Home | History | Annotate | Line # | Download | only in usb
if_rum.c revision 1.58
      1  1.19  jmcneill /*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
      2  1.58   khorben /*	$NetBSD: if_rum.c,v 1.58 2017/05/23 00:32:47 khorben Exp $	*/
      3   1.1     joerg 
      4   1.1     joerg /*-
      5  1.18  kiyohara  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini (at) free.fr>
      6   1.1     joerg  * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
      7   1.1     joerg  *
      8   1.1     joerg  * Permission to use, copy, modify, and distribute this software for any
      9   1.1     joerg  * purpose with or without fee is hereby granted, provided that the above
     10   1.1     joerg  * copyright notice and this permission notice appear in all copies.
     11   1.1     joerg  *
     12   1.1     joerg  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     13   1.1     joerg  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     14   1.1     joerg  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     15   1.1     joerg  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     16   1.1     joerg  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     17   1.1     joerg  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     18   1.1     joerg  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     19   1.1     joerg  */
     20   1.1     joerg 
     21   1.1     joerg /*-
     22   1.1     joerg  * Ralink Technology RT2501USB/RT2601USB chipset driver
     23  1.18  kiyohara  * http://www.ralinktech.com.tw/
     24   1.1     joerg  */
     25   1.1     joerg 
     26   1.2   xtraeme #include <sys/cdefs.h>
     27  1.58   khorben __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.58 2017/05/23 00:32:47 khorben Exp $");
     28  1.57     skrll 
     29  1.57     skrll #ifdef _KERNEL_OPT
     30  1.57     skrll #include "opt_usb.h"
     31  1.57     skrll #endif
     32   1.1     joerg 
     33   1.1     joerg #include <sys/param.h>
     34   1.1     joerg #include <sys/sockio.h>
     35   1.1     joerg #include <sys/sysctl.h>
     36   1.1     joerg #include <sys/mbuf.h>
     37   1.1     joerg #include <sys/kernel.h>
     38   1.1     joerg #include <sys/socket.h>
     39   1.1     joerg #include <sys/systm.h>
     40  1.38  pgoyette #include <sys/module.h>
     41   1.1     joerg #include <sys/conf.h>
     42   1.1     joerg #include <sys/device.h>
     43   1.1     joerg 
     44  1.16        ad #include <sys/bus.h>
     45   1.1     joerg #include <machine/endian.h>
     46  1.16        ad #include <sys/intr.h>
     47   1.1     joerg 
     48   1.1     joerg #include <net/bpf.h>
     49   1.1     joerg #include <net/if.h>
     50   1.1     joerg #include <net/if_arp.h>
     51   1.1     joerg #include <net/if_dl.h>
     52   1.1     joerg #include <net/if_ether.h>
     53   1.1     joerg #include <net/if_media.h>
     54   1.1     joerg #include <net/if_types.h>
     55   1.1     joerg 
     56   1.1     joerg #include <netinet/in.h>
     57   1.1     joerg #include <netinet/in_systm.h>
     58   1.1     joerg #include <netinet/in_var.h>
     59   1.1     joerg #include <netinet/ip.h>
     60   1.1     joerg 
     61   1.1     joerg #include <net80211/ieee80211_netbsd.h>
     62   1.1     joerg #include <net80211/ieee80211_var.h>
     63   1.1     joerg #include <net80211/ieee80211_amrr.h>
     64   1.1     joerg #include <net80211/ieee80211_radiotap.h>
     65   1.1     joerg 
     66   1.1     joerg #include <dev/firmload.h>
     67   1.1     joerg 
     68   1.1     joerg #include <dev/usb/usb.h>
     69   1.1     joerg #include <dev/usb/usbdi.h>
     70   1.1     joerg #include <dev/usb/usbdi_util.h>
     71   1.1     joerg #include <dev/usb/usbdevs.h>
     72   1.1     joerg 
     73   1.1     joerg #include <dev/usb/if_rumreg.h>
     74   1.1     joerg #include <dev/usb/if_rumvar.h>
     75   1.1     joerg 
     76   1.1     joerg #ifdef RUM_DEBUG
     77  1.33    dyoung #define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
     78  1.33    dyoung #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
     79  1.11   xtraeme int rum_debug = 1;
     80   1.1     joerg #else
     81   1.1     joerg #define DPRINTF(x)
     82   1.1     joerg #define DPRINTFN(n, x)
     83   1.1     joerg #endif
     84   1.1     joerg 
     85   1.1     joerg /* various supported device vendors/products */
     86   1.1     joerg static const struct usb_devno rum_devs[] = {
     87  1.11   xtraeme 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
     88  1.11   xtraeme 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
     89  1.11   xtraeme 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
     90  1.11   xtraeme 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
     91  1.18  kiyohara 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
     92  1.11   xtraeme 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
     93  1.10   xtraeme 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
     94  1.11   xtraeme 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
     95   1.1     joerg 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
     96   1.1     joerg 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
     97  1.43       chs 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050C },
     98  1.43       chs 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB200 },
     99   1.1     joerg 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
    100  1.11   xtraeme 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
    101   1.1     joerg 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
    102  1.43       chs 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_RT2573 },
    103  1.18  kiyohara 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
    104  1.23       jun 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
    105   1.1     joerg 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
    106   1.1     joerg 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
    107   1.1     joerg 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
    108   1.1     joerg 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
    109  1.40  christos 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA110 },
    110  1.29     pooka 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
    111  1.43       chs 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7318 },
    112  1.43       chs 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7618 },
    113   1.1     joerg 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
    114  1.11   xtraeme 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
    115   1.1     joerg 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
    116   1.1     joerg 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
    117  1.11   xtraeme 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
    118  1.11   xtraeme 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
    119   1.1     joerg 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
    120  1.11   xtraeme 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
    121   1.4      elad 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
    122  1.43       chs 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HG },
    123  1.27  tshiozak 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_WLIUCG },
    124   1.1     joerg 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
    125   1.1     joerg 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
    126   1.1     joerg 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
    127  1.11   xtraeme 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
    128  1.11   xtraeme 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
    129  1.11   xtraeme 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
    130   1.4      elad 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
    131   1.1     joerg 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
    132   1.1     joerg 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
    133   1.1     joerg 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
    134  1.22  uebayasi 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
    135   1.1     joerg 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
    136   1.1     joerg 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
    137   1.1     joerg 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
    138   1.1     joerg 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
    139  1.43       chs 	{ USB_VENDOR_SPARKLAN,		USB_PRODUCT_SPARKLAN_RT2573 },
    140  1.43       chs 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 },
    141  1.58   khorben 	{ USB_VENDOR_SYNET,		USB_PRODUCT_SYNET_MWP54SS },
    142  1.43       chs 	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_RT2573 }
    143   1.1     joerg };
    144   1.1     joerg 
    145  1.35  jmcneill static int		rum_attachhook(void *);
    146  1.35  jmcneill static int		rum_alloc_tx_list(struct rum_softc *);
    147  1.35  jmcneill static void		rum_free_tx_list(struct rum_softc *);
    148  1.35  jmcneill static int		rum_alloc_rx_list(struct rum_softc *);
    149  1.35  jmcneill static void		rum_free_rx_list(struct rum_softc *);
    150  1.35  jmcneill static int		rum_media_change(struct ifnet *);
    151  1.35  jmcneill static void		rum_next_scan(void *);
    152  1.35  jmcneill static void		rum_task(void *);
    153  1.35  jmcneill static int		rum_newstate(struct ieee80211com *,
    154   1.1     joerg 			    enum ieee80211_state, int);
    155  1.52     skrll static void		rum_txeof(struct usbd_xfer *, void *,
    156   1.1     joerg 			    usbd_status);
    157  1.52     skrll static void		rum_rxeof(struct usbd_xfer *, void *,
    158   1.1     joerg 			    usbd_status);
    159  1.35  jmcneill static uint8_t		rum_rxrate(const struct rum_rx_desc *);
    160  1.35  jmcneill static int		rum_ack_rate(struct ieee80211com *, int);
    161  1.35  jmcneill static uint16_t		rum_txtime(int, int, uint32_t);
    162  1.35  jmcneill static uint8_t		rum_plcp_signal(int);
    163  1.35  jmcneill static void		rum_setup_tx_desc(struct rum_softc *,
    164   1.1     joerg 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
    165   1.1     joerg 			    int);
    166  1.35  jmcneill static int		rum_tx_data(struct rum_softc *, struct mbuf *,
    167   1.1     joerg 			    struct ieee80211_node *);
    168  1.35  jmcneill static void		rum_start(struct ifnet *);
    169  1.35  jmcneill static void		rum_watchdog(struct ifnet *);
    170  1.35  jmcneill static int		rum_ioctl(struct ifnet *, u_long, void *);
    171  1.35  jmcneill static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
    172   1.1     joerg 			    int);
    173  1.35  jmcneill static uint32_t		rum_read(struct rum_softc *, uint16_t);
    174  1.35  jmcneill static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
    175   1.1     joerg 			    int);
    176  1.35  jmcneill static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
    177  1.35  jmcneill static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
    178   1.1     joerg 			    size_t);
    179  1.35  jmcneill static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
    180  1.35  jmcneill static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
    181  1.35  jmcneill static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
    182  1.35  jmcneill static void		rum_select_antenna(struct rum_softc *);
    183  1.35  jmcneill static void		rum_enable_mrr(struct rum_softc *);
    184  1.35  jmcneill static void		rum_set_txpreamble(struct rum_softc *);
    185  1.35  jmcneill static void		rum_set_basicrates(struct rum_softc *);
    186  1.35  jmcneill static void		rum_select_band(struct rum_softc *,
    187   1.1     joerg 			    struct ieee80211_channel *);
    188  1.35  jmcneill static void		rum_set_chan(struct rum_softc *,
    189   1.1     joerg 			    struct ieee80211_channel *);
    190  1.35  jmcneill static void		rum_enable_tsf_sync(struct rum_softc *);
    191  1.35  jmcneill static void		rum_update_slot(struct rum_softc *);
    192  1.35  jmcneill static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
    193  1.35  jmcneill static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
    194  1.35  jmcneill static void		rum_update_promisc(struct rum_softc *);
    195  1.35  jmcneill static const char	*rum_get_rf(int);
    196  1.35  jmcneill static void		rum_read_eeprom(struct rum_softc *);
    197  1.35  jmcneill static int		rum_bbp_init(struct rum_softc *);
    198  1.35  jmcneill static int		rum_init(struct ifnet *);
    199  1.35  jmcneill static void		rum_stop(struct ifnet *, int);
    200  1.35  jmcneill static int		rum_load_microcode(struct rum_softc *, const u_char *,
    201   1.1     joerg 			    size_t);
    202  1.35  jmcneill static int		rum_prepare_beacon(struct rum_softc *);
    203  1.35  jmcneill static void		rum_newassoc(struct ieee80211_node *, int);
    204  1.35  jmcneill static void		rum_amrr_start(struct rum_softc *,
    205   1.1     joerg 			    struct ieee80211_node *);
    206  1.35  jmcneill static void		rum_amrr_timeout(void *);
    207  1.52     skrll static void		rum_amrr_update(struct usbd_xfer *, void *,
    208  1.52     skrll 			    usbd_status);
    209   1.1     joerg 
    210   1.1     joerg /*
    211   1.1     joerg  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    212   1.1     joerg  */
    213   1.1     joerg static const struct ieee80211_rateset rum_rateset_11a =
    214   1.1     joerg 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    215   1.1     joerg 
    216   1.1     joerg static const struct ieee80211_rateset rum_rateset_11b =
    217   1.1     joerg 	{ 4, { 2, 4, 11, 22 } };
    218   1.1     joerg 
    219   1.1     joerg static const struct ieee80211_rateset rum_rateset_11g =
    220   1.1     joerg 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    221   1.1     joerg 
    222   1.1     joerg static const struct {
    223   1.1     joerg 	uint32_t	reg;
    224   1.1     joerg 	uint32_t	val;
    225   1.1     joerg } rum_def_mac[] = {
    226   1.1     joerg 	RT2573_DEF_MAC
    227   1.1     joerg };
    228   1.1     joerg 
    229   1.1     joerg static const struct {
    230   1.1     joerg 	uint8_t	reg;
    231   1.1     joerg 	uint8_t	val;
    232   1.1     joerg } rum_def_bbp[] = {
    233   1.1     joerg 	RT2573_DEF_BBP
    234   1.1     joerg };
    235   1.1     joerg 
    236   1.1     joerg static const struct rfprog {
    237   1.1     joerg 	uint8_t		chan;
    238   1.1     joerg 	uint32_t	r1, r2, r3, r4;
    239   1.1     joerg }  rum_rf5226[] = {
    240   1.1     joerg 	RT2573_RF5226
    241   1.1     joerg }, rum_rf5225[] = {
    242   1.1     joerg 	RT2573_RF5225
    243   1.1     joerg };
    244   1.1     joerg 
    245  1.35  jmcneill static int rum_match(device_t, cfdata_t, void *);
    246  1.35  jmcneill static void rum_attach(device_t, device_t, void *);
    247  1.35  jmcneill static int rum_detach(device_t, int);
    248  1.35  jmcneill static int rum_activate(device_t, enum devact);
    249  1.33    dyoung extern struct cfdriver rum_cd;
    250  1.33    dyoung CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
    251  1.33    dyoung     rum_detach, rum_activate);
    252   1.1     joerg 
    253  1.35  jmcneill static int
    254  1.33    dyoung rum_match(device_t parent, cfdata_t match, void *aux)
    255   1.1     joerg {
    256  1.33    dyoung 	struct usb_attach_arg *uaa = aux;
    257   1.1     joerg 
    258  1.52     skrll 	return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
    259   1.1     joerg 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
    260   1.1     joerg }
    261   1.1     joerg 
    262  1.35  jmcneill static int
    263   1.1     joerg rum_attachhook(void *xsc)
    264   1.1     joerg {
    265   1.1     joerg 	struct rum_softc *sc = xsc;
    266   1.1     joerg 	firmware_handle_t fwh;
    267   1.1     joerg 	const char *name = "rum-rt2573";
    268   1.1     joerg 	u_char *ucode;
    269   1.1     joerg 	size_t size;
    270   1.1     joerg 	int error;
    271   1.1     joerg 
    272   1.1     joerg 	if ((error = firmware_open("rum", name, &fwh)) != 0) {
    273  1.51     ryoon 		printf("%s: failed firmware_open of file %s (error %d)\n",
    274  1.33    dyoung 		    device_xname(sc->sc_dev), name, error);
    275   1.1     joerg 		return error;
    276   1.1     joerg 	}
    277   1.1     joerg 	size = firmware_get_size(fwh);
    278   1.1     joerg 	ucode = firmware_malloc(size);
    279   1.1     joerg 	if (ucode == NULL) {
    280   1.1     joerg 		printf("%s: failed to allocate firmware memory\n",
    281  1.33    dyoung 		    device_xname(sc->sc_dev));
    282   1.1     joerg 		firmware_close(fwh);
    283  1.25      yamt 		return ENOMEM;
    284   1.1     joerg 	}
    285   1.1     joerg 	error = firmware_read(fwh, 0, ucode, size);
    286   1.1     joerg 	firmware_close(fwh);
    287   1.1     joerg 	if (error != 0) {
    288   1.1     joerg 		printf("%s: failed to read firmware (error %d)\n",
    289  1.33    dyoung 		    device_xname(sc->sc_dev), error);
    290  1.49     ozaki 		firmware_free(ucode, size);
    291   1.1     joerg 		return error;
    292   1.1     joerg 	}
    293   1.1     joerg 
    294   1.1     joerg 	if (rum_load_microcode(sc, ucode, size) != 0) {
    295   1.1     joerg 		printf("%s: could not load 8051 microcode\n",
    296  1.33    dyoung 		    device_xname(sc->sc_dev));
    297  1.49     ozaki 		firmware_free(ucode, size);
    298   1.1     joerg 		return ENXIO;
    299   1.1     joerg 	}
    300   1.1     joerg 
    301  1.49     ozaki 	firmware_free(ucode, size);
    302   1.1     joerg 	sc->sc_flags |= RT2573_FWLOADED;
    303   1.1     joerg 
    304   1.1     joerg 	return 0;
    305   1.1     joerg }
    306   1.1     joerg 
    307  1.35  jmcneill static void
    308  1.33    dyoung rum_attach(device_t parent, device_t self, void *aux)
    309   1.1     joerg {
    310  1.33    dyoung 	struct rum_softc *sc = device_private(self);
    311  1.33    dyoung 	struct usb_attach_arg *uaa = aux;
    312   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    313   1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    314   1.1     joerg 	usb_interface_descriptor_t *id;
    315   1.1     joerg 	usb_endpoint_descriptor_t *ed;
    316   1.1     joerg 	usbd_status error;
    317   1.1     joerg 	char *devinfop;
    318   1.1     joerg 	int i, ntries;
    319   1.1     joerg 	uint32_t tmp;
    320   1.1     joerg 
    321  1.21      cube 	sc->sc_dev = self;
    322  1.52     skrll 	sc->sc_udev = uaa->uaa_device;
    323   1.1     joerg 	sc->sc_flags = 0;
    324   1.1     joerg 
    325  1.28    plunky 	aprint_naive("\n");
    326  1.28    plunky 	aprint_normal("\n");
    327  1.28    plunky 
    328   1.1     joerg 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
    329  1.21      cube 	aprint_normal_dev(self, "%s\n", devinfop);
    330   1.1     joerg 	usbd_devinfo_free(devinfop);
    331   1.1     joerg 
    332  1.44     skrll 	error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
    333  1.44     skrll 	if (error != 0) {
    334  1.44     skrll 		aprint_error_dev(self, "failed to set configuration"
    335  1.44     skrll 		    ", err=%s\n", usbd_errstr(error));
    336  1.33    dyoung 		return;
    337   1.1     joerg 	}
    338   1.1     joerg 
    339   1.1     joerg 	/* get the first interface handle */
    340   1.1     joerg 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
    341   1.1     joerg 	    &sc->sc_iface);
    342   1.1     joerg 	if (error != 0) {
    343  1.21      cube 		aprint_error_dev(self, "could not get interface handle\n");
    344  1.33    dyoung 		return;
    345   1.1     joerg 	}
    346   1.1     joerg 
    347   1.1     joerg 	/*
    348   1.1     joerg 	 * Find endpoints.
