if_rum.c revision 1.6.4.6 1 1.1 joerg /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 1.6.4.5 itohy /* $NetBSD: if_rum.c,v 1.6.4.6 2007/06/25 09:25:04 itohy Exp $ */
3 1.1 joerg
4 1.1 joerg /*-
5 1.1 joerg * Copyright (c) 2005, 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 1.1 joerg * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 1.1 joerg *
8 1.1 joerg * Permission to use, copy, modify, and distribute this software for any
9 1.1 joerg * purpose with or without fee is hereby granted, provided that the above
10 1.1 joerg * copyright notice and this permission notice appear in all copies.
11 1.1 joerg *
12 1.1 joerg * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 1.1 joerg * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 1.1 joerg * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 1.1 joerg * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 1.1 joerg * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 1.1 joerg * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 1.1 joerg * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 1.1 joerg */
20 1.1 joerg
21 1.1 joerg /*-
22 1.1 joerg * Ralink Technology RT2501USB/RT2601USB chipset driver
23 1.1 joerg * http://www.ralinktech.com/
24 1.1 joerg */
25 1.1 joerg
26 1.2 xtraeme #include <sys/cdefs.h>
27 1.6.4.5 itohy __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.6.4.6 2007/06/25 09:25:04 itohy Exp $");
28 1.2 xtraeme
29 1.1 joerg #include "bpfilter.h"
30 1.1 joerg
31 1.1 joerg #include <sys/param.h>
32 1.1 joerg #include <sys/sockio.h>
33 1.1 joerg #include <sys/sysctl.h>
34 1.1 joerg #include <sys/mbuf.h>
35 1.1 joerg #include <sys/kernel.h>
36 1.1 joerg #include <sys/socket.h>
37 1.1 joerg #include <sys/systm.h>
38 1.1 joerg #include <sys/malloc.h>
39 1.1 joerg #include <sys/conf.h>
40 1.1 joerg #include <sys/device.h>
41 1.1 joerg
42 1.1 joerg #include <machine/bus.h>
43 1.1 joerg #include <machine/endian.h>
44 1.1 joerg #include <machine/intr.h>
45 1.1 joerg
46 1.1 joerg #if NBPFILTER > 0
47 1.1 joerg #include <net/bpf.h>
48 1.1 joerg #endif
49 1.1 joerg #include <net/if.h>
50 1.1 joerg #include <net/if_arp.h>
51 1.1 joerg #include <net/if_dl.h>
52 1.1 joerg #include <net/if_ether.h>
53 1.1 joerg #include <net/if_media.h>
54 1.1 joerg #include <net/if_types.h>
55 1.1 joerg
56 1.1 joerg #include <netinet/in.h>
57 1.1 joerg #include <netinet/in_systm.h>
58 1.1 joerg #include <netinet/in_var.h>
59 1.1 joerg #include <netinet/ip.h>
60 1.1 joerg
61 1.1 joerg #include <net80211/ieee80211_netbsd.h>
62 1.1 joerg #include <net80211/ieee80211_var.h>
63 1.1 joerg #include <net80211/ieee80211_amrr.h>
64 1.1 joerg #include <net80211/ieee80211_radiotap.h>
65 1.1 joerg
66 1.1 joerg #include <dev/firmload.h>
67 1.1 joerg
68 1.1 joerg #include <dev/usb/usb.h>
69 1.1 joerg #include <dev/usb/usbdi.h>
70 1.1 joerg #include <dev/usb/usbdi_util.h>
71 1.1 joerg #include <dev/usb/usbdevs.h>
72 1.6.4.2 itohy #include <dev/usb/usb_ethersubr.h>
73 1.1 joerg
74 1.1 joerg #include <dev/usb/if_rumreg.h>
75 1.1 joerg #include <dev/usb/if_rumvar.h>
76 1.1 joerg
77 1.1 joerg #ifdef USB_DEBUG
78 1.1 joerg #define RUM_DEBUG
79 1.1 joerg #endif
80 1.1 joerg
81 1.1 joerg #ifdef RUM_DEBUG
82 1.1 joerg #define DPRINTF(x) do { if (rum_debug) logprintf x; } while (0)
83 1.1 joerg #define DPRINTFN(n, x) do { if (rum_debug >= (n)) logprintf x; } while (0)
84 1.6.4.5 itohy int rum_debug = 1;
85 1.1 joerg #else
86 1.1 joerg #define DPRINTF(x)
87 1.1 joerg #define DPRINTFN(n, x)
88 1.1 joerg #endif
89 1.1 joerg
90 1.1 joerg /* various supported device vendors/products */
91 1.1 joerg static const struct usb_devno rum_devs[] = {
92 1.6.4.5 itohy { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
93 1.6.4.5 itohy { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
94 1.6.4.5 itohy { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
95 1.6.4.5 itohy { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
96 1.6.4.6 itohy { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
97 1.6.4.5 itohy { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
98 1.6.4.5 itohy { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
99 1.6.4.5 itohy { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
100 1.1 joerg { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
101 1.1 joerg { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
102 1.1 joerg { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
103 1.6.4.5 itohy { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
104 1.1 joerg { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
105 1.1 joerg { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
106 1.1 joerg { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
107 1.1 joerg { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
108 1.1 joerg { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
109 1.1 joerg { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
110 1.6.4.5 itohy { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
111 1.1 joerg { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
112 1.1 joerg { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
113 1.6.4.5 itohy { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
114 1.6.4.5 itohy { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
115 1.1 joerg { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
116 1.6.4.5 itohy { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
117 1.4 elad { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
118 1.1 joerg { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
119 1.1 joerg { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
120 1.1 joerg { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
121 1.6.4.5 itohy { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
122 1.6.4.5 itohy { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
123 1.6.4.5 itohy { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
124 1.4 elad { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
125 1.1 joerg { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
126 1.1 joerg { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
127 1.1 joerg { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
128 1.1 joerg { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
129 1.3 christos { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2573 },
130 1.1 joerg { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
131 1.1 joerg { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
132 1.1 joerg { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
133 1.1 joerg { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }
134 1.1 joerg };
135 1.1 joerg
136 1.1 joerg Static int rum_attachhook(void *);
137 1.1 joerg Static void rum_free_tx_list(struct rum_softc *);
138 1.1 joerg Static void rum_free_rx_list(struct rum_softc *);
139 1.1 joerg Static int rum_media_change(struct ifnet *);
140 1.1 joerg Static void rum_next_scan(void *);
141 1.1 joerg Static void rum_task(void *);
142 1.1 joerg Static int rum_newstate(struct ieee80211com *,
143 1.1 joerg enum ieee80211_state, int);
144 1.1 joerg Static void rum_txeof(usbd_xfer_handle, usbd_private_handle,
145 1.1 joerg usbd_status);
146 1.1 joerg Static void rum_rxeof(usbd_xfer_handle, usbd_private_handle,
147 1.1 joerg usbd_status);
148 1.1 joerg #if NBPFILTER > 0
149 1.1 joerg Static uint8_t rum_rxrate(struct rum_rx_desc *);
150 1.1 joerg #endif
151 1.1 joerg Static int rum_ack_rate(struct ieee80211com *, int);
152 1.1 joerg Static uint16_t rum_txtime(int, int, uint32_t);
153 1.1 joerg Static uint8_t rum_plcp_signal(int);
154 1.1 joerg Static void rum_setup_tx_desc(struct rum_softc *,
155 1.1 joerg struct rum_tx_desc *, uint32_t, uint16_t, int,
156 1.1 joerg int);
157 1.1 joerg Static int rum_tx_mgt(struct rum_softc *, struct mbuf *,
158 1.1 joerg struct ieee80211_node *);
159 1.1 joerg Static int rum_tx_data(struct rum_softc *, struct mbuf *,
160 1.1 joerg struct ieee80211_node *);
161 1.1 joerg Static void rum_start(struct ifnet *);
162 1.1 joerg Static void rum_watchdog(struct ifnet *);
163 1.6.4.3 itohy Static int rum_ioctl(struct ifnet *, u_long, usb_ioctlarg_t);
164 1.1 joerg Static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
165 1.1 joerg int);
166 1.1 joerg Static uint32_t rum_read(struct rum_softc *, uint16_t);
167 1.1 joerg Static void rum_read_multi(struct rum_softc *, uint16_t, void *,
168 1.1 joerg int);
169 1.1 joerg Static void rum_write(struct rum_softc *, uint16_t, uint32_t);
170 1.1 joerg Static void rum_write_multi(struct rum_softc *, uint16_t, void *,
171 1.1 joerg size_t);
172 1.1 joerg Static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
173 1.1 joerg Static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
174 1.1 joerg Static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
175 1.1 joerg Static void rum_select_antenna(struct rum_softc *);
176 1.1 joerg Static void rum_enable_mrr(struct rum_softc *);
177 1.1 joerg Static void rum_set_txpreamble(struct rum_softc *);
178 1.1 joerg Static void rum_set_basicrates(struct rum_softc *);
179 1.1 joerg Static void rum_select_band(struct rum_softc *,
180 1.1 joerg struct ieee80211_channel *);
181 1.1 joerg Static void rum_set_chan(struct rum_softc *,
182 1.1 joerg struct ieee80211_channel *);
183 1.1 joerg Static void rum_enable_tsf_sync(struct rum_softc *);
184 1.1 joerg Static void rum_update_slot(struct rum_softc *);
185 1.1 joerg Static void rum_set_bssid(struct rum_softc *, const uint8_t *);
186 1.1 joerg Static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
187 1.1 joerg Static void rum_update_promisc(struct rum_softc *);
188 1.1 joerg Static const char *rum_get_rf(int);
189 1.1 joerg Static void rum_read_eeprom(struct rum_softc *);
190 1.1 joerg Static int rum_bbp_init(struct rum_softc *);
191 1.1 joerg Static int rum_init(struct ifnet *);
192 1.1 joerg Static void rum_stop(struct ifnet *, int);
193 1.1 joerg Static int rum_load_microcode(struct rum_softc *, const u_char *,
194 1.1 joerg size_t);
195 1.1 joerg Static int rum_prepare_beacon(struct rum_softc *);
196 1.1 joerg Static void rum_amrr_start(struct rum_softc *,
197 1.1 joerg struct ieee80211_node *);
198 1.1 joerg Static void rum_amrr_timeout(void *);
199 1.1 joerg Static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
