Home | History | Annotate | Line # | Download | only in usb
if_rum.c revision 1.6.4.1
      1      1.1     joerg /*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
      2  1.6.4.1     itohy /*	$NetBSD: if_rum.c,v 1.6.4.1 2007/05/22 14:57:37 itohy Exp $	*/
      3      1.1     joerg 
      4      1.1     joerg /*-
      5      1.1     joerg  * Copyright (c) 2005, 2006 Damien Bergamini <damien.bergamini (at) free.fr>
      6      1.1     joerg  * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
      7      1.1     joerg  *
      8      1.1     joerg  * Permission to use, copy, modify, and distribute this software for any
      9      1.1     joerg  * purpose with or without fee is hereby granted, provided that the above
     10      1.1     joerg  * copyright notice and this permission notice appear in all copies.
     11      1.1     joerg  *
     12      1.1     joerg  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     13      1.1     joerg  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     14      1.1     joerg  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     15      1.1     joerg  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     16      1.1     joerg  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     17      1.1     joerg  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     18      1.1     joerg  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     19      1.1     joerg  */
     20      1.1     joerg 
     21      1.1     joerg /*-
     22      1.1     joerg  * Ralink Technology RT2501USB/RT2601USB chipset driver
     23      1.1     joerg  * http://www.ralinktech.com/
     24      1.1     joerg  */
     25      1.1     joerg 
     26      1.2   xtraeme #include <sys/cdefs.h>
     27  1.6.4.1     itohy __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.6.4.1 2007/05/22 14:57:37 itohy Exp $");
     28      1.2   xtraeme 
     29      1.1     joerg #include "bpfilter.h"
     30      1.1     joerg 
     31      1.1     joerg #include <sys/param.h>
     32      1.1     joerg #include <sys/sockio.h>
     33      1.1     joerg #include <sys/sysctl.h>
     34      1.1     joerg #include <sys/mbuf.h>
     35      1.1     joerg #include <sys/kernel.h>
     36      1.1     joerg #include <sys/socket.h>
     37      1.1     joerg #include <sys/systm.h>
     38      1.1     joerg #include <sys/malloc.h>
     39      1.1     joerg #include <sys/conf.h>
     40      1.1     joerg #include <sys/device.h>
     41      1.1     joerg 
     42      1.1     joerg #include <machine/bus.h>
     43      1.1     joerg #include <machine/endian.h>
     44      1.1     joerg #include <machine/intr.h>
     45      1.1     joerg 
     46      1.1     joerg #if NBPFILTER > 0
     47      1.1     joerg #include <net/bpf.h>
     48      1.1     joerg #endif
     49      1.1     joerg #include <net/if.h>
     50      1.1     joerg #include <net/if_arp.h>
     51      1.1     joerg #include <net/if_dl.h>
     52      1.1     joerg #include <net/if_ether.h>
     53      1.1     joerg #include <net/if_media.h>
     54      1.1     joerg #include <net/if_types.h>
     55      1.1     joerg 
     56      1.1     joerg #include <netinet/in.h>
     57      1.1     joerg #include <netinet/in_systm.h>
     58      1.1     joerg #include <netinet/in_var.h>
     59      1.1     joerg #include <netinet/ip.h>
     60      1.1     joerg 
     61      1.1     joerg #include <net80211/ieee80211_netbsd.h>
     62      1.1     joerg #include <net80211/ieee80211_var.h>
     63      1.1     joerg #include <net80211/ieee80211_amrr.h>
     64      1.1     joerg #include <net80211/ieee80211_radiotap.h>
     65      1.1     joerg 
     66      1.1     joerg #include <dev/firmload.h>
     67      1.1     joerg 
     68      1.1     joerg #include <dev/usb/usb.h>
     69      1.1     joerg #include <dev/usb/usbdi.h>
     70      1.1     joerg #include <dev/usb/usbdi_util.h>
     71      1.1     joerg #include <dev/usb/usbdevs.h>
     72      1.1     joerg 
     73      1.1     joerg #include <dev/usb/if_rumreg.h>
     74      1.1     joerg #include <dev/usb/if_rumvar.h>
     75      1.1     joerg 
     76      1.1     joerg #ifdef USB_DEBUG
     77      1.1     joerg #define RUM_DEBUG
     78      1.1     joerg #endif
     79      1.1     joerg 
     80      1.1     joerg #ifdef RUM_DEBUG
     81      1.1     joerg #define DPRINTF(x)	do { if (rum_debug) logprintf x; } while (0)
     82      1.1     joerg #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) logprintf x; } while (0)
     83      1.1     joerg int rum_debug = 0;
     84      1.1     joerg #else
     85      1.1     joerg #define DPRINTF(x)
     86      1.1     joerg #define DPRINTFN(n, x)
     87      1.1     joerg #endif
     88      1.1     joerg 
     89      1.1     joerg /* various supported device vendors/products */
     90      1.1     joerg static const struct usb_devno rum_devs[] = {
     91      1.1     joerg 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573 },
     92      1.1     joerg 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
     93      1.1     joerg 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
     94      1.1     joerg 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
     95      1.1     joerg 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
     96      1.1     joerg 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
     97      1.1     joerg 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
     98      1.1     joerg 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
     99      1.1     joerg 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
    100      1.1     joerg 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
    101      1.1     joerg 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
    102      1.1     joerg 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
    103      1.1     joerg 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
    104      1.4      elad 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
    105      1.1     joerg 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
    106      1.1     joerg 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
    107      1.1     joerg 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
    108      1.4      elad 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
    109      1.1     joerg 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
    110      1.1     joerg 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
    111      1.1     joerg 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
    112      1.1     joerg 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
    113      1.3  christos 	{ USB_VENDOR_RALINK_2,          USB_PRODUCT_RALINK_2_RT2573 },
    114      1.1     joerg 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
    115      1.1     joerg 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
    116      1.1     joerg 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
    117      1.1     joerg 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 }
    118      1.1     joerg };
    119      1.1     joerg 
    120      1.1     joerg Static int		rum_attachhook(void *);
    121      1.1     joerg Static int		rum_alloc_tx_list(struct rum_softc *);
    122      1.1     joerg Static void		rum_free_tx_list(struct rum_softc *);
    123      1.1     joerg Static int		rum_alloc_rx_list(struct rum_softc *);
    124      1.1     joerg Static void		rum_free_rx_list(struct rum_softc *);
    125      1.1     joerg Static int		rum_media_change(struct ifnet *);
    126      1.1     joerg Static void		rum_next_scan(void *);
    127      1.1     joerg Static void		rum_task(void *);
    128      1.1     joerg Static int		rum_newstate(struct ieee80211com *,
    129      1.1     joerg 			    enum ieee80211_state, int);
    130      1.1     joerg Static void		rum_txeof(usbd_xfer_handle, usbd_private_handle,
    131      1.1     joerg 			    usbd_status);
    132      1.1     joerg Static void		rum_rxeof(usbd_xfer_handle, usbd_private_handle,
    133      1.1     joerg 			    usbd_status);
    134      1.1     joerg #if NBPFILTER > 0
    135      1.1     joerg Static uint8_t		rum_rxrate(struct rum_rx_desc *);
    136      1.1     joerg #endif
    137      1.1     joerg Static int		rum_ack_rate(struct ieee80211com *, int);
    138      1.1     joerg Static uint16_t		rum_txtime(int, int, uint32_t);
    139      1.1     joerg Static uint8_t		rum_plcp_signal(int);
    140      1.1     joerg Static void		rum_setup_tx_desc(struct rum_softc *,
    141      1.1     joerg 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
    142      1.1     joerg 			    int);
    143      1.1     joerg Static int		rum_tx_mgt(struct rum_softc *, struct mbuf *,
    144      1.1     joerg 			    struct ieee80211_node *);
    145      1.1     joerg Static int		rum_tx_data(struct rum_softc *, struct mbuf *,
    146      1.1     joerg 			    struct ieee80211_node *);
    147      1.1     joerg Static void		rum_start(struct ifnet *);
    148      1.1     joerg Static void		rum_watchdog(struct ifnet *);
    149      1.1     joerg Static int		rum_ioctl(struct ifnet *, u_long, caddr_t);
    150      1.1     joerg Static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
    151      1.1     joerg 			    int);
    152      1.1     joerg Static uint32_t		rum_read(struct rum_softc *, uint16_t);
    153      1.1     joerg Static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
    154      1.1     joerg 			    int);
    155      1.1     joerg Static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
    156      1.1     joerg Static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
    157      1.1     joerg 			    size_t);
    158      1.1     joerg Static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
    159      1.1     joerg Static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
    160      1.1     joerg Static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
    161      1.1     joerg Static void		rum_select_antenna(struct rum_softc *);
    162      1.1     joerg Static void		rum_enable_mrr(struct rum_softc *);
    163      1.1     joerg Static void		rum_set_txpreamble(struct rum_softc *);
    164      1.1     joerg Static void		rum_set_basicrates(struct rum_softc *);
    165      1.1     joerg Static void		rum_select_band(struct rum_softc *,
    166      1.1     joerg 			    struct ieee80211_channel *);
    167      1.1     joerg Static void		rum_set_chan(struct rum_softc *,
    168      1.1     joerg 			    struct ieee80211_channel *);
    169      1.1     joerg Static void		rum_enable_tsf_sync(struct rum_softc *);
    170      1.1     joerg Static void		rum_update_slot(struct rum_softc *);
    171      1.1     joerg Static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
    172      1.1     joerg Static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
    173      1.1     joerg Static void		rum_update_promisc(struct rum_softc *);
    174      1.1     joerg Static const char	*rum_get_rf(int);
    175      1.1     joerg Static void		rum_read_eeprom(struct rum_softc *);
    176      1.1     joerg Static int		rum_bbp_init(struct rum_softc *);
    177      1.1     joerg Static int		rum_init(struct ifnet *);
    178      1.1     joerg Static void		rum_stop(struct ifnet *, int);
    179      1.1     joerg Static int		rum_load_microcode(struct rum_softc *, const u_char *,
    180      1.1     joerg 			    size_t);
    181      1.1     joerg Static int		rum_prepare_beacon(struct rum_softc *);
    182      1.1     joerg Static void		rum_amrr_start(struct rum_softc *,
    183      1.1     joerg 			    struct ieee80211_node *);
    184      1.1     joerg Static void		rum_amrr_timeout(void *);
    185      1.1     joerg Static void		rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
    186      1.1     joerg 			    usbd_status status);
    187      1.1     joerg 
    188      1.1     joerg /*
    189      1.1     joerg  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    190      1.1     joerg  */
    191      1.1     joerg static const struct ieee80211_rateset rum_rateset_11a =
    192      1.1     joerg 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    193      1.1     joerg 
    194      1.1     joerg static const struct ieee80211_rateset rum_rateset_11b =
    195      1.1     joerg 	{ 4, { 2, 4, 11, 22 } };
    196      1.1     joerg 
    197      1.1     joerg static const struct ieee80211_rateset rum_rateset_11g =
    198      1.1     joerg 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    199      1.1     joerg 
    200      1.1     joerg static const struct {
    201      1.1     joerg 	uint32_t	reg;
    202      1.1     joerg 	uint32_t	val;
    203      1.1     joerg } rum_def_mac[] = {
    204      1.1     joerg 	RT2573_DEF_MAC
    205      1.1     joerg };
    206      1.1     joerg 
    207      1.1     joerg static const struct {
    208      1.1     joerg 	uint8_t	reg;
    209      1.1     joerg 	uint8_t	val;
    210      1.1     joerg } rum_def_bbp[] = {
    211      1.1     joerg 	RT2573_DEF_BBP
    212      1.1     joerg };
    213      1.1     joerg 
    214      1.1     joerg static const struct rfprog {
    215      1.1     joerg 	uint8_t		chan;
    216      1.1     joerg 	uint32_t	r1, r2, r3, r4;
    217      1.1     joerg }  rum_rf5226[] = {
    218      1.1     joerg 	RT2573_RF5226
    219      1.1     joerg }, rum_rf5225[] = {
    220      1.1     joerg 	RT2573_RF5225
    221      1.1     joerg };
    222      1.1     joerg 
    223      1.1     joerg USB_DECLARE_DRIVER(rum);
    224      1.1     joerg 
    225      1.1     joerg USB_MATCH(rum)
    226      1.1     joerg {
    227      1.1     joerg 	USB_MATCH_START(rum, uaa);
    228      1.1     joerg 
    229      1.1     joerg 	if (uaa->iface != NULL)
    230      1.1     joerg 		return UMATCH_NONE;
    231      1.1     joerg 
    232      1.1     joerg 	return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
    233      1.1     joerg 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
    234      1.1     joerg }
    235      1.1     joerg 
    236      1.1     joerg Static int
    237      1.1     joerg rum_attachhook(void *xsc)
    238      1.1     joerg {
    239      1.1     joerg 	struct rum_softc *sc = xsc;
    240      1.1     joerg 	firmware_handle_t fwh;
    241      1.1     joerg 	const char *name = "rum-rt2573";
    242      1.1     joerg 	u_char *ucode;
    243      1.1     joerg 	size_t size;
    244      1.1     joerg 	int error;
    245      1.1     joerg 
    246      1.1     joerg 	if ((error = firmware_open("rum", name, &fwh)) != 0) {
    247      1.1     joerg 		printf("%s: failed loadfirmware of file %s (error %d)\n",
    248      1.1     joerg 		    USBDEVNAME(sc->sc_dev), name, error);
    249      1.1     joerg 		return error;
    250      1.1     joerg 	}
    251      1.1     joerg 	size = firmware_get_size(fwh);
    252      1.1     joerg 	ucode = firmware_malloc(size);
    253      1.1     joerg 	if (ucode == NULL) {
    254      1.1     joerg 		printf("%s: failed to allocate firmware memory\n",
    255      1.1     joerg 		    USBDEVNAME(sc->sc_dev));
    256      1.1     joerg 		firmware_close(fwh);
    257      1.1     joerg 		return ENOMEM;;
    258      1.1     joerg 	}
    259      1.1     joerg 	error = firmware_read(fwh, 0, ucode, size);
    260      1.1     joerg 	firmware_close(fwh);
    261      1.1     joerg 	if (error != 0) {
    262      1.1     joerg 		printf("%s: failed to read firmware (error %d)\n",
    263      1.1     joerg 		    USBDEVNAME(sc->sc_dev), error);
    264      1.1     joerg 		firmware_free(ucode, 0);
    265      1.1     joerg 		return error;
    266      1.1     joerg 	}
    267      1.1     joerg 
    268      1.1     joerg 	if (rum_load_microcode(sc, ucode, size) != 0) {
    269      1.1     joerg 		printf("%s: could not load 8051 microcode\n",
    270      1.1     joerg 		    USBDEVNAME(sc->sc_dev));
    271      1.1     joerg 		firmware_free(ucode, 0);
    272      1.1     joerg 		return ENXIO;
    273      1.1     joerg 	}
    274      1.1     joerg 
    275      1.1     joerg 	firmware_free(ucode, 0);
    276      1.1     joerg 	sc->sc_flags |= RT2573_FWLOADED;
    277      1.1     joerg 
    278      1.1     joerg 	return 0;
    279      1.1     joerg }
    280      1.1     joerg 
    281      1.1     joerg USB_ATTACH(rum)
    282      1.1     joerg {
    283      1.1     joerg 	USB_ATTACH_START(rum, sc, uaa);
    284      1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    285      1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    286      1.1     joerg 	usb_interface_descriptor_t *id;
    287      1.1     joerg 	usb_endpoint_descriptor_t *ed;
    288      1.1     joerg 	usbd_status error;
    289      1.1     joerg 	char *devinfop;
    290      1.1     joerg 	int i, ntries;
    291      1.1     joerg 	uint32_t tmp;
    292      1.1     joerg 
    293      1.1     joerg 	sc->sc_udev = uaa->device;
    294      1.1     joerg 	sc->sc_flags = 0;
    295      1.1     joerg 
    296      1.1     joerg 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
    297      1.1     joerg 	USB_ATTACH_SETUP;
    298      1.1     joerg 	printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
    299      1.1     joerg 	usbd_devinfo_free(devinfop);
    300      1.1     joerg 
    301      1.1     joerg 	if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
    302      1.1     joerg 		printf("%s: could not set configuration no\n",
    303      1.1     joerg 		    USBDEVNAME(sc->sc_dev));
    304      1.1     joerg 		USB_ATTACH_ERROR_RETURN;
    305      1.1     joerg 	}
    306      1.1     joerg 
    307      1.1     joerg 	/* get the first interface handle */
    308      1.1     joerg 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
    309      1.1     joerg 	    &sc->sc_iface);
    310      1.1     joerg 	if (error != 0) {
    311      1.1     joerg 		printf("%s: could not get interface handle\n",
    312      1.1     joerg 		    USBDEVNAME(sc->sc_dev));
    313      1.1     joerg 		USB_ATTACH_ERROR_RETURN;
    314      1.1     joerg 	}
    315      1.1     joerg 
    316      1.1     joerg 	/*
    317      1.1     joerg 	 * Find endpoints.