    349   1.1     joerg 	 */
    350   1.1     joerg 	id = usbd_get_interface_descriptor(sc->sc_iface);
    351   1.1     joerg 
    352   1.1     joerg 	sc->sc_rx_no = sc->sc_tx_no = -1;
    353   1.1     joerg 	for (i = 0; i < id->bNumEndpoints; i++) {
    354   1.1     joerg 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
    355   1.1     joerg 		if (ed == NULL) {
    356  1.21      cube 			aprint_error_dev(self,
    357  1.21      cube 			    "no endpoint descriptor for iface %d\n", i);
    358  1.33    dyoung 			return;
    359   1.1     joerg 		}
    360   1.1     joerg 
    361   1.1     joerg 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
    362   1.1     joerg 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    363   1.1     joerg 			sc->sc_rx_no = ed->bEndpointAddress;
    364   1.1     joerg 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
    365   1.1     joerg 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    366   1.1     joerg 			sc->sc_tx_no = ed->bEndpointAddress;
    367   1.1     joerg 	}
    368   1.1     joerg 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
    369  1.21      cube 		aprint_error_dev(self, "missing endpoint\n");
    370  1.33    dyoung 		return;
    371   1.1     joerg 	}
    372   1.1     joerg 
    373  1.47  jmcneill 	usb_init_task(&sc->sc_task, rum_task, sc, 0);
    374  1.33    dyoung 	callout_init(&sc->sc_scan_ch, 0);
    375   1.1     joerg 
    376   1.1     joerg 	sc->amrr.amrr_min_success_threshold =  1;
    377   1.1     joerg 	sc->amrr.amrr_max_success_threshold = 10;
    378  1.33    dyoung 	callout_init(&sc->sc_amrr_ch, 0);
    379   1.1     joerg 
    380   1.1     joerg 	/* retrieve RT2573 rev. no */
    381   1.1     joerg 	for (ntries = 0; ntries < 1000; ntries++) {
    382   1.1     joerg 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
    383   1.1     joerg 			break;
    384   1.1     joerg 		DELAY(1000);
    385   1.1     joerg 	}
    386   1.1     joerg 	if (ntries == 1000) {
    387  1.21      cube 		aprint_error_dev(self, "timeout waiting for chip to settle\n");
    388  1.33    dyoung 		return;
    389   1.1     joerg 	}
    390   1.1     joerg 
    391   1.1     joerg 	/* retrieve MAC address and various other things from EEPROM */
    392   1.1     joerg 	rum_read_eeprom(sc);
    393   1.1     joerg 
    394  1.21      cube 	aprint_normal_dev(self,
    395  1.21      cube 	    "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
    396  1.21      cube 	    sc->macbbp_rev, tmp,
    397   1.1     joerg 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
    398   1.1     joerg 
    399   1.1     joerg 	ic->ic_ifp = ifp;
    400   1.1     joerg 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    401   1.1     joerg 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    402   1.1     joerg 	ic->ic_state = IEEE80211_S_INIT;
    403   1.1     joerg 
    404   1.1     joerg 	/* set device capabilities */
    405   1.1     joerg 	ic->ic_caps =
    406   1.1     joerg 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
    407   1.1     joerg 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    408   1.1     joerg 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
    409   1.1     joerg 	    IEEE80211_C_TXPMGT |	/* tx power management */
    410   1.1     joerg 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    411   1.1     joerg 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    412   1.1     joerg 	    IEEE80211_C_WPA;		/* 802.11i */
    413   1.1     joerg 
    414   1.1     joerg 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
    415   1.1     joerg 		/* set supported .11a rates */
    416   1.1     joerg 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
    417   1.1     joerg 
    418   1.1     joerg 		/* set supported .11a channels */
    419   1.1     joerg 		for (i = 34; i <= 46; i += 4) {
    420   1.1     joerg 			ic->ic_channels[i].ic_freq =
    421   1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    422   1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    423   1.1     joerg 		}
    424   1.1     joerg 		for (i = 36; i <= 64; i += 4) {
    425   1.1     joerg 			ic->ic_channels[i].ic_freq =
    426   1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    427   1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    428   1.1     joerg 		}
    429   1.1     joerg 		for (i = 100; i <= 140; i += 4) {
    430   1.1     joerg 			ic->ic_channels[i].ic_freq =
    431   1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    432   1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    433   1.1     joerg 		}
    434   1.1     joerg 		for (i = 149; i <= 165; i += 4) {
    435   1.1     joerg 			ic->ic_channels[i].ic_freq =
    436   1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    437   1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    438   1.1     joerg 		}
    439   1.1     joerg 	}
    440   1.1     joerg 
    441   1.1     joerg 	/* set supported .11b and .11g rates */
    442   1.1     joerg 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
    443   1.1     joerg 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
    444   1.1     joerg 
    445   1.1     joerg 	/* set supported .11b and .11g channels (1 through 14) */
    446   1.1     joerg 	for (i = 1; i <= 14; i++) {
    447   1.1     joerg 		ic->ic_channels[i].ic_freq =
    448   1.1     joerg 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    449   1.1     joerg 		ic->ic_channels[i].ic_flags =
    450   1.1     joerg 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    451   1.1     joerg 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    452   1.1     joerg 	}
    453   1.1     joerg 
    454   1.1     joerg 	ifp->if_softc = sc;
    455   1.1     joerg 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    456   1.1     joerg 	ifp->if_init = rum_init;
    457   1.1     joerg 	ifp->if_ioctl = rum_ioctl;
    458   1.1     joerg 	ifp->if_start = rum_start;
    459   1.1     joerg 	ifp->if_watchdog = rum_watchdog;
    460   1.1     joerg 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
    461   1.1     joerg 	IFQ_SET_READY(&ifp->if_snd);
    462  1.33    dyoung 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    463   1.1     joerg 
    464   1.1     joerg 	if_attach(ifp);
    465   1.1     joerg 	ieee80211_ifattach(ic);
    466  1.18  kiyohara 	ic->ic_newassoc = rum_newassoc;
    467   1.1     joerg 
    468   1.1     joerg 	/* override state transition machine */
    469   1.1     joerg 	sc->sc_newstate = ic->ic_newstate;
    470   1.1     joerg 	ic->ic_newstate = rum_newstate;
    471   1.1     joerg 	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
    472   1.1     joerg 
    473  1.32     joerg 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    474  1.52     skrll 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    475  1.31     pooka 	    &sc->sc_drvbpf);
    476   1.1     joerg 
    477  1.52     skrll 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
    478   1.1     joerg 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    479   1.1     joerg 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
    480   1.1     joerg 
    481  1.52     skrll 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
    482   1.1     joerg 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    483   1.1     joerg 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
    484   1.1     joerg 
    485   1.1     joerg 	ieee80211_announce(ic);
    486   1.1     joerg 
    487  1.56   msaitoh 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
    488   1.1     joerg 
    489  1.50    nonaka 	if (!pmf_device_register(self, NULL, NULL))
    490  1.50    nonaka 		aprint_error_dev(self, "couldn't establish power handler\n");
    491  1.50    nonaka 
    492  1.33    dyoung 	return;
    493   1.1     joerg }
    494   1.1     joerg 
    495  1.35  jmcneill static int
    496  1.33    dyoung rum_detach(device_t self, int flags)
    497   1.1     joerg {
    498  1.33    dyoung 	struct rum_softc *sc = device_private(self);
    499   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    500   1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    501   1.1     joerg 	int s;
    502   1.1     joerg 
    503  1.13  drochner 	if (!ifp->if_softc)
    504  1.13  drochner 		return 0;
    505  1.13  drochner 
    506  1.50    nonaka 	pmf_device_deregister(self);
    507  1.50    nonaka 
    508   1.1     joerg 	s = splusb();
    509   1.1     joerg 
    510   1.1     joerg 	rum_stop(ifp, 1);
    511   1.1     joerg 	usb_rem_task(sc->sc_udev, &sc->sc_task);
    512  1.33    dyoung 	callout_stop(&sc->sc_scan_ch);
    513  1.33    dyoung 	callout_stop(&sc->sc_amrr_ch);
    514   1.1     joerg 
    515  1.32     joerg 	bpf_detach(ifp);
    516   1.1     joerg 	ieee80211_ifdetach(ic);	/* free all nodes */
    517   1.1     joerg 	if_detach(ifp);
    518   1.1     joerg 
    519   1.1     joerg 	splx(s);
    520   1.1     joerg 
    521  1.33    dyoung 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
    522   1.1     joerg 
    523   1.1     joerg 	return 0;
    524   1.1     joerg }
    525   1.1     joerg 
    526  1.35  jmcneill static int
    527   1.1     joerg rum_alloc_tx_list(struct rum_softc *sc)
    528   1.1     joerg {
    529   1.1     joerg 	struct rum_tx_data *data;
    530   1.1     joerg 	int i, error;
    531   1.1     joerg 
    532  1.35  jmcneill 	sc->tx_cur = sc->tx_queued = 0;
    533   1.1     joerg 
    534  1.18  kiyohara 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
    535   1.1     joerg 		data = &sc->tx_data[i];
    536   1.1     joerg 
    537   1.1     joerg 		data->sc = sc;
    538   1.1     joerg 
    539  1.52     skrll 		error = usbd_create_xfer(sc->sc_tx_pipeh,
    540  1.52     skrll 		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN,
    541  1.52     skrll 		    USBD_FORCE_SHORT_XFER, 0, &data->xfer);
    542  1.52     skrll 		if (error) {
    543   1.1     joerg 			printf("%s: could not allocate tx xfer\n",
    544  1.33    dyoung 			    device_xname(sc->sc_dev));
    545   1.1     joerg 			goto fail;
    546   1.1     joerg 		}
    547  1.52     skrll 		data->buf = usbd_get_buffer(data->xfer);
    548   1.1     joerg 
    549   1.1     joerg 		/* clean Tx descriptor */
    550  1.26    cegger 		memset(data->buf, 0, RT2573_TX_DESC_SIZE);
    551   1.1     joerg 	}
    552   1.1     joerg 
    553   1.1     joerg 	return 0;
    554   1.1     joerg 
    555   1.1     joerg fail:	rum_free_tx_list(sc);
    556   1.1     joerg 	return error;
    557   1.1     joerg }
    558   1.1     joerg 
    559  1.35  jmcneill static void
    560   1.1     joerg rum_free_tx_list(struct rum_softc *sc)
    561   1.1     joerg {
    562   1.1     joerg 	struct rum_tx_data *data;
    563   1.1     joerg 	int i;
    564   1.1     joerg 
    565  1.18  kiyohara 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
    566   1.1     joerg 		data = &sc->tx_data[i];
    567   1.1     joerg 
    568   1.1     joerg 		if (data->xfer != NULL) {
    569  1.52     skrll 			usbd_destroy_xfer(data->xfer);
    570   1.1     joerg 			data->xfer = NULL;
    571   1.1     joerg 		}
    572   1.1     joerg 
    573   1.1     joerg 		if (data->ni != NULL) {
    574   1.1     joerg 			ieee80211_free_node(data->ni);
    575   1.1     joerg 			data->ni = NULL;
    576   1.1     joerg 		}
    577   1.1     joerg 	}
    578   1.1     joerg }
    579   1.1     joerg 
    580  1.35  jmcneill static int
    581   1.1     joerg rum_alloc_rx_list(struct rum_softc *sc)
    582   1.1     joerg {
    583   1.1     joerg 	struct rum_rx_data *data;
    584   1.1     joerg 	int i, error;