200 1.1 joerg usbd_status status);
201 1.1 joerg
202 1.1 joerg /*
203 1.1 joerg * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
204 1.1 joerg */
205 1.1 joerg static const struct ieee80211_rateset rum_rateset_11a =
206 1.1 joerg { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
207 1.1 joerg
208 1.1 joerg static const struct ieee80211_rateset rum_rateset_11b =
209 1.1 joerg { 4, { 2, 4, 11, 22 } };
210 1.1 joerg
211 1.1 joerg static const struct ieee80211_rateset rum_rateset_11g =
212 1.1 joerg { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
213 1.1 joerg
214 1.1 joerg static const struct {
215 1.1 joerg uint32_t reg;
216 1.1 joerg uint32_t val;
217 1.1 joerg } rum_def_mac[] = {
218 1.1 joerg RT2573_DEF_MAC
219 1.1 joerg };
220 1.1 joerg
221 1.1 joerg static const struct {
222 1.1 joerg uint8_t reg;
223 1.1 joerg uint8_t val;
224 1.1 joerg } rum_def_bbp[] = {
225 1.1 joerg RT2573_DEF_BBP
226 1.1 joerg };
227 1.1 joerg
228 1.1 joerg static const struct rfprog {
229 1.1 joerg uint8_t chan;
230 1.1 joerg uint32_t r1, r2, r3, r4;
231 1.1 joerg } rum_rf5226[] = {
232 1.1 joerg RT2573_RF5226
233 1.1 joerg }, rum_rf5225[] = {
234 1.1 joerg RT2573_RF5225
235 1.1 joerg };
236 1.1 joerg
237 1.1 joerg USB_DECLARE_DRIVER(rum);
238 1.1 joerg
239 1.1 joerg USB_MATCH(rum)
240 1.1 joerg {
241 1.1 joerg USB_MATCH_START(rum, uaa);
242 1.1 joerg
243 1.6.4.4 itohy #ifndef USB_USE_IFATTACH
244 1.1 joerg if (uaa->iface != NULL)
245 1.1 joerg return UMATCH_NONE;
246 1.6.4.4 itohy #endif /* USB_USE_IFATTACH */
247 1.1 joerg
248 1.1 joerg return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
249 1.1 joerg UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
250 1.1 joerg }
251 1.1 joerg
252 1.1 joerg Static int
253 1.1 joerg rum_attachhook(void *xsc)
254 1.1 joerg {
255 1.1 joerg struct rum_softc *sc = xsc;
256 1.1 joerg firmware_handle_t fwh;
257 1.1 joerg const char *name = "rum-rt2573";
258 1.1 joerg u_char *ucode;
259 1.1 joerg size_t size;
260 1.1 joerg int error;
261 1.1 joerg
262 1.1 joerg if ((error = firmware_open("rum", name, &fwh)) != 0) {
263 1.1 joerg printf("%s: failed loadfirmware of file %s (error %d)\n",
264 1.1 joerg USBDEVNAME(sc->sc_dev), name, error);
265 1.1 joerg return error;
266 1.1 joerg }
267 1.1 joerg size = firmware_get_size(fwh);
268 1.1 joerg ucode = firmware_malloc(size);
269 1.1 joerg if (ucode == NULL) {
270 1.1 joerg printf("%s: failed to allocate firmware memory\n",
271 1.1 joerg USBDEVNAME(sc->sc_dev));
272 1.1 joerg firmware_close(fwh);
273 1.1 joerg return ENOMEM;;
274 1.1 joerg }
275 1.1 joerg error = firmware_read(fwh, 0, ucode, size);
276 1.1 joerg firmware_close(fwh);
277 1.1 joerg if (error != 0) {
278 1.1 joerg printf("%s: failed to read firmware (error %d)\n",
279 1.1 joerg USBDEVNAME(sc->sc_dev), error);
280 1.1 joerg firmware_free(ucode, 0);
281 1.1 joerg return error;
282 1.1 joerg }
283 1.1 joerg
284 1.1 joerg if (rum_load_microcode(sc, ucode, size) != 0) {
285 1.1 joerg printf("%s: could not load 8051 microcode\n",
286 1.1 joerg USBDEVNAME(sc->sc_dev));
287 1.1 joerg firmware_free(ucode, 0);
288 1.1 joerg return ENXIO;
289 1.1 joerg }
290 1.1 joerg
291 1.1 joerg firmware_free(ucode, 0);
292 1.1 joerg sc->sc_flags |= RT2573_FWLOADED;
293 1.1 joerg
294 1.1 joerg return 0;
295 1.1 joerg }
296 1.1 joerg
297 1.1 joerg USB_ATTACH(rum)
298 1.1 joerg {
299 1.1 joerg USB_ATTACH_START(rum, sc, uaa);
300 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
301 1.1 joerg struct ifnet *ifp = &sc->sc_if;
302 1.1 joerg usb_interface_descriptor_t *id;
303 1.1 joerg usb_endpoint_descriptor_t *ed;
304 1.1 joerg usbd_status error;
305 1.1 joerg char *devinfop;
306 1.1 joerg int i, ntries;
307 1.1 joerg uint32_t tmp;
308 1.1 joerg
309 1.1 joerg sc->sc_udev = uaa->device;
310 1.1 joerg sc->sc_flags = 0;
311 1.1 joerg
312 1.1 joerg devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
313 1.1 joerg USB_ATTACH_SETUP;
314 1.1 joerg printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
315 1.1 joerg usbd_devinfo_free(devinfop);
316 1.1 joerg
317 1.1 joerg if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
318 1.1 joerg printf("%s: could not set configuration no\n",
319 1.1 joerg USBDEVNAME(sc->sc_dev));
320 1.1 joerg USB_ATTACH_ERROR_RETURN;
321 1.1 joerg }
322 1.1 joerg
323 1.1 joerg /* get the first interface handle */
324 1.1 joerg error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
325 1.1 joerg &sc->sc_iface);
326 1.1 joerg if (error != 0) {
327 1.1 joerg printf("%s: could not get interface handle\n",
328 1.1 joerg USBDEVNAME(sc->sc_dev));
329 1.1 joerg USB_ATTACH_ERROR_RETURN;
330 1.1 joerg }
331 1.1 joerg
332 1.1 joerg /*
333 1.1 joerg * Find endpoints.
334 1.1 joerg */
335 1.1 joerg id = usbd_get_interface_descriptor(sc->sc_iface);
336 1.1 joerg
337 1.1 joerg sc->sc_rx_no = sc->sc_tx_no = -1;
338 1.1 joerg for (i = 0; i < id->bNumEndpoints; i++) {
339 1.1 joerg ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
340 1.1 joerg if (ed == NULL) {
341 1.1 joerg printf("%s: no endpoint descriptor for iface %d\n",
342 1.1 joerg USBDEVNAME(sc->sc_dev), i);
343 1.1 joerg USB_ATTACH_ERROR_RETURN;
344 1.1 joerg }
345 1.1 joerg
346 1.1 joerg if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
347 1.1 joerg UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
348 1.1 joerg sc->sc_rx_no = ed->bEndpointAddress;
349 1.1 joerg else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
350 1.1 joerg UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
351 1.1 joerg sc->sc_tx_no = ed->bEndpointAddress;
352 1.1 joerg }
353 1.1 joerg if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
354 1.1 joerg printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
355 1.1 joerg USB_ATTACH_ERROR_RETURN;
356 1.1 joerg }
357 1.1 joerg
358 1.1 joerg usb_init_task(&sc->sc_task, rum_task, sc);
359 1.6.4.5 itohy usb_callout_init(sc->sc_scan_ch);
360 1.1 joerg
361 1.1 joerg sc->amrr.amrr_min_success_threshold = 1;
362 1.1 joerg sc->amrr.amrr_max_success_threshold = 10;
363 1.6.4.5 itohy usb_callout_init(sc->sc_amrr_ch);
364 1.1 joerg
365 1.1 joerg /* retrieve RT2573 rev. no */
366 1.6.4.1 itohy tmp = 0; /* XXX shut up warning */
367 1.1 joerg for (ntries = 0; ntries < 1000; ntries++) {
368 1.1 joerg if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
369 1.1 joerg break;
370 1.1 joerg DELAY(1000);
371 1.1 joerg }
372 1.1 joerg if (ntries == 1000) {
373 1.1 joerg printf("%s: timeout waiting for chip to settle\n",
374 1.1 joerg USBDEVNAME(sc->sc_dev));
375 1.1 joerg USB_ATTACH_ERROR_RETURN;
376 1.1 joerg }
377 1.1 joerg
378 1.1 joerg /* retrieve MAC address and various other things from EEPROM */
379 1.1 joerg rum_read_eeprom(sc);
380 1.1 joerg
381 1.1 joerg printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
382 1.1 joerg USBDEVNAME(sc->sc_dev), sc->macbbp_rev, tmp,
383 1.1 joerg rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
384 1.1 joerg
385 1.1 joerg ic->ic_ifp = ifp;
386 1.1 joerg ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
387 1.1 joerg ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
388 1.1 joerg ic->ic_state = IEEE80211_S_INIT;
389 1.1 joerg
390 1.1 joerg /* set device capabilities */
391 1.1 joerg ic->ic_caps =
392 1.1 joerg IEEE80211_C_IBSS | /* IBSS mode supported */
393 1.1 joerg IEEE80211_C_MONITOR | /* monitor mode supported */
394 1.1 joerg IEEE80211_C_HOSTAP | /* HostAp mode supported */
395 1.1 joerg IEEE80211_C_TXPMGT | /* tx power management */
396 1.1 joerg IEEE80211_C_SHPREAMBLE | /* short preamble supported */
397 1.1 joerg IEEE80211_C_SHSLOT | /* short slot time supported */
398 1.1 joerg IEEE80211_C_WPA; /* 802.11i */
399 1.1 joerg
400 1.1 joerg if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
401 1.1 joerg /* set supported .11a rates */
402 1.1 joerg ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
403 1.1 joerg
404 1.1 joerg /* set supported .11a channels */
405 1.1 joerg for (i = 34; i <= 46; i += 4) {
406 1.1 joerg ic->ic_channels[i].ic_freq =
407 1.1 joerg ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
408 1.1 joerg ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
409 1.1 joerg }
410 1.1 joerg for (i = 36; i <= 64; i += 4) {
411 1.1 joerg ic->ic_channels[i].ic_freq =
412 1.1 joerg ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
413 1.1 joerg ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
414 1.1 joerg }
415 1.1 joerg for (i = 100; i <= 140; i += 4) {
416 1.1 joerg ic->ic_channels[i].ic_freq =
417 1.1 joerg ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
418 1.1 joerg ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
419 1.1 joerg }
420 1.1 joerg for (i = 149; i <= 165; i += 4) {
421 1.1 joerg ic->ic_channels[i].ic_freq =
422 1.1 joerg ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
423 1.1 joerg ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
424 1.1 joerg }
425 1.1 joerg }
426 1.1 joerg
427 1.1 joerg /* set supported .11b and .11g rates */
428 1.1 joerg ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
429 1.1 joerg ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
430 1.1 joerg
431 1.1 joerg /* set supported .11b and .11g channels (1 through 14) */
432 1.1 joerg for (i = 1; i <= 14; i++) {
433 1.1 joerg ic->ic_channels[i].ic_freq =
434 1.1 joerg ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
435 1.1 joerg ic->ic_channels[i].ic_flags =
436 1.1 joerg IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
437 1.1 joerg IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
438 1.1 joerg }
439 1.1 joerg
440 1.1 joerg ifp->if_softc = sc;
441 1.1 joerg ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
442 1.1 joerg ifp->if_init = rum_init;
443 1.1 joerg ifp->if_ioctl = rum_ioctl;
444 1.1 joerg ifp->if_start = rum_start;
445 1.1 joerg ifp->if_watchdog = rum_watchdog;
446 1.1 joerg IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
447 1.1 joerg IFQ_SET_READY(&ifp->if_snd);
448 1.1 joerg memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
449 1.1 joerg
450 1.1 joerg if_attach(ifp);
451 1.1 joerg ieee80211_ifattach(ic);
452 1.1 joerg
453 1.1 joerg /* override state transition machine */
454 1.1 joerg sc->sc_newstate = ic->ic_newstate;
455 1.1 joerg ic->ic_newstate = rum_newstate;
456 1.1 joerg ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