    318      1.1     joerg 	 */
    319      1.1     joerg 	id = usbd_get_interface_descriptor(sc->sc_iface);
    320      1.1     joerg 
    321      1.1     joerg 	sc->sc_rx_no = sc->sc_tx_no = -1;
    322      1.1     joerg 	for (i = 0; i < id->bNumEndpoints; i++) {
    323      1.1     joerg 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
    324      1.1     joerg 		if (ed == NULL) {
    325      1.1     joerg 			printf("%s: no endpoint descriptor for iface %d\n",
    326      1.1     joerg 			    USBDEVNAME(sc->sc_dev), i);
    327      1.1     joerg 			USB_ATTACH_ERROR_RETURN;
    328      1.1     joerg 		}
    329      1.1     joerg 
    330      1.1     joerg 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
    331      1.1     joerg 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    332      1.1     joerg 			sc->sc_rx_no = ed->bEndpointAddress;
    333      1.1     joerg 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
    334      1.1     joerg 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    335      1.1     joerg 			sc->sc_tx_no = ed->bEndpointAddress;
    336      1.1     joerg 	}
    337      1.1     joerg 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
    338      1.1     joerg 		printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
    339      1.1     joerg 		USB_ATTACH_ERROR_RETURN;
    340      1.1     joerg 	}
    341      1.1     joerg 
    342      1.1     joerg 	usb_init_task(&sc->sc_task, rum_task, sc);
    343      1.1     joerg 	callout_init(&sc->scan_ch);
    344      1.1     joerg 
    345      1.1     joerg 	sc->amrr.amrr_min_success_threshold =  1;
    346      1.1     joerg 	sc->amrr.amrr_max_success_threshold = 10;
    347      1.1     joerg 	callout_init(&sc->amrr_ch);
    348      1.1     joerg 
    349      1.1     joerg 	/* retrieve RT2573 rev. no */
    350  1.6.4.1     itohy 	tmp = 0;	/* XXX shut up warning */
    351      1.1     joerg 	for (ntries = 0; ntries < 1000; ntries++) {
    352      1.1     joerg 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
    353      1.1     joerg 			break;
    354      1.1     joerg 		DELAY(1000);
    355      1.1     joerg 	}
    356      1.1     joerg 	if (ntries == 1000) {
    357      1.1     joerg 		printf("%s: timeout waiting for chip to settle\n",
    358      1.1     joerg 		    USBDEVNAME(sc->sc_dev));
    359      1.1     joerg 		USB_ATTACH_ERROR_RETURN;
    360      1.1     joerg 	}
    361      1.1     joerg 
    362      1.1     joerg 	/* retrieve MAC address and various other things from EEPROM */
    363      1.1     joerg 	rum_read_eeprom(sc);
    364      1.1     joerg 
    365      1.1     joerg 	printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
    366      1.1     joerg 	    USBDEVNAME(sc->sc_dev), sc->macbbp_rev, tmp,
    367      1.1     joerg 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
    368      1.1     joerg 
    369      1.1     joerg 	ic->ic_ifp = ifp;
    370      1.1     joerg 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    371      1.1     joerg 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    372      1.1     joerg 	ic->ic_state = IEEE80211_S_INIT;
    373      1.1     joerg 
    374      1.1     joerg 	/* set device capabilities */
    375      1.1     joerg 	ic->ic_caps =
    376      1.1     joerg 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
    377      1.1     joerg 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    378      1.1     joerg 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
    379      1.1     joerg 	    IEEE80211_C_TXPMGT |	/* tx power management */
    380      1.1     joerg 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    381      1.1     joerg 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    382      1.1     joerg 	    IEEE80211_C_WPA;		/* 802.11i */
    383      1.1     joerg 
    384      1.1     joerg 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
    385      1.1     joerg 		/* set supported .11a rates */
    386      1.1     joerg 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
    387      1.1     joerg 
    388      1.1     joerg 		/* set supported .11a channels */
    389      1.1     joerg 		for (i = 34; i <= 46; i += 4) {
    390      1.1     joerg 			ic->ic_channels[i].ic_freq =
    391      1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    392      1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    393      1.1     joerg 		}
    394      1.1     joerg 		for (i = 36; i <= 64; i += 4) {
    395      1.1     joerg 			ic->ic_channels[i].ic_freq =
    396      1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    397      1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    398      1.1     joerg 		}
    399      1.1     joerg 		for (i = 100; i <= 140; i += 4) {
    400      1.1     joerg 			ic->ic_channels[i].ic_freq =
    401      1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    402      1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    403      1.1     joerg 		}
    404      1.1     joerg 		for (i = 149; i <= 165; i += 4) {
    405      1.1     joerg 			ic->ic_channels[i].ic_freq =
    406      1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    407      1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    408      1.1     joerg 		}
    409      1.1     joerg 	}
    410      1.1     joerg 
    411      1.1     joerg 	/* set supported .11b and .11g rates */
    412      1.1     joerg 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
    413      1.1     joerg 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
    414      1.1     joerg 
    415      1.1     joerg 	/* set supported .11b and .11g channels (1 through 14) */
    416      1.1     joerg 	for (i = 1; i <= 14; i++) {
    417      1.1     joerg 		ic->ic_channels[i].ic_freq =
    418      1.1     joerg 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    419      1.1     joerg 		ic->ic_channels[i].ic_flags =
    420      1.1     joerg 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    421      1.1     joerg 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    422      1.1     joerg 	}
    423      1.1     joerg 
    424      1.1     joerg 	ifp->if_softc = sc;
    425      1.1     joerg 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    426      1.1     joerg 	ifp->if_init = rum_init;
    427      1.1     joerg 	ifp->if_ioctl = rum_ioctl;
    428      1.1     joerg 	ifp->if_start = rum_start;
    429      1.1     joerg 	ifp->if_watchdog = rum_watchdog;
    430      1.1     joerg 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
    431      1.1     joerg 	IFQ_SET_READY(&ifp->if_snd);
    432      1.1     joerg 	memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
    433      1.1     joerg 
    434      1.1     joerg 	if_attach(ifp);
    435      1.1     joerg 	ieee80211_ifattach(ic);
    436      1.1     joerg 
    437      1.1     joerg 	/* override state transition machine */
    438      1.1     joerg 	sc->sc_newstate = ic->ic_newstate;
    439      1.1     joerg 	ic->ic_newstate = rum_newstate;
    440      1.1     joerg 	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
    441      1.1     joerg 
    442      1.1     joerg #if NBPFILTER > 0
    443      1.1     joerg 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    444      1.1     joerg 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf);
    445      1.1     joerg 
    446      1.1     joerg 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    447      1.1     joerg 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    448      1.1     joerg 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
    449      1.1     joerg 
    450      1.1     joerg 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    451      1.1     joerg 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    452      1.1     joerg 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
    453      1.1     joerg #endif
    454      1.1     joerg 
    455      1.1     joerg 	ieee80211_announce(ic);
    456      1.1     joerg 
    457      1.1     joerg 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
    458      1.1     joerg 	    USBDEV(sc->sc_dev));
    459      1.1     joerg 
    460      1.1     joerg 	USB_ATTACH_SUCCESS_RETURN;
    461      1.1     joerg }
    462      1.1     joerg 
    463      1.1     joerg USB_DETACH(rum)
    464      1.1     joerg {
    465      1.1     joerg 	USB_DETACH_START(rum, sc);
    466      1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    467      1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    468      1.1     joerg 	int s;
    469      1.1     joerg 
    470      1.1     joerg 	s = splusb();
    471      1.1     joerg 
    472      1.1     joerg 	rum_stop(ifp, 1);
    473      1.1     joerg 	usb_rem_task(sc->sc_udev, &sc->sc_task);
    474      1.1     joerg 	callout_stop(&sc->scan_ch);
    475      1.1     joerg 	callout_stop(&sc->amrr_ch);
    476      1.1     joerg 
    477      1.1     joerg 	if (sc->amrr_xfer != NULL) {
    478      1.1     joerg 		usbd_free_xfer(sc->amrr_xfer);
    479      1.1     joerg 		sc->amrr_xfer = NULL;
    480      1.1     joerg 	}
    481      1.1     joerg 
    482      1.1     joerg 	if (sc->sc_rx_pipeh != NULL) {
    483      1.1     joerg 		usbd_abort_pipe(sc->sc_rx_pipeh);
    484      1.1     joerg 		usbd_close_pipe(sc->sc_rx_pipeh);
    485      1.1     joerg 	}
    486      1.1     joerg 
    487      1.1     joerg 	if (sc->sc_tx_pipeh != NULL) {
    488      1.1     joerg 		usbd_abort_pipe(sc->sc_tx_pipeh);
    489      1.1     joerg 		usbd_close_pipe(sc->sc_tx_pipeh);
    490      1.1     joerg 	}
    491      1.1     joerg 
    492      1.1     joerg 	rum_free_rx_list(sc);
    493      1.1     joerg 	rum_free_tx_list(sc);
    494      1.1     joerg 
    495      1.1     joerg #if NBPFILTER > 0
    496      1.1     joerg 	bpfdetach(ifp);
    497      1.1     joerg #endif
    498      1.1     joerg 	ieee80211_ifdetach(ic);	/* free all nodes */
    499      1.1     joerg 	if_detach(ifp);
    500      1.1     joerg 
    501      1.1     joerg 	splx(s);
    502      1.1     joerg 
    503      1.1     joerg 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
    504      1.1     joerg 	    USBDEV(sc->sc_dev));
    505      1.1     joerg 
    506      1.1     joerg 	return 0;
    507      1.1     joerg }
    508      1.1     joerg 
    509      1.1     joerg Static int
    510      1.1     joerg rum_alloc_tx_list(struct rum_softc *sc)
    511      1.1     joerg {
    512      1.1     joerg 	struct rum_tx_data *data;
    513      1.1     joerg 	int i, error;
    514      1.1     joerg 
    515      1.1     joerg 	sc->tx_queued = 0;
    516      1.1     joerg 
    517      1.1     joerg 	for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
    518      1.1     joerg 		data = &sc->tx_data[i];
    519      1.1     joerg 
    520      1.1     joerg 		data->sc = sc;
    521      1.1     joerg 
    522  1.6.4.1     itohy 		data->xfer = usbd_alloc_xfer(sc->sc_udev, sc->sc_tx_pipeh);
    523      1.1     joerg 		if (data->xfer == NULL) {
    524      1.1     joerg 			printf("%s: could not allocate tx xfer\n",
    525      1.1     joerg 			    USBDEVNAME(sc->sc_dev));
    526      1.1     joerg 			error = ENOMEM;
    527      1.1     joerg 			goto fail;
    528      1.1     joerg 		}
    529      1.1     joerg 
    530      1.1     joerg 		data->buf = usbd_alloc_buffer(data->xfer,
    531      1.1     joerg 		    RT2573_TX_DESC_SIZE + MCLBYTES);
    532      1.1     joerg 		if (data->buf == NULL) {
    533      1.1     joerg 			printf("%s: could not allocate tx buffer\n",
    534      1.1     joerg 			    USBDEVNAME(sc->sc_dev));
    535      1.1     joerg 			error = ENOMEM;
    536      1.1     joerg 			goto fail;
    537      1.1     joerg 		}
    538      1.1     joerg 
    539      1.1     joerg 		/* clean Tx descriptor */
    540      1.1     joerg 		bzero(data->buf, RT2573_TX_DESC_SIZE);
    541      1.1     joerg 	}
    542      1.1     joerg 
    543      1.1     joerg 	return 0;
    544      1.1     joerg 
    545      1.1     joerg fail:	rum_free_tx_list(sc);
    546      1.1     joerg 	return error;
    547      1.1     joerg }
    548      1.1     joerg 
    549      1.1     joerg Static void
    550      1.1     joerg rum_free_tx_list(struct rum_softc *sc)
    551      1.1     joerg {
    552      1.1     joerg 	struct rum_tx_data *data;
    553      1.1     joerg 	int i;
    554      1.1     joerg 
    555      1.1     joerg 	for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
    556      1.1     joerg 		data = &sc->tx_data[i];
    557      1.1     joerg 
    558      1.1     joerg 		if (data->xfer != NULL) {
    559      1.1     joerg 			usbd_free_xfer(data->xfer);
    560      1.1     joerg 			data->xfer = NULL;
    561      1.1     joerg 		}
    562      1.1     joerg 
    563      1.1     joerg 		if (data->ni != NULL) {