    585   1.1     joerg 
    586  1.18  kiyohara 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
    587   1.1     joerg 		data = &sc->rx_data[i];
    588   1.1     joerg 
    589   1.1     joerg 		data->sc = sc;
    590   1.1     joerg 
    591  1.52     skrll 		error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
    592  1.52     skrll 		    USBD_SHORT_XFER_OK, 0, &data->xfer);
    593  1.52     skrll 		if (error) {
    594   1.1     joerg 			printf("%s: could not allocate rx xfer\n",
    595  1.33    dyoung 			    device_xname(sc->sc_dev));
    596   1.1     joerg 			goto fail;
    597   1.1     joerg 		}
    598   1.1     joerg 
    599   1.1     joerg 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    600   1.1     joerg 		if (data->m == NULL) {
    601   1.1     joerg 			printf("%s: could not allocate rx mbuf\n",
    602  1.33    dyoung 			    device_xname(sc->sc_dev));
    603   1.1     joerg 			error = ENOMEM;
    604   1.1     joerg 			goto fail;
    605   1.1     joerg 		}
    606   1.1     joerg 
    607   1.1     joerg 		MCLGET(data->m, M_DONTWAIT);
    608   1.1     joerg 		if (!(data->m->m_flags & M_EXT)) {
    609   1.1     joerg 			printf("%s: could not allocate rx mbuf cluster\n",
    610  1.33    dyoung 			    device_xname(sc->sc_dev));
    611   1.1     joerg 			error = ENOMEM;
    612   1.1     joerg 			goto fail;
    613   1.1     joerg 		}
    614   1.1     joerg 
    615   1.1     joerg 		data->buf = mtod(data->m, uint8_t *);
    616   1.1     joerg 	}
    617   1.1     joerg 
    618   1.1     joerg 	return 0;
    619   1.1     joerg 
    620  1.34  dholland fail:	rum_free_rx_list(sc);
    621   1.1     joerg 	return error;
    622   1.1     joerg }
    623   1.1     joerg 
    624  1.35  jmcneill static void
    625   1.1     joerg rum_free_rx_list(struct rum_softc *sc)
    626   1.1     joerg {
    627   1.1     joerg 	struct rum_rx_data *data;
    628   1.1     joerg 	int i;
    629   1.1     joerg 
    630  1.18  kiyohara 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
    631   1.1     joerg 		data = &sc->rx_data[i];
    632   1.1     joerg 
    633   1.1     joerg 		if (data->xfer != NULL) {
    634  1.52     skrll 			usbd_destroy_xfer(data->xfer);
    635   1.1     joerg 			data->xfer = NULL;
    636   1.1     joerg 		}
    637   1.1     joerg 
    638   1.1     joerg 		if (data->m != NULL) {
    639   1.1     joerg 			m_freem(data->m);
    640   1.1     joerg 			data->m = NULL;
    641   1.1     joerg 		}
    642   1.1     joerg 	}
    643   1.1     joerg }
    644   1.1     joerg 
    645  1.35  jmcneill static int
    646   1.1     joerg rum_media_change(struct ifnet *ifp)
    647   1.1     joerg {
    648   1.1     joerg 	int error;
    649   1.1     joerg 
    650   1.1     joerg 	error = ieee80211_media_change(ifp);
    651   1.1     joerg 	if (error != ENETRESET)
    652   1.1     joerg 		return error;
    653   1.1     joerg 
    654   1.1     joerg 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    655   1.1     joerg 		rum_init(ifp);
    656   1.1     joerg 
    657   1.1     joerg 	return 0;
    658   1.1     joerg }
    659   1.1     joerg 
    660   1.1     joerg /*
    661   1.1     joerg  * This function is called periodically (every 200ms) during scanning to
    662   1.1     joerg  * switch from one channel to another.
    663   1.1     joerg  */
    664  1.35  jmcneill static void
    665   1.1     joerg rum_next_scan(void *arg)
    666   1.1     joerg {
    667   1.1     joerg 	struct rum_softc *sc = arg;
    668   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    669  1.35  jmcneill 	int s;
    670   1.1     joerg 
    671  1.35  jmcneill 	s = splnet();
    672   1.1     joerg 	if (ic->ic_state == IEEE80211_S_SCAN)
    673   1.1     joerg 		ieee80211_next_scan(ic);
    674  1.35  jmcneill 	splx(s);
    675   1.1     joerg }
    676   1.1     joerg 
    677  1.35  jmcneill static void
    678   1.1     joerg rum_task(void *arg)
    679   1.1     joerg {
    680   1.1     joerg 	struct rum_softc *sc = arg;
    681   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    682   1.1     joerg 	enum ieee80211_state ostate;
    683   1.1     joerg 	struct ieee80211_node *ni;
    684   1.1     joerg 	uint32_t tmp;
    685   1.1     joerg 
    686   1.1     joerg 	ostate = ic->ic_state;
    687   1.1     joerg 
    688   1.1     joerg 	switch (sc->sc_state) {
    689   1.1     joerg 	case IEEE80211_S_INIT:
    690   1.1     joerg 		if (ostate == IEEE80211_S_RUN) {
    691   1.1     joerg 			/* abort TSF synchronization */
    692   1.1     joerg 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
    693   1.1     joerg 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
    694   1.1     joerg 		}
    695   1.1     joerg 		break;
    696   1.1     joerg 
    697   1.1     joerg 	case IEEE80211_S_SCAN:
    698   1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    699  1.33    dyoung 		callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
    700   1.1     joerg 		break;
    701   1.1     joerg 
    702   1.1     joerg 	case IEEE80211_S_AUTH:
    703   1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    704   1.1     joerg 		break;
    705   1.1     joerg 
    706   1.1     joerg 	case IEEE80211_S_ASSOC:
    707   1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    708   1.1     joerg 		break;
    709   1.1     joerg 
    710   1.1     joerg 	case IEEE80211_S_RUN:
    711   1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    712   1.1     joerg 
    713   1.1     joerg 		ni = ic->ic_bss;
    714   1.1     joerg 
    715   1.1     joerg 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    716   1.1     joerg 			rum_update_slot(sc);
    717   1.1     joerg 			rum_enable_mrr(sc);
    718   1.1     joerg 			rum_set_txpreamble(sc);
    719   1.1     joerg 			rum_set_basicrates(sc);
    720   1.1     joerg 			rum_set_bssid(sc, ni->ni_bssid);
    721   1.1     joerg 		}
    722   1.1     joerg 
    723   1.1     joerg 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
    724   1.1     joerg 		    ic->ic_opmode == IEEE80211_M_IBSS)
    725   1.1     joerg 			rum_prepare_beacon(sc);
    726   1.1     joerg 
    727   1.1     joerg 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
    728   1.1     joerg 			rum_enable_tsf_sync(sc);
    729   1.1     joerg 
    730  1.18  kiyohara 		if (ic->ic_opmode == IEEE80211_M_STA) {
    731  1.18  kiyohara 			/* fake a join to init the tx rate */
    732  1.18  kiyohara 			rum_newassoc(ic->ic_bss, 1);
    733  1.18  kiyohara 
    734  1.18  kiyohara 			/* enable automatic rate adaptation in STA mode */
    735  1.18  kiyohara 			if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
    736  1.18  kiyohara 				rum_amrr_start(sc, ni);
    737  1.18  kiyohara 		}
    738   1.1     joerg 
    739   1.1     joerg 		break;
    740   1.1     joerg 	}
    741   1.1     joerg 
    742  1.35  jmcneill 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
    743   1.1     joerg }
    744   1.1     joerg 
    745  1.35  jmcneill static int
    746   1.1     joerg rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    747   1.1     joerg {
    748   1.1     joerg 	struct rum_softc *sc = ic->ic_ifp->if_softc;
    749   1.1     joerg 
    750   1.1     joerg 	usb_rem_task(sc->sc_udev, &sc->sc_task);
    751  1.33    dyoung 	callout_stop(&sc->sc_scan_ch);
    752  1.33    dyoung 	callout_stop(&sc->sc_amrr_ch);
    753   1.1     joerg 
    754   1.1     joerg 	/* do it in a process context */
    755   1.1     joerg 	sc->sc_state = nstate;
    756  1.35  jmcneill 	sc->sc_arg = arg;
    757   1.1     joerg 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
    758   1.1     joerg 
    759   1.1     joerg 	return 0;
    760   1.1     joerg }
    761   1.1     joerg 
    762   1.1     joerg /* quickly determine if a given rate is CCK or OFDM */
    763   1.1     joerg #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
    764   1.1     joerg 
    765   1.1     joerg #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
    766   1.1     joerg #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
    767   1.1     joerg 
    768  1.35  jmcneill static void
    769  1.52     skrll rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
    770   1.1     joerg {
    771   1.1     joerg 	struct rum_tx_data *data = priv;
    772   1.1     joerg 	struct rum_softc *sc = data->sc;
    773   1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    774   1.1     joerg 	int s;
    775   1.1     joerg 
    776   1.1     joerg 	if (status != USBD_NORMAL_COMPLETION) {
    777   1.1     joerg 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
    778   1.1     joerg 			return;
    779   1.1     joerg 
    780   1.1     joerg 		printf("%s: could not transmit buffer: %s\n",
    781  1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(status));
    782   1.1     joerg 
    783   1.1     joerg 		if (status == USBD_STALLED)
    784   1.1     joerg 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
    785   1.1     joerg 
    786   1.1     joerg 		ifp->if_oerrors++;
    787   1.1     joerg 		return;
    788   1.1     joerg 	}
    789   1.1     joerg 
    790   1.1     joerg 	s = splnet();
    791   1.1     joerg 
    792   1.1     joerg 	ieee80211_free_node(data->ni);
    793   1.1     joerg 	data->ni = NULL;
    794   1.1     joerg 
    795   1.1     joerg 	sc->tx_queued--;
    796   1.1     joerg 	ifp->if_opackets++;
    797   1.1     joerg 
    798   1.1     joerg 	DPRINTFN(10, ("tx done\n"));
    799   1.1     joerg 
    800   1.1     joerg 	sc->sc_tx_timer = 0;
    801   1.1     joerg 	ifp->if_flags &= ~IFF_OACTIVE;
    802   1.1     joerg 	rum_start(ifp);
    803   1.1     joerg 
    804   1.1     joerg 	splx(s);
    805   1.1     joerg }
    806   1.1     joerg 
    807  1.35  jmcneill static void
    808  1.52     skrll rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
    809   1.1     joerg {
    810   1.1     joerg 	struct rum_rx_data *data = priv;
    811   1.1     joerg 	struct rum_softc *sc = data->sc;
    812   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    813   1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    814   1.1     joerg 	struct rum_rx_desc *desc;
    815   1.1     joerg 	struct ieee80211_frame *wh;
    816   1.1     joerg 	struct ieee80211_node *ni;
    817   1.1     joerg 	struct mbuf *mnew, *m;
    818   1.1     joerg 	int s, len;
    819   1.1     joerg 
    820   1.1     joerg 	if (status != USBD_NORMAL_COMPLETION) {
    821   1.1     joerg 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
    822   1.1     joerg 			return;
    823   1.1     joerg 
    824   1.1     joerg 		if (status == USBD_STALLED)
    825   1.1     joerg 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
    826   1.1     joerg 		goto skip;
    827   1.1     joerg 	}
    828   1.1     joerg 
    829   1.1     joerg 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
    830   1.1     joerg 
    831  1.37  pgoyette 	if (len < (int)(RT2573_RX_DESC_SIZE +
    832  1.37  pgoyette 		        sizeof(struct ieee80211_frame_min))) {
    833  1.33    dyoung 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
    834   1.1     joerg 		    len));
    835   1.1     joerg 		ifp->if_ierrors++;
    836   1.1     joerg 		goto skip;
    837   1.1     joerg 	}
    838   1.1     joerg 
    839   1.1     joerg 	desc = (struct rum_rx_desc *)data->buf;
    840   1.1     joerg 
    841   1.1     joerg 	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
    842   1.1     joerg 		/*
    843   1.1     joerg 		 * This should not happen since we did not request to receive
    844   1.1     joerg 		 * those frames when we filled RT2573_TXRX_CSR0.
