet *ifp)
   1322       1.1     joerg {
   1323       1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1324       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1325       1.1     joerg 
   1326       1.1     joerg 	ifp->if_timer = 0;
   1327       1.1     joerg 
   1328       1.1     joerg 	if (sc->sc_tx_timer > 0) {
   1329       1.1     joerg 		if (--sc->sc_tx_timer == 0) {
   1330      1.33    dyoung 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
   1331       1.1     joerg 			/*rum_init(ifp); XXX needs a process context! */
   1332       1.1     joerg 			ifp->if_oerrors++;
   1333       1.1     joerg 			return;
   1334       1.1     joerg 		}
   1335       1.1     joerg 		ifp->if_timer = 1;
   1336       1.1     joerg 	}
   1337       1.1     joerg 
   1338       1.1     joerg 	ieee80211_watchdog(ic);
   1339       1.1     joerg }
   1340       1.1     joerg 
   1341      1.35  jmcneill static int
   1342       1.7  christos rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1343       1.1     joerg {
   1344      1.36  jmcneill #define IS_RUNNING(ifp) \
   1345      1.36  jmcneill 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
   1346      1.36  jmcneill 
   1347       1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1348       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1349       1.1     joerg 	int s, error = 0;
   1350       1.1     joerg 
   1351       1.1     joerg 	s = splnet();
   1352       1.1     joerg 
   1353       1.1     joerg 	switch (cmd) {
   1354       1.1     joerg 	case SIOCSIFFLAGS:
   1355      1.24    dyoung 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1356      1.24    dyoung 			break;
   1357      1.24    dyoung 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   1358      1.24    dyoung 		case IFF_UP|IFF_RUNNING:
   1359      1.24    dyoung 			rum_update_promisc(sc);
   1360      1.24    dyoung 			break;
   1361      1.24    dyoung 		case IFF_UP:
   1362      1.24    dyoung 			rum_init(ifp);
   1363      1.24    dyoung 			break;
   1364      1.24    dyoung 		case IFF_RUNNING:
   1365      1.24    dyoung 			rum_stop(ifp, 1);
   1366      1.24    dyoung 			break;
   1367      1.24    dyoung 		case 0:
   1368      1.24    dyoung 			break;
   1369       1.1     joerg 		}
   1370       1.1     joerg 		break;
   1371       1.1     joerg 
   1372      1.36  jmcneill 	case SIOCADDMULTI:
   1373      1.36  jmcneill 	case SIOCDELMULTI:
   1374      1.36  jmcneill 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   1375      1.36  jmcneill 			error = 0;
   1376      1.36  jmcneill 		}
   1377      1.36  jmcneill 		break;
   1378      1.36  jmcneill 
   1379       1.1     joerg 	default:
   1380       1.1     joerg 		error = ieee80211_ioctl(ic, cmd, data);
   1381       1.1     joerg 	}
   1382       1.1     joerg 
   1383       1.1     joerg 	if (error == ENETRESET) {
   1384      1.36  jmcneill 		if (IS_RUNNING(ifp) &&
   1385      1.36  jmcneill 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   1386       1.1     joerg 			rum_init(ifp);
   1387       1.1     joerg 		error = 0;
   1388       1.1     joerg 	}
   1389       1.1     joerg 
   1390       1.1     joerg 	splx(s);
   1391       1.1     joerg 
   1392       1.1     joerg 	return error;
   1393      1.36  jmcneill #undef IS_RUNNING
   1394       1.1     joerg }
   1395       1.1     joerg 
   1396      1.35  jmcneill static void
   1397       1.1     joerg rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
   1398       1.1     joerg {
   1399       1.1     joerg 	usb_device_request_t req;
   1400       1.1     joerg 	usbd_status error;
   1401       1.1     joerg 
   1402       1.1     joerg 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
   1403       1.1     joerg 	req.bRequest = RT2573_READ_EEPROM;
   1404       1.1     joerg 	USETW(req.wValue, 0);
   1405       1.1     joerg 	USETW(req.wIndex, addr);
   1406       1.1     joerg 	USETW(req.wLength, len);
   1407       1.1     joerg 
   1408       1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, buf);
   1409       1.1     joerg 	if (error != 0) {
   1410       1.1     joerg 		printf("%s: could not read EEPROM: %s\n",
   1411      1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   1412       1.1     joerg 	}
   1413       1.1     joerg }
   1414       1.1     joerg 
   1415      1.35  jmcneill static uint32_t
   1416       1.1     joerg rum_read(struct rum_softc *sc, uint16_t reg)
   1417       1.1     joerg {
   1418       1.1     joerg 	uint32_t val;
   1419       1.1     joerg 
   1420  1.48.4.1       snj 	rum_read_multi(sc, reg, &val, sizeof(val));
   1421       1.1     joerg 
   1422       1.1     joerg 	return le32toh(val);
   1423       1.1     joerg }
   1424       1.1     joerg 
   1425      1.35  jmcneill static void
   1426       1.1     joerg rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
   1427       1.1     joerg {
   1428       1.1     joerg 	usb_device_request_t req;
   1429       1.1     joerg 	usbd_status error;
   1430       1.1     joerg 
   1431       1.1     joerg 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
   1432       1.1     joerg 	req.bRequest = RT2573_READ_MULTI_MAC;
   1433       1.1     joerg 	USETW(req.wValue, 0);
   1434       1.1     joerg 	USETW(req.wIndex, reg);
   1435       1.1     joerg 	USETW(req.wLength, len);
   1436       1.1     joerg 
   1437       1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, buf);
   1438       1.1     joerg 	if (error != 0) {
   1439       1.1     joerg 		printf("%s: could not multi read MAC register: %s\n",
   1440      1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   1441       1.1     joerg 	}
   1442       1.1     joerg }
   1443       1.1     joerg 
   1444      1.35  jmcneill static void
   1445       1.1     joerg rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
   1446       1.1     joerg {
   1447       1.1     joerg 	uint32_t tmp = htole32(val);
   1448       1.1     joerg 
   1449  1.48.4.1       snj 	rum_write_multi(sc, reg, &tmp, sizeof(tmp));
   1450       1.1     joerg }