    564      1.1     joerg 			ieee80211_free_node(data->ni);
    565      1.1     joerg 			data->ni = NULL;
    566      1.1     joerg 		}
    567      1.1     joerg 	}
    568      1.1     joerg }
    569      1.1     joerg 
    570      1.1     joerg Static int
    571      1.1     joerg rum_alloc_rx_list(struct rum_softc *sc)
    572      1.1     joerg {
    573      1.1     joerg 	struct rum_rx_data *data;
    574      1.1     joerg 	int i, error;
    575      1.1     joerg 
    576      1.1     joerg 	for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
    577      1.1     joerg 		data = &sc->rx_data[i];
    578      1.1     joerg 
    579      1.1     joerg 		data->sc = sc;
    580      1.1     joerg 
    581  1.6.4.1     itohy 		data->xfer = usbd_alloc_xfer(sc->sc_udev, sc->sc_rx_pipeh);
    582      1.1     joerg 		if (data->xfer == NULL) {
    583      1.1     joerg 			printf("%s: could not allocate rx xfer\n",
    584      1.1     joerg 			    USBDEVNAME(sc->sc_dev));
    585      1.1     joerg 			error = ENOMEM;
    586      1.1     joerg 			goto fail;
    587      1.1     joerg 		}
    588      1.1     joerg 
    589      1.1     joerg 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
    590      1.1     joerg 			printf("%s: could not allocate rx buffer\n",
    591      1.1     joerg 			    USBDEVNAME(sc->sc_dev));
    592      1.1     joerg 			error = ENOMEM;
    593      1.1     joerg 			goto fail;
    594      1.1     joerg 		}
    595      1.1     joerg 
    596      1.1     joerg 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    597      1.1     joerg 		if (data->m == NULL) {
    598      1.1     joerg 			printf("%s: could not allocate rx mbuf\n",
    599      1.1     joerg 			    USBDEVNAME(sc->sc_dev));
    600      1.1     joerg 			error = ENOMEM;
    601      1.1     joerg 			goto fail;
    602      1.1     joerg 		}
    603      1.1     joerg 
    604      1.1     joerg 		MCLGET(data->m, M_DONTWAIT);
    605      1.1     joerg 		if (!(data->m->m_flags & M_EXT)) {
    606      1.1     joerg 			printf("%s: could not allocate rx mbuf cluster\n",
    607      1.1     joerg 			    USBDEVNAME(sc->sc_dev));
    608      1.1     joerg 			error = ENOMEM;
    609      1.1     joerg 			goto fail;
    610      1.1     joerg 		}
    611      1.1     joerg 
    612      1.1     joerg 		data->buf = mtod(data->m, uint8_t *);
    613      1.1     joerg 	}
    614      1.1     joerg 
    615      1.1     joerg 	return 0;
    616      1.1     joerg 
    617      1.1     joerg fail:	rum_free_tx_list(sc);
    618      1.1     joerg 	return error;
    619      1.1     joerg }
    620      1.1     joerg 
    621      1.1     joerg Static void
    622      1.1     joerg rum_free_rx_list(struct rum_softc *sc)
    623      1.1     joerg {
    624      1.1     joerg 	struct rum_rx_data *data;
    625      1.1     joerg 	int i;
    626      1.1     joerg 
    627      1.1     joerg 	for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
    628      1.1     joerg 		data = &sc->rx_data[i];
    629      1.1     joerg 
    630      1.1     joerg 		if (data->xfer != NULL) {
    631      1.1     joerg 			usbd_free_xfer(data->xfer);
    632      1.1     joerg 			data->xfer = NULL;
    633      1.1     joerg 		}
    634      1.1     joerg 
    635      1.1     joerg 		if (data->m != NULL) {
    636      1.1     joerg 			m_freem(data->m);
    637      1.1     joerg 			data->m = NULL;
    638      1.1     joerg 		}
    639      1.1     joerg 	}
    640      1.1     joerg }
    641      1.1     joerg 
    642      1.1     joerg Static int
    643      1.1     joerg rum_media_change(struct ifnet *ifp)
    644      1.1     joerg {
    645      1.1     joerg 	int error;
    646      1.1     joerg 
    647      1.1     joerg 	error = ieee80211_media_change(ifp);
    648      1.1     joerg 	if (error != ENETRESET)
    649      1.1     joerg 		return error;
    650      1.1     joerg 
    651      1.1     joerg 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    652      1.1     joerg 		rum_init(ifp);
    653      1.1     joerg 
    654      1.1     joerg 	return 0;
    655      1.1     joerg }
    656      1.1     joerg 
    657      1.1     joerg /*
    658      1.1     joerg  * This function is called periodically (every 200ms) during scanning to
    659      1.1     joerg  * switch from one channel to another.
    660      1.1     joerg  */
    661      1.1     joerg Static void
    662      1.1     joerg rum_next_scan(void *arg)
    663      1.1     joerg {
    664      1.1     joerg 	struct rum_softc *sc = arg;
    665      1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    666      1.1     joerg 
    667      1.1     joerg 	if (ic->ic_state == IEEE80211_S_SCAN)
    668      1.1     joerg 		ieee80211_next_scan(ic);
    669      1.1     joerg }
    670      1.1     joerg 
    671      1.1     joerg Static void
    672      1.1     joerg rum_task(void *arg)
    673      1.1     joerg {
    674      1.1     joerg 	struct rum_softc *sc = arg;
    675      1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    676      1.1     joerg 	enum ieee80211_state ostate;
    677      1.1     joerg 	struct ieee80211_node *ni;
    678      1.1     joerg 	uint32_t tmp;
    679      1.1     joerg 
    680      1.1     joerg 	ostate = ic->ic_state;
    681      1.1     joerg 
    682      1.1     joerg 	switch (sc->sc_state) {
    683      1.1     joerg 	case IEEE80211_S_INIT:
    684      1.1     joerg 		if (ostate == IEEE80211_S_RUN) {
    685      1.1     joerg 			/* abort TSF synchronization */
    686      1.1     joerg 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
    687      1.1     joerg 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
    688      1.1     joerg 		}
    689      1.1     joerg 		break;
    690      1.1     joerg 
    691      1.1     joerg 	case IEEE80211_S_SCAN:
    692      1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    693      1.1     joerg 		callout_reset(&sc->scan_ch, hz / 5, rum_next_scan, sc);
    694      1.1     joerg 		break;
    695      1.1     joerg 
    696      1.1     joerg 	case IEEE80211_S_AUTH:
    697      1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    698      1.1     joerg 		break;
    699      1.1     joerg 
    700      1.1     joerg 	case IEEE80211_S_ASSOC:
    701      1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    702      1.1     joerg 		break;
    703      1.1     joerg 
    704      1.1     joerg 	case IEEE80211_S_RUN:
    705      1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    706      1.1     joerg 
    707      1.1     joerg 		ni = ic->ic_bss;
    708      1.1     joerg 
    709      1.1     joerg 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    710      1.1     joerg 			rum_update_slot(sc);
    711      1.1     joerg 			rum_enable_mrr(sc);
    712      1.1     joerg 			rum_set_txpreamble(sc);
    713      1.1     joerg 			rum_set_basicrates(sc);
    714      1.1     joerg 			rum_set_bssid(sc, ni->ni_bssid);
    715      1.1     joerg 		}
    716      1.1     joerg 
    717      1.1     joerg 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
    718      1.1     joerg 		    ic->ic_opmode == IEEE80211_M_IBSS)
    719      1.1     joerg 			rum_prepare_beacon(sc);
    720      1.1     joerg 
    721      1.1     joerg 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
    722      1.1     joerg 			rum_enable_tsf_sync(sc);
    723      1.1     joerg 
    724      1.1     joerg 		/* enable automatic rate adaptation in STA mode */
    725      1.1     joerg 		if (ic->ic_opmode == IEEE80211_M_STA &&
    726      1.1     joerg 		    ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
    727      1.1     joerg 			rum_amrr_start(sc, ni);
    728      1.1     joerg 
    729      1.1     joerg 		break;
    730      1.1     joerg 	}
    731      1.1     joerg 
    732      1.1     joerg 	sc->sc_newstate(ic, sc->sc_state, -1);
    733      1.1     joerg }
    734      1.1     joerg 
    735      1.1     joerg Static int
    736      1.1     joerg rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    737      1.1     joerg {
    738      1.1     joerg 	struct rum_softc *sc = ic->ic_ifp->if_softc;
    739      1.1     joerg 
    740      1.1     joerg 	usb_rem_task(sc->sc_udev, &sc->sc_task);
    741      1.1     joerg 	callout_stop(&sc->scan_ch);
    742      1.1     joerg 	callout_stop(&sc->amrr_ch);
    743      1.1     joerg 
    744      1.1     joerg 	/* do it in a process context */
    745      1.1     joerg 	sc->sc_state = nstate;
    746      1.1     joerg 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
    747      1.1     joerg 
    748      1.1     joerg 	return 0;
    749      1.1     joerg }
    750      1.1     joerg 
    751      1.1     joerg /* quickly determine if a given rate is CCK or OFDM */
    752      1.1     joerg #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
    753      1.1     joerg 
    754      1.1     joerg #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
    755      1.1     joerg #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
    756      1.1     joerg 
    757      1.1     joerg Static void
    758      1.1     joerg rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
    759      1.1     joerg {
    760      1.1     joerg 	struct rum_tx_data *data = priv;
    761      1.1     joerg 	struct rum_softc *sc = data->sc;
    762      1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    763      1.1     joerg 	int s;
    764      1.1     joerg 
    765      1.1     joerg 	if (status != USBD_NORMAL_COMPLETION) {
    766      1.1     joerg 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
    767      1.1     joerg 			return;
    768      1.1     joerg 
    769      1.1     joerg 		printf("%s: could not transmit buffer: %s\n",
    770      1.1     joerg 		    USBDEVNAME(sc->sc_dev), usbd_errstr(status));
    771      1.1     joerg 
    772      1.1     joerg 		if (status == USBD_STALLED)
    773      1.1     joerg 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
    774      1.1     joerg 
    775      1.1     joerg 		ifp->if_oerrors++;
    776      1.1     joerg 		return;
    777      1.1     joerg 	}
    778      1.1     joerg 
    779      1.1     joerg 	s = splnet();
    780      1.1     joerg 
    781      1.1     joerg 	m_freem(data->m);
    782      1.1     joerg 	data->m = NULL;
    783      1.1     joerg 	ieee80211_free_node(data->ni);
    784      1.1     joerg 	data->ni = NULL;
    785      1.1     joerg 
    786      1.1     joerg 	sc->tx_queued--;
    787      1.1     joerg 	ifp->if_opackets++;
    788      1.1     joerg 
    789      1.1     joerg 	DPRINTFN(10, ("tx done\n"));
    790      1.1     joerg 
    791      1.1     joerg 	sc->sc_tx_timer = 0;
    792      1.1     joerg 	ifp->if_flags &= ~IFF_OACTIVE;
    793      1.1     joerg 	rum_start(ifp);
    794      1.1     joerg 
    795      1.1     joerg 	splx(s);
    796      1.1     joerg }
    797      1.1     joerg 
    798      1.1     joerg Static void
    799      1.1     joerg rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
    800      1.1     joerg {
    801      1.1     joerg 	struct rum_rx_data *data = priv;
    802      1.1     joerg 	struct rum_softc *sc = data->sc;
    803      1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    804      1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    805      1.1     joerg 	struct rum_rx_desc *desc;
    806      1.1     joerg 	struct ieee80211_frame *wh;
    807      1.1     joerg 	struct ieee80211_node *ni;
    808      1.1     joerg 	struct mbuf *mnew, *m;
    809      1.1     joerg 	int s, len;
    810      1.1     joerg 
    811      1.1     joerg 	if (status != USBD_NORMAL_COMPLETION) {
    812      1.1     joerg 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
    813      1.1     joerg 			return;
    814      1.1     joerg 
    815      1.1     joerg 		if (status == USBD_STALLED)
    816      1.1     joerg 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
    817      1.1     joerg 		goto skip;
    818      1.1     joerg 	}
    819      1.1     joerg 
    820      1.1     joerg 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
    821      1.1     joerg 
    822      1.1     joerg 	if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
    823      1.1     joerg 		DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
    824      1.1     joerg 		    len));
    825      1.1     joerg 		ifp->if_ierrors++;
    826      1.1     joerg 		goto skip;
    827      1.1     joerg 	}
    828      1.1     joerg 
    829      1.1     joerg 	desc = (struct rum_rx_desc *)data->buf;
    830      1.1     joerg 
    831      1.1     joerg 	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
    832      1.1     joerg 		/*
    833      1.1     joerg 		 * This should not happen since we did not request to receive
    834      1.1     joerg 		 * those frames when we filled RT2573_TXRX_CSR0.