457 1.1 joerg
458 1.1 joerg #if NBPFILTER > 0
459 1.1 joerg bpfattach2(ifp, DLT_IEEE802_11_RADIO,
460 1.1 joerg sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf);
461 1.1 joerg
462 1.1 joerg sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
463 1.1 joerg sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
464 1.1 joerg sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
465 1.1 joerg
466 1.1 joerg sc->sc_txtap_len = sizeof sc->sc_txtapu;
467 1.1 joerg sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
468 1.1 joerg sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
469 1.1 joerg #endif
470 1.1 joerg
471 1.1 joerg ieee80211_announce(ic);
472 1.1 joerg
473 1.1 joerg usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
474 1.1 joerg USBDEV(sc->sc_dev));
475 1.1 joerg
476 1.1 joerg USB_ATTACH_SUCCESS_RETURN;
477 1.1 joerg }
478 1.1 joerg
479 1.1 joerg USB_DETACH(rum)
480 1.1 joerg {
481 1.1 joerg USB_DETACH_START(rum, sc);
482 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
483 1.1 joerg struct ifnet *ifp = &sc->sc_if;
484 1.1 joerg int s;
485 1.1 joerg
486 1.1 joerg s = splusb();
487 1.1 joerg
488 1.1 joerg rum_stop(ifp, 1);
489 1.1 joerg usb_rem_task(sc->sc_udev, &sc->sc_task);
490 1.6.4.5 itohy usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
491 1.6.4.5 itohy usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
492 1.1 joerg
493 1.6.4.2 itohy if (sc->sc_rx_pipeh != NULL)
494 1.6.4.2 itohy usbd_abort_pipe(sc->sc_rx_pipeh);
495 1.6.4.2 itohy
496 1.6.4.2 itohy if (sc->sc_tx_pipeh != NULL)
497 1.6.4.2 itohy usbd_abort_pipe(sc->sc_tx_pipeh);
498 1.6.4.2 itohy
499 1.6.4.2 itohy rum_free_rx_list(sc);
500 1.6.4.2 itohy rum_free_tx_list(sc);
501 1.6.4.2 itohy
502 1.1 joerg if (sc->amrr_xfer != NULL) {
503 1.1 joerg usbd_free_xfer(sc->amrr_xfer);
504 1.1 joerg sc->amrr_xfer = NULL;
505 1.1 joerg }
506 1.1 joerg
507 1.6.4.2 itohy if (sc->sc_rx_pipeh != NULL)
508 1.1 joerg usbd_close_pipe(sc->sc_rx_pipeh);
509 1.1 joerg
510 1.6.4.2 itohy if (sc->sc_tx_pipeh != NULL)
511 1.1 joerg usbd_close_pipe(sc->sc_tx_pipeh);
512 1.1 joerg
513 1.1 joerg #if NBPFILTER > 0
514 1.1 joerg bpfdetach(ifp);
515 1.1 joerg #endif
516 1.1 joerg ieee80211_ifdetach(ic); /* free all nodes */
517 1.1 joerg if_detach(ifp);
518 1.1 joerg
519 1.1 joerg splx(s);
520 1.1 joerg
521 1.1 joerg usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
522 1.1 joerg USBDEV(sc->sc_dev));
523 1.1 joerg
524 1.1 joerg return 0;
525 1.1 joerg }
526 1.1 joerg
527 1.1 joerg Static void
528 1.1 joerg rum_free_tx_list(struct rum_softc *sc)
529 1.1 joerg {
530 1.1 joerg int i;
531 1.1 joerg
532 1.6.4.2 itohy usb_ether_tx_list_free(sc->tx_data, RT2573_TX_LIST_COUNT);
533 1.1 joerg
534 1.6.4.2 itohy for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
535 1.6.4.2 itohy if (sc->tx_ni[i] != NULL) {
536 1.6.4.2 itohy ieee80211_free_node(sc->tx_ni[i]);
537 1.6.4.2 itohy sc->tx_ni[i] = NULL;
538 1.1 joerg }
539 1.1 joerg }
540 1.1 joerg }
541 1.1 joerg
542 1.1 joerg Static void
543 1.1 joerg rum_free_rx_list(struct rum_softc *sc)
544 1.1 joerg {
545 1.1 joerg
546 1.6.4.2 itohy usb_ether_rx_list_free(sc->rx_data, RT2573_RX_LIST_COUNT);
547 1.1 joerg }
548 1.1 joerg
549 1.1 joerg Static int
550 1.1 joerg rum_media_change(struct ifnet *ifp)
551 1.1 joerg {
552 1.1 joerg int error;
553 1.1 joerg
554 1.1 joerg error = ieee80211_media_change(ifp);
555 1.1 joerg if (error != ENETRESET)
556 1.1 joerg return error;
557 1.1 joerg
558 1.1 joerg if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
559 1.1 joerg rum_init(ifp);
560 1.1 joerg
561 1.1 joerg return 0;
562 1.1 joerg }
563 1.1 joerg
564 1.1 joerg /*
565 1.1 joerg * This function is called periodically (every 200ms) during scanning to
566 1.1 joerg * switch from one channel to another.
567 1.1 joerg */
568 1.1 joerg Static void
569 1.1 joerg rum_next_scan(void *arg)
570 1.1 joerg {
571 1.1 joerg struct rum_softc *sc = arg;
572 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
573 1.1 joerg
574 1.1 joerg if (ic->ic_state == IEEE80211_S_SCAN)
575 1.1 joerg ieee80211_next_scan(ic);
576 1.1 joerg }
577 1.1 joerg
578 1.1 joerg Static void
579 1.1 joerg rum_task(void *arg)
580 1.1 joerg {
581 1.1 joerg struct rum_softc *sc = arg;
582 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
583 1.1 joerg enum ieee80211_state ostate;
584 1.1 joerg struct ieee80211_node *ni;
585 1.1 joerg uint32_t tmp;
586 1.1 joerg
587 1.1 joerg ostate = ic->ic_state;
588 1.1 joerg
589 1.1 joerg switch (sc->sc_state) {
590 1.1 joerg case IEEE80211_S_INIT:
591 1.1 joerg if (ostate == IEEE80211_S_RUN) {
592 1.1 joerg /* abort TSF synchronization */
593 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR9);
594 1.1 joerg rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
595 1.1 joerg }
596 1.1 joerg break;
597 1.1 joerg
598 1.1 joerg case IEEE80211_S_SCAN:
599 1.1 joerg rum_set_chan(sc, ic->ic_curchan);
600 1.6.4.5 itohy usb_callout(sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
601 1.1 joerg break;
602 1.1 joerg
603 1.1 joerg case IEEE80211_S_AUTH:
604 1.1 joerg rum_set_chan(sc, ic->ic_curchan);
605 1.1 joerg break;
606 1.1 joerg
607 1.1 joerg case IEEE80211_S_ASSOC:
608 1.1 joerg rum_set_chan(sc, ic->ic_curchan);
609 1.1 joerg break;
610 1.1 joerg
611 1.1 joerg case IEEE80211_S_RUN:
612 1.1 joerg rum_set_chan(sc, ic->ic_curchan);
613 1.1 joerg
614 1.1 joerg ni = ic->ic_bss;
615 1.1 joerg
616 1.1 joerg if (ic->ic_opmode != IEEE80211_M_MONITOR) {
617 1.1 joerg rum_update_slot(sc);
618 1.1 joerg rum_enable_mrr(sc);
619 1.1 joerg rum_set_txpreamble(sc);
620 1.1 joerg rum_set_basicrates(sc);
621 1.1 joerg rum_set_bssid(sc, ni->ni_bssid);
622 1.1 joerg }
623 1.1 joerg
624 1.1 joerg if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
625 1.1 joerg ic->ic_opmode == IEEE80211_M_IBSS)
626 1.1 joerg rum_prepare_beacon(sc);
627 1.1 joerg
628 1.1 joerg if (ic->ic_opmode != IEEE80211_M_MONITOR)
629 1.1 joerg rum_enable_tsf_sync(sc);
630 1.1 joerg
631 1.1 joerg /* enable automatic rate adaptation in STA mode */
632 1.1 joerg if (ic->ic_opmode == IEEE80211_M_STA &&
633 1.1 joerg ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
634 1.1 joerg rum_amrr_start(sc, ni);
635 1.1 joerg
636 1.1 joerg break;
637 1.1 joerg }
638 1.1 joerg
639 1.1 joerg sc->sc_newstate(ic, sc->sc_state, -1);
640 1.1 joerg }
641 1.1 joerg
642 1.1 joerg Static int
643 1.1 joerg rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
644 1.1 joerg {
645 1.1 joerg struct rum_softc *sc = ic->ic_ifp->if_softc;
646 1.1 joerg
647 1.1 joerg usb_rem_task(sc->sc_udev, &sc->sc_task);
648 1.6.4.5 itohy usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
649 1.6.4.5 itohy usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
650 1.1 joerg
651 1.1 joerg /* do it in a process context */
652 1.1 joerg sc->sc_state = nstate;
653 1.1 joerg usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
654 1.1 joerg
655 1.1 joerg return 0;
656 1.1 joerg }
657 1.1 joerg
658 1.1 joerg /* quickly determine if a given rate is CCK or OFDM */
659 1.1 joerg #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
660 1.1 joerg
661 1.1 joerg #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
662 1.1 joerg #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
663 1.1 joerg
664 1.1 joerg Static void
665 1.1 joerg rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
666 1.1 joerg {
667 1.6.4.2 itohy struct ue_chain *data = priv;
668 1.6.4.2 itohy struct rum_softc *sc = (void *)data->ue_dev;
669 1.1 joerg struct ifnet *ifp = &sc->sc_if;
670 1.1 joerg int s;
671 1.1 joerg
672 1.6.4.2 itohy usbd_unmap_buffer(xfer);
673 1.6.4.2 itohy
674 1.1 joerg if (status != USBD_NORMAL_COMPLETION) {
675 1.1 joerg if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
676 1.1 joerg return;
677 1.1 joerg
678 1.1 joerg printf("%s: could not transmit buffer: %s\n",
679 1.1 joerg USBDEVNAME(sc->sc_dev), usbd_errstr(status));
680 1.1 joerg
681 1.1 joerg if (status == USBD_STALLED)
682 1.1 joerg usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
683 1.1 joerg
684 1.1 joerg ifp->if_oerrors++;
685 1.1 joerg return;
686 1.1 joerg }
687 1.1 joerg
688 1.1 joerg s = splnet();
689 1.1 joerg
690 1.6.4.2 itohy m_freem(data->ue_mbuf);
691 1.6.4.2 itohy data->ue_mbuf = NULL;
692 1.6.4.2 itohy ieee80211_free_node(sc->tx_ni[data->ue_idx]);
693 1.6.4.2 itohy sc->tx_ni[data->ue_idx] = NULL;
694 1.1 joerg
695 1.1 joerg sc->tx_queued--;
696 1.1 joerg ifp->if_opackets++;
697 1.1 joerg
698 1.1 joerg DPRINTFN(10, ("tx done\n"));
699 1.1 joerg
700 1.1 joerg sc->sc_tx_timer = 0;
701 1.1 joerg ifp->if_flags &= ~IFF_OACTIVE;
702 1.1 joerg rum_start(ifp);
703 1.1 joerg
704 1.1 joerg splx(s);
705 1.1 joerg }
706 1.1 joerg
707 1.1 joerg Static void
708 1.1 joerg rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
709 1.1 joerg {
710 1.6.4.2 itohy struct ue_chain *data = priv;
711 1.6.4.2 itohy struct rum_softc *sc = (void *)data->ue_dev;
712 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
713 1.1 joerg struct ifnet *ifp = &sc->sc_if;
714 1.1 joerg struct rum_rx_desc *desc;
715 1.1 joerg struct ieee80211_frame *wh;
716 1.1 joerg struct ieee80211_node *ni;
717 1.6.4.2 itohy struct mbuf *m;
718 1.1 joerg int s, len;
719 1.1 joerg
720 1.6.4.2 itohy usbd_unmap_buffer(xfer);
721 1.6.4.2 itohy
722 1.1 joerg if (status != USBD_NORMAL_COMPLETION) {
723 1.1 joerg if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
724 1.1 joerg return;
725 1.1 joerg
726 1.1 joerg if (status == USBD_STALLED)
727 1.1 joerg usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
728 1.1 joerg goto skip;
729 1.1 joerg }
730 1.1 joerg
731 1.1 joerg usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
732 1.1 joerg
733 1.1 joerg if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
734 1.1 joerg DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
735 1.1 joerg len));
736 1.1 joerg ifp->if_ierrors++;
737 1.1 joerg goto skip;
738 1.1 joerg }
739 1.1 joerg
740 1.6.4.2 itohy m = data->ue_mbuf;
741 1.6.4.2 itohy desc = mtod(m, struct rum_rx_desc *);
742 1.1 joerg
743 1.6.4.2 itohy if (UGETDW((u_int8_t *)&desc->flags) & RT2573_RX_CRC_ERROR) {
744 1.1 joerg /*
745 1.1 joerg * This should not happen since we did not request to receive
746 1.1 joerg * those frames when we filled RT2573_TXRX_CSR0.