   1451       1.1     joerg 
   1452      1.35  jmcneill static void
   1453       1.1     joerg rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
   1454       1.1     joerg {
   1455       1.1     joerg 	usb_device_request_t req;
   1456       1.1     joerg 	usbd_status error;
   1457      1.48     zafer 	int offset;
   1458       1.1     joerg 
   1459       1.1     joerg 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
   1460       1.1     joerg 	req.bRequest = RT2573_WRITE_MULTI_MAC;
   1461       1.1     joerg 	USETW(req.wValue, 0);
   1462       1.1     joerg 
   1463      1.48     zafer 	/* write at most 64 bytes at a time */
   1464      1.48     zafer 	for (offset = 0; offset < len; offset += 64) {
   1465      1.48     zafer 		USETW(req.wIndex, reg + offset);
   1466      1.48     zafer 		USETW(req.wLength, MIN(len - offset, 64));
   1467      1.48     zafer 
   1468      1.48     zafer 		error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
   1469      1.48     zafer 		if (error != 0) {
   1470      1.48     zafer 			printf("%s: could not multi write MAC register: %s\n",
   1471      1.48     zafer 			    device_xname(sc->sc_dev), usbd_errstr(error));
   1472      1.48     zafer 		}
   1473       1.1     joerg 	}
   1474       1.1     joerg }
   1475       1.1     joerg 
   1476      1.35  jmcneill static void
   1477       1.1     joerg rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
   1478       1.1     joerg {
   1479       1.1     joerg 	uint32_t tmp;
   1480       1.1     joerg 	int ntries;
   1481       1.1     joerg 
   1482       1.1     joerg 	for (ntries = 0; ntries < 5; ntries++) {
   1483       1.1     joerg 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
   1484       1.1     joerg 			break;
   1485       1.1     joerg 	}
   1486       1.1     joerg 	if (ntries == 5) {
   1487      1.33    dyoung 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
   1488       1.1     joerg 		return;
   1489       1.1     joerg 	}
   1490       1.1     joerg 
   1491       1.1     joerg 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
   1492       1.1     joerg 	rum_write(sc, RT2573_PHY_CSR3, tmp);
   1493       1.1     joerg }
   1494       1.1     joerg 
   1495      1.35  jmcneill static uint8_t
   1496       1.1     joerg rum_bbp_read(struct rum_softc *sc, uint8_t reg)
   1497       1.1     joerg {
   1498       1.1     joerg 	uint32_t val;
   1499       1.1     joerg 	int ntries;
   1500       1.1     joerg 
   1501       1.1     joerg 	for (ntries = 0; ntries < 5; ntries++) {
   1502       1.1     joerg 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
   1503       1.1     joerg 			break;
   1504       1.1     joerg 	}
   1505       1.1     joerg 	if (ntries == 5) {
   1506      1.33    dyoung 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
   1507       1.1     joerg 		return 0;
   1508       1.1     joerg 	}
   1509       1.1     joerg 
   1510       1.1     joerg 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
   1511       1.1     joerg 	rum_write(sc, RT2573_PHY_CSR3, val);
   1512       1.1     joerg 
   1513       1.1     joerg 	for (ntries = 0; ntries < 100; ntries++) {
   1514       1.1     joerg 		val = rum_read(sc, RT2573_PHY_CSR3);
   1515       1.1     joerg 		if (!(val & RT2573_BBP_BUSY))
   1516       1.1     joerg 			return val & 0xff;
   1517       1.1     joerg 		DELAY(1);
   1518       1.1     joerg 	}
   1519       1.1     joerg 
   1520      1.33    dyoung 	printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
   1521       1.1     joerg 	return 0;
   1522       1.1     joerg }
   1523       1.1     joerg 
   1524      1.35  jmcneill static void
   1525       1.1     joerg rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
   1526       1.1     joerg {
   1527       1.1     joerg 	uint32_t tmp;
   1528       1.1     joerg 	int ntries;
   1529       1.1     joerg 
   1530       1.1     joerg 	for (ntries = 0; ntries < 5; ntries++) {
   1531       1.1     joerg 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
   1532       1.1     joerg 			break;
   1533       1.1     joerg 	}
   1534       1.1     joerg 	if (ntries == 5) {
   1535      1.33    dyoung 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
   1536       1.1     joerg 		return;
   1537       1.1     joerg 	}
   1538       1.1     joerg 
   1539       1.1     joerg 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
   1540       1.1     joerg 	    (reg & 3);
   1541       1.1     joerg 	rum_write(sc, RT2573_PHY_CSR4, tmp);
   1542       1.1     joerg 
   1543       1.1     joerg 	/* remember last written value in sc */
   1544       1.1     joerg 	sc->rf_regs[reg] = val;
   1545       1.1     joerg 
   1546       1.1     joerg 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
   1547       1.1     joerg }
   1548       1.1     joerg 
   1549      1.35  jmcneill static void
   1550       1.1     joerg rum_select_antenna(struct rum_softc *sc)
   1551       1.1     joerg {
   1552       1.1     joerg 	uint8_t bbp4, bbp77;
   1553       1.1     joerg 	uint32_t tmp;
   1554       1.1     joerg 
   1555       1.1     joerg 	bbp4  = rum_bbp_read(sc, 4);
   1556       1.1     joerg 	bbp77 = rum_bbp_read(sc, 77);
   1557       1.1     joerg 
   1558       1.1     joerg 	/* TBD */
   1559       1.1     joerg 
   1560       1.1     joerg 	/* make sure Rx is disabled before switching antenna */
   1561       1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
   1562       1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
   1563       1.1     joerg 
   1564       1.1     joerg 	rum_bbp_write(sc,  4, bbp4);
   1565       1.1     joerg 	rum_bbp_write(sc, 77, bbp77);
   1566       1.1     joerg 
   1567       1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
   1568       1.1     joerg }
   1569       1.1     joerg 
   1570       1.1     joerg /*
   1571       1.1     joerg  * Enable multi-rate retries for frames sent at OFDM rates.
   1572       1.1     joerg  * In 802.11b/g mode, allow fallback to CCK rates.