    845   1.1     joerg 		 */
    846   1.1     joerg 		DPRINTFN(5, ("CRC error\n"));
    847   1.1     joerg 		ifp->if_ierrors++;
    848   1.1     joerg 		goto skip;
    849   1.1     joerg 	}
    850   1.1     joerg 
    851   1.1     joerg 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
    852   1.1     joerg 	if (mnew == NULL) {
    853   1.1     joerg 		printf("%s: could not allocate rx mbuf\n",
    854  1.33    dyoung 		    device_xname(sc->sc_dev));
    855   1.1     joerg 		ifp->if_ierrors++;
    856   1.1     joerg 		goto skip;
    857   1.1     joerg 	}
    858   1.1     joerg 
    859   1.1     joerg 	MCLGET(mnew, M_DONTWAIT);
    860   1.1     joerg 	if (!(mnew->m_flags & M_EXT)) {
    861   1.1     joerg 		printf("%s: could not allocate rx mbuf cluster\n",
    862  1.33    dyoung 		    device_xname(sc->sc_dev));
    863   1.1     joerg 		m_freem(mnew);
    864   1.1     joerg 		ifp->if_ierrors++;
    865   1.1     joerg 		goto skip;
    866   1.1     joerg 	}
    867   1.1     joerg 
    868   1.1     joerg 	m = data->m;
    869   1.1     joerg 	data->m = mnew;
    870   1.1     joerg 	data->buf = mtod(data->m, uint8_t *);
    871   1.1     joerg 
    872   1.1     joerg 	/* finalize mbuf */
    873  1.55     ozaki 	m_set_rcvif(m, ifp);
    874   1.7  christos 	m->m_data = (void *)(desc + 1);
    875   1.1     joerg 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
    876   1.1     joerg 
    877   1.1     joerg 	s = splnet();
    878   1.1     joerg 
    879   1.1     joerg 	if (sc->sc_drvbpf != NULL) {
    880   1.1     joerg 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
    881   1.1     joerg 
    882   1.1     joerg 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
    883   1.1     joerg 		tap->wr_rate = rum_rxrate(desc);
    884   1.1     joerg 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
    885   1.1     joerg 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
    886   1.1     joerg 		tap->wr_antenna = sc->rx_ant;
    887   1.1     joerg 		tap->wr_antsignal = desc->rssi;
    888   1.1     joerg 
    889  1.32     joerg 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
    890   1.1     joerg 	}
    891   1.1     joerg 
    892   1.1     joerg 	wh = mtod(m, struct ieee80211_frame *);
    893   1.1     joerg 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
    894   1.1     joerg 
    895   1.1     joerg 	/* send the frame to the 802.11 layer */
    896   1.1     joerg 	ieee80211_input(ic, m, ni, desc->rssi, 0);
    897   1.1     joerg 
    898   1.1     joerg 	/* node is no longer needed */
    899   1.1     joerg 	ieee80211_free_node(ni);
    900   1.1     joerg 
    901   1.1     joerg 	splx(s);
    902   1.1     joerg 
    903   1.1     joerg 	DPRINTFN(15, ("rx done\n"));
    904   1.1     joerg 
    905   1.1     joerg skip:	/* setup a new transfer */
    906  1.52     skrll 	usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK,
    907  1.52     skrll 	    USBD_NO_TIMEOUT, rum_rxeof);
    908   1.1     joerg 	usbd_transfer(xfer);
    909   1.1     joerg }
    910   1.1     joerg 
    911   1.1     joerg /*
    912   1.1     joerg  * This function is only used by the Rx radiotap code. It returns the rate at
    913   1.1     joerg  * which a given frame was received.
    914   1.1     joerg  */
    915  1.35  jmcneill static uint8_t
    916  1.18  kiyohara rum_rxrate(const struct rum_rx_desc *desc)
    917   1.1     joerg {
    918   1.1     joerg 	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
    919   1.1     joerg 		/* reverse function of rum_plcp_signal */
    920   1.1     joerg 		switch (desc->rate) {
    921   1.1     joerg 		case 0xb:	return 12;
    922   1.1     joerg 		case 0xf:	return 18;
    923   1.1     joerg 		case 0xa:	return 24;
    924   1.1     joerg 		case 0xe:	return 36;
    925   1.1     joerg 		case 0x9:	return 48;
    926   1.1     joerg 		case 0xd:	return 72;
    927   1.1     joerg 		case 0x8:	return 96;
    928   1.1     joerg 		case 0xc:	return 108;
    929   1.1     joerg 		}
    930   1.1     joerg 	} else {
    931   1.1     joerg 		if (desc->rate == 10)
    932   1.1     joerg 			return 2;
    933   1.1     joerg 		if (desc->rate == 20)
    934   1.1     joerg 			return 4;
    935   1.1     joerg 		if (desc->rate == 55)
    936   1.1     joerg 			return 11;
    937   1.1     joerg 		if (desc->rate == 110)
    938   1.1     joerg 			return 22;
    939   1.1     joerg 	}
    940   1.1     joerg 	return 2;	/* should not get there */
    941   1.1     joerg }
    942   1.1     joerg 
    943   1.1     joerg /*
    944   1.1     joerg  * Return the expected ack rate for a frame transmitted at rate `rate'.
    945   1.1     joerg  * XXX: this should depend on the destination node basic rate set.
    946   1.1     joerg  */
    947  1.35  jmcneill static int
    948   1.1     joerg rum_ack_rate(struct ieee80211com *ic, int rate)
    949   1.1     joerg {
    950   1.1     joerg 	switch (rate) {
    951   1.1     joerg 	/* CCK rates */
    952   1.1     joerg 	case 2:
    953   1.1     joerg 		return 2;
    954   1.1     joerg 	case 4:
    955   1.1     joerg 	case 11:
    956   1.1     joerg 	case 22:
    957   1.1     joerg 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
    958   1.1     joerg 
    959   1.1     joerg 	/* OFDM rates */
    960   1.1     joerg 	case 12:
    961   1.1     joerg 	case 18:
    962   1.1     joerg 		return 12;
    963   1.1     joerg 	case 24:
    964   1.1     joerg 	case 36:
    965   1.1     joerg 		return 24;
    966   1.1     joerg 	case 48:
    967   1.1     joerg 	case 72:
    968   1.1     joerg 	case 96:
    969   1.1     joerg 	case 108:
    970   1.1     joerg 		return 48;
    971   1.1     joerg 	}
    972   1.1     joerg 
    973   1.1     joerg 	/* default to 1Mbps */
    974   1.1     joerg 	return 2;
    975   1.1     joerg }
    976   1.1     joerg 
    977   1.1     joerg /*
    978   1.1     joerg  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
    979   1.1     joerg  * The function automatically determines the operating mode depending on the
    980   1.1     joerg  * given rate. `flags' indicates whether short preamble is in use or not.
    981   1.1     joerg  */
    982  1.35  jmcneill static uint16_t
    983   1.1     joerg rum_txtime(int len, int rate, uint32_t flags)
    984   1.1     joerg {
    985   1.1     joerg 	uint16_t txtime;
    986   1.1     joerg 
    987   1.1     joerg 	if (RUM_RATE_IS_OFDM(rate)) {
    988   1.1     joerg 		/* IEEE Std 802.11a-1999, pp. 37 */
    989   1.1     joerg 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
    990   1.1     joerg 		txtime = 16 + 4 + 4 * txtime + 6;
    991   1.1     joerg 	} else {
    992   1.1     joerg 		/* IEEE Std 802.11b-1999, pp. 28 */
    993   1.1     joerg 		txtime = (16 * len + rate - 1) / rate;
    994   1.1     joerg 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
    995   1.1     joerg 			txtime +=  72 + 24;
    996   1.1     joerg 		else
    997   1.1     joerg 			txtime += 144 + 48;
    998   1.1     joerg 	}
    999   1.1     joerg 	return txtime;
   1000   1.1     joerg }
   1001   1.1     joerg 
   1002  1.35  jmcneill static uint8_t
   1003   1.1     joerg rum_plcp_signal(int rate)
   1004   1.1     joerg {
   1005   1.1     joerg 	switch (rate) {
   1006   1.1     joerg 	/* CCK rates (returned values are device-dependent) */
   1007   1.1     joerg 	case 2:		return 0x0;
   1008   1.1     joerg 	case 4:		return 0x1;
   1009   1.1     joerg 	case 11:	return 0x2;
   1010   1.1     joerg 	case 22:	return 0x3;
   1011   1.1     joerg 
   1012   1.1     joerg 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1013   1.1     joerg 	case 12:	return 0xb;
   1014   1.1     joerg 	case 18:	return 0xf;
   1015   1.1     joerg 	case 24:	return 0xa;
   1016   1.1     joerg 	case 36:	return 0xe;
   1017   1.1     joerg 	case 48:	return 0x9;
   1018   1.1     joerg 	case 72:	return 0xd;
   1019   1.1     joerg 	case 96:	return 0x8;
   1020   1.1     joerg 	case 108:	return 0xc;
   1021   1.1     joerg 
   1022   1.1     joerg 	/* unsupported rates (should not get there) */
   1023   1.1     joerg 	default:	return 0xff;
   1024   1.1     joerg 	}
   1025   1.1     joerg }
   1026   1.1     joerg 
   1027  1.35  jmcneill static void
   1028   1.1     joerg rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
   1029   1.1     joerg     uint32_t flags, uint16_t xflags, int len, int rate)
   1030   1.1     joerg {
   1031   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1032   1.1     joerg 	uint16_t plcp_length;
   1033   1.1     joerg 	int remainder;
   1034   1.1     joerg 
   1035   1.1     joerg 	desc->flags = htole32(flags);
   1036   1.1     joerg 	desc->flags |= htole32(RT2573_TX_VALID);
   1037   1.1     joerg 	desc->flags |= htole32(len << 16);
   1038   1.1     joerg 
   1039   1.1     joerg 	desc->xflags = htole16(xflags);
   1040   1.1     joerg 
   1041   1.1     joerg 	desc->wme = htole16(
   1042   1.1     joerg 	    RT2573_QID(0) |
   1043   1.1     joerg 	    RT2573_AIFSN(2) |
   1044   1.1     joerg 	    RT2573_LOGCWMIN(4) |
   1045   1.1     joerg 	    RT2573_LOGCWMAX(10));
   1046   1.1     joerg 
   1047   1.1     joerg 	/* setup PLCP fields */
   1048   1.1     joerg 	desc->plcp_signal  = rum_plcp_signal(rate);
   1049   1.1     joerg 	desc->plcp_service = 4;
   1050   1.1     joerg 
   1051   1.1     joerg 	len += IEEE80211_CRC_LEN;
   1052   1.1     joerg 	if (RUM_RATE_IS_OFDM(rate)) {
   1053   1.1     joerg 		desc->flags |= htole32(RT2573_TX_OFDM);
   1054   1.1     joerg 
   1055   1.1     joerg 		plcp_length = len & 0xfff;
   1056   1.1     joerg 		desc->plcp_length_hi = plcp_length >> 6;
   1057   1.1     joerg 		desc->plcp_length_lo = plcp_length & 0x3f;
   1058   1.1     joerg 	} else {
   1059   1.1     joerg 		plcp_length = (16 * len + rate - 1) / rate;
   1060   1.1     joerg 		if (rate == 22) {
   1061   1.1     joerg 			remainder = (16 * len) % 22;
   1062   1.1     joerg 			if (remainder != 0 && remainder < 7)
   1063   1.1     joerg 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
   1064   1.1     joerg 		}
   1065   1.1     joerg 		desc->plcp_length_hi = plcp_length >> 8;
   1066   1.1     joerg 		desc->plcp_length_lo = plcp_length & 0xff;
   1067   1.1     joerg 
   1068   1.1     joerg 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1069   1.1     joerg 			desc->plcp_signal |= 0x08;
   1070   1.1     joerg 	}
   1071   1.1     joerg }
   1072   1.1     joerg 
   1073   1.1     joerg #define RUM_TX_TIMEOUT	5000
   1074   1.1     joerg 
   1075  1.35  jmcneill static int
   1076  1.35  jmcneill rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
   1077   1.1     joerg {
   1078   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1079   1.1     joerg 	struct rum_tx_desc *desc;
   1080   1.1     joerg 	struct rum_tx_data *data;
   1081   1.1     joerg 	struct ieee80211_frame *wh;
   1082  1.17  degroote 	struct ieee80211_key *k;
   1083   1.1     joerg 	uint32_t flags = 0;
   1084   1.1     joerg 	uint16_t dur;
   1085   1.1     joerg 	usbd_status error;
   1086  1.35  jmcneill 	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
   1087   1.1     joerg 
   1088   1.1     joerg 	wh = mtod(m0, struct ieee80211_frame *);
   1089   1.1     joerg 
   1090  1.17  degroote 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1091  1.17  degroote 		k = ieee80211_crypto_encap(ic, ni, m0);
   1092  1.17  degroote 		if (k == NULL) {
   1093  1.17  degroote 			m_freem(m0);
   1094  1.17  degroote 			return ENOBUFS;
   1095  1.17  degroote 		}
   1096  1.17  degroote 
   1097  1.35  jmcneill 		/* packet header may have moved, reset our local pointer */
   1098  1.35  jmcneill 		wh = mtod(m0, struct ieee80211_frame *);
   1099   1.1     joerg 	}
   1100   1.1     joerg 
   1101  1.35  jmcneill 	/* compute actual packet length (including CRC and crypto overhead) */
   1102  1.35  jmcneill 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
   1103   1.1     joerg 
   1104  1.35  jmcneill 	/* pickup a rate */
   1105  1.35  jmcneill 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   1106  1.35  jmcneill 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1107  1.35  jmcneill 	     IEEE80211_FC0_TYPE_MGT)) {
   1108  1.35  jmcneill 		/* mgmt/multicast frames are sent at the lowest avail. rate */
   1109  1.35  jmcneill 		rate = ni->ni_rates.rs_rates[0];
   1110  1.35  jmcneill 	} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
   1111  1.35  jmcneill 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
   1112  1.35  jmcneill 	} else
   1113  1.35  jmcneill 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1114  1.35  jmcneill 	if (rate == 0)
   1115  1.35  jmcneill 		rate = 2;	/* XXX should not happen */
   1116  1.35  jmcneill 	rate &= IEEE80211_RATE_VAL;
   1117   1.1     joerg 
   1118  1.35  jmcneill 	/* check if RTS/CTS or CTS-to-self protection must be used */
   1119  1.35  jmcneill 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1120  1.35  jmcneill 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
   1121  1.35  jmcneill 		if (pktlen > ic->ic_rtsthreshold) {
   1122  1.35  jmcneill 			needrts = 1;	/* RTS/CTS based on frame length */
   1123  1.35  jmcneill 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   1124  1.35  jmcneill 		    RUM_RATE_IS_OFDM(rate)) {
   1125  1.35  jmcneill 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   1126  1.35  jmcneill 				needcts = 1;	/* CTS-to-self */
   1127  1.35  jmcneill 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   1128  1.35  jmcneill 				needrts = 1;	/* RTS/CTS */
   1129  1.35  jmcneill 		}
   1130  1.35  jmcneill 	}
   1131  1.35  jmcneill 	if (needrts || needcts) {
   1132  1.35  jmcneill 		struct mbuf *mprot;
   1133  1.35  jmcneill 		int protrate, ackrate;
   1134  1.35  jmcneill 
   1135  1.35  jmcneill 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
   1136  1.35  jmcneill 		ackrate  = rum_ack_rate(ic, rate);
   1137  1.35  jmcneill 
   1138  1.35  jmcneill 		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
   1139  1.35  jmcneill 		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
   1140  1.35  jmcneill 		      2 * sc->sifs;
   1141  1.35  jmcneill 		if (needrts) {
   1142  1.35  jmcneill 			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