    835      1.1     joerg 		 */
    836      1.1     joerg 		DPRINTFN(5, ("CRC error\n"));
    837      1.1     joerg 		ifp->if_ierrors++;
    838      1.1     joerg 		goto skip;
    839      1.1     joerg 	}
    840      1.1     joerg 
    841      1.1     joerg 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
    842      1.1     joerg 	if (mnew == NULL) {
    843      1.1     joerg 		printf("%s: could not allocate rx mbuf\n",
    844      1.1     joerg 		    USBDEVNAME(sc->sc_dev));
    845      1.1     joerg 		ifp->if_ierrors++;
    846      1.1     joerg 		goto skip;
    847      1.1     joerg 	}
    848      1.1     joerg 
    849      1.1     joerg 	MCLGET(mnew, M_DONTWAIT);
    850      1.1     joerg 	if (!(mnew->m_flags & M_EXT)) {
    851      1.1     joerg 		printf("%s: could not allocate rx mbuf cluster\n",
    852      1.1     joerg 		    USBDEVNAME(sc->sc_dev));
    853      1.1     joerg 		m_freem(mnew);
    854      1.1     joerg 		ifp->if_ierrors++;
    855      1.1     joerg 		goto skip;
    856      1.1     joerg 	}
    857      1.1     joerg 
    858      1.1     joerg 	m = data->m;
    859      1.1     joerg 	data->m = mnew;
    860      1.1     joerg 	data->buf = mtod(data->m, uint8_t *);
    861      1.1     joerg 
    862      1.1     joerg 	/* finalize mbuf */
    863      1.1     joerg 	m->m_pkthdr.rcvif = ifp;
    864      1.1     joerg 	m->m_data = (caddr_t)(desc + 1);
    865      1.1     joerg 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
    866      1.1     joerg 
    867      1.1     joerg 	s = splnet();
    868      1.1     joerg 
    869      1.1     joerg #if NBPFILTER > 0
    870      1.1     joerg 	if (sc->sc_drvbpf != NULL) {
    871      1.1     joerg 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
    872      1.1     joerg 
    873      1.1     joerg 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
    874      1.1     joerg 		tap->wr_rate = rum_rxrate(desc);
    875      1.1     joerg 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
    876      1.1     joerg 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
    877      1.1     joerg 		tap->wr_antenna = sc->rx_ant;
    878      1.1     joerg 		tap->wr_antsignal = desc->rssi;
    879      1.1     joerg 
    880      1.1     joerg 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
    881      1.1     joerg 	}
    882      1.1     joerg #endif
    883      1.1     joerg 
    884      1.1     joerg 	wh = mtod(m, struct ieee80211_frame *);
    885      1.1     joerg 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
    886      1.1     joerg 
    887      1.1     joerg 	/* send the frame to the 802.11 layer */
    888      1.1     joerg 	ieee80211_input(ic, m, ni, desc->rssi, 0);
    889      1.1     joerg 
    890      1.1     joerg 	/* node is no longer needed */
    891      1.1     joerg 	ieee80211_free_node(ni);
    892      1.1     joerg 
    893      1.1     joerg 	splx(s);
    894      1.1     joerg 
    895      1.1     joerg 	DPRINTFN(15, ("rx done\n"));
    896      1.1     joerg 
    897      1.1     joerg skip:	/* setup a new transfer */
    898      1.1     joerg 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
    899      1.1     joerg 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
    900      1.1     joerg 	usbd_transfer(xfer);
    901      1.1     joerg }
    902      1.1     joerg 
    903      1.1     joerg /*
    904      1.1     joerg  * This function is only used by the Rx radiotap code. It returns the rate at
    905      1.1     joerg  * which a given frame was received.
    906      1.1     joerg  */
    907      1.1     joerg #if NBPFILTER > 0
    908      1.1     joerg Static uint8_t
    909      1.1     joerg rum_rxrate(struct rum_rx_desc *desc)
    910      1.1     joerg {
    911      1.1     joerg 	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
    912      1.1     joerg 		/* reverse function of rum_plcp_signal */
    913      1.1     joerg 		switch (desc->rate) {
    914      1.1     joerg 		case 0xb:	return 12;
    915      1.1     joerg 		case 0xf:	return 18;
    916      1.1     joerg 		case 0xa:	return 24;
    917      1.1     joerg 		case 0xe:	return 36;
    918      1.1     joerg 		case 0x9:	return 48;
    919      1.1     joerg 		case 0xd:	return 72;
    920      1.1     joerg 		case 0x8:	return 96;
    921      1.1     joerg 		case 0xc:	return 108;
    922      1.1     joerg 		}
    923      1.1     joerg 	} else {
    924      1.1     joerg 		if (desc->rate == 10)
    925      1.1     joerg 			return 2;
    926      1.1     joerg 		if (desc->rate == 20)
    927      1.1     joerg 			return 4;
    928      1.1     joerg 		if (desc->rate == 55)
    929      1.1     joerg 			return 11;
    930      1.1     joerg 		if (desc->rate == 110)
    931      1.1     joerg 			return 22;
    932      1.1     joerg 	}
    933      1.1     joerg 	return 2;	/* should not get there */
    934      1.1     joerg }
    935      1.1     joerg #endif
    936      1.1     joerg 
    937      1.1     joerg /*
    938      1.1     joerg  * Return the expected ack rate for a frame transmitted at rate `rate'.
    939      1.1     joerg  * XXX: this should depend on the destination node basic rate set.
    940      1.1     joerg  */
    941      1.1     joerg Static int
    942      1.1     joerg rum_ack_rate(struct ieee80211com *ic, int rate)
    943      1.1     joerg {
    944      1.1     joerg 	switch (rate) {
    945      1.1     joerg 	/* CCK rates */
    946      1.1     joerg 	case 2:
    947      1.1     joerg 		return 2;
    948      1.1     joerg 	case 4:
    949      1.1     joerg 	case 11:
    950      1.1     joerg 	case 22:
    951      1.1     joerg 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
    952      1.1     joerg 
    953      1.1     joerg 	/* OFDM rates */
    954      1.1     joerg 	case 12:
    955      1.1     joerg 	case 18:
    956      1.1     joerg 		return 12;
    957      1.1     joerg 	case 24:
    958      1.1     joerg 	case 36:
    959      1.1     joerg 		return 24;
    960      1.1     joerg 	case 48:
    961      1.1     joerg 	case 72:
    962      1.1     joerg 	case 96:
    963      1.1     joerg 	case 108:
    964      1.1     joerg 		return 48;
    965      1.1     joerg 	}
    966      1.1     joerg 
    967      1.1     joerg 	/* default to 1Mbps */
    968      1.1     joerg 	return 2;
    969      1.1     joerg }
    970      1.1     joerg 
    971      1.1     joerg /*
    972      1.1     joerg  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
    973      1.1     joerg  * The function automatically determines the operating mode depending on the
    974      1.1     joerg  * given rate. `flags' indicates whether short preamble is in use or not.
    975      1.1     joerg  */
    976      1.1     joerg Static uint16_t
    977      1.1     joerg rum_txtime(int len, int rate, uint32_t flags)
    978      1.1     joerg {
    979      1.1     joerg 	uint16_t txtime;
    980      1.1     joerg 
    981      1.1     joerg 	if (RUM_RATE_IS_OFDM(rate)) {
    982      1.1     joerg 		/* IEEE Std 802.11a-1999, pp. 37 */
    983      1.1     joerg 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
    984      1.1     joerg 		txtime = 16 + 4 + 4 * txtime + 6;
    985      1.1     joerg 	} else {
    986      1.1     joerg 		/* IEEE Std 802.11b-1999, pp. 28 */
    987      1.1     joerg 		txtime = (16 * len + rate - 1) / rate;
    988      1.1     joerg 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
    989      1.1     joerg 			txtime +=  72 + 24;
    990      1.1     joerg 		else
    991      1.1     joerg 			txtime += 144 + 48;
    992      1.1     joerg 	}
    993      1.1     joerg 	return txtime;
    994      1.1     joerg }
    995      1.1     joerg 
    996      1.1     joerg Static uint8_t
    997      1.1     joerg rum_plcp_signal(int rate)
    998      1.1     joerg {
    999      1.1     joerg 	switch (rate) {
   1000      1.1     joerg 	/* CCK rates (returned values are device-dependent) */
   1001      1.1     joerg 	case 2:		return 0x0;
   1002      1.1     joerg 	case 4:		return 0x1;
   1003      1.1     joerg 	case 11:	return 0x2;
   1004      1.1     joerg 	case 22:	return 0x3;
   1005      1.1     joerg 
   1006      1.1     joerg 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1007      1.1     joerg 	case 12:	return 0xb;
   1008      1.1     joerg 	case 18:	return 0xf;
   1009      1.1     joerg 	case 24:	return 0xa;
   1010      1.1     joerg 	case 36:	return 0xe;
   1011      1.1     joerg 	case 48:	return 0x9;
   1012      1.1     joerg 	case 72:	return 0xd;
   1013      1.1     joerg 	case 96:	return 0x8;
   1014      1.1     joerg 	case 108:	return 0xc;
   1015      1.1     joerg 
   1016      1.1     joerg 	/* unsupported rates (should not get there) */
   1017      1.1     joerg 	default:	return 0xff;
   1018      1.1     joerg 	}
   1019      1.1     joerg }
   1020      1.1     joerg 
   1021      1.1     joerg Static void
   1022      1.1     joerg rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
   1023      1.1     joerg     uint32_t flags, uint16_t xflags, int len, int rate)
   1024      1.1     joerg {
   1025      1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1026      1.1     joerg 	uint16_t plcp_length;
   1027      1.1     joerg 	int remainder;
   1028      1.1     joerg 
   1029      1.1     joerg 	desc->flags = htole32(flags);
   1030      1.1     joerg 	desc->flags |= htole32(RT2573_TX_VALID);
   1031      1.1     joerg 	desc->flags |= htole32(len << 16);
   1032      1.1     joerg 
   1033      1.1     joerg 	desc->xflags = htole16(xflags);
   1034      1.1     joerg 
   1035      1.1     joerg 	desc->wme = htole16(
   1036      1.1     joerg 	    RT2573_QID(0) |
   1037      1.1     joerg 	    RT2573_AIFSN(2) |
   1038      1.1     joerg 	    RT2573_LOGCWMIN(4) |
   1039      1.1     joerg 	    RT2573_LOGCWMAX(10));
   1040      1.1     joerg 
   1041      1.1     joerg 	/* setup PLCP fields */
   1042      1.1     joerg 	desc->plcp_signal  = rum_plcp_signal(rate);
   1043      1.1     joerg 	desc->plcp_service = 4;
   1044      1.1     joerg 
   1045      1.1     joerg 	len += IEEE80211_CRC_LEN;
   1046      1.1     joerg 	if (RUM_RATE_IS_OFDM(rate)) {
   1047      1.1     joerg 		desc->flags |= htole32(RT2573_TX_OFDM);
   1048      1.1     joerg 
   1049      1.1     joerg 		plcp_length = len & 0xfff;
   1050      1.1     joerg 		desc->plcp_length_hi = plcp_length >> 6;
   1051      1.1     joerg 		desc->plcp_length_lo = plcp_length & 0x3f;
   1052      1.1     joerg 	} else {
   1053      1.1     joerg 		plcp_length = (16 * len + rate - 1) / rate;
   1054      1.1     joerg 		if (rate == 22) {
   1055      1.1     joerg 			remainder = (16 * len) % 22;
   1056      1.1     joerg 			if (remainder != 0 && remainder < 7)
   1057      1.1     joerg 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
   1058      1.1     joerg 		}
   1059      1.1     joerg 		desc->plcp_length_hi = plcp_length >> 8;
   1060      1.1     joerg 		desc->plcp_length_lo = plcp_length & 0xff;
   1061      1.1     joerg 
   1062      1.1     joerg 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1063      1.1     joerg 			desc->plcp_signal |= 0x08;
   1064      1.1     joerg 	}
   1065      1.1     joerg }
   1066      1.1     joerg 
   1067      1.1     joerg #define RUM_TX_TIMEOUT	5000
   1068      1.1     joerg 
   1069      1.1     joerg Static int
   1070      1.1     joerg rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
   1071      1.1     joerg {
   1072      1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1073      1.1     joerg 	struct rum_tx_desc *desc;
   1074      1.1     joerg 	struct rum_tx_data *data;
   1075      1.1     joerg 	struct ieee80211_frame *wh;
   1076      1.1     joerg 	uint32_t flags = 0;
   1077      1.1     joerg 	uint16_t dur;
   1078      1.1     joerg 	usbd_status error;
   1079      1.1     joerg 	int xferlen, rate;
   1080      1.1     joerg 
   1081      1.1     joerg 	data = &sc->tx_data[0];
   1082      1.1     joerg 	desc = (struct rum_tx_desc *)data->buf;
   1083      1.1     joerg 
   1084      1.1     joerg 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
   1085      1.1     joerg 
   1086      1.1     joerg 	data->m = m0;
   1087      1.1     joerg 	data->ni = ni;
   1088      1.1     joerg 
   1089      1.1     joerg 	wh = mtod(m0, struct ieee80211_frame *);
   1090      1.1     joerg 
   1091      1.1     joerg 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1092      1.1     joerg 		flags |= RT2573_TX_ACK;
   1093      1.1     joerg 
   1094      1.1     joerg 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
   1095      1.1     joerg 		    ic->ic_flags) + sc->sifs;
   1096      1.1     joerg 		*(uint16_t *)wh->i_dur = htole16(dur);
   1097      1.1     joerg 
   1098      1.1     joerg 		/* tell hardware to set timestamp in probe responses */
   1099      1.1     joerg 		if ((wh->i_fc[0] &
   1100      1.1     joerg 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1101      1.1     joerg 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1102      1.1     joerg 			flags |= RT2573_TX_TIMESTAMP;
   1103      1.1     joerg 	}
   1104      1.1     joerg 
   1105      1.1     joerg #if NBPFILTER > 0
   1106      1.1     joerg 	if (sc->sc_drvbpf != NULL) {
   1107      1.1     joerg 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
   1108      1.1     joerg 
   1109      1.1     joerg 		tap->wt_flags = 0;
   1110      1.1     joerg 		tap->wt_rate = rate;
   1111      1.1     joerg 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1112      1.1     joerg 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1113      1.1     joerg 		tap->wt_antenna = sc->tx_ant;
   1114      1.1     joerg 
   1115      1.1     joerg 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1116      1.1     joerg 	}
   1117      1.1     joerg #endif
   1118      1.1     joerg 
   1119      1.1     joerg 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
   1120      1.1     joerg 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
   1121      1.1     joerg 
   1122      1.1     joerg 	/* align end on a 4-bytes boundary */
   1123      1.1     joerg 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
   1124      1.1     joerg 
   1125      1.1     joerg 	/*
   1126      1.1     joerg 	 * No space left in the last URB to store the extra 4 bytes, force
   1127      1.1     joerg 	 * sending of another URB.