   1573       1.1     joerg  */
   1574      1.35  jmcneill static void
   1575       1.1     joerg rum_enable_mrr(struct rum_softc *sc)
   1576       1.1     joerg {
   1577       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1578       1.1     joerg 	uint32_t tmp;
   1579       1.1     joerg 
   1580       1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
   1581       1.1     joerg 
   1582       1.1     joerg 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
   1583       1.1     joerg 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
   1584       1.1     joerg 		tmp |= RT2573_MRR_CCK_FALLBACK;
   1585       1.1     joerg 	tmp |= RT2573_MRR_ENABLED;
   1586       1.1     joerg 
   1587       1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
   1588       1.1     joerg }
   1589       1.1     joerg 
   1590      1.35  jmcneill static void
   1591       1.1     joerg rum_set_txpreamble(struct rum_softc *sc)
   1592       1.1     joerg {
   1593       1.1     joerg 	uint32_t tmp;
   1594       1.1     joerg 
   1595       1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
   1596       1.1     joerg 
   1597       1.1     joerg 	tmp &= ~RT2573_SHORT_PREAMBLE;
   1598       1.1     joerg 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
   1599       1.1     joerg 		tmp |= RT2573_SHORT_PREAMBLE;
   1600       1.1     joerg 
   1601       1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
   1602       1.1     joerg }
   1603       1.1     joerg 
   1604      1.35  jmcneill static void
   1605       1.1     joerg rum_set_basicrates(struct rum_softc *sc)
   1606       1.1     joerg {
   1607       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1608       1.1     joerg 
   1609       1.1     joerg 	/* update basic rate set */
   1610       1.1     joerg 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
   1611       1.1     joerg 		/* 11b basic rates: 1, 2Mbps */
   1612       1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
   1613      1.18  kiyohara 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
   1614       1.1     joerg 		/* 11a basic rates: 6, 12, 24Mbps */
   1615       1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
   1616       1.1     joerg 	} else {
   1617      1.18  kiyohara 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
   1618      1.18  kiyohara 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
   1619       1.1     joerg 	}
   1620       1.1     joerg }
   1621       1.1     joerg 
   1622       1.1     joerg /*
   1623       1.1     joerg  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
   1624       1.1     joerg  * driver.
   1625       1.1     joerg  */
   1626      1.35  jmcneill static void
   1627       1.1     joerg rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
   1628       1.1     joerg {
   1629       1.1     joerg 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
   1630       1.1     joerg 	uint32_t tmp;
   1631       1.1     joerg 
   1632       1.1     joerg 	/* update all BBP registers that depend on the band */
   1633       1.1     joerg 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
   1634       1.1     joerg 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
   1635       1.1     joerg 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   1636       1.1     joerg 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
   1637       1.1     joerg 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
   1638       1.1     joerg 	}
   1639       1.1     joerg 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
   1640       1.1     joerg 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
   1641       1.1     joerg 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
   1642       1.1     joerg 	}
   1643       1.1     joerg 
   1644       1.1     joerg 	sc->bbp17 = bbp17;
   1645       1.1     joerg 	rum_bbp_write(sc,  17, bbp17);
   1646       1.1     joerg 	rum_bbp_write(sc,  96, bbp96);
   1647       1.1     joerg 	rum_bbp_write(sc, 104, bbp104);
   1648       1.1     joerg 
   1649       1.1     joerg 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
   1650       1.1     joerg 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
   1651       1.1     joerg 		rum_bbp_write(sc, 75, 0x80);
   1652       1.1     joerg 		rum_bbp_write(sc, 86, 0x80);
   1653       1.1     joerg 		rum_bbp_write(sc, 88, 0x80);
   1654       1.1     joerg 	}
   1655       1.1     joerg 
   1656       1.1     joerg 	rum_bbp_write(sc, 35, bbp35);
   1657       1.1     joerg 	rum_bbp_write(sc, 97, bbp97);
   1658       1.1     joerg 	rum_bbp_write(sc, 98, bbp98);
   1659       1.1     joerg 
   1660       1.1     joerg 	tmp = rum_read(sc, RT2573_PHY_CSR0);
   1661       1.1     joerg 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
   1662       1.1     joerg 	if (IEEE80211_IS_CHAN_2GHZ(c))
   1663       1.1     joerg 		tmp |= RT2573_PA_PE_2GHZ;
   1664       1.1     joerg 	else
   1665       1.1     joerg 		tmp |= RT2573_PA_PE_5GHZ;
   1666       1.1     joerg 	rum_write(sc, RT2573_PHY_CSR0, tmp);
   1667       1.1     joerg 
   1668       1.1     joerg 	/* 802.11a uses a 16 microseconds short interframe space */
   1669       1.1     joerg 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
   1670       1.1     joerg }
   1671       1.1     joerg 
   1672      1.35  jmcneill static void
   1673       1.1     joerg rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
   1674       1.1     joerg {
   1675       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1676       1.1     joerg 	const struct rfprog *rfprog;
   1677       1.1     joerg 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
   1678       1.1     joerg 	int8_t power;
   1679       1.1     joerg 	u_int i, chan;
   1680       1.1     joerg 
   1681       1.1     joerg 	chan = ieee80211_chan2ieee(ic, c);
   1682       1.1     joerg 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
   1683       1.1     joerg 		return;
   1684       1.1     joerg 
   1685       1.1     joerg 	/* select the appropriate RF settings based on what EEPROM says */
   1686       1.1     joerg 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
   1687       1.1     joerg 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
   1688       1.1     joerg 
   1689       1.1     joerg 	/* find the settings for this channel (we know it exists) */
   1690       1.1     joerg 	for (i = 0; rfprog[i].chan != chan; i++);
   1691       1.1     joerg 
   1692       1.1     joerg 	power = sc->txpow[i];
   1693       1.1     joerg 	if (power < 0) {
   1694       1.1     joerg 		bbp94 += power;
   1695       1.1     joerg 		power = 0;
   1696       1.1     joerg 	} else if (power > 31) {
   1697       1.1     joerg 		bbp94 += power - 31;
   1698       1.1     joerg 		power = 31;
   1699       1.1     joerg 	}
   1700       1.1     joerg 
   1701       1.1     joerg 	/*
   1702       1.1     joerg 	 * If we are switching from the 2GHz band to the 5GHz band or
   1703       1.1     joerg 	 * vice-versa, BBP registers need to be reprogrammed.