   1143  1.35  jmcneill 			    protrate), ic->ic_flags) + sc->sifs;
   1144  1.35  jmcneill 			mprot = ieee80211_get_rts(ic, wh, dur);
   1145  1.35  jmcneill 		} else {
   1146  1.35  jmcneill 			mprot = ieee80211_get_cts_to_self(ic, dur);
   1147  1.35  jmcneill 		}
   1148  1.35  jmcneill 		if (mprot == NULL) {
   1149  1.35  jmcneill 			aprint_error_dev(sc->sc_dev,
   1150  1.35  jmcneill 			    "couldn't allocate protection frame\n");
   1151  1.35  jmcneill 			m_freem(m0);
   1152  1.35  jmcneill 			return ENOBUFS;
   1153  1.35  jmcneill 		}
   1154   1.1     joerg 
   1155  1.35  jmcneill 		data = &sc->tx_data[sc->tx_cur];
   1156  1.35  jmcneill 		desc = (struct rum_tx_desc *)data->buf;
   1157   1.1     joerg 
   1158  1.35  jmcneill 		/* avoid multiple free() of the same node for each fragment */
   1159  1.35  jmcneill 		data->ni = ieee80211_ref_node(ni);
   1160   1.1     joerg 
   1161  1.35  jmcneill 		m_copydata(mprot, 0, mprot->m_pkthdr.len,
   1162  1.35  jmcneill 		    data->buf + RT2573_TX_DESC_SIZE);
   1163  1.35  jmcneill 		rum_setup_tx_desc(sc, desc,
   1164  1.35  jmcneill 		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
   1165  1.35  jmcneill 		    0, mprot->m_pkthdr.len, protrate);
   1166   1.1     joerg 
   1167  1.35  jmcneill 		/* no roundup necessary here */
   1168  1.35  jmcneill 		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
   1169   1.1     joerg 
   1170  1.35  jmcneill 		/* XXX may want to pass the protection frame to BPF */
   1171   1.1     joerg 
   1172  1.35  jmcneill 		/* mbuf is no longer needed */
   1173  1.35  jmcneill 		m_freem(mprot);
   1174   1.1     joerg 
   1175  1.52     skrll 		usbd_setup_xfer(data->xfer, data, data->buf,
   1176  1.52     skrll 		    xferlen, USBD_FORCE_SHORT_XFER,
   1177  1.35  jmcneill 		    RUM_TX_TIMEOUT, rum_txeof);
   1178  1.35  jmcneill 		error = usbd_transfer(data->xfer);
   1179  1.35  jmcneill 		if (error != USBD_NORMAL_COMPLETION &&
   1180  1.35  jmcneill 		    error != USBD_IN_PROGRESS) {
   1181   1.1     joerg 			m_freem(m0);
   1182  1.35  jmcneill 			return error;
   1183   1.1     joerg 		}
   1184   1.1     joerg 
   1185  1.35  jmcneill 		sc->tx_queued++;
   1186  1.35  jmcneill 		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
   1187  1.35  jmcneill 
   1188  1.35  jmcneill 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
   1189   1.1     joerg 	}
   1190   1.1     joerg 
   1191  1.35  jmcneill 	data = &sc->tx_data[sc->tx_cur];
   1192   1.1     joerg 	desc = (struct rum_tx_desc *)data->buf;
   1193   1.1     joerg 
   1194   1.1     joerg 	data->ni = ni;
   1195   1.1     joerg 
   1196   1.1     joerg 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1197  1.18  kiyohara 		flags |= RT2573_TX_NEED_ACK;
   1198   1.1     joerg 
   1199   1.1     joerg 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
   1200   1.1     joerg 		    ic->ic_flags) + sc->sifs;
   1201   1.1     joerg 		*(uint16_t *)wh->i_dur = htole16(dur);
   1202  1.35  jmcneill 
   1203  1.35  jmcneill 		/* tell hardware to set timestamp in probe responses */
   1204  1.35  jmcneill 		if ((wh->i_fc[0] &
   1205  1.35  jmcneill 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1206  1.35  jmcneill 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1207  1.35  jmcneill 			flags |= RT2573_TX_TIMESTAMP;
   1208   1.1     joerg 	}
   1209   1.1     joerg 
   1210   1.1     joerg 	if (sc->sc_drvbpf != NULL) {
   1211   1.1     joerg 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
   1212   1.1     joerg 
   1213   1.1     joerg 		tap->wt_flags = 0;
   1214   1.1     joerg 		tap->wt_rate = rate;
   1215   1.1     joerg 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1216   1.1     joerg 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1217   1.1     joerg 		tap->wt_antenna = sc->tx_ant;
   1218   1.1     joerg 
   1219  1.32     joerg 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1220   1.1     joerg 	}
   1221   1.1     joerg 
   1222   1.1     joerg 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
   1223   1.1     joerg 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
   1224   1.1     joerg 
   1225   1.1     joerg 	/* align end on a 4-bytes boundary */
   1226   1.1     joerg 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
   1227   1.1     joerg 
   1228   1.1     joerg 	/*
   1229   1.1     joerg 	 * No space left in the last URB to store the extra 4 bytes, force
   1230   1.1     joerg 	 * sending of another URB.
   1231   1.1     joerg 	 */
   1232   1.1     joerg 	if ((xferlen % 64) == 0)
   1233   1.1     joerg 		xferlen += 4;
   1234   1.1     joerg 
   1235   1.8   mlelstv 	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
   1236   1.8   mlelstv 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
   1237   1.6       wiz 	    rate, xferlen));
   1238   1.1     joerg 
   1239  1.18  kiyohara 	/* mbuf is no longer needed */
   1240  1.18  kiyohara 	m_freem(m0);
   1241  1.18  kiyohara 
   1242  1.52     skrll 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
   1243  1.52     skrll 	    USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof);
   1244   1.1     joerg 	error = usbd_transfer(data->xfer);
   1245  1.18  kiyohara 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
   1246   1.1     joerg 		return error;
   1247   1.1     joerg 
   1248   1.1     joerg 	sc->tx_queued++;
   1249  1.35  jmcneill 	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
   1250   1.1     joerg 
   1251   1.1     joerg 	return 0;
   1252   1.1     joerg }
   1253   1.1     joerg 
   1254  1.35  jmcneill static void
   1255   1.1     joerg rum_start(struct ifnet *ifp)
   1256   1.1     joerg {
   1257   1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1258   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1259   1.1     joerg 	struct ether_header *eh;
   1260   1.1     joerg 	struct ieee80211_node *ni;
   1261   1.1     joerg 	struct mbuf *m0;
   1262   1.1     joerg 
   1263  1.35  jmcneill 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1264  1.35  jmcneill 		return;
   1265  1.35  jmcneill 
   1266   1.1     joerg 	for (;;) {
   1267   1.1     joerg 		IF_POLL(&ic->ic_mgtq, m0);
   1268   1.1     joerg 		if (m0 != NULL) {
   1269  1.35  jmcneill 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
   1270   1.1     joerg 				ifp->if_flags |= IFF_OACTIVE;
   1271   1.1     joerg 				break;
   1272   1.1     joerg 			}
   1273   1.1     joerg 			IF_DEQUEUE(&ic->ic_mgtq, m0);
   1274   1.1     joerg 
   1275  1.53     ozaki 			ni = M_GETCTX(m0, struct ieee80211_node *);
   1276  1.54     ozaki 			M_CLEARCTX(m0);
   1277  1.32     joerg 			bpf_mtap3(ic->ic_rawbpf, m0);
   1278  1.35  jmcneill 			if (rum_tx_data(sc, m0, ni) != 0)
   1279   1.1     joerg 				break;
   1280   1.1     joerg 
   1281   1.1     joerg 		} else {
   1282   1.1     joerg 			if (ic->ic_state != IEEE80211_S_RUN)
   1283   1.1     joerg 				break;
   1284   1.1     joerg 			IFQ_POLL(&ifp->if_snd, m0);
   1285   1.1     joerg 			if (m0 == NULL)
   1286   1.1     joerg 				break;
   1287  1.35  jmcneill 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
   1288   1.1     joerg 				ifp->if_flags |= IFF_OACTIVE;
   1289   1.1     joerg 				break;
   1290   1.1     joerg 			}
   1291   1.1     joerg 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1292  1.37  pgoyette 			if (m0->m_len < (int)sizeof(struct ether_header) &&
   1293   1.1     joerg 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
   1294   1.1     joerg 				continue;
   1295   1.1     joerg 
   1296   1.1     joerg 			eh = mtod(m0, struct ether_header *);
   1297   1.1     joerg 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1298   1.1     joerg 			if (ni == NULL) {
   1299   1.1     joerg 				m_freem(m0);
   1300   1.1     joerg 				continue;
   1301   1.1     joerg 			}
   1302  1.32     joerg 			bpf_mtap(ifp, m0);
   1303   1.1     joerg 			m0 = ieee80211_encap(ic, m0, ni);
   1304   1.1     joerg 			if (m0 == NULL) {
   1305   1.1     joerg 				ieee80211_free_node(ni);
   1306   1.1     joerg 				continue;
   1307   1.1     joerg 			}
   1308  1.32     joerg 			bpf_mtap3(ic->ic_rawbpf, m0);
   1309   1.1     joerg 			if (rum_tx_data(sc, m0, ni) != 0) {
   1310   1.1     joerg 				ieee80211_free_node(ni);
   1311   1.1     joerg 				ifp->if_oerrors++;
   1312   1.1     joerg 				break;
   1313   1.1     joerg 			}
   1314   1.1     joerg 		}
   1315   1.1     joerg 
   1316   1.1     joerg 		sc->sc_tx_timer = 5;
   1317   1.1     joerg 		ifp->if_timer = 1;
   1318   1.1     joerg 	}
   1319   1.1     joerg }
   1320   1.1     joerg 
   1321  1.35  jmcneill static void
   1322   1.1     joerg rum_watchdog(struct ifnet *ifp)
   1323   1.1     joerg {
   1324   1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1325   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1326   1.1     joerg 
   1327   1.1     joerg 	ifp->if_timer = 0;
   1328   1.1     joerg 
   1329   1.1     joerg 	if (sc->sc_tx_timer > 0) {
   1330   1.1     joerg 		if (--sc->sc_tx_timer == 0) {
   1331  1.33    dyoung 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
   1332   1.1     joerg 			/*rum_init(ifp); XXX needs a process context! */
   1333   1.1     joerg 			ifp->if_oerrors++;
   1334   1.1     joerg 			return;
   1335   1.1     joerg 		}
   1336   1.1     joerg 		ifp->if_timer = 1;
   1337   1.1     joerg 	}
   1338   1.1     joerg 
   1339   1.1     joerg 	ieee80211_watchdog(ic);
   1340   1.1     joerg }
   1341   1.1     joerg 
   1342  1.35  jmcneill static int
   1343   1.7  christos rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1344   1.1     joerg {
   1345  1.36  jmcneill #define IS_RUNNING(ifp) \
   1346  1.36  jmcneill 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
   1347  1.36  jmcneill 
   1348   1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1349   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1350   1.1     joerg 	int s, error = 0;
   1351   1.1     joerg 
   1352   1.1     joerg 	s = splnet();
   1353   1.1     joerg 
   1354   1.1     joerg 	switch (cmd) {
   1355   1.1     joerg 	case SIOCSIFFLAGS:
   1356  1.24    dyoung 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1357  1.24    dyoung 			break;
   1358  1.24    dyoung 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   1359  1.24    dyoung 		case IFF_UP|IFF_RUNNING:
   1360  1.24    dyoung 			rum_update_promisc(sc);
   1361  1.24    dyoung 			break;
   1362  1.24    dyoung 		case IFF_UP:
   1363  1.24    dyoung 			rum_init(ifp);
   1364  1.24    dyoung 			break;
   1365  1.24    dyoung 		case IFF_RUNNING:
   1366  1.24    dyoung 			rum_stop(ifp, 1);
   1367  1.24    dyoung 			break;
   1368  1.24    dyoung 		case 0:
   1369  1.24    dyoung 			break;
   1370   1.1     joerg 		}
   1371   1.1     joerg 		break;
   1372   1.1     joerg 
   1373  1.36  jmcneill 	case SIOCADDMULTI:
   1374  1.36  jmcneill 	case SIOCDELMULTI:
   1375  1.36  jmcneill 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   1376  1.36  jmcneill 			error = 0;
   1377  1.36  jmcneill 		}
   1378  1.36  jmcneill 		break;
   1379  1.36  jmcneill 
   1380   1.1     joerg 	default:
   1381   1.1     joerg 		error = ieee80211_ioctl(ic, cmd, data);
   1382   1.1     joerg 	}
   1383   1.1     joerg 
   1384   1.1     joerg 	if (error == ENETRESET) {
   1385  1.36  jmcneill 		if (IS_RUNNING(ifp) &&
   1386  1.36  jmcneill 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   1387   1.1     joerg 			rum_init(ifp);
   1388   1.1     joerg 		error = 0;
   1389   1.1     joerg 	}
   1390   1.1     joerg 
   1391   1.1     joerg 	splx(s);
   1392   1.1     joerg 
   1393   1.1     joerg 	return error;
   1394  1.36  jmcneill #undef IS_RUNNING
   1395   1.1     joerg }
   1396   1.1     joerg 
   1397  1.35  jmcneill static void
   1398   1.1     joerg rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
   1399   1.1     joerg {
   1400   1.1     joerg 	usb_device_request_t req;
   1401   1.1     joerg 	usbd_status error;
   1402   1.1     joerg 
   1403   1.1     joerg 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
   1404   1.1     joerg 	req.bRequest = RT2573_READ_EEPROM;
   1405   1.1     joerg 	USETW(req.wValue, 0);
   1406   1.1     joerg 	USETW(req.wIndex, addr);
   1407   1.1     joerg 	USETW(req.wLength, len);
   1408   1.1     joerg 
   1409   1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, buf);
   1410   1.1     joerg 	if (error != 0) {
   1411   1.1     joerg 		printf("%s: could not read EEPROM: %s\n",
   1412  1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   1413   1.1     joerg 	}
   1414   1.1     joerg }
   1415   1.1     joerg 
   1416  1.35  jmcneill static uint32_t
   1417   1.1     joerg rum_read(struct rum_softc *sc, uint16_t reg)
   1418   1.1     joerg {
   1419   1.1     joerg 	uint32_t val;
   1420   1.1     joerg 
   1421  1.52     skrll 	rum_read_multi(sc, reg, &val, sizeof(val));
   1422   1.1     joerg 
   1423   1.1     joerg 	return le32toh(val);
   1424   1.1     joerg }
   1425   1.1     joerg 
   1426  1.35  jmcneill static void
   1427   1.1     joerg rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
   1428   1.1     joerg {
   1429   1.1     joerg 	usb_device_request_t req;
   1430   1.1     joerg 	usbd_status error;
   1431   1.1     joerg 
   1432   1.1     joerg 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
   1433   1.1     joerg 	req.bRequest = RT2573_READ_MULTI_MAC;
   1434   1.1     joerg 	USETW(req.wValue, 0);
   1435   1.1     joerg 	USETW(req.wIndex, reg);
   1436   1.1     joerg 	USETW(req.wLength, len);
   1437   1.1     joerg 
   1438   1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, buf);
   1439   1.1     joerg 	if (error != 0) {
   1440   1.1     joerg 		printf("%s: could not multi read MAC register: %s\n",
   1441  1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   1442   1.1     joerg 	}
   1443   1.1     joerg }
   1444   1.1     joerg 
   1445  1.35  jmcneill static void
   1446   1.1     joerg rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
   1447   1.1     joerg {
   1448   1.1     joerg 	uint32_t tmp = htole32(val);
   1449   1.1     joerg 
   1450  1.52     skrll 	rum_write_multi(sc, reg, &tmp, sizeof(tmp));