747 1.1 joerg */
748 1.1 joerg DPRINTFN(5, ("CRC error\n"));
749 1.1 joerg ifp->if_ierrors++;
750 1.1 joerg goto skip;
751 1.1 joerg }
752 1.1 joerg
753 1.6.4.2 itohy /*
754 1.6.4.2 itohy * Allocate new mbuf cluster for the next transfer.
755 1.6.4.2 itohy * If that failed, discard current packet and recycle the mbuf.
756 1.6.4.2 itohy */
757 1.6.4.2 itohy if ((data->ue_mbuf = usb_ether_newbuf(NULL)) == NULL) {
758 1.6.4.2 itohy printf("%s: no memory for rx list -- packet dropped!\n",
759 1.1 joerg USBDEVNAME(sc->sc_dev));
760 1.1 joerg ifp->if_ierrors++;
761 1.6.4.2 itohy data->ue_mbuf = usb_ether_newbuf(m);
762 1.1 joerg goto skip;
763 1.1 joerg }
764 1.1 joerg
765 1.1 joerg /* finalize mbuf */
766 1.1 joerg m->m_pkthdr.rcvif = ifp;
767 1.6.4.3 itohy m->m_data = (void *)(desc + 1);
768 1.6.4.2 itohy m->m_pkthdr.len = m->m_len = UGETW((u_int8_t *)&desc->flags + 2);
769 1.1 joerg
770 1.1 joerg s = splnet();
771 1.1 joerg
772 1.1 joerg #if NBPFILTER > 0
773 1.1 joerg if (sc->sc_drvbpf != NULL) {
774 1.1 joerg struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
775 1.1 joerg
776 1.1 joerg tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
777 1.1 joerg tap->wr_rate = rum_rxrate(desc);
778 1.1 joerg tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
779 1.1 joerg tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
780 1.1 joerg tap->wr_antenna = sc->rx_ant;
781 1.1 joerg tap->wr_antsignal = desc->rssi;
782 1.1 joerg
783 1.1 joerg bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
784 1.1 joerg }
785 1.1 joerg #endif
786 1.1 joerg
787 1.1 joerg wh = mtod(m, struct ieee80211_frame *);
788 1.1 joerg ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
789 1.1 joerg
790 1.1 joerg /* send the frame to the 802.11 layer */
791 1.1 joerg ieee80211_input(ic, m, ni, desc->rssi, 0);
792 1.1 joerg
793 1.1 joerg /* node is no longer needed */
794 1.1 joerg ieee80211_free_node(ni);
795 1.1 joerg
796 1.1 joerg splx(s);
797 1.1 joerg
798 1.1 joerg DPRINTFN(15, ("rx done\n"));
799 1.1 joerg
800 1.1 joerg skip: /* setup a new transfer */
801 1.6.4.2 itohy (void)usbd_map_buffer_mbuf(xfer, data->ue_mbuf);
802 1.6.4.2 itohy usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, NULL /* XXX buf */, MCLBYTES,
803 1.1 joerg USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
804 1.1 joerg usbd_transfer(xfer);
805 1.1 joerg }
806 1.1 joerg
807 1.1 joerg /*
808 1.1 joerg * This function is only used by the Rx radiotap code. It returns the rate at
809 1.1 joerg * which a given frame was received.
810 1.1 joerg */
811 1.1 joerg #if NBPFILTER > 0
812 1.1 joerg Static uint8_t
813 1.1 joerg rum_rxrate(struct rum_rx_desc *desc)
814 1.1 joerg {
815 1.1 joerg if (le32toh(desc->flags) & RT2573_RX_OFDM) {
816 1.1 joerg /* reverse function of rum_plcp_signal */
817 1.1 joerg switch (desc->rate) {
818 1.1 joerg case 0xb: return 12;
819 1.1 joerg case 0xf: return 18;
820 1.1 joerg case 0xa: return 24;
821 1.1 joerg case 0xe: return 36;
822 1.1 joerg case 0x9: return 48;
823 1.1 joerg case 0xd: return 72;
824 1.1 joerg case 0x8: return 96;
825 1.1 joerg case 0xc: return 108;
826 1.1 joerg }
827 1.1 joerg } else {
828 1.1 joerg if (desc->rate == 10)
829 1.1 joerg return 2;
830 1.1 joerg if (desc->rate == 20)
831 1.1 joerg return 4;
832 1.1 joerg if (desc->rate == 55)
833 1.1 joerg return 11;
834 1.1 joerg if (desc->rate == 110)
835 1.1 joerg return 22;
836 1.1 joerg }
837 1.1 joerg return 2; /* should not get there */
838 1.1 joerg }
839 1.1 joerg #endif
840 1.1 joerg
841 1.1 joerg /*
842 1.1 joerg * Return the expected ack rate for a frame transmitted at rate `rate'.
843 1.1 joerg * XXX: this should depend on the destination node basic rate set.
844 1.1 joerg */
845 1.1 joerg Static int
846 1.1 joerg rum_ack_rate(struct ieee80211com *ic, int rate)
847 1.1 joerg {
848 1.1 joerg switch (rate) {
849 1.1 joerg /* CCK rates */
850 1.1 joerg case 2:
851 1.1 joerg return 2;
852 1.1 joerg case 4:
853 1.1 joerg case 11:
854 1.1 joerg case 22:
855 1.1 joerg return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
856 1.1 joerg
857 1.1 joerg /* OFDM rates */
858 1.1 joerg case 12:
859 1.1 joerg case 18:
860 1.1 joerg return 12;
861 1.1 joerg case 24:
862 1.1 joerg case 36:
863 1.1 joerg return 24;
864 1.1 joerg case 48:
865 1.1 joerg case 72:
866 1.1 joerg case 96:
867 1.1 joerg case 108:
868 1.1 joerg return 48;
869 1.1 joerg }
870 1.1 joerg
871 1.1 joerg /* default to 1Mbps */
872 1.1 joerg return 2;
873 1.1 joerg }
874 1.1 joerg
875 1.1 joerg /*
876 1.1 joerg * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
877 1.1 joerg * The function automatically determines the operating mode depending on the
878 1.1 joerg * given rate. `flags' indicates whether short preamble is in use or not.