   1704       1.1     joerg 	 */
   1705       1.1     joerg 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
   1706       1.1     joerg 		rum_select_band(sc, c);
   1707       1.1     joerg 		rum_select_antenna(sc);
   1708       1.1     joerg 	}
   1709       1.1     joerg 	ic->ic_curchan = c;
   1710       1.1     joerg 
   1711       1.1     joerg 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
   1712       1.1     joerg 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
   1713       1.1     joerg 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
   1714       1.1     joerg 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
   1715       1.1     joerg 
   1716       1.1     joerg 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
   1717       1.1     joerg 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
   1718       1.1     joerg 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
   1719       1.1     joerg 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
   1720       1.1     joerg 
   1721       1.1     joerg 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
   1722       1.1     joerg 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
   1723       1.1     joerg 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
   1724       1.1     joerg 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
   1725       1.1     joerg 
   1726       1.1     joerg 	DELAY(10);
   1727       1.1     joerg 
   1728       1.1     joerg 	/* enable smart mode for MIMO-capable RFs */
   1729       1.1     joerg 	bbp3 = rum_bbp_read(sc, 3);
   1730       1.1     joerg 
   1731       1.1     joerg 	bbp3 &= ~RT2573_SMART_MODE;
   1732       1.1     joerg 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
   1733       1.1     joerg 		bbp3 |= RT2573_SMART_MODE;
   1734       1.1     joerg 
   1735       1.1     joerg 	rum_bbp_write(sc, 3, bbp3);
   1736       1.1     joerg 
   1737       1.1     joerg 	if (bbp94 != RT2573_BBPR94_DEFAULT)
   1738       1.1     joerg 		rum_bbp_write(sc, 94, bbp94);
   1739       1.1     joerg }
   1740       1.1     joerg 
   1741       1.1     joerg /*
   1742       1.1     joerg  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
   1743       1.1     joerg  * and HostAP operating modes.
   1744       1.1     joerg  */
   1745      1.35  jmcneill static void
   1746       1.1     joerg rum_enable_tsf_sync(struct rum_softc *sc)
   1747       1.1     joerg {
   1748       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1749       1.1     joerg 	uint32_t tmp;
   1750       1.1     joerg 
   1751       1.1     joerg 	if (ic->ic_opmode != IEEE80211_M_STA) {
   1752       1.1     joerg 		/*
   1753       1.1     joerg 		 * Change default 16ms TBTT adjustment to 8ms.
   1754       1.1     joerg 		 * Must be done before enabling beacon generation.
   1755       1.1     joerg 		 */
   1756       1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
   1757       1.1     joerg 	}
   1758       1.1     joerg 
   1759       1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
   1760       1.1     joerg 
   1761       1.1     joerg 	/* set beacon interval (in 1/16ms unit) */
   1762       1.1     joerg 	tmp |= ic->ic_bss->ni_intval * 16;
   1763       1.1     joerg 
   1764       1.1     joerg 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
   1765       1.1     joerg 	if (ic->ic_opmode == IEEE80211_M_STA)
   1766       1.1     joerg 		tmp |= RT2573_TSF_MODE(1);
   1767       1.1     joerg 	else
   1768       1.1     joerg 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
   1769       1.1     joerg 
   1770       1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
   1771       1.1     joerg }
   1772       1.1     joerg 
   1773      1.35  jmcneill static void
   1774       1.1     joerg rum_update_slot(struct rum_softc *sc)
   1775       1.1     joerg {
   1776       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1777       1.1     joerg 	uint8_t slottime;
   1778       1.1     joerg 	uint32_t tmp;
   1779       1.1     joerg 
   1780       1.1     joerg 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
   1781       1.1     joerg 
   1782       1.1     joerg 	tmp = rum_read(sc, RT2573_MAC_CSR9);
   1783       1.1     joerg 	tmp = (tmp & ~0xff) | slottime;
   1784       1.1     joerg 	rum_write(sc, RT2573_MAC_CSR9, tmp);
   1785       1.1     joerg 
   1786       1.1     joerg 	DPRINTF(("setting slot time to %uus\n", slottime));
   1787       1.1     joerg }
   1788       1.1     joerg 
   1789      1.35  jmcneill static void
   1790       1.1     joerg rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
   1791       1.1     joerg {
   1792       1.1     joerg 	uint32_t tmp;
   1793       1.1     joerg 
   1794       1.1     joerg 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
   1795       1.1     joerg 	rum_write(sc, RT2573_MAC_CSR4, tmp);
   1796       1.1     joerg 
   1797       1.1     joerg 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
   1798       1.1     joerg 	rum_write(sc, RT2573_MAC_CSR5, tmp);
   1799       1.1     joerg }
   1800       1.1     joerg 
   1801      1.35  jmcneill static void
   1802       1.1     joerg rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
   1803       1.1     joerg {
   1804       1.1     joerg 	uint32_t tmp;
   1805       1.1     joerg 
   1806       1.1     joerg 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
   1807       1.1     joerg 	rum_write(sc, RT2573_MAC_CSR2, tmp);
   1808       1.1     joerg 
   1809       1.1     joerg 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
   1810       1.1     joerg 	rum_write(sc, RT2573_MAC_CSR3, tmp);
   1811       1.1     joerg }
   1812       1.1     joerg 
   1813      1.35  jmcneill static void
   1814       1.1     joerg rum_update_promisc(struct rum_softc *sc)
   1815       1.1     joerg {
   1816       1.1     joerg 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1817       1.1     joerg 	uint32_t tmp;
   1818       1.1     joerg 
   1819       1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