   1451   1.1     joerg }
   1452   1.1     joerg 
   1453  1.35  jmcneill static void
   1454   1.1     joerg rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
   1455   1.1     joerg {
   1456   1.1     joerg 	usb_device_request_t req;
   1457   1.1     joerg 	usbd_status error;
   1458  1.48     zafer 	int offset;
   1459   1.1     joerg 
   1460   1.1     joerg 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
   1461   1.1     joerg 	req.bRequest = RT2573_WRITE_MULTI_MAC;
   1462   1.1     joerg 	USETW(req.wValue, 0);
   1463   1.1     joerg 
   1464  1.48     zafer 	/* write at most 64 bytes at a time */
   1465  1.48     zafer 	for (offset = 0; offset < len; offset += 64) {
   1466  1.48     zafer 		USETW(req.wIndex, reg + offset);
   1467  1.48     zafer 		USETW(req.wLength, MIN(len - offset, 64));
   1468  1.48     zafer 
   1469  1.48     zafer 		error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
   1470  1.48     zafer 		if (error != 0) {
   1471  1.48     zafer 			printf("%s: could not multi write MAC register: %s\n",
   1472  1.48     zafer 			    device_xname(sc->sc_dev), usbd_errstr(error));
   1473  1.48     zafer 		}
   1474   1.1     joerg 	}
   1475   1.1     joerg }
   1476   1.1     joerg 
   1477  1.35  jmcneill static void
   1478   1.1     joerg rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
   1479   1.1     joerg {
   1480   1.1     joerg 	uint32_t tmp;
   1481   1.1     joerg 	int ntries;
   1482   1.1     joerg 
   1483   1.1     joerg 	for (ntries = 0; ntries < 5; ntries++) {
   1484   1.1     joerg 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
   1485   1.1     joerg 			break;
   1486   1.1     joerg 	}
   1487   1.1     joerg 	if (ntries == 5) {
   1488  1.33    dyoung 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
   1489   1.1     joerg 		return;
   1490   1.1     joerg 	}
   1491   1.1     joerg 
   1492   1.1     joerg 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
   1493   1.1     joerg 	rum_write(sc, RT2573_PHY_CSR3, tmp);
   1494   1.1     joerg }
   1495   1.1     joerg 
   1496  1.35  jmcneill static uint8_t
   1497   1.1     joerg rum_bbp_read(struct rum_softc *sc, uint8_t reg)
   1498   1.1     joerg {
   1499   1.1     joerg 	uint32_t val;
   1500   1.1     joerg 	int ntries;
   1501   1.1     joerg 
   1502   1.1     joerg 	for (ntries = 0; ntries < 5; ntries++) {
   1503   1.1     joerg 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
   1504   1.1     joerg 			break;
   1505   1.1     joerg 	}
   1506   1.1     joerg 	if (ntries == 5) {
   1507  1.33    dyoung 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
   1508   1.1     joerg 		return 0;
   1509   1.1     joerg 	}
   1510   1.1     joerg 
   1511   1.1     joerg 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
   1512   1.1     joerg 	rum_write(sc, RT2573_PHY_CSR3, val);
   1513   1.1     joerg 
   1514   1.1     joerg 	for (ntries = 0; ntries < 100; ntries++) {
   1515   1.1     joerg 		val = rum_read(sc, RT2573_PHY_CSR3);
   1516   1.1     joerg 		if (!(val & RT2573_BBP_BUSY))
   1517   1.1     joerg 			return val & 0xff;
   1518   1.1     joerg 		DELAY(1);
   1519   1.1     joerg 	}
   1520   1.1     joerg 
   1521  1.33    dyoung 	printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
   1522   1.1     joerg 	return 0;
   1523   1.1     joerg }
   1524   1.1     joerg 
   1525  1.35  jmcneill static void
   1526   1.1     joerg rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
   1527   1.1     joerg {
   1528   1.1     joerg 	uint32_t tmp;
   1529   1.1     joerg 	int ntries;
   1530   1.1     joerg 
   1531   1.1     joerg 	for (ntries = 0; ntries < 5; ntries++) {
   1532   1.1     joerg 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
   1533   1.1     joerg 			break;
   1534   1.1     joerg 	}
   1535   1.1     joerg 	if (ntries == 5) {
   1536  1.33    dyoung 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
   1537   1.1     joerg 		return;
   1538   1.1     joerg 	}
   1539   1.1     joerg 
   1540   1.1     joerg 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
   1541   1.1     joerg 	    (reg & 3);
   1542   1.1     joerg 	rum_write(sc, RT2573_PHY_CSR4, tmp);
   1543   1.1     joerg 
   1544   1.1     joerg 	/* remember last written value in sc */
   1545   1.1     joerg 	sc->rf_regs[reg] = val;
   1546   1.1     joerg 
   1547   1.1     joerg 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
   1548   1.1     joerg }
   1549   1.1     joerg 
   1550  1.35  jmcneill static void
   1551   1.1     joerg rum_select_antenna(struct rum_softc *sc)
   1552   1.1     joerg {
   1553   1.1     joerg 	uint8_t bbp4, bbp77;
   1554   1.1     joerg 	uint32_t tmp;
   1555   1.1     joerg 
   1556   1.1     joerg 	bbp4  = rum_bbp_read(sc, 4);
   1557   1.1     joerg 	bbp77 = rum_bbp_read(sc, 77);
   1558   1.1     joerg 
   1559   1.1     joerg 	/* TBD */
   1560   1.1     joerg 
   1561   1.1     joerg 	/* make sure Rx is disabled before switching antenna */
   1562   1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
   1563   1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
   1564   1.1     joerg 
   1565   1.1     joerg 	rum_bbp_write(sc,  4, bbp4);
   1566   1.1     joerg 	rum_bbp_write(sc, 77, bbp77);
   1567   1.1     joerg 
   1568   1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
   1569   1.1     joerg }
   1570   1.1     joerg 
   1571   1.1     joerg /*
   1572   1.1     joerg  * Enable multi-rate retries for frames sent at OFDM rates.
   1573   1.1     joerg  * In 802.11b/g mode, allow fallback to CCK rates.
   1574   1.1     joerg  */
   1575  1.35  jmcneill static void
   1576   1.1     joerg rum_enable_mrr(struct rum_softc *sc)
   1577   1.1     joerg {
   1578   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1579   1.1     joerg 	uint32_t tmp;
   1580   1.1     joerg 
   1581   1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
   1582   1.1     joerg 
   1583   1.1     joerg 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
   1584   1.1     joerg 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
   1585   1.1     joerg 		tmp |= RT2573_MRR_CCK_FALLBACK;
   1586   1.1     joerg 	tmp |= RT2573_MRR_ENABLED;
   1587   1.1     joerg 
   1588   1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
   1589   1.1     joerg }
   1590   1.1     joerg 
   1591  1.35  jmcneill static void
   1592   1.1     joerg rum_set_txpreamble(struct rum_softc *sc)
   1593   1.1     joerg {
   1594   1.1     joerg 	uint32_t tmp;
   1595   1.1     joerg 
   1596   1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
   1597   1.1     joerg 
   1598   1.1     joerg 	tmp &= ~RT2573_SHORT_PREAMBLE;
   1599   1.1     joerg 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
   1600   1.1     joerg 		tmp |= RT2573_SHORT_PREAMBLE;
   1601   1.1     joerg 
   1602   1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
   1603   1.1     joerg }
   1604   1.1     joerg 
   1605  1.35  jmcneill static void
   1606   1.1     joerg rum_set_basicrates(struct rum_softc *sc)
   1607   1.1     joerg {
   1608   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1609   1.1     joerg 
   1610   1.1     joerg 	/* update basic rate set */
   1611   1.1     joerg 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
   1612   1.1     joerg 		/* 11b basic rates: 1, 2Mbps */
   1613   1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
   1614  1.18  kiyohara 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
   1615   1.1     joerg 		/* 11a basic rates: 6, 12, 24Mbps */
   1616   1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
   1617   1.1     joerg 	} else {
   1618  1.18  kiyohara 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
   1619  1.18  kiyohara 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
   1620   1.1     joerg 	}
   1621   1.1     joerg }
   1622   1.1     joerg 
   1623   1.1     joerg /*
   1624   1.1     joerg  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
   1625   1.1     joerg  * driver.
   1626   1.1     joerg  */
   1627  1.35  jmcneill static void
   1628   1.1     joerg rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
   1629   1.1     joerg {
   1630   1.1     joerg 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
   1631   1.1     joerg 	uint32_t tmp;
   1632   1.1     joerg 
   1633   1.1     joerg 	/* update all BBP registers that depend on the band */
   1634   1.1     joerg 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
   1635   1.1     joerg 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
   1636   1.1     joerg 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   1637   1.1     joerg 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
   1638   1.1     joerg 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
   1639   1.1     joerg 	}
   1640   1.1     joerg 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
   1641   1.1     joerg 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
   1642   1.1     joerg 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
   1643   1.1     joerg 	}
   1644   1.1     joerg 
   1645   1.1     joerg 	sc->bbp17 = bbp17;
   1646   1.1     joerg 	rum_bbp_write(sc,  17, bbp17);
   1647   1.1     joerg 	rum_bbp_write(sc,  96, bbp96);
   1648   1.1     joerg 	rum_bbp_write(sc, 104, bbp104);
   1649   1.1     joerg 
   1650   1.1     joerg 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
   1651   1.1     joerg 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
   1652   1.1     joerg 		rum_bbp_write(sc, 75, 0x80);
   1653   1.1     joerg 		rum_bbp_write(sc, 86, 0x80);
   1654   1.1     joerg 		rum_bbp_write(sc, 88, 0x80);
   1655   1.1     joerg 	}
   1656   1.1     joerg 
   1657   1.1     joerg 	rum_bbp_write(sc, 35, bbp35);
   1658   1.1     joerg 	rum_bbp_write(sc, 97, bbp97);
   1659   1.1     joerg 	rum_bbp_write(sc, 98, bbp98);
   1660   1.1     joerg 
   1661   1.1     joerg 	tmp = rum_read(sc, RT2573_PHY_CSR0);
   1662   1.1     joerg 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
   1663   1.1     joerg 	if (IEEE80211_IS_CHAN_2GHZ(c))
   1664   1.1     joerg 		tmp |= RT2573_PA_PE_2GHZ;
   1665   1.1     joerg 	else
   1666   1.1     joerg 		tmp |= RT2573_PA_PE_5GHZ;
   1667   1.1     joerg 	rum_write(sc, RT2573_PHY_CSR0, tmp);
   1668   1.1     joerg 
   1669   1.1     joerg 	/* 802.11a uses a 16 microseconds short interframe space */
   1670   1.1     joerg 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
   1671   1.1     joerg }
   1672   1.1     joerg 
   1673  1.35  jmcneill static void
   1674   1.1     joerg rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
   1675   1.1     joerg {
   1676   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1677   1.1     joerg 	const struct rfprog *rfprog;
   1678   1.1     joerg 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
   1679   1.1     joerg 	int8_t power;
   1680   1.1     joerg 	u_int i, chan;
   1681   1.1     joerg 
   1682   1.1     joerg 	chan = ieee80211_chan2ieee(ic, c);
   1683   1.1     joerg 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
   1684   1.1     joerg 		return;
   1685   1.1     joerg 
   1686   1.1     joerg 	/* select the appropriate RF settings based on what EEPROM says */
   1687   1.1     joerg 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
   1688   1.1     joerg 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
   1689   1.1     joerg 
   1690   1.1     joerg 	/* find the settings for this channel (we know it exists) */
   1691   1.1     joerg 	for (i = 0; rfprog[i].chan != chan; i++);
   1692   1.1     joerg 
   1693   1.1     joerg 	power = sc->txpow[i];
   1694   1.1     joerg 	if (power < 0) {
   1695   1.1     joerg 		bbp94 += power;
   1696   1.1     joerg 		power = 0;
   1697   1.1     joerg 	} else if (power > 31) {
   1698   1.1     joerg 		bbp94 += power - 31;
   1699   1.1     joerg 		power = 31;
   1700   1.1     joerg 	}
   1701   1.1     joerg 
   1702   1.1     joerg 	/*
   1703   1.1     joerg 	 * If we are switching from the 2GHz band to the 5GHz band or
   1704   1.1     joerg 	 * vice-versa, BBP registers need to be reprogrammed.
   1705   1.1     joerg 	 */
   1706   1.1     joerg 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
   1707   1.1     joerg 		rum_select_band(sc, c);
   1708   1.1     joerg 		rum_select_antenna(sc);
   1709   1.1     joerg 	}
   1710   1.1     joerg 	ic->ic_curchan = c;
   1711   1.1     joerg 
   1712   1.1     joerg 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
   1713   1.1     joerg 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
   1714   1.1     joerg 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
   1715   1.1     joerg 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
   1716   1.1     joerg 
   1717   1.1     joerg 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
   1718   1.1     joerg 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
   1719   1.1     joerg 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
   1720   1.1     joerg 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
   1721   1.1     joerg 
   1722   1.1     joerg 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
   1723   1.1     joerg 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
   1724   1.1     joerg 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
   1725   1.1     joerg 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
   1726   1.1     joerg 
   1727   1.1     joerg 	DELAY(10);
   1728   1.1     joerg 
   1729   1.1     joerg 	/* enable smart mode for MIMO-capable RFs */
   1730   1.1     joerg 	bbp3 = rum_bbp_read(sc, 3);
   1731   1.1     joerg 
   1732   1.1     joerg 	bbp3 &= ~RT2573_SMART_MODE;
   1733   1.1     joerg 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
   1734   1.1     joerg 		bbp3 |= RT2573_SMART_MODE;
   1735   1.1     joerg 
   1736   1.1     joerg 	rum_bbp_write(sc, 3, bbp3);
   1737   1.1     joerg 
   1738   1.1     joerg 	if (bbp94 != RT2573_BBPR94_DEFAULT)
   1739   1.1     joerg 		rum_bbp_write(sc, 94, bbp94);
   1740   1.1     joerg }
   1741   1.1     joerg 
   1742   1.1     joerg /*
   1743   1.1     joerg  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
   1744   1.1     joerg  * and HostAP operating modes.