879 1.1 joerg */
880 1.1 joerg Static uint16_t
881 1.1 joerg rum_txtime(int len, int rate, uint32_t flags)
882 1.1 joerg {
883 1.1 joerg uint16_t txtime;
884 1.1 joerg
885 1.1 joerg if (RUM_RATE_IS_OFDM(rate)) {
886 1.1 joerg /* IEEE Std 802.11a-1999, pp. 37 */
887 1.1 joerg txtime = (8 + 4 * len + 3 + rate - 1) / rate;
888 1.1 joerg txtime = 16 + 4 + 4 * txtime + 6;
889 1.1 joerg } else {
890 1.1 joerg /* IEEE Std 802.11b-1999, pp. 28 */
891 1.1 joerg txtime = (16 * len + rate - 1) / rate;
892 1.1 joerg if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
893 1.1 joerg txtime += 72 + 24;
894 1.1 joerg else
895 1.1 joerg txtime += 144 + 48;
896 1.1 joerg }
897 1.1 joerg return txtime;
898 1.1 joerg }
899 1.1 joerg
900 1.1 joerg Static uint8_t
901 1.1 joerg rum_plcp_signal(int rate)
902 1.1 joerg {
903 1.1 joerg switch (rate) {
904 1.1 joerg /* CCK rates (returned values are device-dependent) */
905 1.1 joerg case 2: return 0x0;
906 1.1 joerg case 4: return 0x1;
907 1.1 joerg case 11: return 0x2;
908 1.1 joerg case 22: return 0x3;
909 1.1 joerg
910 1.1 joerg /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
911 1.1 joerg case 12: return 0xb;
912 1.1 joerg case 18: return 0xf;
913 1.1 joerg case 24: return 0xa;
914 1.1 joerg case 36: return 0xe;
915 1.1 joerg case 48: return 0x9;
916 1.1 joerg case 72: return 0xd;
917 1.1 joerg case 96: return 0x8;
918 1.1 joerg case 108: return 0xc;
919 1.1 joerg
920 1.1 joerg /* unsupported rates (should not get there) */
921 1.1 joerg default: return 0xff;
922 1.1 joerg }
923 1.1 joerg }
924 1.1 joerg
925 1.1 joerg Static void
926 1.1 joerg rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
927 1.1 joerg uint32_t flags, uint16_t xflags, int len, int rate)
928 1.1 joerg {
929 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
930 1.1 joerg uint16_t plcp_length;
931 1.1 joerg int remainder;
932 1.1 joerg
933 1.1 joerg desc->flags = htole32(flags);
934 1.1 joerg desc->flags |= htole32(RT2573_TX_VALID);
935 1.1 joerg desc->flags |= htole32(len << 16);
936 1.1 joerg
937 1.1 joerg desc->xflags = htole16(xflags);
938 1.1 joerg
939 1.1 joerg desc->wme = htole16(
940 1.1 joerg RT2573_QID(0) |
941 1.1 joerg RT2573_AIFSN(2) |
942 1.1 joerg RT2573_LOGCWMIN(4) |
943 1.1 joerg RT2573_LOGCWMAX(10));
944 1.1 joerg
945 1.1 joerg /* setup PLCP fields */
946 1.1 joerg desc->plcp_signal = rum_plcp_signal(rate);
947 1.1 joerg desc->plcp_service = 4;
948 1.1 joerg
949 1.1 joerg len += IEEE80211_CRC_LEN;
950 1.1 joerg if (RUM_RATE_IS_OFDM(rate)) {
951 1.1 joerg desc->flags |= htole32(RT2573_TX_OFDM);
952 1.1 joerg
953 1.1 joerg plcp_length = len & 0xfff;
954 1.1 joerg desc->plcp_length_hi = plcp_length >> 6;
955 1.1 joerg desc->plcp_length_lo = plcp_length & 0x3f;
956 1.1 joerg } else {
957 1.1 joerg plcp_length = (16 * len + rate - 1) / rate;
958 1.1 joerg if (rate == 22) {
959 1.1 joerg remainder = (16 * len) % 22;
960 1.1 joerg if (remainder != 0 && remainder < 7)
961 1.1 joerg desc->plcp_service |= RT2573_PLCP_LENGEXT;
962 1.1 joerg }
963 1.1 joerg desc->plcp_length_hi = plcp_length >> 8;
964 1.1 joerg desc->plcp_length_lo = plcp_length & 0xff;
965 1.1 joerg
966 1.1 joerg if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
967 1.1 joerg desc->plcp_signal |= 0x08;
968 1.1 joerg }
969 1.1 joerg }
970 1.1 joerg
971 1.1 joerg #define RUM_TX_TIMEOUT 5000
972 1.1 joerg
973 1.1 joerg Static int
974 1.1 joerg rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
975 1.1 joerg {
976 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
977 1.1 joerg struct rum_tx_desc *desc;
978 1.6.4.2 itohy struct ue_chain *data;
979 1.1 joerg struct ieee80211_frame *wh;
980 1.1 joerg uint32_t flags = 0;
981 1.1 joerg uint16_t dur;
982 1.1 joerg usbd_status error;
983 1.1 joerg int xferlen, rate;
984 1.6.4.2 itohy int ret;
985 1.1 joerg
986 1.1 joerg data = &sc->tx_data[0];
987 1.1 joerg
988 1.1 joerg rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
989 1.1 joerg
990 1.6.4.2 itohy data->ue_mbuf = m0;
991 1.6.4.2 itohy sc->tx_ni[data->ue_idx] = ni;
992 1.1 joerg
993 1.1 joerg wh = mtod(m0, struct ieee80211_frame *);
994 1.1 joerg
995 1.1 joerg if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
996 1.1 joerg flags |= RT2573_TX_ACK;
997 1.1 joerg
998 1.1 joerg dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
999 1.1 joerg ic->ic_flags) + sc->sifs;
1000 1.1 joerg *(uint16_t *)wh->i_dur = htole16(dur);
1001 1.1 joerg
1002 1.1 joerg /* tell hardware to set timestamp in probe responses */
1003 1.1 joerg if ((wh->i_fc[0] &
1004 1.1 joerg (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1005 1.1 joerg (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1006 1.1 joerg flags |= RT2573_TX_TIMESTAMP;
1007 1.1 joerg }
1008 1.1 joerg
1009 1.1 joerg #if NBPFILTER > 0
1010 1.1 joerg if (sc->sc_drvbpf != NULL) {
1011 1.1 joerg struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1012 1.1 joerg
1013 1.1 joerg tap->wt_flags = 0;
1014 1.1 joerg tap->wt_rate = rate;
1015 1.1 joerg tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1016 1.1 joerg tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1017 1.1 joerg tap->wt_antenna = sc->tx_ant;
1018 1.1 joerg
1019 1.1 joerg bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1020 1.1 joerg }
1021 1.1 joerg #endif
1022 1.1 joerg
1023 1.6.4.2 itohy /* Prepend Tx descriptor */
1024 1.6.4.2 itohy M_PREPEND(m0, RT2573_TX_DESC_SIZE, M_DONTWAIT);
1025 1.6.4.2 itohy if (m0 != NULL)
1026 1.6.4.2 itohy m0 = m_pullup(m0, RT2573_TX_DESC_SIZE); /* just in case */
1027 1.6.4.2 itohy if (m0 == NULL) {
1028 1.6.4.2 itohy return ENOBUFS;
1029 1.6.4.2 itohy }
1030 1.6.4.2 itohy desc = mtod(m0, struct rum_tx_desc *);
1031 1.6.4.2 itohy
1032 1.1 joerg rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1033 1.1 joerg
1034 1.1 joerg /* align end on a 4-bytes boundary */
1035 1.1 joerg xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1036 1.1 joerg
1037 1.1 joerg /*
1038 1.1 joerg * No space left in the last URB to store the extra 4 bytes, force
1039 1.1 joerg * sending of another URB.
1040 1.1 joerg */
1041 1.1 joerg if ((xferlen % 64) == 0)
1042 1.1 joerg xferlen += 4;
1043 1.1 joerg
1044 1.6.4.2 itohy if (m0->m_pkthdr.len != xferlen) {
1045 1.6.4.2 itohy m_copyback(m0, xferlen - 1, 1, ""); /* expand mbuf chain */
1046 1.6.4.2 itohy if (m0->m_pkthdr.len != xferlen) {
1047 1.6.4.2 itohy m_freem(m0);
1048 1.6.4.2 itohy return ENOBUFS;
1049 1.6.4.2 itohy }
1050 1.6.4.2 itohy }
1051 1.6.4.2 itohy
1052 1.6.4.2 itohy ret = usb_ether_map_tx_buffer_mbuf(data, m0);
1053 1.6.4.2 itohy if (ret) {
1054 1.6.4.2 itohy m_freem(m0);
1055 1.6.4.2 itohy return ret;
1056 1.6.4.2 itohy }
1057 1.6.4.2 itohy
1058 1.5 wiz DPRINTFN(10, ("sending msg frame len=%lu rate=%u xfer len=%u\n",
1059 1.6 wiz (long unsigned int)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1060 1.6 wiz rate, xferlen));
1061 1.1 joerg
1062 1.6.4.2 itohy usbd_setup_xfer(data->ue_xfer, sc->sc_tx_pipeh, data, NULL /* XXX buf */, xferlen,
1063 1.1 joerg USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1064 1.1 joerg
1065 1.6.4.2 itohy error = usbd_transfer(data->ue_xfer);
1066 1.1 joerg if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1067 1.6.4.2 itohy data->ue_mbuf = NULL;
1068 1.1 joerg m_freem(m0);
1069 1.1 joerg return error;
1070 1.1 joerg }
1071 1.1 joerg
1072 1.1 joerg sc->tx_queued++;
1073 1.1 joerg
1074 1.1 joerg return 0;
1075 1.1 joerg }
1076 1.1 joerg
1077 1.1 joerg Static int
1078 1.1 joerg rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1079 1.1 joerg {
1080 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1081 1.1 joerg struct rum_tx_desc *desc;
1082 1.6.4.2 itohy struct ue_chain *data;
1083 1.1 joerg struct ieee80211_frame *wh;
1084 1.1 joerg struct ieee80211_key *k;
1085 1.1 joerg uint32_t flags = 0;
1086 1.1 joerg uint16_t dur;
1087 1.1 joerg usbd_status error;
1088 1.1 joerg int xferlen, rate;
1089 1.6.4.2 itohy int ret;
1090 1.1 joerg
1091 1.1 joerg wh = mtod(m0, struct ieee80211_frame *);
1092 1.1 joerg
1093 1.1 joerg if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1094 1.1 joerg rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1095 1.1 joerg else
1096 1.1 joerg rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1097 1.1 joerg rate &= IEEE80211_RATE_VAL;
1098 1.1 joerg
1099 1.1 joerg if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1100 1.1 joerg k = ieee80211_crypto_encap(ic, ni, m0);
1101 1.1 joerg if (k == NULL) {
1102 1.1 joerg m_freem(m0);
1103 1.1 joerg return ENOBUFS;
1104 1.1 joerg }
1105 1.1 joerg
1106 1.1 joerg /* packet header may have moved, reset our local pointer */
1107 1.1 joerg wh = mtod(m0, struct ieee80211_frame *);
1108 1.1 joerg }
1109 1.1 joerg
1110 1.1 joerg data = &sc->tx_data[0];
1111 1.1 joerg
1112 1.6.4.2 itohy data->ue_mbuf = m0;
1113 1.6.4.2 itohy sc->tx_ni[data->ue_idx] = ni;
1114 1.1 joerg
1115 1.1 joerg if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1116 1.1 joerg flags |= RT2573_TX_ACK;
1117 1.1 joerg
1118 1.1 joerg dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1119 1.1 joerg ic->ic_flags) + sc->sifs;
1120 1.1 joerg *(uint16_t *)wh->i_dur = htole16(dur);
1121 1.1 joerg }
1122 1.1 joerg
1123 1.1 joerg #if NBPFILTER > 0
1124 1.1 joerg if (sc->sc_drvbpf != NULL) {
1125 1.1 joerg struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1126 1.1 joerg
1127 1.1 joerg tap->wt_flags = 0;
1128 1.1 joerg tap->wt_rate = rate;
1129 1.1 joerg tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1130 1.1 joerg tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1131 1.1 joerg tap->wt_antenna = sc->tx_ant;
1132 1.1 joerg
1133 1.1 joerg bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1134 1.1 joerg }
1135 1.1 joerg #endif
1136 1.1 joerg
1137 1.6.4.2 itohy /* Prepend Tx descriptor */
1138 1.6.4.2 itohy M_PREPEND(m0, RT2573_TX_DESC_SIZE, M_DONTWAIT);
1139 1.6.4.2 itohy if (m0 != NULL)
1140 1.6.4.2 itohy m0 = m_pullup(m0, RT2573_TX_DESC_SIZE); /* just in case */
1141 1.6.4.2 itohy if (m0 == NULL) {
1142 1.6.4.2 itohy return ENOBUFS;
1143 1.6.4.2 itohy }
1144 1.6.4.2 itohy desc = mtod(m0, struct rum_tx_desc *);
1145 1.6.4.2 itohy
1146 1.1 joerg rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1147 1.1 joerg
1148 1.1 joerg /* align end on a 4-bytes boundary */
1149 1.1 joerg xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1150 1.1 joerg
1151 1.1 joerg /*
1152 1.1 joerg * No space left in the last URB to store the extra 4 bytes, force
1153 1.1 joerg * sending of another URB.