   1128      1.1     joerg 	 */
   1129      1.1     joerg 	if ((xferlen % 64) == 0)
   1130      1.1     joerg 		xferlen += 4;
   1131      1.1     joerg 
   1132      1.5       wiz 	DPRINTFN(10, ("sending msg frame len=%lu rate=%u xfer len=%u\n",
   1133      1.6       wiz 	    (long unsigned int)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
   1134      1.6       wiz 	    rate, xferlen));
   1135      1.1     joerg 
   1136      1.1     joerg 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
   1137      1.1     joerg 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
   1138      1.1     joerg 
   1139      1.1     joerg 	error = usbd_transfer(data->xfer);
   1140      1.1     joerg 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
   1141      1.1     joerg 		m_freem(m0);
   1142      1.1     joerg 		return error;
   1143      1.1     joerg 	}
   1144      1.1     joerg 
   1145      1.1     joerg 	sc->tx_queued++;
   1146      1.1     joerg 
   1147      1.1     joerg 	return 0;
   1148      1.1     joerg }
   1149      1.1     joerg 
   1150      1.1     joerg Static int
   1151      1.1     joerg rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
   1152      1.1     joerg {
   1153      1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1154      1.1     joerg 	struct rum_tx_desc *desc;
   1155      1.1     joerg 	struct rum_tx_data *data;
   1156      1.1     joerg 	struct ieee80211_frame *wh;
   1157      1.1     joerg 	struct ieee80211_key *k;
   1158      1.1     joerg 	uint32_t flags = 0;
   1159      1.1     joerg 	uint16_t dur;
   1160      1.1     joerg 	usbd_status error;
   1161      1.1     joerg 	int xferlen, rate;
   1162      1.1     joerg 
   1163      1.1     joerg 	wh = mtod(m0, struct ieee80211_frame *);
   1164      1.1     joerg 
   1165      1.1     joerg 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
   1166      1.1     joerg 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
   1167      1.1     joerg 	else
   1168      1.1     joerg 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1169      1.1     joerg 	rate &= IEEE80211_RATE_VAL;
   1170      1.1     joerg 
   1171      1.1     joerg 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1172      1.1     joerg 		k = ieee80211_crypto_encap(ic, ni, m0);
   1173      1.1     joerg 		if (k == NULL) {
   1174      1.1     joerg 			m_freem(m0);
   1175      1.1     joerg 			return ENOBUFS;
   1176      1.1     joerg 		}
   1177      1.1     joerg 
   1178      1.1     joerg 		/* packet header may have moved, reset our local pointer */
   1179      1.1     joerg 		wh = mtod(m0, struct ieee80211_frame *);
   1180      1.1     joerg 	}
   1181      1.1     joerg 
   1182      1.1     joerg 	data = &sc->tx_data[0];
   1183      1.1     joerg 	desc = (struct rum_tx_desc *)data->buf;
   1184      1.1     joerg 
   1185      1.1     joerg 	data->m = m0;
   1186      1.1     joerg 	data->ni = ni;
   1187      1.1     joerg 
   1188      1.1     joerg 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1189      1.1     joerg 		flags |= RT2573_TX_ACK;
   1190      1.1     joerg 
   1191      1.1     joerg 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
   1192      1.1     joerg 		    ic->ic_flags) + sc->sifs;
   1193      1.1     joerg 		*(uint16_t *)wh->i_dur = htole16(dur);
   1194      1.1     joerg 	}
   1195      1.1     joerg 
   1196      1.1     joerg #if NBPFILTER > 0
   1197      1.1     joerg 	if (sc->sc_drvbpf != NULL) {
   1198      1.1     joerg 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
   1199      1.1     joerg 
   1200      1.1     joerg 		tap->wt_flags = 0;
   1201      1.1     joerg 		tap->wt_rate = rate;
   1202      1.1     joerg 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1203      1.1     joerg 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1204      1.1     joerg 		tap->wt_antenna = sc->tx_ant;
   1205      1.1     joerg 
   1206      1.1     joerg 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1207      1.1     joerg 	}
   1208      1.1     joerg #endif
   1209      1.1     joerg 
   1210      1.1     joerg 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
   1211      1.1     joerg 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
   1212      1.1     joerg 
   1213      1.1     joerg 	/* align end on a 4-bytes boundary */
   1214      1.1     joerg 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
   1215      1.1     joerg 
   1216      1.1     joerg 	/*
   1217      1.1     joerg 	 * No space left in the last URB to store the extra 4 bytes, force
   1218      1.1     joerg 	 * sending of another URB.
   1219      1.1     joerg 	 */
   1220      1.1     joerg 	if ((xferlen % 64) == 0)
   1221      1.1     joerg 		xferlen += 4;
   1222      1.1     joerg 
   1223      1.5       wiz 	DPRINTFN(10, ("sending data frame len=%lu rate=%u xfer len=%u\n",
   1224      1.6       wiz 	    (long unsigned int)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
   1225      1.6       wiz 	    rate, xferlen));
   1226      1.1     joerg 
   1227      1.1     joerg 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
   1228      1.1     joerg 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
   1229      1.1     joerg 
   1230      1.1     joerg 	error = usbd_transfer(data->xfer);
   1231      1.1     joerg 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
   1232      1.1     joerg 		m_freem(m0);
   1233      1.1     joerg 		return error;
   1234      1.1     joerg 	}
   1235      1.1     joerg 
   1236      1.1     joerg 	sc->tx_queued++;
   1237      1.1     joerg 
   1238      1.1     joerg 	return 0;
   1239      1.1     joerg }
   1240      1.1     joerg 
   1241      1.1     joerg Static void
   1242      1.1     joerg rum_start(struct ifnet *ifp)
   1243      1.1     joerg {
   1244      1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1245      1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1246      1.1     joerg 	struct ether_header *eh;
   1247      1.1     joerg 	struct ieee80211_node *ni;
   1248      1.1     joerg 	struct mbuf *m0;
   1249      1.1     joerg 
   1250      1.1     joerg 	for (;;) {
   1251      1.1     joerg 		IF_POLL(&ic->ic_mgtq, m0);
   1252      1.1     joerg 		if (m0 != NULL) {
   1253      1.1     joerg 			if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
   1254      1.1     joerg 				ifp->if_flags |= IFF_OACTIVE;
   1255      1.1     joerg 				break;
   1256      1.1     joerg 			}
   1257      1.1     joerg 			IF_DEQUEUE(&ic->ic_mgtq, m0);
   1258      1.1     joerg 
   1259      1.1     joerg 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   1260      1.1     joerg 			m0->m_pkthdr.rcvif = NULL;
   1261      1.1     joerg #if NBPFILTER > 0
   1262      1.1     joerg 			if (ic->ic_rawbpf != NULL)
   1263      1.1     joerg 				bpf_mtap(ic->ic_rawbpf, m0);
   1264      1.1     joerg #endif
   1265      1.1     joerg 			if (rum_tx_mgt(sc, m0, ni) != 0)
   1266      1.1     joerg 				break;
   1267      1.1     joerg 
   1268      1.1     joerg 		} else {
   1269      1.1     joerg 			if (ic->ic_state != IEEE80211_S_RUN)
   1270      1.1     joerg 				break;
   1271      1.1     joerg 			IFQ_POLL(&ifp->if_snd, m0);
   1272      1.1     joerg 			if (m0 == NULL)
   1273      1.1     joerg 				break;
   1274      1.1     joerg 			if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
   1275      1.1     joerg 				ifp->if_flags |= IFF_OACTIVE;
   1276      1.1     joerg 				break;
   1277      1.1     joerg 			}
   1278      1.1     joerg 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1279      1.1     joerg 			if (m0->m_len < sizeof(struct ether_header) &&
   1280      1.1     joerg 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
   1281      1.1     joerg 				continue;
   1282      1.1     joerg 
   1283      1.1     joerg 			eh = mtod(m0, struct ether_header *);
   1284      1.1     joerg 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1285      1.1     joerg 			if (ni == NULL) {
   1286      1.1     joerg 				m_freem(m0);
   1287      1.1     joerg 				continue;
   1288      1.1     joerg 			}
   1289      1.1     joerg #if NBPFILTER > 0
   1290      1.1     joerg 			if (ifp->if_bpf != NULL)
   1291      1.1     joerg 				bpf_mtap(ifp->if_bpf, m0);
   1292      1.1     joerg #endif
   1293      1.1     joerg 			m0 = ieee80211_encap(ic, m0, ni);
   1294      1.1     joerg 			if (m0 == NULL) {
   1295      1.1     joerg 				ieee80211_free_node(ni);
   1296      1.1     joerg 				continue;
   1297      1.1     joerg 			}
   1298      1.1     joerg #if NBPFILTER > 0
   1299      1.1     joerg 			if (ic->ic_rawbpf != NULL)
   1300      1.1     joerg 				bpf_mtap(ic->ic_rawbpf, m0);
   1301      1.1     joerg #endif
   1302      1.1     joerg 			if (rum_tx_data(sc, m0, ni) != 0) {
   1303      1.1     joerg 				ieee80211_free_node(ni);
   1304      1.1     joerg 				ifp->if_oerrors++;
   1305      1.1     joerg 				break;
   1306      1.1     joerg 			}
   1307      1.1     joerg 		}
   1308      1.1     joerg 
   1309      1.1     joerg 		sc->sc_tx_timer = 5;
   1310      1.1     joerg 		ifp->if_timer = 1;
   1311      1.1     joerg 	}
   1312      1.1     joerg }
   1313      1.1     joerg 
   1314      1.1     joerg Static void
   1315      1.1     joerg rum_watchdog(struct ifnet *ifp)
   1316      1.1     joerg {
   1317      1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1318      1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1319      1.1     joerg 
   1320      1.1     joerg 	ifp->if_timer = 0;
   1321      1.1     joerg 
   1322      1.1     joerg 	if (sc->sc_tx_timer > 0) {
   1323      1.1     joerg 		if (--sc->sc_tx_timer == 0) {
   1324      1.1     joerg 			printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
   1325      1.1     joerg 			/*rum_init(ifp); XXX needs a process context! */
   1326      1.1     joerg 			ifp->if_oerrors++;
   1327      1.1     joerg 			return;
   1328      1.1     joerg 		}
   1329      1.1     joerg 		ifp->if_timer = 1;
   1330      1.1     joerg 	}
   1331      1.1     joerg 
   1332      1.1     joerg 	ieee80211_watchdog(ic);
   1333      1.1     joerg }
   1334      1.1     joerg 
   1335      1.1     joerg Static int
   1336      1.1     joerg rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1337      1.1     joerg {
   1338      1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1339      1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1340      1.1     joerg 	int s, error = 0;
   1341      1.1     joerg 
   1342      1.1     joerg 	s = splnet();
   1343      1.1     joerg 
   1344      1.1     joerg 	switch (cmd) {
   1345      1.1     joerg 	case SIOCSIFFLAGS:
   1346      1.1     joerg 		if (ifp->if_flags & IFF_UP) {
   1347      1.1     joerg 			if (ifp->if_flags & IFF_RUNNING)
   1348      1.1     joerg 				rum_update_promisc(sc);
   1349      1.1     joerg 			else
   1350      1.1     joerg 				rum_init(ifp);
   1351      1.1     joerg 		} else {
   1352      1.1     joerg 			if (ifp->if_flags & IFF_RUNNING)
   1353      1.1     joerg 				rum_stop(ifp, 1);
   1354      1.1     joerg 		}
   1355      1.1     joerg 		break;
   1356      1.1     joerg 
   1357      1.1     joerg 	default:
   1358      1.1     joerg 		error = ieee80211_ioctl(ic, cmd, data);
   1359      1.1     joerg 	}
   1360      1.1     joerg 
   1361      1.1     joerg 	if (error == ENETRESET) {
   1362      1.1     joerg 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1363      1.1     joerg 		    (IFF_UP | IFF_RUNNING))
   1364      1.1     joerg 			rum_init(ifp);
   1365      1.1     joerg 		error = 0;
   1366      1.1     joerg 	}
   1367      1.1     joerg 
   1368      1.1     joerg 	splx(s);
   1369      1.1     joerg 
   1370      1.1     joerg 	return error;
   1371      1.1     joerg }
   1372      1.1     joerg 
   1373      1.1     joerg Static void
   1374      1.1     joerg rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
   1375      1.1     joerg {
   1376      1.1     joerg 	usb_device_request_t req;
   1377      1.1     joerg 	usbd_status error;
   1378      1.1     joerg 
   1379      1.1     joerg 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
   1380      1.1     joerg 	req.bRequest = RT2573_READ_EEPROM;
   1381      1.1     joerg 	USETW(req.wValue, 0);
   1382      1.1     joerg 	USETW(req.wIndex, addr);
   1383      1.1     joerg 	USETW(req.wLength, len);
   1384      1.1     joerg 
   1385      1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, buf);
   1386      1.1     joerg 	if (error != 0) {
   1387      1.1     joerg 		printf("%s: could not read EEPROM: %s\n",
   1388      1.1     joerg 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
   1389      1.1     joerg 	}
   1390      1.1     joerg }
   1391      1.1     joerg 
   1392      1.1     joerg Static uint32_t
   1393      1.1     joerg rum_read(struct rum_softc *sc, uint16_t reg)
   1394      1.1     joerg {
   1395      1.1     joerg 	uint32_t val;
   1396      1.1     joerg 
   1397      1.1     joerg 	rum_read_multi(sc, reg, &val, sizeof val);
   1398      1.1     joerg 
   1399      1.1     joerg 	return le32toh(val);
   1400      1.1     joerg }
   1401      1.1     joerg 
   1402      1.1     joerg Static void
   1403      1.1     joerg rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
   1404      1.1     joerg {
   1405      1.1     joerg 	usb_device_request_t req;
   1406      1.1     joerg 	usbd_status error;
   1407      1.1     joerg 
   1408      1.1     joerg 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