   1745   1.1     joerg  */
   1746  1.35  jmcneill static void
   1747   1.1     joerg rum_enable_tsf_sync(struct rum_softc *sc)
   1748   1.1     joerg {
   1749   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1750   1.1     joerg 	uint32_t tmp;
   1751   1.1     joerg 
   1752   1.1     joerg 	if (ic->ic_opmode != IEEE80211_M_STA) {
   1753   1.1     joerg 		/*
   1754   1.1     joerg 		 * Change default 16ms TBTT adjustment to 8ms.
   1755   1.1     joerg 		 * Must be done before enabling beacon generation.
   1756   1.1     joerg 		 */
   1757   1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
   1758   1.1     joerg 	}
   1759   1.1     joerg 
   1760   1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
   1761   1.1     joerg 
   1762   1.1     joerg 	/* set beacon interval (in 1/16ms unit) */
   1763   1.1     joerg 	tmp |= ic->ic_bss->ni_intval * 16;
   1764   1.1     joerg 
   1765   1.1     joerg 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
   1766   1.1     joerg 	if (ic->ic_opmode == IEEE80211_M_STA)
   1767   1.1     joerg 		tmp |= RT2573_TSF_MODE(1);
   1768   1.1     joerg 	else
   1769   1.1     joerg 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
   1770   1.1     joerg 
   1771   1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
   1772   1.1     joerg }
   1773   1.1     joerg 
   1774  1.35  jmcneill static void
   1775   1.1     joerg rum_update_slot(struct rum_softc *sc)
   1776   1.1     joerg {
   1777   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1778   1.1     joerg 	uint8_t slottime;
   1779   1.1     joerg 	uint32_t tmp;
   1780   1.1     joerg 
   1781   1.1     joerg 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
   1782   1.1     joerg 
   1783   1.1     joerg 	tmp = rum_read(sc, RT2573_MAC_CSR9);
   1784   1.1     joerg 	tmp = (tmp & ~0xff) | slottime;
   1785   1.1     joerg 	rum_write(sc, RT2573_MAC_CSR9, tmp);
   1786   1.1     joerg 
   1787   1.1     joerg 	DPRINTF(("setting slot time to %uus\n", slottime));
   1788   1.1     joerg }
   1789   1.1     joerg 
   1790  1.35  jmcneill static void
   1791   1.1     joerg rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
   1792   1.1     joerg {
   1793   1.1     joerg 	uint32_t tmp;
   1794   1.1     joerg 
   1795   1.1     joerg 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
   1796   1.1     joerg 	rum_write(sc, RT2573_MAC_CSR4, tmp);
   1797   1.1     joerg 
   1798   1.1     joerg 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
   1799   1.1     joerg 	rum_write(sc, RT2573_MAC_CSR5, tmp);
   1800   1.1     joerg }
   1801   1.1     joerg 
   1802  1.35  jmcneill static void
   1803   1.1     joerg rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
   1804   1.1     joerg {
   1805   1.1     joerg 	uint32_t tmp;
   1806   1.1     joerg 
   1807   1.1     joerg 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
   1808   1.1     joerg 	rum_write(sc, RT2573_MAC_CSR2, tmp);
   1809   1.1     joerg 
   1810   1.1     joerg 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
   1811   1.1     joerg 	rum_write(sc, RT2573_MAC_CSR3, tmp);
   1812   1.1     joerg }
   1813   1.1     joerg 
   1814  1.35  jmcneill static void
   1815   1.1     joerg rum_update_promisc(struct rum_softc *sc)
   1816   1.1     joerg {
   1817   1.1     joerg 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1818   1.1     joerg 	uint32_t tmp;
   1819   1.1     joerg 
   1820   1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
   1821   1.1     joerg 
   1822   1.1     joerg 	tmp &= ~RT2573_DROP_NOT_TO_ME;
   1823   1.1     joerg 	if (!(ifp->if_flags & IFF_PROMISC))
   1824   1.1     joerg 		tmp |= RT2573_DROP_NOT_TO_ME;
   1825   1.1     joerg 
   1826   1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
   1827   1.1     joerg 
   1828   1.1     joerg 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
   1829   1.1     joerg 	    "entering" : "leaving"));
   1830   1.1     joerg }
   1831   1.1     joerg 
   1832  1.35  jmcneill static const char *
   1833   1.1     joerg rum_get_rf(int rev)
   1834   1.1     joerg {
   1835   1.1     joerg 	switch (rev) {
   1836   1.1     joerg 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
   1837   1.1     joerg 	case RT2573_RF_2528:	return "RT2528";
   1838   1.1     joerg 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
   1839   1.1     joerg 	case RT2573_RF_5226:	return "RT5226";
   1840   1.1     joerg 	default:		return "unknown";
   1841   1.1     joerg 	}
   1842   1.1     joerg }
   1843   1.1     joerg 
   1844  1.35  jmcneill static void
   1845   1.1     joerg rum_read_eeprom(struct rum_softc *sc)
   1846   1.1     joerg {
   1847   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1848   1.1     joerg 	uint16_t val;
   1849   1.1     joerg #ifdef RUM_DEBUG
   1850   1.1     joerg 	int i;
   1851   1.1     joerg #endif
   1852   1.1     joerg 
   1853   1.1     joerg 	/* read MAC/BBP type */
   1854   1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
   1855   1.1     joerg 	sc->macbbp_rev = le16toh(val);
   1856   1.1     joerg 
   1857   1.1     joerg 	/* read MAC address */
   1858   1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
   1859   1.1     joerg 
   1860   1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
   1861   1.1     joerg 	val = le16toh(val);
   1862   1.1     joerg 	sc->rf_rev =   (val >> 11) & 0x1f;
   1863   1.1     joerg 	sc->hw_radio = (val >> 10) & 0x1;
   1864   1.1     joerg 	sc->rx_ant =   (val >> 4)  & 0x3;
   1865   1.1     joerg 	sc->tx_ant =   (val >> 2)  & 0x3;
   1866   1.1     joerg 	sc->nb_ant =   val & 0x3;
   1867   1.1     joerg 
   1868   1.1     joerg 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
   1869   1.1     joerg 
   1870   1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
   1871   1.1     joerg 	val = le16toh(val);
   1872   1.1     joerg 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
   1873   1.1     joerg 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
   1874   1.1     joerg 
   1875   1.1     joerg 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
   1876   1.1     joerg 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
   1877   1.1     joerg 
   1878   1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
   1879   1.1     joerg 	val = le16toh(val);
   1880   1.1     joerg 	if ((val & 0xff) != 0xff)
   1881   1.1     joerg 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
   1882   1.1     joerg 
   1883   1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
   1884   1.1     joerg 	val = le16toh(val);
   1885   1.1     joerg 	if ((val & 0xff) != 0xff)
   1886   1.1     joerg 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
   1887   1.1     joerg 
   1888   1.1     joerg 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
   1889   1.1     joerg 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
   1890   1.1     joerg 
   1891   1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
   1892   1.1     joerg 	val = le16toh(val);
   1893   1.1     joerg 	if ((val & 0xff) != 0xff)
   1894   1.1     joerg 		sc->rffreq = val & 0xff;
   1895   1.1     joerg 
   1896   1.1     joerg 	DPRINTF(("RF freq=%d\n", sc->rffreq));
   1897   1.1     joerg 
   1898   1.1     joerg 	/* read Tx power for all a/b/g channels */
   1899   1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
   1900   1.1     joerg 	/* XXX default Tx power for 802.11a channels */
   1901  1.52     skrll 	memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14);
   1902   1.1     joerg #ifdef RUM_DEBUG
   1903   1.1     joerg 	for (i = 0; i < 14; i++)
   1904   1.1     joerg 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
   1905   1.1     joerg #endif
   1906   1.1     joerg 
   1907   1.1     joerg 	/* read default values for BBP registers */
   1908   1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
   1909   1.1     joerg #ifdef RUM_DEBUG
   1910   1.1     joerg 	for (i = 0; i < 14; i++) {
   1911   1.1     joerg 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
   1912   1.1     joerg 			continue;
   1913   1.1     joerg 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
   1914   1.1     joerg 		    sc->bbp_prom[i].val));
   1915   1.1     joerg 	}
   1916   1.1     joerg #endif
   1917   1.1     joerg }
   1918   1.1     joerg 
   1919  1.35  jmcneill static int
   1920   1.1     joerg rum_bbp_init(struct rum_softc *sc)
   1921   1.1     joerg {
   1922  1.37  pgoyette 	unsigned int i, ntries;
   1923   1.1     joerg 	uint8_t val;
   1924   1.1     joerg 
   1925   1.1     joerg 	/* wait for BBP to be ready */
   1926   1.1     joerg 	for (ntries = 0; ntries < 100; ntries++) {
   1927   1.1     joerg 		val = rum_bbp_read(sc, 0);
   1928   1.1     joerg 		if (val != 0 && val != 0xff)
   1929   1.1     joerg 			break;
   1930   1.1     joerg 		DELAY(1000);
   1931   1.1     joerg 	}
   1932   1.1     joerg 	if (ntries == 100) {
   1933   1.1     joerg 		printf("%s: timeout waiting for BBP\n",
   1934  1.33    dyoung 		    device_xname(sc->sc_dev));
   1935   1.1     joerg 		return EIO;
   1936   1.1     joerg 	}
   1937   1.1     joerg 
   1938   1.1     joerg 	/* initialize BBP registers to default values */
   1939  1.52     skrll 	for (i = 0; i < __arraycount(rum_def_bbp); i++)
   1940   1.1     joerg 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
   1941   1.1     joerg 
   1942   1.1     joerg 	/* write vendor-specific BBP values (from EEPROM) */
   1943   1.1     joerg 	for (i = 0; i < 16; i++) {
   1944   1.1     joerg 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
   1945   1.1     joerg 			continue;
   1946   1.1     joerg 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
   1947   1.1     joerg 	}
   1948   1.1     joerg 
   1949   1.1     joerg 	return 0;
   1950   1.1     joerg }
   1951   1.1     joerg 
   1952  1.35  jmcneill static int
   1953   1.1     joerg rum_init(struct ifnet *ifp)
   1954   1.1     joerg {
   1955   1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1956   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1957   1.1     joerg 	uint32_t tmp;
   1958   1.1     joerg 	usbd_status error = 0;
   1959  1.37  pgoyette 	unsigned int i, ntries;
   1960   1.1     joerg 
   1961   1.1     joerg 	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
   1962   1.1     joerg 		if (rum_attachhook(sc))
   1963   1.1     joerg 			goto fail;
   1964   1.1     joerg 	}
   1965   1.1     joerg 
   1966   1.1     joerg 	rum_stop(ifp, 0);
   1967   1.1     joerg 
   1968   1.1     joerg 	/* initialize MAC registers to default values */
   1969  1.52     skrll 	for (i = 0; i < __arraycount(rum_def_mac); i++)
   1970   1.1     joerg 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
   1971   1.1     joerg 
   1972   1.1     joerg 	/* set host ready */
   1973   1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 3);
   1974   1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 0);
   1975   1.1     joerg 
   1976   1.1     joerg 	/* wait for BBP/RF to wakeup */
   1977   1.1     joerg 	for (ntries = 0; ntries < 1000; ntries++) {
   1978   1.1     joerg 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
   1979   1.1     joerg 			break;
   1980   1.1     joerg 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
   1981   1.1     joerg 		DELAY(1000);
   1982   1.1     joerg 	}
   1983   1.1     joerg 	if (ntries == 1000) {
   1984   1.1     joerg 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
   1985  1.33    dyoung 		    device_xname(sc->sc_dev));
   1986   1.1     joerg 		goto fail;
   1987   1.1     joerg 	}
   1988   1.1     joerg 
   1989   1.1     joerg 	if ((error = rum_bbp_init(sc)) != 0)
   1990   1.1     joerg 		goto fail;
   1991   1.1     joerg 
   1992   1.1     joerg 	/* select default channel */
   1993   1.1     joerg 	rum_select_band(sc, ic->ic_curchan);
   1994   1.1     joerg 	rum_select_antenna(sc);
   1995   1.1     joerg 	rum_set_chan(sc, ic->ic_curchan);
   1996   1.1     joerg 
   1997   1.1     joerg 	/* clear STA registers */
   1998  1.52     skrll 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
   1999   1.1     joerg 
   2000  1.15    dyoung 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   2001   1.1     joerg 	rum_set_macaddr(sc, ic->ic_myaddr);
   2002   1.1     joerg 
   2003   1.1     joerg 	/* initialize ASIC */
   2004   1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 4);
   2005   1.1     joerg 
   2006   1.1     joerg 	/*
   2007   1.1     joerg 	 * Allocate xfer for AMRR statistics requests.
   2008   1.1     joerg 	 */
   2009  1.52     skrll 	struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
   2010  1.52     skrll 	error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0,
   2011  1.52     skrll 	    &sc->amrr_xfer);
   2012  1.52     skrll 	if (error) {
   2013   1.1     joerg 		printf("%s: could not allocate AMRR xfer\n",
   2014  1.33    dyoung 		    device_xname(sc->sc_dev));
   2015   1.1     joerg 		goto fail;
   2016   1.1     joerg 	}
   2017   1.1     joerg 
   2018   1.1     joerg 	/*
   2019   1.1     joerg 	 * Open Tx and Rx USB bulk pipes.
   2020   1.1     joerg 	 */
   2021   1.1     joerg 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
   2022   1.1     joerg 	    &sc->sc_tx_pipeh);
   2023   1.1     joerg 	if (error != 0) {
   2024   1.1     joerg 		printf("%s: could not open Tx pipe: %s\n",
   2025  1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   2026   1.1     joerg 		goto fail;
   2027   1.1     joerg 	}
   2028   1.1     joerg 
   2029   1.1     joerg 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
   2030   1.1     joerg 	    &sc->sc_rx_pipeh);
   2031   1.1     joerg 	if (error != 0) {
   2032   1.1     joerg 		printf("%s: could not open Rx pipe: %s\n",
   2033  1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   2034   1.1     joerg 		goto fail;
   2035   1.1     joerg 	}
   2036   1.1     joerg 
   2037   1.1     joerg 	/*
   2038   1.1     joerg 	 * Allocate Tx and Rx xfer queues.