   1820       1.1     joerg 
   1821       1.1     joerg 	tmp &= ~RT2573_DROP_NOT_TO_ME;
   1822       1.1     joerg 	if (!(ifp->if_flags & IFF_PROMISC))
   1823       1.1     joerg 		tmp |= RT2573_DROP_NOT_TO_ME;
   1824       1.1     joerg 
   1825       1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
   1826       1.1     joerg 
   1827       1.1     joerg 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
   1828       1.1     joerg 	    "entering" : "leaving"));
   1829       1.1     joerg }
   1830       1.1     joerg 
   1831      1.35  jmcneill static const char *
   1832       1.1     joerg rum_get_rf(int rev)
   1833       1.1     joerg {
   1834       1.1     joerg 	switch (rev) {
   1835       1.1     joerg 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
   1836       1.1     joerg 	case RT2573_RF_2528:	return "RT2528";
   1837       1.1     joerg 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
   1838       1.1     joerg 	case RT2573_RF_5226:	return "RT5226";
   1839       1.1     joerg 	default:		return "unknown";
   1840       1.1     joerg 	}
   1841       1.1     joerg }
   1842       1.1     joerg 
   1843      1.35  jmcneill static void
   1844       1.1     joerg rum_read_eeprom(struct rum_softc *sc)
   1845       1.1     joerg {
   1846       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1847       1.1     joerg 	uint16_t val;
   1848       1.1     joerg #ifdef RUM_DEBUG
   1849       1.1     joerg 	int i;
   1850       1.1     joerg #endif
   1851       1.1     joerg 
   1852       1.1     joerg 	/* read MAC/BBP type */
   1853       1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
   1854       1.1     joerg 	sc->macbbp_rev = le16toh(val);
   1855       1.1     joerg 
   1856       1.1     joerg 	/* read MAC address */
   1857       1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
   1858       1.1     joerg 
   1859       1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
   1860       1.1     joerg 	val = le16toh(val);
   1861       1.1     joerg 	sc->rf_rev =   (val >> 11) & 0x1f;
   1862       1.1     joerg 	sc->hw_radio = (val >> 10) & 0x1;
   1863       1.1     joerg 	sc->rx_ant =   (val >> 4)  & 0x3;
   1864       1.1     joerg 	sc->tx_ant =   (val >> 2)  & 0x3;
   1865       1.1     joerg 	sc->nb_ant =   val & 0x3;
   1866       1.1     joerg 
   1867       1.1     joerg 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
   1868       1.1     joerg 
   1869       1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
   1870       1.1     joerg 	val = le16toh(val);
   1871       1.1     joerg 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
   1872       1.1     joerg 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
   1873       1.1     joerg 
   1874       1.1     joerg 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
   1875       1.1     joerg 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
   1876       1.1     joerg 
   1877       1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
   1878       1.1     joerg 	val = le16toh(val);
   1879       1.1     joerg 	if ((val & 0xff) != 0xff)
   1880       1.1     joerg 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
   1881       1.1     joerg 
   1882       1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
   1883       1.1     joerg 	val = le16toh(val);
   1884       1.1     joerg 	if ((val & 0xff) != 0xff)
   1885       1.1     joerg 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
   1886       1.1     joerg 
   1887       1.1     joerg 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
   1888       1.1     joerg 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
   1889       1.1     joerg 
   1890       1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
   1891       1.1     joerg 	val = le16toh(val);
   1892       1.1     joerg 	if ((val & 0xff) != 0xff)
   1893       1.1     joerg 		sc->rffreq = val & 0xff;
   1894       1.1     joerg 
   1895       1.1     joerg 	DPRINTF(("RF freq=%d\n", sc->rffreq));
   1896       1.1     joerg 
   1897       1.1     joerg 	/* read Tx power for all a/b/g channels */
   1898       1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
   1899       1.1     joerg 	/* XXX default Tx power for 802.11a channels */
   1900  1.48.4.1       snj 	memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14);
   1901       1.1     joerg #ifdef RUM_DEBUG
   1902       1.1     joerg 	for (i = 0; i < 14; i++)
   1903       1.1     joerg 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
   1904       1.1     joerg #endif
   1905       1.1     joerg 
   1906       1.1     joerg 	/* read default values for BBP registers */
   1907       1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
   1908       1.1     joerg #ifdef RUM_DEBUG
   1909       1.1     joerg 	for (i = 0; i < 14; i++) {
   1910       1.1     joerg 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
   1911       1.1     joerg 			continue;
   1912       1.1     joerg 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
   1913       1.1     joerg 		    sc->bbp_prom[i].val));
   1914       1.1     joerg 	}
   1915       1.1     joerg #endif
   1916       1.1     joerg }
   1917       1.1     joerg 
   1918      1.35  jmcneill static int
   1919       1.1     joerg rum_bbp_init(struct rum_softc *sc)
   1920       1.1     joerg {
   1921      1.37  pgoyette 	unsigned int i, ntries;
   1922       1.1     joerg 	uint8_t val;
   1923       1.1     joerg 
   1924       1.1     joerg 	/* wait for BBP to be ready */
   1925       1.1     joerg 	for (ntries = 0; ntries < 100; ntries++) {
   1926       1.1     joerg 		val = rum_bbp_read(sc, 0);
   1927       1.1     joerg 		if (val != 0 && val != 0xff)
   1928       1.1     joerg 			break;
   1929       1.1     joerg 		DELAY(1000);
   1930       1.1     joerg 	}
   1931       1.1     joerg 	if (ntries == 100) {
   1932       1.1     joerg 		printf("%s: timeout waiting for BBP\n",
   1933      1.33    dyoung 		    device_xname(sc->sc_dev));
   1934       1.1     joerg 		return EIO;
   1935       1.1     joerg 	}