   1409      1.1     joerg 	req.bRequest = RT2573_READ_MULTI_MAC;
   1410      1.1     joerg 	USETW(req.wValue, 0);
   1411      1.1     joerg 	USETW(req.wIndex, reg);
   1412      1.1     joerg 	USETW(req.wLength, len);
   1413      1.1     joerg 
   1414      1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, buf);
   1415      1.1     joerg 	if (error != 0) {
   1416      1.1     joerg 		printf("%s: could not multi read MAC register: %s\n",
   1417      1.1     joerg 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
   1418      1.1     joerg 	}
   1419      1.1     joerg }
   1420      1.1     joerg 
   1421      1.1     joerg Static void
   1422      1.1     joerg rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
   1423      1.1     joerg {
   1424      1.1     joerg 	uint32_t tmp = htole32(val);
   1425      1.1     joerg 
   1426      1.1     joerg 	rum_write_multi(sc, reg, &tmp, sizeof tmp);
   1427      1.1     joerg }
   1428      1.1     joerg 
   1429      1.1     joerg Static void
   1430      1.1     joerg rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
   1431      1.1     joerg {
   1432      1.1     joerg 	usb_device_request_t req;
   1433      1.1     joerg 	usbd_status error;
   1434      1.1     joerg 
   1435      1.1     joerg 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
   1436      1.1     joerg 	req.bRequest = RT2573_WRITE_MULTI_MAC;
   1437      1.1     joerg 	USETW(req.wValue, 0);
   1438      1.1     joerg 	USETW(req.wIndex, reg);
   1439      1.1     joerg 	USETW(req.wLength, len);
   1440      1.1     joerg 
   1441      1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, buf);
   1442      1.1     joerg 	if (error != 0) {
   1443      1.1     joerg 		printf("%s: could not multi write MAC register: %s\n",
   1444      1.1     joerg 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
   1445      1.1     joerg 	}
   1446      1.1     joerg }
   1447      1.1     joerg 
   1448      1.1     joerg Static void
   1449      1.1     joerg rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
   1450      1.1     joerg {
   1451      1.1     joerg 	uint32_t tmp;
   1452      1.1     joerg 	int ntries;
   1453      1.1     joerg 
   1454      1.1     joerg 	for (ntries = 0; ntries < 5; ntries++) {
   1455      1.1     joerg 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
   1456      1.1     joerg 			break;
   1457      1.1     joerg 	}
   1458      1.1     joerg 	if (ntries == 5) {
   1459      1.1     joerg 		printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
   1460      1.1     joerg 		return;
   1461      1.1     joerg 	}
   1462      1.1     joerg 
   1463      1.1     joerg 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
   1464      1.1     joerg 	rum_write(sc, RT2573_PHY_CSR3, tmp);
   1465      1.1     joerg }
   1466      1.1     joerg 
   1467      1.1     joerg Static uint8_t
   1468      1.1     joerg rum_bbp_read(struct rum_softc *sc, uint8_t reg)
   1469      1.1     joerg {
   1470      1.1     joerg 	uint32_t val;
   1471      1.1     joerg 	int ntries;
   1472      1.1     joerg 
   1473      1.1     joerg 	for (ntries = 0; ntries < 5; ntries++) {
   1474      1.1     joerg 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
   1475      1.1     joerg 			break;
   1476      1.1     joerg 	}
   1477      1.1     joerg 	if (ntries == 5) {
   1478      1.1     joerg 		printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
   1479      1.1     joerg 		return 0;
   1480      1.1     joerg 	}
   1481      1.1     joerg 
   1482      1.1     joerg 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
   1483      1.1     joerg 	rum_write(sc, RT2573_PHY_CSR3, val);
   1484      1.1     joerg 
   1485      1.1     joerg 	for (ntries = 0; ntries < 100; ntries++) {
   1486      1.1     joerg 		val = rum_read(sc, RT2573_PHY_CSR3);
   1487      1.1     joerg 		if (!(val & RT2573_BBP_BUSY))
   1488      1.1     joerg 			return val & 0xff;
   1489      1.1     joerg 		DELAY(1);
   1490      1.1     joerg 	}
   1491      1.1     joerg 
   1492      1.1     joerg 	printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
   1493      1.1     joerg 	return 0;
   1494      1.1     joerg }
   1495      1.1     joerg 
   1496      1.1     joerg Static void
   1497      1.1     joerg rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
   1498      1.1     joerg {
   1499      1.1     joerg 	uint32_t tmp;
   1500      1.1     joerg 	int ntries;
   1501      1.1     joerg 
   1502      1.1     joerg 	for (ntries = 0; ntries < 5; ntries++) {
   1503      1.1     joerg 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
   1504      1.1     joerg 			break;
   1505      1.1     joerg 	}
   1506      1.1     joerg 	if (ntries == 5) {
   1507      1.1     joerg 		printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
   1508      1.1     joerg 		return;
   1509      1.1     joerg 	}
   1510      1.1     joerg 
   1511      1.1     joerg 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
   1512      1.1     joerg 	    (reg & 3);
   1513      1.1     joerg 	rum_write(sc, RT2573_PHY_CSR4, tmp);
   1514      1.1     joerg 
   1515      1.1     joerg 	/* remember last written value in sc */
   1516      1.1     joerg 	sc->rf_regs[reg] = val;
   1517      1.1     joerg 
   1518      1.1     joerg 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
   1519      1.1     joerg }
   1520      1.1     joerg 
   1521      1.1     joerg Static void
   1522      1.1     joerg rum_select_antenna(struct rum_softc *sc)
   1523      1.1     joerg {
   1524      1.1     joerg 	uint8_t bbp4, bbp77;
   1525      1.1     joerg 	uint32_t tmp;
   1526      1.1     joerg 
   1527      1.1     joerg 	bbp4  = rum_bbp_read(sc, 4);
   1528      1.1     joerg 	bbp77 = rum_bbp_read(sc, 77);
   1529      1.1     joerg 
   1530      1.1     joerg 	/* TBD */
   1531      1.1     joerg 
   1532      1.1     joerg 	/* make sure Rx is disabled before switching antenna */
   1533      1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
   1534      1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
   1535      1.1     joerg 
   1536      1.1     joerg 	rum_bbp_write(sc,  4, bbp4);
   1537      1.1     joerg 	rum_bbp_write(sc, 77, bbp77);
   1538      1.1     joerg 
   1539      1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
   1540      1.1     joerg }
   1541      1.1     joerg 
   1542      1.1     joerg /*
   1543      1.1     joerg  * Enable multi-rate retries for frames sent at OFDM rates.
   1544      1.1     joerg  * In 802.11b/g mode, allow fallback to CCK rates.
   1545      1.1     joerg  */
   1546      1.1     joerg Static void
   1547      1.1     joerg rum_enable_mrr(struct rum_softc *sc)
   1548      1.1     joerg {
   1549      1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1550      1.1     joerg 	uint32_t tmp;
   1551      1.1     joerg 
   1552      1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
   1553      1.1     joerg 
   1554      1.1     joerg 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
   1555      1.1     joerg 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
   1556      1.1     joerg 		tmp |= RT2573_MRR_CCK_FALLBACK;
   1557      1.1     joerg 	tmp |= RT2573_MRR_ENABLED;
   1558      1.1     joerg 
   1559      1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
   1560      1.1     joerg }
   1561      1.1     joerg 
   1562      1.1     joerg Static void
   1563      1.1     joerg rum_set_txpreamble(struct rum_softc *sc)
   1564      1.1     joerg {
   1565      1.1     joerg 	uint32_t tmp;
   1566      1.1     joerg 
   1567      1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
   1568      1.1     joerg 
   1569      1.1     joerg 	tmp &= ~RT2573_SHORT_PREAMBLE;
   1570      1.1     joerg 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
   1571      1.1     joerg 		tmp |= RT2573_SHORT_PREAMBLE;
   1572      1.1     joerg 
   1573      1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
   1574      1.1     joerg }
   1575      1.1     joerg 
   1576      1.1     joerg Static void
   1577      1.1     joerg rum_set_basicrates(struct rum_softc *sc)
   1578      1.1     joerg {
   1579      1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1580      1.1     joerg 
   1581      1.1     joerg 	/* update basic rate set */
   1582      1.1     joerg 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
   1583      1.1     joerg 		/* 11b basic rates: 1, 2Mbps */
   1584      1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
   1585      1.1     joerg 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
   1586      1.1     joerg 		/* 11a basic rates: 6, 12, 24Mbps */
   1587      1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
   1588      1.1     joerg 	} else {
   1589      1.1     joerg 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
   1590      1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR5, 0x15f);
   1591      1.1     joerg 	}
   1592      1.1     joerg }
   1593      1.1     joerg 
   1594      1.1     joerg /*
   1595      1.1     joerg  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
   1596      1.1     joerg  * driver.
   1597      1.1     joerg  */
   1598      1.1     joerg Static void
   1599      1.1     joerg rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
   1600      1.1     joerg {
   1601      1.1     joerg 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
   1602      1.1     joerg 	uint32_t tmp;
   1603      1.1     joerg 
   1604      1.1     joerg 	/* update all BBP registers that depend on the band */
   1605      1.1     joerg 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
   1606      1.1     joerg 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
   1607      1.1     joerg 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   1608      1.1     joerg 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
   1609      1.1     joerg 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
   1610      1.1     joerg 	}
   1611      1.1     joerg 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
   1612      1.1     joerg 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
   1613      1.1     joerg 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
   1614      1.1     joerg 	}
   1615      1.1     joerg 
   1616      1.1     joerg 	sc->bbp17 = bbp17;
   1617      1.1     joerg 	rum_bbp_write(sc,  17, bbp17);
   1618      1.1     joerg 	rum_bbp_write(sc,  96, bbp96);
   1619      1.1     joerg 	rum_bbp_write(sc, 104, bbp104);
   1620      1.1     joerg 
   1621      1.1     joerg 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
   1622      1.1     joerg 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
   1623      1.1     joerg 		rum_bbp_write(sc, 75, 0x80);
   1624      1.1     joerg 		rum_bbp_write(sc, 86, 0x80);
   1625      1.1     joerg 		rum_bbp_write(sc, 88, 0x80);
   1626      1.1     joerg 	}
   1627      1.1     joerg 
   1628      1.1     joerg 	rum_bbp_write(sc, 35, bbp35);
   1629      1.1     joerg 	rum_bbp_write(sc, 97, bbp97);
   1630      1.1     joerg 	rum_bbp_write(sc, 98, bbp98);
   1631      1.1     joerg 
   1632      1.1     joerg 	tmp = rum_read(sc, RT2573_PHY_CSR0);
   1633      1.1     joerg 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
   1634      1.1     joerg 	if (IEEE80211_IS_CHAN_2GHZ(c))
   1635      1.1     joerg 		tmp |= RT2573_PA_PE_2GHZ;
   1636      1.1     joerg 	else
   1637      1.1     joerg 		tmp |= RT2573_PA_PE_5GHZ;
   1638      1.1     joerg 	rum_write(sc, RT2573_PHY_CSR0, tmp);
   1639      1.1     joerg 
   1640      1.1     joerg 	/* 802.11a uses a 16 microseconds short interframe space */
   1641      1.1     joerg 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
   1642      1.1     joerg }
   1643      1.1     joerg 
   1644      1.1     joerg Static void
   1645      1.1     joerg rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
   1646      1.1     joerg {
   1647      1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1648      1.1     joerg 	const struct rfprog *rfprog;
   1649      1.1     joerg 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
   1650      1.1     joerg 	int8_t power;
   1651      1.1     joerg 	u_int i, chan;
   1652      1.1     joerg 
   1653      1.1     joerg 	chan = ieee80211_chan2ieee(ic, c);
   1654      1.1     joerg 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
   1655      1.1     joerg 		return;
   1656      1.1     joerg 
   1657      1.1     joerg 	/* select the appropriate RF settings based on what EEPROM says */
   1658      1.1     joerg 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
   1659      1.1     joerg 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
   1660      1.1     joerg 
   1661      1.1     joerg 	/* find the settings for this channel (we know it exists) */
   1662      1.1     joerg 	for (i = 0; rfprog[i].chan != chan; i++);
   1663      1.1     joerg 
   1664      1.1     joerg 	power = sc->txpow[i];
   1665      1.1     joerg 	if (power < 0) {
   1666      1.1     joerg 		bbp94 += power;
   1667      1.1     joerg 		power = 0;
   1668      1.1     joerg 	} else if (power > 31) {
   1669      1.1     joerg 		bbp94 += power - 31;
   1670      1.1     joerg 		power = 31;
   1671      1.1     joerg 	}
   1672      1.1     joerg 
   1673      1.1     joerg 	/*
   1674      1.1     joerg 	 * If we are switching from the 2GHz band to the 5GHz band or
   1675      1.1     joerg 	 * vice-versa, BBP registers need to be reprogrammed.