1154 1.1 joerg */
1155 1.1 joerg if ((xferlen % 64) == 0)
1156 1.1 joerg xferlen += 4;
1157 1.1 joerg
1158 1.6.4.2 itohy if (m0->m_pkthdr.len != xferlen) {
1159 1.6.4.2 itohy m_copyback(m0, xferlen - 1, 1, ""); /* expand mbuf chain */
1160 1.6.4.2 itohy if (m0->m_pkthdr.len != xferlen) {
1161 1.6.4.2 itohy m_freem(m0);
1162 1.6.4.2 itohy return ENOBUFS;
1163 1.6.4.2 itohy }
1164 1.6.4.2 itohy }
1165 1.6.4.2 itohy
1166 1.6.4.2 itohy ret = usb_ether_map_tx_buffer_mbuf(data, m0);
1167 1.6.4.2 itohy if (ret) {
1168 1.6.4.2 itohy m_freem(m0);
1169 1.6.4.2 itohy return ret;
1170 1.6.4.2 itohy }
1171 1.6.4.2 itohy
1172 1.5 wiz DPRINTFN(10, ("sending data frame len=%lu rate=%u xfer len=%u\n",
1173 1.6 wiz (long unsigned int)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1174 1.6 wiz rate, xferlen));
1175 1.1 joerg
1176 1.6.4.2 itohy usbd_setup_xfer(data->ue_xfer, sc->sc_tx_pipeh, data, NULL /* XXX buf */, xferlen,
1177 1.1 joerg USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1178 1.1 joerg
1179 1.6.4.2 itohy error = usbd_transfer(data->ue_xfer);
1180 1.1 joerg if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1181 1.6.4.2 itohy data->ue_mbuf = NULL;
1182 1.1 joerg m_freem(m0);
1183 1.1 joerg return error;
1184 1.1 joerg }
1185 1.1 joerg
1186 1.1 joerg sc->tx_queued++;
1187 1.1 joerg
1188 1.1 joerg return 0;
1189 1.1 joerg }
1190 1.1 joerg
1191 1.1 joerg Static void
1192 1.1 joerg rum_start(struct ifnet *ifp)
1193 1.1 joerg {
1194 1.1 joerg struct rum_softc *sc = ifp->if_softc;
1195 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1196 1.1 joerg struct ether_header *eh;
1197 1.1 joerg struct ieee80211_node *ni;
1198 1.1 joerg struct mbuf *m0;
1199 1.1 joerg
1200 1.1 joerg for (;;) {
1201 1.1 joerg IF_POLL(&ic->ic_mgtq, m0);
1202 1.1 joerg if (m0 != NULL) {
1203 1.1 joerg if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1204 1.1 joerg ifp->if_flags |= IFF_OACTIVE;
1205 1.1 joerg break;
1206 1.1 joerg }
1207 1.1 joerg IF_DEQUEUE(&ic->ic_mgtq, m0);
1208 1.1 joerg
1209 1.1 joerg ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1210 1.1 joerg m0->m_pkthdr.rcvif = NULL;
1211 1.1 joerg #if NBPFILTER > 0
1212 1.1 joerg if (ic->ic_rawbpf != NULL)
1213 1.1 joerg bpf_mtap(ic->ic_rawbpf, m0);
1214 1.1 joerg #endif
1215 1.1 joerg if (rum_tx_mgt(sc, m0, ni) != 0)
1216 1.1 joerg break;
1217 1.1 joerg
1218 1.1 joerg } else {
1219 1.1 joerg if (ic->ic_state != IEEE80211_S_RUN)
1220 1.1 joerg break;
1221 1.1 joerg IFQ_POLL(&ifp->if_snd, m0);
1222 1.1 joerg if (m0 == NULL)
1223 1.1 joerg break;
1224 1.1 joerg if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1225 1.1 joerg ifp->if_flags |= IFF_OACTIVE;
1226 1.1 joerg break;
1227 1.1 joerg }
1228 1.1 joerg IFQ_DEQUEUE(&ifp->if_snd, m0);
1229 1.1 joerg if (m0->m_len < sizeof(struct ether_header) &&
1230 1.1 joerg !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1231 1.1 joerg continue;
1232 1.1 joerg
1233 1.1 joerg eh = mtod(m0, struct ether_header *);
1234 1.1 joerg ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1235 1.1 joerg if (ni == NULL) {
1236 1.1 joerg m_freem(m0);
1237 1.1 joerg continue;
1238 1.1 joerg }
1239 1.1 joerg #if NBPFILTER > 0
1240 1.1 joerg if (ifp->if_bpf != NULL)
1241 1.1 joerg bpf_mtap(ifp->if_bpf, m0);
1242 1.1 joerg #endif
1243 1.1 joerg m0 = ieee80211_encap(ic, m0, ni);
1244 1.1 joerg if (m0 == NULL) {
1245 1.1 joerg ieee80211_free_node(ni);
1246 1.1 joerg continue;
1247 1.1 joerg }
1248 1.1 joerg #if NBPFILTER > 0
1249 1.1 joerg if (ic->ic_rawbpf != NULL)
1250 1.1 joerg bpf_mtap(ic->ic_rawbpf, m0);
1251 1.1 joerg #endif
1252 1.1 joerg if (rum_tx_data(sc, m0, ni) != 0) {
1253 1.1 joerg ieee80211_free_node(ni);
1254 1.1 joerg ifp->if_oerrors++;
1255 1.1 joerg break;
1256 1.1 joerg }
1257 1.1 joerg }
1258 1.1 joerg
1259 1.1 joerg sc->sc_tx_timer = 5;
1260 1.1 joerg ifp->if_timer = 1;
1261 1.1 joerg }
1262 1.1 joerg }
1263 1.1 joerg
1264 1.1 joerg Static void
1265 1.1 joerg rum_watchdog(struct ifnet *ifp)
1266 1.1 joerg {
1267 1.1 joerg struct rum_softc *sc = ifp->if_softc;
1268 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1269 1.1 joerg
1270 1.1 joerg ifp->if_timer = 0;
1271 1.1 joerg
1272 1.1 joerg if (sc->sc_tx_timer > 0) {
1273 1.1 joerg if (--sc->sc_tx_timer == 0) {
1274 1.1 joerg printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1275 1.1 joerg /*rum_init(ifp); XXX needs a process context! */
1276 1.1 joerg ifp->if_oerrors++;
1277 1.1 joerg return;
1278 1.1 joerg }
1279 1.1 joerg ifp->if_timer = 1;
1280 1.1 joerg }
1281 1.1 joerg
1282 1.1 joerg ieee80211_watchdog(ic);
1283 1.1 joerg }
1284 1.1 joerg
1285 1.1 joerg Static int
1286 1.6.4.3 itohy rum_ioctl(struct ifnet *ifp, u_long cmd, usb_ioctlarg_t data)
1287 1.1 joerg {
1288 1.1 joerg struct rum_softc *sc = ifp->if_softc;
1289 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1290 1.1 joerg int s, error = 0;
1291 1.1 joerg
1292 1.1 joerg s = splnet();
1293 1.1 joerg
1294 1.1 joerg switch (cmd) {
1295 1.1 joerg case SIOCSIFFLAGS:
1296 1.1 joerg if (ifp->if_flags & IFF_UP) {
1297 1.1 joerg if (ifp->if_flags & IFF_RUNNING)
1298 1.1 joerg rum_update_promisc(sc);
1299 1.1 joerg else
1300 1.1 joerg rum_init(ifp);
1301 1.1 joerg } else {
1302 1.1 joerg if (ifp->if_flags & IFF_RUNNING)
1303 1.1 joerg rum_stop(ifp, 1);
1304 1.1 joerg }
1305 1.1 joerg break;
1306 1.1 joerg
1307 1.1 joerg default:
1308 1.1 joerg error = ieee80211_ioctl(ic, cmd, data);
1309 1.1 joerg }
1310 1.1 joerg
1311 1.1 joerg if (error == ENETRESET) {
1312 1.1 joerg if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1313 1.1 joerg (IFF_UP | IFF_RUNNING))
1314 1.1 joerg rum_init(ifp);
1315 1.1 joerg error = 0;
1316 1.1 joerg }
1317 1.1 joerg
1318 1.1 joerg splx(s);
1319 1.1 joerg
1320 1.1 joerg return error;
1321 1.1 joerg }
1322 1.1 joerg
1323 1.1 joerg Static void
1324 1.1 joerg rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1325 1.1 joerg {
1326 1.1 joerg usb_device_request_t req;
1327 1.1 joerg usbd_status error;
1328 1.1 joerg
1329 1.1 joerg req.bmRequestType = UT_READ_VENDOR_DEVICE;
1330 1.1 joerg req.bRequest = RT2573_READ_EEPROM;
1331 1.1 joerg USETW(req.wValue, 0);
1332 1.1 joerg USETW(req.wIndex, addr);
1333 1.1 joerg USETW(req.wLength, len);
1334 1.1 joerg
1335 1.1 joerg error = usbd_do_request(sc->sc_udev, &req, buf);
1336 1.1 joerg if (error != 0) {
1337 1.1 joerg printf("%s: could not read EEPROM: %s\n",
1338 1.1 joerg USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1339 1.1 joerg }
1340 1.1 joerg }
1341 1.1 joerg
1342 1.1 joerg Static uint32_t
1343 1.1 joerg rum_read(struct rum_softc *sc, uint16_t reg)
1344 1.1 joerg {
1345 1.1 joerg uint32_t val;
1346 1.1 joerg
1347 1.1 joerg rum_read_multi(sc, reg, &val, sizeof val);
1348 1.1 joerg
1349 1.1 joerg return le32toh(val);
1350 1.1 joerg }
1351 1.1 joerg
1352 1.1 joerg Static void
1353 1.1 joerg rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1354 1.1 joerg {
1355 1.1 joerg usb_device_request_t req;
1356 1.1 joerg usbd_status error;
1357 1.1 joerg
1358 1.1 joerg req.bmRequestType = UT_READ_VENDOR_DEVICE;
1359 1.1 joerg req.bRequest = RT2573_READ_MULTI_MAC;
1360 1.1 joerg USETW(req.wValue, 0);
1361 1.1 joerg USETW(req.wIndex, reg);
1362 1.1 joerg USETW(req.wLength, len);
1363 1.1 joerg
1364 1.1 joerg error = usbd_do_request(sc->sc_udev, &req, buf);
1365 1.1 joerg if (error != 0) {
1366 1.1 joerg printf("%s: could not multi read MAC register: %s\n",
1367 1.1 joerg USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1368 1.1 joerg }
1369 1.1 joerg }
1370 1.1 joerg
1371 1.1 joerg Static void
1372 1.1 joerg rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1373 1.1 joerg {
1374 1.1 joerg uint32_t tmp = htole32(val);
1375 1.1 joerg
1376 1.1 joerg rum_write_multi(sc, reg, &tmp, sizeof tmp);
1377 1.1 joerg }
1378 1.1 joerg
1379 1.1 joerg Static void
1380 1.1 joerg rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1381 1.1 joerg {
1382 1.1 joerg usb_device_request_t req;
1383 1.1 joerg usbd_status error;
1384 1.1 joerg
1385 1.1 joerg req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1386 1.1 joerg req.bRequest = RT2573_WRITE_MULTI_MAC;
1387 1.1 joerg USETW(req.wValue, 0);
1388 1.1 joerg USETW(req.wIndex, reg);
1389 1.1 joerg USETW(req.wLength, len);
1390 1.1 joerg
1391 1.1 joerg error = usbd_do_request(sc->sc_udev, &req, buf);
1392 1.1 joerg if (error != 0) {
1393 1.1 joerg printf("%s: could not multi write MAC register: %s\n",
1394 1.1 joerg USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1395 1.1 joerg }
1396 1.1 joerg }
1397 1.1 joerg
1398 1.1 joerg Static void
1399 1.1 joerg rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1400 1.1 joerg {
1401 1.1 joerg uint32_t tmp;