   1936       1.1     joerg 
   1937       1.1     joerg 	/* initialize BBP registers to default values */
   1938  1.48.4.1       snj 	for (i = 0; i < __arraycount(rum_def_bbp); i++)
   1939       1.1     joerg 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
   1940       1.1     joerg 
   1941       1.1     joerg 	/* write vendor-specific BBP values (from EEPROM) */
   1942       1.1     joerg 	for (i = 0; i < 16; i++) {
   1943       1.1     joerg 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
   1944       1.1     joerg 			continue;
   1945       1.1     joerg 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
   1946       1.1     joerg 	}
   1947       1.1     joerg 
   1948       1.1     joerg 	return 0;
   1949       1.1     joerg }
   1950       1.1     joerg 
   1951      1.35  jmcneill static int
   1952       1.1     joerg rum_init(struct ifnet *ifp)
   1953       1.1     joerg {
   1954       1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1955       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1956       1.1     joerg 	uint32_t tmp;
   1957       1.1     joerg 	usbd_status error = 0;
   1958      1.37  pgoyette 	unsigned int i, ntries;
   1959       1.1     joerg 
   1960       1.1     joerg 	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
   1961       1.1     joerg 		if (rum_attachhook(sc))
   1962       1.1     joerg 			goto fail;
   1963       1.1     joerg 	}
   1964       1.1     joerg 
   1965       1.1     joerg 	rum_stop(ifp, 0);
   1966       1.1     joerg 
   1967       1.1     joerg 	/* initialize MAC registers to default values */
   1968  1.48.4.1       snj 	for (i = 0; i < __arraycount(rum_def_mac); i++)
   1969       1.1     joerg 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
   1970       1.1     joerg 
   1971       1.1     joerg 	/* set host ready */
   1972       1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 3);
   1973       1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 0);
   1974       1.1     joerg 
   1975       1.1     joerg 	/* wait for BBP/RF to wakeup */
   1976       1.1     joerg 	for (ntries = 0; ntries < 1000; ntries++) {
   1977       1.1     joerg 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
   1978       1.1     joerg 			break;
   1979       1.1     joerg 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
   1980       1.1     joerg 		DELAY(1000);
   1981       1.1     joerg 	}
   1982       1.1     joerg 	if (ntries == 1000) {
   1983       1.1     joerg 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
   1984      1.33    dyoung 		    device_xname(sc->sc_dev));
   1985       1.1     joerg 		goto fail;
   1986       1.1     joerg 	}
   1987       1.1     joerg 
   1988       1.1     joerg 	if ((error = rum_bbp_init(sc)) != 0)
   1989       1.1     joerg 		goto fail;
   1990       1.1     joerg 
   1991       1.1     joerg 	/* select default channel */
   1992       1.1     joerg 	rum_select_band(sc, ic->ic_curchan);
   1993       1.1     joerg 	rum_select_antenna(sc);
   1994       1.1     joerg 	rum_set_chan(sc, ic->ic_curchan);
   1995       1.1     joerg 
   1996       1.1     joerg 	/* clear STA registers */
   1997  1.48.4.1       snj 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
   1998       1.1     joerg 
   1999      1.15    dyoung 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   2000       1.1     joerg 	rum_set_macaddr(sc, ic->ic_myaddr);
   2001       1.1     joerg 
   2002       1.1     joerg 	/* initialize ASIC */
   2003       1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 4);
   2004       1.1     joerg 
   2005       1.1     joerg 	/*
   2006       1.1     joerg 	 * Allocate xfer for AMRR statistics requests.
   2007       1.1     joerg 	 */
   2008  1.48.4.1       snj 	struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
   2009  1.48.4.1       snj 	error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0,
   2010  1.48.4.1       snj 	    &sc->amrr_xfer);
   2011  1.48.4.1       snj 	if (error) {
   2012       1.1     joerg 		printf("%s: could not allocate AMRR xfer\n",
   2013      1.33    dyoung 		    device_xname(sc->sc_dev));
   2014       1.1     joerg 		goto fail;
   2015       1.1     joerg 	}
   2016       1.1     joerg 
   2017       1.1     joerg 	/*
   2018       1.1     joerg 	 * Open Tx and Rx USB bulk pipes.
   2019       1.1     joerg 	 */
   2020       1.1     joerg 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
   2021       1.1     joerg 	    &sc->sc_tx_pipeh);
   2022       1.1     joerg 	if (error != 0) {
   2023       1.1     joerg 		printf("%s: could not open Tx pipe: %s\n",
   2024      1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   2025       1.1     joerg 		goto fail;
   2026       1.1     joerg 	}
   2027       1.1     joerg 
   2028       1.1     joerg 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
   2029       1.1     joerg 	    &sc->sc_rx_pipeh);
   2030       1.1     joerg 	if (error != 0) {
   2031       1.1     joerg 		printf("%s: could not open Rx pipe: %s\n",
   2032      1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   2033       1.1     joerg 		goto fail;
   2034       1.1     joerg 	}
   2035       1.1     joerg 
   2036       1.1     joerg 	/*
   2037       1.1     joerg 	 * Allocate Tx and Rx xfer queues.
   2038       1.1     joerg 	 */
   2039       1.1     joerg 	error = rum_alloc_tx_list(sc);
   2040       1.1     joerg 	if (error != 0) {
   2041       1.1     joerg 		printf("%s: could not allocate Tx list\n",
   2042      1.33    dyoung 		    device_xname(sc->sc_dev));
   2043       1.1     joerg 		goto fail;
   2044       1.1     joerg 	}
   2045       1.1     joerg 
   2046       1.1     joerg 	error = rum_alloc_rx_list(sc);
   2047       1.1     joerg 	if (error != 0) {
   2048       1.1     joerg 		printf("%s: could not allocate Rx list\n",
   2049      1.33    dyoung 		    device_xname(sc->sc_dev));
   2050       1.1     joerg 		goto fail;
   2051       1.1     joerg 	}
   2052       1.1     joerg 
   2053       1.1     joerg 	/*
   2054       1.1     joerg 	 * Start up the receive pipe.