   1676      1.1     joerg 	 */
   1677      1.1     joerg 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
   1678      1.1     joerg 		rum_select_band(sc, c);
   1679      1.1     joerg 		rum_select_antenna(sc);
   1680      1.1     joerg 	}
   1681      1.1     joerg 	ic->ic_curchan = c;
   1682      1.1     joerg 
   1683      1.1     joerg 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
   1684      1.1     joerg 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
   1685      1.1     joerg 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
   1686      1.1     joerg 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
   1687      1.1     joerg 
   1688      1.1     joerg 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
   1689      1.1     joerg 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
   1690      1.1     joerg 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
   1691      1.1     joerg 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
   1692      1.1     joerg 
   1693      1.1     joerg 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
   1694      1.1     joerg 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
   1695      1.1     joerg 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
   1696      1.1     joerg 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
   1697      1.1     joerg 
   1698      1.1     joerg 	DELAY(10);
   1699      1.1     joerg 
   1700      1.1     joerg 	/* enable smart mode for MIMO-capable RFs */
   1701      1.1     joerg 	bbp3 = rum_bbp_read(sc, 3);
   1702      1.1     joerg 
   1703      1.1     joerg 	bbp3 &= ~RT2573_SMART_MODE;
   1704      1.1     joerg 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
   1705      1.1     joerg 		bbp3 |= RT2573_SMART_MODE;
   1706      1.1     joerg 
   1707      1.1     joerg 	rum_bbp_write(sc, 3, bbp3);
   1708      1.1     joerg 
   1709      1.1     joerg 	if (bbp94 != RT2573_BBPR94_DEFAULT)
   1710      1.1     joerg 		rum_bbp_write(sc, 94, bbp94);
   1711      1.1     joerg }
   1712      1.1     joerg 
   1713      1.1     joerg /*
   1714      1.1     joerg  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
   1715      1.1     joerg  * and HostAP operating modes.
   1716      1.1     joerg  */
   1717      1.1     joerg Static void
   1718      1.1     joerg rum_enable_tsf_sync(struct rum_softc *sc)
   1719      1.1     joerg {
   1720      1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1721      1.1     joerg 	uint32_t tmp;
   1722      1.1     joerg 
   1723      1.1     joerg 	if (ic->ic_opmode != IEEE80211_M_STA) {
   1724      1.1     joerg 		/*
   1725      1.1     joerg 		 * Change default 16ms TBTT adjustment to 8ms.
   1726      1.1     joerg 		 * Must be done before enabling beacon generation.
   1727      1.1     joerg 		 */
   1728      1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
   1729      1.1     joerg 	}
   1730      1.1     joerg 
   1731      1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
   1732      1.1     joerg 
   1733      1.1     joerg 	/* set beacon interval (in 1/16ms unit) */
   1734      1.1     joerg 	tmp |= ic->ic_bss->ni_intval * 16;
   1735      1.1     joerg 
   1736      1.1     joerg 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
   1737      1.1     joerg 	if (ic->ic_opmode == IEEE80211_M_STA)
   1738      1.1     joerg 		tmp |= RT2573_TSF_MODE(1);
   1739      1.1     joerg 	else
   1740      1.1     joerg 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
   1741      1.1     joerg 
   1742      1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
   1743      1.1     joerg }
   1744      1.1     joerg 
   1745      1.1     joerg Static void
   1746      1.1     joerg rum_update_slot(struct rum_softc *sc)
   1747      1.1     joerg {
   1748      1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1749      1.1     joerg 	uint8_t slottime;
   1750      1.1     joerg 	uint32_t tmp;
   1751      1.1     joerg 
   1752      1.1     joerg 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
   1753      1.1     joerg 
   1754      1.1     joerg 	tmp = rum_read(sc, RT2573_MAC_CSR9);
   1755      1.1     joerg 	tmp = (tmp & ~0xff) | slottime;
   1756      1.1     joerg 	rum_write(sc, RT2573_MAC_CSR9, tmp);
   1757      1.1     joerg 
   1758      1.1     joerg 	DPRINTF(("setting slot time to %uus\n", slottime));
   1759      1.1     joerg }
   1760      1.1     joerg 
   1761      1.1     joerg Static void
   1762      1.1     joerg rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
   1763      1.1     joerg {
   1764      1.1     joerg 	uint32_t tmp;
   1765      1.1     joerg 
   1766      1.1     joerg 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
   1767      1.1     joerg 	rum_write(sc, RT2573_MAC_CSR4, tmp);
   1768      1.1     joerg 
   1769      1.1     joerg 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
   1770      1.1     joerg 	rum_write(sc, RT2573_MAC_CSR5, tmp);
   1771      1.1     joerg }
   1772      1.1     joerg 
   1773      1.1     joerg Static void
   1774      1.1     joerg rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
   1775      1.1     joerg {
   1776      1.1     joerg 	uint32_t tmp;
   1777      1.1     joerg 
   1778      1.1     joerg 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
   1779      1.1     joerg 	rum_write(sc, RT2573_MAC_CSR2, tmp);
   1780      1.1     joerg 
   1781      1.1     joerg 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
   1782      1.1     joerg 	rum_write(sc, RT2573_MAC_CSR3, tmp);
   1783      1.1     joerg }
   1784      1.1     joerg 
   1785      1.1     joerg Static void
   1786      1.1     joerg rum_update_promisc(struct rum_softc *sc)
   1787      1.1     joerg {
   1788      1.1     joerg 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1789      1.1     joerg 	uint32_t tmp;
   1790      1.1     joerg 
   1791      1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
   1792      1.1     joerg 
   1793      1.1     joerg 	tmp &= ~RT2573_DROP_NOT_TO_ME;
   1794      1.1     joerg 	if (!(ifp->if_flags & IFF_PROMISC))
   1795      1.1     joerg 		tmp |= RT2573_DROP_NOT_TO_ME;
   1796      1.1     joerg 
   1797      1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
   1798      1.1     joerg 
   1799      1.1     joerg 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
   1800      1.1     joerg 	    "entering" : "leaving"));
   1801      1.1     joerg }
   1802      1.1     joerg 
   1803      1.1     joerg Static const char *
   1804      1.1     joerg rum_get_rf(int rev)
   1805      1.1     joerg {
   1806      1.1     joerg 	switch (rev) {
   1807      1.1     joerg 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
   1808      1.1     joerg 	case RT2573_RF_2528:	return "RT2528";
   1809      1.1     joerg 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
   1810      1.1     joerg 	case RT2573_RF_5226:	return "RT5226";
   1811      1.1     joerg 	default:		return "unknown";
   1812      1.1     joerg 	}
   1813      1.1     joerg }
   1814      1.1     joerg 
   1815      1.1     joerg Static void
   1816      1.1     joerg rum_read_eeprom(struct rum_softc *sc)
   1817      1.1     joerg {
   1818      1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1819      1.1     joerg 	uint16_t val;
   1820      1.1     joerg #ifdef RUM_DEBUG
   1821      1.1     joerg 	int i;
   1822      1.1     joerg #endif
   1823      1.1     joerg 
   1824      1.1     joerg 	/* read MAC/BBP type */
   1825      1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
   1826      1.1     joerg 	sc->macbbp_rev = le16toh(val);
   1827      1.1     joerg 
   1828      1.1     joerg 	/* read MAC address */
   1829      1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
   1830      1.1     joerg 
   1831      1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
   1832      1.1     joerg 	val = le16toh(val);
   1833      1.1     joerg 	sc->rf_rev =   (val >> 11) & 0x1f;
   1834      1.1     joerg 	sc->hw_radio = (val >> 10) & 0x1;
   1835      1.1     joerg 	sc->rx_ant =   (val >> 4)  & 0x3;
   1836      1.1     joerg 	sc->tx_ant =   (val >> 2)  & 0x3;
   1837      1.1     joerg 	sc->nb_ant =   val & 0x3;
   1838      1.1     joerg 
   1839      1.1     joerg 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
   1840      1.1     joerg 
   1841      1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
   1842      1.1     joerg 	val = le16toh(val);
   1843      1.1     joerg 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
   1844      1.1     joerg 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
   1845      1.1     joerg 
   1846      1.1     joerg 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
   1847      1.1     joerg 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
   1848      1.1     joerg 
   1849      1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
   1850      1.1     joerg 	val = le16toh(val);
   1851      1.1     joerg 	if ((val & 0xff) != 0xff)
   1852      1.1     joerg 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
   1853      1.1     joerg 
   1854      1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
   1855      1.1     joerg 	val = le16toh(val);
   1856      1.1     joerg 	if ((val & 0xff) != 0xff)
   1857      1.1     joerg 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
   1858      1.1     joerg 
   1859      1.1     joerg 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
   1860      1.1     joerg 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
   1861      1.1     joerg 
   1862      1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
   1863      1.1     joerg 	val = le16toh(val);
   1864      1.1     joerg 	if ((val & 0xff) != 0xff)
   1865      1.1     joerg 		sc->rffreq = val & 0xff;
   1866      1.1     joerg 
   1867      1.1     joerg 	DPRINTF(("RF freq=%d\n", sc->rffreq));
   1868      1.1     joerg 
   1869      1.1     joerg 	/* read Tx power for all a/b/g channels */
   1870      1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
   1871      1.1     joerg 	/* XXX default Tx power for 802.11a channels */
   1872      1.1     joerg 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
   1873      1.1     joerg #ifdef RUM_DEBUG
   1874      1.1     joerg 	for (i = 0; i < 14; i++)
   1875      1.1     joerg 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
   1876      1.1     joerg #endif
   1877      1.1     joerg 
   1878      1.1     joerg 	/* read default values for BBP registers */
   1879      1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
   1880      1.1     joerg #ifdef RUM_DEBUG
   1881      1.1     joerg 	for (i = 0; i < 14; i++) {
   1882      1.1     joerg 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
   1883      1.1     joerg 			continue;
   1884      1.1     joerg 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
   1885      1.1     joerg 		    sc->bbp_prom[i].val));
   1886      1.1     joerg 	}
   1887      1.1     joerg #endif
   1888      1.1     joerg }
   1889      1.1     joerg 
   1890      1.1     joerg Static int
   1891      1.1     joerg rum_bbp_init(struct rum_softc *sc)
   1892      1.1     joerg {
   1893      1.1     joerg #define N(a)	(sizeof (a) / sizeof ((a)[0]))
   1894      1.1     joerg 	int i, ntries;
   1895      1.1     joerg 	uint8_t val;
   1896      1.1     joerg 
   1897      1.1     joerg 	/* wait for BBP to be ready */
   1898      1.1     joerg 	for (ntries = 0; ntries < 100; ntries++) {
   1899      1.1     joerg 		val = rum_bbp_read(sc, 0);
   1900      1.1     joerg 		if (val != 0 && val != 0xff)
   1901      1.1     joerg 			break;
   1902      1.1     joerg 		DELAY(1000);
   1903      1.1     joerg 	}
   1904      1.1     joerg 	if (ntries == 100) {
   1905      1.1     joerg 		printf("%s: timeout waiting for BBP\n",
   1906      1.1     joerg 		    USBDEVNAME(sc->sc_dev));
   1907      1.1     joerg 		return EIO;
   1908      1.1     joerg 	}
   1909      1.1     joerg 
   1910      1.1     joerg 	/* initialize BBP registers to default values */
   1911      1.1     joerg 	for (i = 0; i < N(rum_def_bbp); i++)
   1912      1.1     joerg 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
   1913      1.1     joerg 
   1914      1.1     joerg 	/* write vendor-specific BBP values (from EEPROM) */
   1915      1.1     joerg 	for (i = 0; i < 16; i++) {
   1916      1.1     joerg 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
   1917      1.1     joerg 			continue;
   1918      1.1     joerg 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
   1919      1.1     joerg 	}
   1920      1.1     joerg 
   1921      1.1     joerg 	return 0;
   1922      1.1     joerg #undef N
   1923      1.1     joerg }
   1924      1.1     joerg 
   1925      1.1     joerg Static int
   1926      1.1     joerg rum_init(struct ifnet *ifp)
   1927      1.1     joerg {
   1928      1.1     joerg #define N(a)	(sizeof (a) / sizeof ((a)[0]))
   1929      1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1930      1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1931      1.1     joerg 	struct rum_rx_data *data;
   1932      1.1     joerg 	uint32_t tmp;
   1933      1.1     joerg 	usbd_status error = 0;
   1934      1.1     joerg 	int i, ntries;
   1935      1.1     joerg 
   1936      1.1     joerg 	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
   1937      1.1     joerg 		if (rum_attachhook(sc))
   1938      1.1     joerg 			goto fail;
   1939      1.1     joerg 	}
   1940      1.1     joerg 
   1941      1.1     joerg 	rum_stop(ifp, 0);
   1942      1.1     joerg 
   1943      1.1     joerg 	/* initialize MAC registers to default values */
   1944      1.1     joerg 	for (i = 0; i < N(rum_def_mac); i++)
   1945      1.1     joerg 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
   1946      1.1     joerg 
   1947      1.1     joerg 	/* set host ready */
   1948      1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 3);
   1949      1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 0);
   1950      1.1     joerg 
   1951      1.1     joerg 	/* wait for BBP/RF to wakeup */
   1952      1.1     joerg 	for (ntries = 0; ntries < 1000; ntries++) {
   1953      1.1     joerg 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
   1954      1.1     joerg 			break;
   1955      1.1     joerg 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
   1956      1.1     joerg 		DELAY(1000);
   1957      1.1     joerg 	}
   1958      1.1     joerg 	if (ntries == 1000) {
   1959      1.1     joerg 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
   1960      1.1     joerg 		    USBDEVNAME(sc->sc_dev));
   1961      1.1     joerg 		goto fail;
   1962      1.1     joerg 	}
   1963      1.1     joerg 
   1964      1.1     joerg 	if ((error = rum_bbp_init(sc)) != 0)
   1965      1.1     joerg 		goto fail;
   1966      1.1     joerg 
   1967      1.1     joerg 	/* select default channel */
   1968      1.1     joerg 	rum_select_band(sc, ic->ic_curchan);
   1969      1.1     joerg 	rum_select_antenna(sc);
   1970      1.1     joerg 	rum_set_chan(sc, ic->ic_curchan);
   1971      1.1     joerg 
   1972      1.1     joerg 	/* clear STA registers */
   1973      1.1     joerg 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
   1974      1.1     joerg 
   1975      1.1     joerg 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
   1976      1.1     joerg 	rum_set_macaddr(sc, ic->ic_myaddr);
   1977      1.1     joerg 
   1978      1.1     joerg 	/* initialize ASIC */
   1979      1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 4);
   1980      1.1     joerg 
   1981      1.1     joerg 	/*
   1982      1.1     joerg 	 * Allocate xfer for AMRR statistics requests.