1402 1.1 joerg int ntries;
1403 1.1 joerg
1404 1.1 joerg for (ntries = 0; ntries < 5; ntries++) {
1405 1.1 joerg if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1406 1.1 joerg break;
1407 1.1 joerg }
1408 1.1 joerg if (ntries == 5) {
1409 1.1 joerg printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1410 1.1 joerg return;
1411 1.1 joerg }
1412 1.1 joerg
1413 1.1 joerg tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1414 1.1 joerg rum_write(sc, RT2573_PHY_CSR3, tmp);
1415 1.1 joerg }
1416 1.1 joerg
1417 1.1 joerg Static uint8_t
1418 1.1 joerg rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1419 1.1 joerg {
1420 1.1 joerg uint32_t val;
1421 1.1 joerg int ntries;
1422 1.1 joerg
1423 1.1 joerg for (ntries = 0; ntries < 5; ntries++) {
1424 1.1 joerg if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1425 1.1 joerg break;
1426 1.1 joerg }
1427 1.1 joerg if (ntries == 5) {
1428 1.1 joerg printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1429 1.1 joerg return 0;
1430 1.1 joerg }
1431 1.1 joerg
1432 1.1 joerg val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1433 1.1 joerg rum_write(sc, RT2573_PHY_CSR3, val);
1434 1.1 joerg
1435 1.1 joerg for (ntries = 0; ntries < 100; ntries++) {
1436 1.1 joerg val = rum_read(sc, RT2573_PHY_CSR3);
1437 1.1 joerg if (!(val & RT2573_BBP_BUSY))
1438 1.1 joerg return val & 0xff;
1439 1.1 joerg DELAY(1);
1440 1.1 joerg }
1441 1.1 joerg
1442 1.1 joerg printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1443 1.1 joerg return 0;
1444 1.1 joerg }
1445 1.1 joerg
1446 1.1 joerg Static void
1447 1.1 joerg rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1448 1.1 joerg {
1449 1.1 joerg uint32_t tmp;
1450 1.1 joerg int ntries;
1451 1.1 joerg
1452 1.1 joerg for (ntries = 0; ntries < 5; ntries++) {
1453 1.1 joerg if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1454 1.1 joerg break;
1455 1.1 joerg }
1456 1.1 joerg if (ntries == 5) {
1457 1.1 joerg printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1458 1.1 joerg return;
1459 1.1 joerg }
1460 1.1 joerg
1461 1.1 joerg tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1462 1.1 joerg (reg & 3);
1463 1.1 joerg rum_write(sc, RT2573_PHY_CSR4, tmp);
1464 1.1 joerg
1465 1.1 joerg /* remember last written value in sc */
1466 1.1 joerg sc->rf_regs[reg] = val;
1467 1.1 joerg
1468 1.1 joerg DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1469 1.1 joerg }
1470 1.1 joerg
1471 1.1 joerg Static void
1472 1.1 joerg rum_select_antenna(struct rum_softc *sc)
1473 1.1 joerg {
1474 1.1 joerg uint8_t bbp4, bbp77;
1475 1.1 joerg uint32_t tmp;
1476 1.1 joerg
1477 1.1 joerg bbp4 = rum_bbp_read(sc, 4);
1478 1.1 joerg bbp77 = rum_bbp_read(sc, 77);
1479 1.1 joerg
1480 1.1 joerg /* TBD */
1481 1.1 joerg
1482 1.1 joerg /* make sure Rx is disabled before switching antenna */
1483 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR0);
1484 1.1 joerg rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1485 1.1 joerg
1486 1.1 joerg rum_bbp_write(sc, 4, bbp4);
1487 1.1 joerg rum_bbp_write(sc, 77, bbp77);
1488 1.1 joerg
1489 1.1 joerg rum_write(sc, RT2573_TXRX_CSR0, tmp);
1490 1.1 joerg }
1491 1.1 joerg
1492 1.1 joerg /*
1493 1.1 joerg * Enable multi-rate retries for frames sent at OFDM rates.
1494 1.1 joerg * In 802.11b/g mode, allow fallback to CCK rates.
1495 1.1 joerg */
1496 1.1 joerg Static void
1497 1.1 joerg rum_enable_mrr(struct rum_softc *sc)
1498 1.1 joerg {
1499 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1500 1.1 joerg uint32_t tmp;
1501 1.1 joerg
1502 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR4);
1503 1.1 joerg
1504 1.1 joerg tmp &= ~RT2573_MRR_CCK_FALLBACK;
1505 1.1 joerg if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1506 1.1 joerg tmp |= RT2573_MRR_CCK_FALLBACK;
1507 1.1 joerg tmp |= RT2573_MRR_ENABLED;
1508 1.1 joerg
1509 1.1 joerg rum_write(sc, RT2573_TXRX_CSR4, tmp);
1510 1.1 joerg }
1511 1.1 joerg
1512 1.1 joerg Static void
1513 1.1 joerg rum_set_txpreamble(struct rum_softc *sc)
1514 1.1 joerg {
1515 1.1 joerg uint32_t tmp;
1516 1.1 joerg
1517 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR4);
1518 1.1 joerg
1519 1.1 joerg tmp &= ~RT2573_SHORT_PREAMBLE;
1520 1.1 joerg if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1521 1.1 joerg tmp |= RT2573_SHORT_PREAMBLE;
1522 1.1 joerg
1523 1.1 joerg rum_write(sc, RT2573_TXRX_CSR4, tmp);
1524 1.1 joerg }
1525 1.1 joerg
1526 1.1 joerg Static void
1527 1.1 joerg rum_set_basicrates(struct rum_softc *sc)
1528 1.1 joerg {
1529 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1530 1.1 joerg
1531 1.1 joerg /* update basic rate set */
1532 1.1 joerg if (ic->ic_curmode == IEEE80211_MODE_11B) {
1533 1.1 joerg /* 11b basic rates: 1, 2Mbps */
1534 1.1 joerg rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1535 1.1 joerg } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1536 1.1 joerg /* 11a basic rates: 6, 12, 24Mbps */
1537 1.1 joerg rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1538 1.1 joerg } else {
1539 1.1 joerg /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1540 1.1 joerg rum_write(sc, RT2573_TXRX_CSR5, 0x15f);
1541 1.1 joerg }
1542 1.1 joerg }
1543 1.1 joerg
1544 1.1 joerg /*
1545 1.1 joerg * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1546 1.1 joerg * driver.
1547 1.1 joerg */
1548 1.1 joerg Static void
1549 1.1 joerg rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1550 1.1 joerg {
1551 1.1 joerg uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1552 1.1 joerg uint32_t tmp;
1553 1.1 joerg
1554 1.1 joerg /* update all BBP registers that depend on the band */
1555 1.1 joerg bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1556 1.1 joerg bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1557 1.1 joerg if (IEEE80211_IS_CHAN_5GHZ(c)) {
1558 1.1 joerg bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1559 1.1 joerg bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1560 1.1 joerg }
1561 1.1 joerg if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1562 1.1 joerg (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1563 1.1 joerg bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1564 1.1 joerg }
1565 1.1 joerg
1566 1.1 joerg sc->bbp17 = bbp17;
1567 1.1 joerg rum_bbp_write(sc, 17, bbp17);
1568 1.1 joerg rum_bbp_write(sc, 96, bbp96);
1569 1.1 joerg rum_bbp_write(sc, 104, bbp104);
1570 1.1 joerg
1571 1.1 joerg if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1572 1.1 joerg (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1573 1.1 joerg rum_bbp_write(sc, 75, 0x80);
1574 1.1 joerg rum_bbp_write(sc, 86, 0x80);
1575 1.1 joerg rum_bbp_write(sc, 88, 0x80);
1576 1.1 joerg }
1577 1.1 joerg
1578 1.1 joerg rum_bbp_write(sc, 35, bbp35);
1579 1.1 joerg rum_bbp_write(sc, 97, bbp97);
1580 1.1 joerg rum_bbp_write(sc, 98, bbp98);
1581 1.1 joerg
1582 1.1 joerg tmp = rum_read(sc, RT2573_PHY_CSR0);
1583 1.1 joerg tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1584 1.1 joerg if (IEEE80211_IS_CHAN_2GHZ(c))
1585 1.1 joerg tmp |= RT2573_PA_PE_2GHZ;
1586 1.1 joerg else
1587 1.1 joerg tmp |= RT2573_PA_PE_5GHZ;
1588 1.1 joerg rum_write(sc, RT2573_PHY_CSR0, tmp);
1589 1.1 joerg
1590 1.1 joerg /* 802.11a uses a 16 microseconds short interframe space */
1591 1.1 joerg sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1592 1.1 joerg }
1593 1.1 joerg
1594 1.1 joerg Static void
1595 1.1 joerg rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1596 1.1 joerg {
1597 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1598 1.1 joerg const struct rfprog *rfprog;
1599 1.1 joerg uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1600 1.1 joerg int8_t power;
1601 1.1 joerg u_int i, chan;
1602 1.1 joerg
1603 1.1 joerg chan = ieee80211_chan2ieee(ic, c);
1604 1.1 joerg if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1605 1.1 joerg return;
1606 1.1 joerg
1607 1.1 joerg /* select the appropriate RF settings based on what EEPROM says */
1608 1.1 joerg rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1609 1.1 joerg sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1610 1.1 joerg
1611 1.1 joerg /* find the settings for this channel (we know it exists) */
1612 1.1 joerg for (i = 0; rfprog[i].chan != chan; i++);
1613 1.1 joerg
1614 1.1 joerg power = sc->txpow[i];
1615 1.1 joerg if (power < 0) {
1616 1.1 joerg bbp94 += power;
1617 1.1 joerg power = 0;
1618 1.1 joerg } else if (power > 31) {
1619 1.1 joerg bbp94 += power - 31;
1620 1.1 joerg power = 31;
1621 1.1 joerg }
1622 1.1 joerg
1623 1.1 joerg /*
1624 1.1 joerg * If we are switching from the 2GHz band to the 5GHz band or
1625 1.1 joerg * vice-versa, BBP registers need to be reprogrammed.