   2055       1.1     joerg 	 */
   2056      1.18  kiyohara 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
   2057  1.48.4.1       snj 		struct rum_rx_data *data;
   2058  1.48.4.1       snj 
   2059       1.1     joerg 		data = &sc->rx_data[i];
   2060       1.1     joerg 
   2061  1.48.4.1       snj 		usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
   2062  1.48.4.1       snj 		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
   2063      1.18  kiyohara 		error = usbd_transfer(data->xfer);
   2064      1.18  kiyohara 		if (error != USBD_NORMAL_COMPLETION &&
   2065      1.18  kiyohara 		    error != USBD_IN_PROGRESS) {
   2066      1.18  kiyohara 			printf("%s: could not queue Rx transfer\n",
   2067      1.33    dyoung 			    device_xname(sc->sc_dev));
   2068      1.18  kiyohara 			goto fail;
   2069      1.18  kiyohara 		}
   2070       1.1     joerg 	}
   2071       1.1     joerg 
   2072       1.1     joerg 	/* update Rx filter */
   2073       1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
   2074       1.1     joerg 
   2075       1.1     joerg 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
   2076       1.1     joerg 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2077       1.1     joerg 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
   2078       1.1     joerg 		       RT2573_DROP_ACKCTS;
   2079       1.1     joerg 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
   2080       1.1     joerg 			tmp |= RT2573_DROP_TODS;
   2081       1.1     joerg 		if (!(ifp->if_flags & IFF_PROMISC))
   2082       1.1     joerg 			tmp |= RT2573_DROP_NOT_TO_ME;
   2083       1.1     joerg 	}
   2084       1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
   2085       1.1     joerg 
   2086       1.1     joerg 	ifp->if_flags &= ~IFF_OACTIVE;
   2087       1.1     joerg 	ifp->if_flags |= IFF_RUNNING;
   2088       1.1     joerg 
   2089       1.1     joerg 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   2090       1.1     joerg 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   2091       1.1     joerg 	else
   2092       1.1     joerg 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   2093       1.1     joerg 
   2094       1.1     joerg 	return 0;
   2095       1.1     joerg 
   2096       1.1     joerg fail:	rum_stop(ifp, 1);
   2097       1.1     joerg 	return error;
   2098       1.1     joerg }
   2099       1.1     joerg 
   2100      1.35  jmcneill static void
   2101       1.1     joerg rum_stop(struct ifnet *ifp, int disable)
   2102       1.1     joerg {
   2103       1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   2104       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   2105       1.1     joerg 	uint32_t tmp;
   2106       1.1     joerg 
   2107       1.1     joerg 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
   2108       1.1     joerg 
   2109       1.1     joerg 	sc->sc_tx_timer = 0;
   2110       1.1     joerg 	ifp->if_timer = 0;
   2111       1.1     joerg 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2112       1.1     joerg 
   2113       1.1     joerg 	/* disable Rx */
   2114       1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
   2115       1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
   2116       1.1     joerg 
   2117       1.1     joerg 	/* reset ASIC */
   2118       1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 3);
   2119       1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 0);
   2120       1.1     joerg 
   2121      1.35  jmcneill 	if (sc->amrr_xfer != NULL) {
   2122  1.48.4.1       snj 		usbd_destroy_xfer(sc->amrr_xfer);
   2123      1.35  jmcneill 		sc->amrr_xfer = NULL;
   2124      1.35  jmcneill 	}
   2125      1.35  jmcneill 
   2126       1.1     joerg 	if (sc->sc_rx_pipeh != NULL) {
   2127       1.1     joerg 		usbd_abort_pipe(sc->sc_rx_pipeh);
   2128       1.1     joerg 	}
   2129       1.1     joerg 
   2130       1.1     joerg 	if (sc->sc_tx_pipeh != NULL) {
   2131       1.1     joerg 		usbd_abort_pipe(sc->sc_tx_pipeh);
   2132       1.1     joerg 	}
   2133       1.1     joerg 
   2134       1.1     joerg 	rum_free_rx_list(sc);
   2135       1.1     joerg 	rum_free_tx_list(sc);
   2136  1.48.4.1       snj 
   2137  1.48.4.1       snj 	if (sc->sc_rx_pipeh != NULL) {
   2138  1.48.4.1       snj 		usbd_close_pipe(sc->sc_rx_pipeh);
   2139  1.48.4.1       snj 		sc->sc_rx_pipeh = NULL;
   2140  1.48.4.1       snj 	}
   2141  1.48.4.1       snj 
   2142  1.48.4.1       snj 	if (sc->sc_tx_pipeh != NULL) {
   2143  1.48.4.1       snj 		usbd_close_pipe(sc->sc_tx_pipeh);
   2144  1.48.4.1       snj 		sc->sc_tx_pipeh = NULL;
   2145  1.48.4.1       snj 	}
   2146       1.1     joerg }
   2147       1.1     joerg 
   2148      1.35  jmcneill static int
   2149       1.1     joerg rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
   2150       1.1     joerg {
   2151       1.1     joerg 	usb_device_request_t req;
   2152       1.1     joerg 	uint16_t reg = RT2573_MCU_CODE_BASE;
   2153       1.1     joerg 	usbd_status error;
   2154       1.1     joerg 
   2155       1.1     joerg 	/* copy firmware image into NIC */
   2156       1.1     joerg 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
   2157       1.1     joerg 		rum_write(sc, reg, UGETDW(ucode));
   2158       1.1     joerg 
   2159       1.1     joerg 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
   2160       1.1     joerg 	req.bRequest = RT2573_MCU_CNTL;
   2161       1.1     joerg 	USETW(req.wValue, RT2573_MCU_RUN);
   2162       1.1     joerg 	USETW(req.wIndex, 0);
   2163       1.1     joerg 	USETW(req.wLength, 0);
   2164       1.1     joerg 
   2165       1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, NULL);
   2166       1.1     joerg 	if (error != 0) {
   2167       1.1     joerg 		printf("%s: could not run firmware: %s\n",
   2168      1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   2169       1.1     joerg 	}
   2170       1.1     joerg 	return error;
   2171       1.1     joerg }
   2172       1.1     joerg 
   2173      1.35  jmcneill static int
   2174       1.1     joerg rum_prepare_beacon(struct rum_softc *sc)
   2175       1.1     joerg {
   2176       1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   2177       1.1     joerg 	struct rum_tx_desc desc;
   2178       1.1     joerg 	struct mbuf *m0;
   2179       1.1     joerg 	int rate;
   2180       1.1     joerg 
   2181       1.1     joerg 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
   2182       1.1     joerg 	if (m0 == NULL) {
   2183      1.21      cube 		aprint_error_dev(sc->sc_dev,
   2184      1.21      cube 		    "could not allocate beacon frame\n");
   2185       1.1     joerg 		return ENOBUFS;
   2186       1.1     joerg 	}
   2187       1.1     joerg 
   2188       1.1     joerg 	/* send beacons at the lowest available rate */
   2189       1.1     joerg 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
   2190       1.1     joerg 
   2191       1.1     joerg 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
   2192       1.1     joerg 	    m0->m_pkthdr.len, rate);
   2193       1.1     joerg 
   2194       1.1     joerg 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
   2195       1.1     joerg 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
   2196       1.1     joerg 
   2197       1.1     joerg 	/* copy beacon header and payload into NIC memory */
   2198       1.1     joerg 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
   2199       1.1     joerg 	    m0->m_pkthdr.len);
   2200       1.1     joerg 
   2201       1.1     joerg 	m_freem(m0);
   2202       1.1     joerg 
   2203       1.1     joerg 	return 0;
   2204       1.1     joerg }
   2205       1.1     joerg 
   2206      1.35  jmcneill static void
   2207      1.18  kiyohara rum_newassoc(struct ieee80211_node *ni, int isnew)
   2208      1.18  kiyohara {
   2209      1.18  kiyohara 	/* start with lowest Tx rate */
   2210      1.18  kiyohara 	ni->ni_txrate = 0;
   2211      1.18  kiyohara }
   2212      1.18  kiyohara 
   2213      1.35  jmcneill static void
   2214       1.1     joerg rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
   2215       1.1     joerg {
   2216       1.1     joerg 	int i;
   2217       1.1     joerg 
   2218       1.1     joerg 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
   2219  1.48.4.1       snj 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
   2220       1.1     joerg 
   2221       1.1     joerg 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
   2222       1.1     joerg 
   2223       1.1     joerg 	/* set rate to some reasonable initial value */
   2224       1.1     joerg 	for (i = ni->ni_rates.rs_nrates - 1;
   2225       1.1     joerg 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
   2226       1.1     joerg 	     i--);
   2227       1.1     joerg 	ni->ni_txrate = i;
   2228       1.1     joerg 
   2229      1.33    dyoung 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
   2230       1.1     joerg }
   2231       1.1     joerg 
   2232      1.35  jmcneill static void
   2233       1.1     joerg rum_amrr_timeout(void *arg)
   2234       1.1     joerg {
   2235       1.1     joerg 	struct rum_softc *sc = arg;
   2236       1.1     joerg 	usb_device_request_t req;
   2237       1.1     joerg 
   2238       1.1     joerg 	/*
   2239       1.1     joerg 	 * Asynchronously read statistic registers (cleared by read).