   2039   1.1     joerg 	 */
   2040   1.1     joerg 	error = rum_alloc_tx_list(sc);
   2041   1.1     joerg 	if (error != 0) {
   2042   1.1     joerg 		printf("%s: could not allocate Tx list\n",
   2043  1.33    dyoung 		    device_xname(sc->sc_dev));
   2044   1.1     joerg 		goto fail;
   2045   1.1     joerg 	}
   2046   1.1     joerg 
   2047   1.1     joerg 	error = rum_alloc_rx_list(sc);
   2048   1.1     joerg 	if (error != 0) {
   2049   1.1     joerg 		printf("%s: could not allocate Rx list\n",
   2050  1.33    dyoung 		    device_xname(sc->sc_dev));
   2051   1.1     joerg 		goto fail;
   2052   1.1     joerg 	}
   2053   1.1     joerg 
   2054   1.1     joerg 	/*
   2055   1.1     joerg 	 * Start up the receive pipe.
   2056   1.1     joerg 	 */
   2057  1.18  kiyohara 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
   2058  1.52     skrll 		struct rum_rx_data *data;
   2059  1.52     skrll 
   2060   1.1     joerg 		data = &sc->rx_data[i];
   2061   1.1     joerg 
   2062  1.52     skrll 		usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
   2063  1.52     skrll 		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
   2064  1.18  kiyohara 		error = usbd_transfer(data->xfer);
   2065  1.18  kiyohara 		if (error != USBD_NORMAL_COMPLETION &&
   2066  1.18  kiyohara 		    error != USBD_IN_PROGRESS) {
   2067  1.18  kiyohara 			printf("%s: could not queue Rx transfer\n",
   2068  1.33    dyoung 			    device_xname(sc->sc_dev));
   2069  1.18  kiyohara 			goto fail;
   2070  1.18  kiyohara 		}
   2071   1.1     joerg 	}
   2072   1.1     joerg 
   2073   1.1     joerg 	/* update Rx filter */
   2074   1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
   2075   1.1     joerg 
   2076   1.1     joerg 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
   2077   1.1     joerg 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2078   1.1     joerg 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
   2079   1.1     joerg 		       RT2573_DROP_ACKCTS;
   2080   1.1     joerg 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
   2081   1.1     joerg 			tmp |= RT2573_DROP_TODS;
   2082   1.1     joerg 		if (!(ifp->if_flags & IFF_PROMISC))
   2083   1.1     joerg 			tmp |= RT2573_DROP_NOT_TO_ME;
   2084   1.1     joerg 	}
   2085   1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
   2086   1.1     joerg 
   2087   1.1     joerg 	ifp->if_flags &= ~IFF_OACTIVE;
   2088   1.1     joerg 	ifp->if_flags |= IFF_RUNNING;
   2089   1.1     joerg 
   2090   1.1     joerg 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   2091   1.1     joerg 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   2092   1.1     joerg 	else
   2093   1.1     joerg 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   2094   1.1     joerg 
   2095   1.1     joerg 	return 0;
   2096   1.1     joerg 
   2097   1.1     joerg fail:	rum_stop(ifp, 1);
   2098   1.1     joerg 	return error;
   2099   1.1     joerg }
   2100   1.1     joerg 
   2101  1.35  jmcneill static void
   2102   1.1     joerg rum_stop(struct ifnet *ifp, int disable)
   2103   1.1     joerg {
   2104   1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   2105   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   2106   1.1     joerg 	uint32_t tmp;
   2107   1.1     joerg 
   2108   1.1     joerg 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
   2109   1.1     joerg 
   2110   1.1     joerg 	sc->sc_tx_timer = 0;
   2111   1.1     joerg 	ifp->if_timer = 0;
   2112   1.1     joerg 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2113   1.1     joerg 
   2114   1.1     joerg 	/* disable Rx */
   2115   1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
   2116   1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
   2117   1.1     joerg 
   2118   1.1     joerg 	/* reset ASIC */
   2119   1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 3);
   2120   1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 0);
   2121   1.1     joerg 
   2122  1.35  jmcneill 	if (sc->amrr_xfer != NULL) {
   2123  1.52     skrll 		usbd_destroy_xfer(sc->amrr_xfer);
   2124  1.35  jmcneill 		sc->amrr_xfer = NULL;
   2125  1.35  jmcneill 	}
   2126  1.35  jmcneill 
   2127   1.1     joerg 	if (sc->sc_rx_pipeh != NULL) {
   2128   1.1     joerg 		usbd_abort_pipe(sc->sc_rx_pipeh);
   2129  1.52     skrll 	}
   2130  1.52     skrll 
   2131  1.52     skrll 	if (sc->sc_tx_pipeh != NULL) {
   2132  1.52     skrll 		usbd_abort_pipe(sc->sc_tx_pipeh);
   2133  1.52     skrll 	}
   2134  1.52     skrll 
   2135  1.52     skrll 	rum_free_rx_list(sc);
   2136  1.52     skrll 	rum_free_tx_list(sc);
   2137  1.52     skrll 
   2138  1.52     skrll 	if (sc->sc_rx_pipeh != NULL) {
   2139   1.1     joerg 		usbd_close_pipe(sc->sc_rx_pipeh);
   2140   1.1     joerg 		sc->sc_rx_pipeh = NULL;
   2141   1.1     joerg 	}
   2142   1.1     joerg 
   2143   1.1     joerg 	if (sc->sc_tx_pipeh != NULL) {
   2144   1.1     joerg 		usbd_close_pipe(sc->sc_tx_pipeh);
   2145   1.1     joerg 		sc->sc_tx_pipeh = NULL;
   2146   1.1     joerg 	}
   2147   1.1     joerg }
   2148   1.1     joerg 
   2149  1.35  jmcneill static int
   2150   1.1     joerg rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
   2151   1.1     joerg {
   2152   1.1     joerg 	usb_device_request_t req;
   2153   1.1     joerg 	uint16_t reg = RT2573_MCU_CODE_BASE;
   2154   1.1     joerg 	usbd_status error;
   2155   1.1     joerg 
   2156   1.1     joerg 	/* copy firmware image into NIC */
   2157   1.1     joerg 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
   2158   1.1     joerg 		rum_write(sc, reg, UGETDW(ucode));
   2159   1.1     joerg 
   2160   1.1     joerg 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
   2161   1.1     joerg 	req.bRequest = RT2573_MCU_CNTL;
   2162   1.1     joerg 	USETW(req.wValue, RT2573_MCU_RUN);
   2163   1.1     joerg 	USETW(req.wIndex, 0);
   2164   1.1     joerg 	USETW(req.wLength, 0);
   2165   1.1     joerg 
   2166   1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, NULL);
   2167   1.1     joerg 	if (error != 0) {
   2168   1.1     joerg 		printf("%s: could not run firmware: %s\n",
   2169  1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   2170   1.1     joerg 	}
   2171   1.1     joerg 	return error;
   2172   1.1     joerg }
   2173   1.1     joerg 
   2174  1.35  jmcneill static int
   2175   1.1     joerg rum_prepare_beacon(struct rum_softc *sc)
   2176   1.1     joerg {
   2177   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   2178   1.1     joerg 	struct rum_tx_desc desc;
   2179   1.1     joerg 	struct mbuf *m0;
   2180   1.1     joerg 	int rate;
   2181   1.1     joerg 
   2182   1.1     joerg 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
   2183   1.1     joerg 	if (m0 == NULL) {
   2184  1.21      cube 		aprint_error_dev(sc->sc_dev,
   2185  1.21      cube 		    "could not allocate beacon frame\n");
   2186   1.1     joerg 		return ENOBUFS;
   2187   1.1     joerg 	}
   2188   1.1     joerg 
   2189   1.1     joerg 	/* send beacons at the lowest available rate */
   2190   1.1     joerg 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
   2191   1.1     joerg 
   2192   1.1     joerg 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
   2193   1.1     joerg 	    m0->m_pkthdr.len, rate);
   2194   1.1     joerg 
   2195   1.1     joerg 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
   2196   1.1     joerg 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
   2197   1.1     joerg 
   2198   1.1     joerg 	/* copy beacon header and payload into NIC memory */
   2199   1.1     joerg 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
   2200   1.1     joerg 	    m0->m_pkthdr.len);
   2201   1.1     joerg 
   2202   1.1     joerg 	m_freem(m0);
   2203   1.1     joerg 
   2204   1.1     joerg 	return 0;
   2205   1.1     joerg }
   2206   1.1     joerg 
   2207  1.35  jmcneill static void
   2208  1.18  kiyohara rum_newassoc(struct ieee80211_node *ni, int isnew)
   2209  1.18  kiyohara {
   2210  1.18  kiyohara 	/* start with lowest Tx rate */
   2211  1.18  kiyohara 	ni->ni_txrate = 0;
   2212  1.18  kiyohara }
   2213  1.18  kiyohara 
   2214  1.35  jmcneill static void
   2215   1.1     joerg rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
   2216   1.1     joerg {
   2217   1.1     joerg 	int i;
   2218   1.1     joerg 
   2219   1.1     joerg 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
   2220  1.52     skrll 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
   2221   1.1     joerg 
   2222   1.1     joerg 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
   2223   1.1     joerg 
   2224   1.1     joerg 	/* set rate to some reasonable initial value */
   2225   1.1     joerg 	for (i = ni->ni_rates.rs_nrates - 1;
   2226   1.1     joerg 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
   2227   1.1     joerg 	     i--);
   2228   1.1     joerg 	ni->ni_txrate = i;
   2229   1.1     joerg 
   2230  1.33    dyoung 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
   2231   1.1     joerg }
   2232   1.1     joerg 
   2233  1.35  jmcneill static void
   2234   1.1     joerg rum_amrr_timeout(void *arg)
   2235   1.1     joerg {
   2236   1.1     joerg 	struct rum_softc *sc = arg;
   2237   1.1     joerg 	usb_device_request_t req;
   2238   1.1     joerg 
   2239   1.1     joerg 	/*
   2240   1.1     joerg 	 * Asynchronously read statistic registers (cleared by read).
   2241   1.1     joerg 	 */
   2242   1.1     joerg 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
   2243   1.1     joerg 	req.bRequest = RT2573_READ_MULTI_MAC;
   2244   1.1     joerg 	USETW(req.wValue, 0);
   2245   1.1     joerg 	USETW(req.wIndex, RT2573_STA_CSR0);
   2246  1.52     skrll 	USETW(req.wLength, sizeof(sc->sta));
   2247   1.1     joerg 
   2248   1.1     joerg 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
   2249  1.52     skrll 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
   2250   1.1     joerg 	    rum_amrr_update);
   2251   1.1     joerg 	(void)usbd_transfer(sc->amrr_xfer);
   2252   1.1     joerg }
   2253   1.1     joerg 
   2254  1.35  jmcneill static void
   2255  1.52     skrll rum_amrr_update(struct usbd_xfer *xfer, void *priv,
   2256   1.1     joerg     usbd_status status)
   2257   1.1     joerg {
   2258   1.1     joerg 	struct rum_softc *sc = (struct rum_softc *)priv;
   2259   1.1     joerg 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2260   1.1     joerg 
   2261   1.1     joerg 	if (status != USBD_NORMAL_COMPLETION) {
   2262   1.1     joerg 		printf("%s: could not retrieve Tx statistics - cancelling "
   2263  1.33    dyoung 		    "automatic rate control\n", device_xname(sc->sc_dev));
   2264   1.1     joerg 		return;
   2265   1.1     joerg 	}
   2266   1.1     joerg 
   2267   1.1     joerg 	/* count TX retry-fail as Tx errors */
   2268   1.1     joerg 	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
   2269   1.1     joerg 
   2270   1.1     joerg 	sc->amn.amn_retrycnt =
   2271   1.1     joerg 	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
   2272   1.1     joerg 	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
   2273   1.1     joerg 	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
   2274   1.1     joerg 
   2275   1.1     joerg 	sc->amn.amn_txcnt =
   2276   1.1     joerg 	    sc->amn.amn_retrycnt +
   2277   1.1     joerg 	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
   2278   1.1     joerg 
   2279   1.1     joerg 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
   2280   1.1     joerg 
   2281  1.33    dyoung 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
   2282   1.1     joerg }
   2283   1.1     joerg 
   2284  1.35  jmcneill static int
   2285  1.33    dyoung rum_activate(device_t self, enum devact act)
   2286   1.1     joerg {
   2287   1.1     joerg 	switch (act) {
   2288   1.1     joerg 	case DVACT_DEACTIVATE:
   2289   1.1     joerg 		/*if_deactivate(&sc->sc_ic.ic_if);*/
   2290  1.30    dyoung 		return 0;
   2291  1.30    dyoung 	default:
   2292  1.35  jmcneill 		return 0;
   2293   1.1     joerg 	}
   2294   1.1     joerg }
   2295  1.38  pgoyette 
   2296  1.42    nonaka MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf");
   2297  1.38  pgoyette 
   2298  1.38  pgoyette #ifdef _MODULE
   2299  1.38  pgoyette #include "ioconf.c"
   2300  1.38  pgoyette #endif
   2301  1.38  pgoyette 
   2302  1.38  pgoyette static int
   2303  1.38  pgoyette if_rum_modcmd(modcmd_t cmd, void *aux)
   2304  1.38  pgoyette {
   2305  1.38  pgoyette 	int error = 0;
   2306  1.38  pgoyette 
   2307  1.38  pgoyette 	switch (cmd) {
   2308  1.38  pgoyette 	case MODULE_CMD_INIT:
   2309  1.38  pgoyette #ifdef _MODULE
   2310  1.39  pgoyette 		error = config_init_component(cfdriver_ioconf_rum,
   2311  1.39  pgoyette 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
   2312  1.38  pgoyette #endif
   2313  1.38  pgoyette 		return error;
   2314  1.38  pgoyette 	case MODULE_CMD_FINI:
   2315  1.38  pgoyette #ifdef _MODULE
   2316  1.39  pgoyette 		error = config_fini_component(cfdriver_ioconf_rum,
   2317  1.39  pgoyette 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
   2318  1.38  pgoyette #endif
   2319  1.38  pgoyette 		return error;
   2320  1.38  pgoyette 	default:
   2321  1.38  pgoyette 		return ENOTTY;
   2322  1.38  pgoyette 	}
   2323  1.38  pgoyette }
   2324