   1983      1.1     joerg 	 */
   1984  1.6.4.1     itohy 	sc->amrr_xfer = usbd_alloc_default_xfer(sc->sc_udev);
   1985      1.1     joerg 	if (sc->amrr_xfer == NULL) {
   1986      1.1     joerg 		printf("%s: could not allocate AMRR xfer\n",
   1987      1.1     joerg 		    USBDEVNAME(sc->sc_dev));
   1988      1.1     joerg 		goto fail;
   1989      1.1     joerg 	}
   1990      1.1     joerg 
   1991      1.1     joerg 	/*
   1992      1.1     joerg 	 * Open Tx and Rx USB bulk pipes.
   1993      1.1     joerg 	 */
   1994      1.1     joerg 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
   1995      1.1     joerg 	    &sc->sc_tx_pipeh);
   1996      1.1     joerg 	if (error != 0) {
   1997      1.1     joerg 		printf("%s: could not open Tx pipe: %s\n",
   1998      1.1     joerg 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
   1999      1.1     joerg 		goto fail;
   2000      1.1     joerg 	}
   2001      1.1     joerg 
   2002      1.1     joerg 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
   2003      1.1     joerg 	    &sc->sc_rx_pipeh);
   2004      1.1     joerg 	if (error != 0) {
   2005      1.1     joerg 		printf("%s: could not open Rx pipe: %s\n",
   2006      1.1     joerg 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
   2007      1.1     joerg 		goto fail;
   2008      1.1     joerg 	}
   2009      1.1     joerg 
   2010      1.1     joerg 	/*
   2011      1.1     joerg 	 * Allocate Tx and Rx xfer queues.
   2012      1.1     joerg 	 */
   2013      1.1     joerg 	error = rum_alloc_tx_list(sc);
   2014      1.1     joerg 	if (error != 0) {
   2015      1.1     joerg 		printf("%s: could not allocate Tx list\n",
   2016      1.1     joerg 		    USBDEVNAME(sc->sc_dev));
   2017      1.1     joerg 		goto fail;
   2018      1.1     joerg 	}
   2019      1.1     joerg 
   2020      1.1     joerg 	error = rum_alloc_rx_list(sc);
   2021      1.1     joerg 	if (error != 0) {
   2022      1.1     joerg 		printf("%s: could not allocate Rx list\n",
   2023      1.1     joerg 		    USBDEVNAME(sc->sc_dev));
   2024      1.1     joerg 		goto fail;
   2025      1.1     joerg 	}
   2026      1.1     joerg 
   2027      1.1     joerg 	/*
   2028      1.1     joerg 	 * Start up the receive pipe.
   2029      1.1     joerg 	 */
   2030      1.1     joerg 	for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
   2031      1.1     joerg 		data = &sc->rx_data[i];
   2032      1.1     joerg 
   2033      1.1     joerg 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
   2034      1.1     joerg 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
   2035      1.1     joerg 		usbd_transfer(data->xfer);
   2036      1.1     joerg 	}
   2037      1.1     joerg 
   2038      1.1     joerg 	/* update Rx filter */
   2039      1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
   2040      1.1     joerg 
   2041      1.1     joerg 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
   2042      1.1     joerg 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2043      1.1     joerg 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
   2044      1.1     joerg 		       RT2573_DROP_ACKCTS;
   2045      1.1     joerg 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
   2046      1.1     joerg 			tmp |= RT2573_DROP_TODS;
   2047      1.1     joerg 		if (!(ifp->if_flags & IFF_PROMISC))
   2048      1.1     joerg 			tmp |= RT2573_DROP_NOT_TO_ME;
   2049      1.1     joerg 	}
   2050      1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
   2051      1.1     joerg 
   2052      1.1     joerg 	ifp->if_flags &= ~IFF_OACTIVE;
   2053      1.1     joerg 	ifp->if_flags |= IFF_RUNNING;
   2054      1.1     joerg 
   2055      1.1     joerg 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   2056      1.1     joerg 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   2057      1.1     joerg 	else
   2058      1.1     joerg 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   2059      1.1     joerg 
   2060      1.1     joerg 	return 0;
   2061      1.1     joerg 
   2062      1.1     joerg fail:	rum_stop(ifp, 1);
   2063      1.1     joerg 	return error;
   2064      1.1     joerg #undef N
   2065      1.1     joerg }
   2066      1.1     joerg 
   2067      1.1     joerg Static void
   2068      1.1     joerg rum_stop(struct ifnet *ifp, int disable)
   2069      1.1     joerg {
   2070      1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   2071      1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   2072      1.1     joerg 	uint32_t tmp;
   2073      1.1     joerg 
   2074      1.1     joerg 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
   2075      1.1     joerg 
   2076      1.1     joerg 	sc->sc_tx_timer = 0;
   2077      1.1     joerg 	ifp->if_timer = 0;
   2078      1.1     joerg 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2079      1.1     joerg 
   2080      1.1     joerg 	/* disable Rx */
   2081      1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
   2082      1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
   2083      1.1     joerg 
   2084      1.1     joerg 	/* reset ASIC */
   2085      1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 3);
   2086      1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 0);
   2087      1.1     joerg 
   2088      1.1     joerg 	if (sc->sc_rx_pipeh != NULL) {
   2089      1.1     joerg 		usbd_abort_pipe(sc->sc_rx_pipeh);
   2090      1.1     joerg 		usbd_close_pipe(sc->sc_rx_pipeh);
   2091      1.1     joerg 		sc->sc_rx_pipeh = NULL;
   2092      1.1     joerg 	}
   2093      1.1     joerg 
   2094      1.1     joerg 	if (sc->sc_tx_pipeh != NULL) {
   2095      1.1     joerg 		usbd_abort_pipe(sc->sc_tx_pipeh);
   2096      1.1     joerg 		usbd_close_pipe(sc->sc_tx_pipeh);
   2097      1.1     joerg 		sc->sc_tx_pipeh = NULL;
   2098      1.1     joerg 	}
   2099      1.1     joerg 
   2100      1.1     joerg 	rum_free_rx_list(sc);
   2101      1.1     joerg 	rum_free_tx_list(sc);
   2102      1.1     joerg }
   2103      1.1     joerg 
   2104      1.1     joerg Static int
   2105      1.1     joerg rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
   2106      1.1     joerg {
   2107      1.1     joerg 	usb_device_request_t req;
   2108      1.1     joerg 	uint16_t reg = RT2573_MCU_CODE_BASE;
   2109      1.1     joerg 	usbd_status error;
   2110      1.1     joerg 
   2111      1.1     joerg 	/* copy firmware image into NIC */
   2112      1.1     joerg 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
   2113      1.1     joerg 		rum_write(sc, reg, UGETDW(ucode));
   2114      1.1     joerg 
   2115      1.1     joerg 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
   2116      1.1     joerg 	req.bRequest = RT2573_MCU_CNTL;
   2117      1.1     joerg 	USETW(req.wValue, RT2573_MCU_RUN);
   2118      1.1     joerg 	USETW(req.wIndex, 0);
   2119      1.1     joerg 	USETW(req.wLength, 0);
   2120      1.1     joerg 
   2121      1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, NULL);
   2122      1.1     joerg 	if (error != 0) {
   2123      1.1     joerg 		printf("%s: could not run firmware: %s\n",
   2124      1.1     joerg 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
   2125      1.1     joerg 	}
   2126      1.1     joerg 	return error;
   2127      1.1     joerg }
   2128      1.1     joerg 
   2129      1.1     joerg Static int
   2130      1.1     joerg rum_prepare_beacon(struct rum_softc *sc)
   2131      1.1     joerg {
   2132      1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   2133      1.1     joerg 	struct rum_tx_desc desc;
   2134      1.1     joerg 	struct mbuf *m0;
   2135      1.1     joerg 	int rate;
   2136      1.1     joerg 
   2137      1.1     joerg 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
   2138      1.1     joerg 	if (m0 == NULL) {
   2139      1.1     joerg 		printf("%s: could not allocate beacon frame\n",
   2140      1.1     joerg 		    sc->sc_dev.dv_xname);
   2141      1.1     joerg 		return ENOBUFS;
   2142      1.1     joerg 	}
   2143      1.1     joerg 
   2144      1.1     joerg 	/* send beacons at the lowest available rate */
   2145      1.1     joerg 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
   2146      1.1     joerg 
   2147      1.1     joerg 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
   2148      1.1     joerg 	    m0->m_pkthdr.len, rate);
   2149      1.1     joerg 
   2150      1.1     joerg 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
   2151      1.1     joerg 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
   2152      1.1     joerg 
   2153      1.1     joerg 	/* copy beacon header and payload into NIC memory */
   2154      1.1     joerg 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
   2155      1.1     joerg 	    m0->m_pkthdr.len);
   2156      1.1     joerg 
   2157      1.1     joerg 	m_freem(m0);
   2158      1.1     joerg 
   2159      1.1     joerg 	return 0;
   2160      1.1     joerg }
   2161      1.1     joerg 
   2162      1.1     joerg Static void
   2163      1.1     joerg rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
   2164      1.1     joerg {
   2165      1.1     joerg 	int i;
   2166      1.1     joerg 
   2167      1.1     joerg 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
   2168      1.1     joerg 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
   2169      1.1     joerg 
   2170      1.1     joerg 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
   2171      1.1     joerg 
   2172      1.1     joerg 	/* set rate to some reasonable initial value */
   2173      1.1     joerg 	for (i = ni->ni_rates.rs_nrates - 1;
   2174      1.1     joerg 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
   2175      1.1     joerg 	     i--);
   2176      1.1     joerg 	ni->ni_txrate = i;
   2177      1.1     joerg 
   2178      1.1     joerg 	callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
   2179      1.1     joerg }
   2180      1.1     joerg 
   2181      1.1     joerg Static void
   2182      1.1     joerg rum_amrr_timeout(void *arg)
   2183      1.1     joerg {
   2184      1.1     joerg 	struct rum_softc *sc = arg;
   2185      1.1     joerg 	usb_device_request_t req;
   2186      1.1     joerg 	int s;
   2187      1.1     joerg 
   2188      1.1     joerg 	s = splusb();
   2189      1.1     joerg 
   2190      1.1     joerg 	/*
   2191      1.1     joerg 	 * Asynchronously read statistic registers (cleared by read).
   2192      1.1     joerg 	 */
   2193      1.1     joerg 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
   2194      1.1     joerg 	req.bRequest = RT2573_READ_MULTI_MAC;
   2195      1.1     joerg 	USETW(req.wValue, 0);
   2196      1.1     joerg 	USETW(req.wIndex, RT2573_STA_CSR0);
   2197      1.1     joerg 	USETW(req.wLength, sizeof sc->sta);
   2198      1.1     joerg 
   2199      1.1     joerg 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
   2200      1.1     joerg 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
   2201      1.1     joerg 	    rum_amrr_update);
   2202      1.1     joerg 	(void)usbd_transfer(sc->amrr_xfer);
   2203      1.1     joerg 
   2204      1.1     joerg 	splx(s);
   2205      1.1     joerg }
   2206      1.1     joerg 
   2207      1.1     joerg Static void
   2208      1.1     joerg rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
   2209      1.1     joerg     usbd_status status)
   2210      1.1     joerg {
   2211      1.1     joerg 	struct rum_softc *sc = (struct rum_softc *)priv;
   2212      1.1     joerg 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2213      1.1     joerg 
   2214      1.1     joerg 	if (status != USBD_NORMAL_COMPLETION) {
   2215      1.1     joerg 		printf("%s: could not retrieve Tx statistics - cancelling "
   2216      1.1     joerg 		    "automatic rate control\n", USBDEVNAME(sc->sc_dev));
   2217      1.1     joerg 		return;
   2218      1.1     joerg 	}
   2219      1.1     joerg 
   2220      1.1     joerg 	/* count TX retry-fail as Tx errors */
   2221      1.1     joerg 	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
   2222      1.1     joerg 
   2223      1.1     joerg 	sc->amn.amn_retrycnt =
   2224      1.1     joerg 	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
   2225      1.1     joerg 	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
   2226      1.1     joerg 	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
   2227      1.1     joerg 
   2228      1.1     joerg 	sc->amn.amn_txcnt =
   2229      1.1     joerg 	    sc->amn.amn_retrycnt +
   2230      1.1     joerg 	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
   2231      1.1     joerg 
   2232      1.1     joerg 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
   2233      1.1     joerg 
   2234      1.1     joerg 	callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
   2235      1.1     joerg }
   2236      1.1     joerg 
   2237      1.1     joerg int
   2238      1.1     joerg rum_activate(device_ptr_t self, enum devact act)
   2239      1.1     joerg {
   2240      1.1     joerg 	switch (act) {
   2241      1.1     joerg 	case DVACT_ACTIVATE:
   2242      1.1     joerg 		return EOPNOTSUPP;
   2243      1.1     joerg 
   2244      1.1     joerg 	case DVACT_DEACTIVATE:
   2245      1.1     joerg 		/*if_deactivate(&sc->sc_ic.ic_if);*/
   2246      1.1     joerg 		break;
   2247      1.1     joerg 	}
   2248      1.1     joerg 
   2249      1.1     joerg 	return 0;
   2250      1.1     joerg }
   2251