   2240       1.1     joerg 	 */
   2241       1.1     joerg 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
   2242       1.1     joerg 	req.bRequest = RT2573_READ_MULTI_MAC;
   2243       1.1     joerg 	USETW(req.wValue, 0);
   2244       1.1     joerg 	USETW(req.wIndex, RT2573_STA_CSR0);
   2245  1.48.4.1       snj 	USETW(req.wLength, sizeof(sc->sta));
   2246       1.1     joerg 
   2247       1.1     joerg 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
   2248  1.48.4.1       snj 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
   2249       1.1     joerg 	    rum_amrr_update);
   2250       1.1     joerg 	(void)usbd_transfer(sc->amrr_xfer);
   2251       1.1     joerg }
   2252       1.1     joerg 
   2253      1.35  jmcneill static void
   2254  1.48.4.1       snj rum_amrr_update(struct usbd_xfer *xfer, void *priv,
   2255       1.1     joerg     usbd_status status)
   2256       1.1     joerg {
   2257       1.1     joerg 	struct rum_softc *sc = (struct rum_softc *)priv;
   2258       1.1     joerg 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2259       1.1     joerg 
   2260       1.1     joerg 	if (status != USBD_NORMAL_COMPLETION) {
   2261       1.1     joerg 		printf("%s: could not retrieve Tx statistics - cancelling "
   2262      1.33    dyoung 		    "automatic rate control\n", device_xname(sc->sc_dev));
   2263       1.1     joerg 		return;
   2264       1.1     joerg 	}
   2265       1.1     joerg 
   2266       1.1     joerg 	/* count TX retry-fail as Tx errors */
   2267       1.1     joerg 	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
   2268       1.1     joerg 
   2269       1.1     joerg 	sc->amn.amn_retrycnt =
   2270       1.1     joerg 	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
   2271       1.1     joerg 	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
   2272       1.1     joerg 	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
   2273       1.1     joerg 
   2274       1.1     joerg 	sc->amn.amn_txcnt =
   2275       1.1     joerg 	    sc->amn.amn_retrycnt +
   2276       1.1     joerg 	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
   2277       1.1     joerg 
   2278       1.1     joerg 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
   2279       1.1     joerg 
   2280      1.33    dyoung 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
   2281       1.1     joerg }
   2282       1.1     joerg 
   2283      1.35  jmcneill static int
   2284      1.33    dyoung rum_activate(device_t self, enum devact act)
   2285       1.1     joerg {
   2286       1.1     joerg 	switch (act) {
   2287       1.1     joerg 	case DVACT_DEACTIVATE:
   2288       1.1     joerg 		/*if_deactivate(&sc->sc_ic.ic_if);*/
   2289      1.30    dyoung 		return 0;
   2290      1.30    dyoung 	default:
   2291      1.35  jmcneill 		return 0;
   2292       1.1     joerg 	}
   2293       1.1     joerg }
   2294      1.38  pgoyette 
   2295      1.42    nonaka MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf");
   2296      1.38  pgoyette 
   2297      1.38  pgoyette #ifdef _MODULE
   2298      1.38  pgoyette #include "ioconf.c"
   2299      1.38  pgoyette #endif
   2300      1.38  pgoyette 
   2301      1.38  pgoyette static int
   2302      1.38  pgoyette if_rum_modcmd(modcmd_t cmd, void *aux)
   2303      1.38  pgoyette {
   2304      1.38  pgoyette 	int error = 0;
   2305      1.38  pgoyette 
   2306      1.38  pgoyette 	switch (cmd) {
   2307      1.38  pgoyette 	case MODULE_CMD_INIT:
   2308      1.38  pgoyette #ifdef _MODULE
   2309      1.39  pgoyette 		error = config_init_component(cfdriver_ioconf_rum,
   2310      1.39  pgoyette 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
   2311      1.38  pgoyette #endif
   2312      1.38  pgoyette 		return error;
   2313      1.38  pgoyette 	case MODULE_CMD_FINI:
   2314      1.38  pgoyette #ifdef _MODULE
   2315      1.39  pgoyette 		error = config_fini_component(cfdriver_ioconf_rum,
   2316      1.39  pgoyette 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
   2317      1.38  pgoyette #endif
   2318      1.38  pgoyette 		return error;
   2319      1.38  pgoyette 	default:
   2320      1.38  pgoyette 		return ENOTTY;
   2321      1.38  pgoyette 	}
   2322      1.38  pgoyette }
   2323