1626 1.1 joerg */
1627 1.1 joerg if (c->ic_flags != ic->ic_curchan->ic_flags) {
1628 1.1 joerg rum_select_band(sc, c);
1629 1.1 joerg rum_select_antenna(sc);
1630 1.1 joerg }
1631 1.1 joerg ic->ic_curchan = c;
1632 1.1 joerg
1633 1.1 joerg rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1634 1.1 joerg rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1635 1.1 joerg rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1636 1.1 joerg rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1637 1.1 joerg
1638 1.1 joerg rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1639 1.1 joerg rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1640 1.1 joerg rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1641 1.1 joerg rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1642 1.1 joerg
1643 1.1 joerg rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1644 1.1 joerg rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1645 1.1 joerg rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1646 1.1 joerg rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1647 1.1 joerg
1648 1.1 joerg DELAY(10);
1649 1.1 joerg
1650 1.1 joerg /* enable smart mode for MIMO-capable RFs */
1651 1.1 joerg bbp3 = rum_bbp_read(sc, 3);
1652 1.1 joerg
1653 1.1 joerg bbp3 &= ~RT2573_SMART_MODE;
1654 1.1 joerg if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1655 1.1 joerg bbp3 |= RT2573_SMART_MODE;
1656 1.1 joerg
1657 1.1 joerg rum_bbp_write(sc, 3, bbp3);
1658 1.1 joerg
1659 1.1 joerg if (bbp94 != RT2573_BBPR94_DEFAULT)
1660 1.1 joerg rum_bbp_write(sc, 94, bbp94);
1661 1.1 joerg }
1662 1.1 joerg
1663 1.1 joerg /*
1664 1.1 joerg * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1665 1.1 joerg * and HostAP operating modes.
1666 1.1 joerg */
1667 1.1 joerg Static void
1668 1.1 joerg rum_enable_tsf_sync(struct rum_softc *sc)
1669 1.1 joerg {
1670 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1671 1.1 joerg uint32_t tmp;
1672 1.1 joerg
1673 1.1 joerg if (ic->ic_opmode != IEEE80211_M_STA) {
1674 1.1 joerg /*
1675 1.1 joerg * Change default 16ms TBTT adjustment to 8ms.
1676 1.1 joerg * Must be done before enabling beacon generation.
1677 1.1 joerg */
1678 1.1 joerg rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1679 1.1 joerg }
1680 1.1 joerg
1681 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1682 1.1 joerg
1683 1.1 joerg /* set beacon interval (in 1/16ms unit) */
1684 1.1 joerg tmp |= ic->ic_bss->ni_intval * 16;
1685 1.1 joerg
1686 1.1 joerg tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1687 1.1 joerg if (ic->ic_opmode == IEEE80211_M_STA)
1688 1.1 joerg tmp |= RT2573_TSF_MODE(1);
1689 1.1 joerg else
1690 1.1 joerg tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1691 1.1 joerg
1692 1.1 joerg rum_write(sc, RT2573_TXRX_CSR9, tmp);
1693 1.1 joerg }
1694 1.1 joerg
1695 1.1 joerg Static void
1696 1.1 joerg rum_update_slot(struct rum_softc *sc)
1697 1.1 joerg {
1698 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1699 1.1 joerg uint8_t slottime;
1700 1.1 joerg uint32_t tmp;
1701 1.1 joerg
1702 1.1 joerg slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1703 1.1 joerg
1704 1.1 joerg tmp = rum_read(sc, RT2573_MAC_CSR9);
1705 1.1 joerg tmp = (tmp & ~0xff) | slottime;
1706 1.1 joerg rum_write(sc, RT2573_MAC_CSR9, tmp);
1707 1.1 joerg
1708 1.1 joerg DPRINTF(("setting slot time to %uus\n", slottime));
1709 1.1 joerg }
1710 1.1 joerg
1711 1.1 joerg Static void
1712 1.1 joerg rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1713 1.1 joerg {
1714 1.1 joerg uint32_t tmp;
1715 1.1 joerg
1716 1.1 joerg tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1717 1.1 joerg rum_write(sc, RT2573_MAC_CSR4, tmp);
1718 1.1 joerg
1719 1.1 joerg tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1720 1.1 joerg rum_write(sc, RT2573_MAC_CSR5, tmp);
1721 1.1 joerg }
1722 1.1 joerg
1723 1.1 joerg Static void
1724 1.1 joerg rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1725 1.1 joerg {
1726 1.1 joerg uint32_t tmp;
1727 1.1 joerg
1728 1.1 joerg tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1729 1.1 joerg rum_write(sc, RT2573_MAC_CSR2, tmp);
1730 1.1 joerg
1731 1.1 joerg tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1732 1.1 joerg rum_write(sc, RT2573_MAC_CSR3, tmp);
1733 1.1 joerg }
1734 1.1 joerg
1735 1.1 joerg Static void
1736 1.1 joerg rum_update_promisc(struct rum_softc *sc)
1737 1.1 joerg {
1738 1.1 joerg struct ifnet *ifp = sc->sc_ic.ic_ifp;
1739 1.1 joerg uint32_t tmp;
1740 1.1 joerg
1741 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR0);
1742 1.1 joerg
1743 1.1 joerg tmp &= ~RT2573_DROP_NOT_TO_ME;
1744 1.1 joerg if (!(ifp->if_flags & IFF_PROMISC))
1745 1.1 joerg tmp |= RT2573_DROP_NOT_TO_ME;
1746 1.1 joerg
1747 1.1 joerg rum_write(sc, RT2573_TXRX_CSR0, tmp);
1748 1.1 joerg
1749 1.1 joerg DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1750 1.1 joerg "entering" : "leaving"));
1751 1.1 joerg }
1752 1.1 joerg
1753 1.1 joerg Static const char *
1754 1.1 joerg rum_get_rf(int rev)
1755 1.1 joerg {
1756 1.1 joerg switch (rev) {
1757 1.1 joerg case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1758 1.1 joerg case RT2573_RF_2528: return "RT2528";
1759 1.1 joerg case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1760 1.1 joerg case RT2573_RF_5226: return "RT5226";
1761 1.1 joerg default: return "unknown";
1762 1.1 joerg }
1763 1.1 joerg }
1764 1.1 joerg
1765 1.1 joerg Static void
1766 1.1 joerg rum_read_eeprom(struct rum_softc *sc)
1767 1.1 joerg {
1768 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1769 1.1 joerg uint16_t val;
1770 1.1 joerg #ifdef RUM_DEBUG
1771 1.1 joerg int i;
1772 1.1 joerg #endif
1773 1.1 joerg
1774 1.1 joerg /* read MAC/BBP type */
1775 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1776 1.1 joerg sc->macbbp_rev = le16toh(val);
1777 1.1 joerg
1778 1.1 joerg /* read MAC address */
1779 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1780 1.1 joerg
1781 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1782 1.1 joerg val = le16toh(val);
1783 1.1 joerg sc->rf_rev = (val >> 11) & 0x1f;
1784 1.1 joerg sc->hw_radio = (val >> 10) & 0x1;
1785 1.1 joerg sc->rx_ant = (val >> 4) & 0x3;
1786 1.1 joerg sc->tx_ant = (val >> 2) & 0x3;
1787 1.1 joerg sc->nb_ant = val & 0x3;
1788 1.1 joerg
1789 1.1 joerg DPRINTF(("RF revision=%d\n", sc->rf_rev));
1790 1.1 joerg
1791 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1792 1.1 joerg val = le16toh(val);
1793 1.1 joerg sc->ext_5ghz_lna = (val >> 6) & 0x1;
1794 1.1 joerg sc->ext_2ghz_lna = (val >> 4) & 0x1;
1795 1.1 joerg
1796 1.1 joerg DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1797 1.1 joerg sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1798 1.1 joerg
1799 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1800 1.1 joerg val = le16toh(val);
1801 1.1 joerg if ((val & 0xff) != 0xff)
1802 1.1 joerg sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1803 1.1 joerg
1804 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1805 1.1 joerg val = le16toh(val);
1806 1.1 joerg if ((val & 0xff) != 0xff)
1807 1.1 joerg sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1808 1.1 joerg
1809 1.1 joerg DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1810 1.1 joerg sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1811 1.1 joerg
1812 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1813 1.1 joerg val = le16toh(val);
1814 1.1 joerg if ((val & 0xff) != 0xff)
1815 1.1 joerg sc->rffreq = val & 0xff;
1816 1.1 joerg
1817 1.1 joerg DPRINTF(("RF freq=%d\n", sc->rffreq));
1818 1.1 joerg
1819 1.1 joerg /* read Tx power for all a/b/g channels */
1820 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1821 1.1 joerg /* XXX default Tx power for 802.11a channels */
1822 1.1 joerg memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1823 1.1 joerg #ifdef RUM_DEBUG
1824 1.1 joerg for (i = 0; i < 14; i++)
1825 1.1 joerg DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1826 1.1 joerg #endif
1827 1.1 joerg
1828 1.1 joerg /* read default values for BBP registers */
1829 1.1 joerg rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1830 1.1 joerg #ifdef RUM_DEBUG
1831 1.1 joerg for (i = 0; i < 14; i++) {
1832 1.1 joerg if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1833 1.1 joerg continue;
1834 1.1 joerg DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1835 1.1 joerg sc->bbp_prom[i].val));
1836 1.1 joerg }
1837 1.1 joerg #endif
1838 1.1 joerg }
1839 1.1 joerg
1840 1.1 joerg Static int
1841 1.1 joerg rum_bbp_init(struct rum_softc *sc)
1842 1.1 joerg {
1843 1.1 joerg #define N(a) (sizeof (a) / sizeof ((a)[0]))
1844 1.1 joerg int i, ntries;
1845 1.1 joerg uint8_t val;
1846 1.1 joerg
1847 1.1 joerg /* wait for BBP to be ready */
1848 1.1 joerg for (ntries = 0; ntries < 100; ntries++) {
1849 1.1 joerg val = rum_bbp_read(sc, 0);
1850 1.1 joerg if (val != 0 && val != 0xff)
1851 1.1 joerg break;
1852 1.1 joerg DELAY(1000);
1853 1.1 joerg }
1854 1.1 joerg if (ntries == 100) {
1855 1.1 joerg printf("%s: timeout waiting for BBP\n",
1856 1.1 joerg USBDEVNAME(sc->sc_dev));
1857 1.1 joerg return EIO;
1858 1.1 joerg }
1859 1.1 joerg
1860 1.1 joerg /* initialize BBP registers to default values */
1861 1.1 joerg for (i = 0; i < N(rum_def_bbp); i++)
1862 1.1 joerg rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1863 1.1 joerg
1864 1.1 joerg /* write vendor-specific BBP values (from EEPROM) */
1865 1.1 joerg for (i = 0; i < 16; i++) {
1866 1.1 joerg if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1867 1.1 joerg continue;
1868 1.1 joerg rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1869 1.1 joerg }
1870 1.1 joerg
1871 1.1 joerg return 0;
1872 1.1 joerg #undef N
1873 1.1 joerg }
1874 1.1 joerg
1875 1.1 joerg Static int
1876 1.1 joerg rum_init(struct ifnet *ifp)
1877 1.1 joerg {
1878 1.1 joerg #define N(a) (sizeof (a) / sizeof ((a)[0]))
1879 1.1 joerg struct rum_softc *sc = ifp->if_softc;
1880 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
1881 1.6.4.2 itohy struct ue_chain *data;
1882 1.1 joerg uint32_t tmp;
1883 1.6.4.2 itohy usbd_status uerror;
1884 1.6.4.2 itohy int error;
1885 1.1 joerg int i, ntries;
1886 1.1 joerg
1887 1.1 joerg if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1888 1.6.4.2 itohy if (rum_attachhook(sc)) {
1889 1.6.4.2 itohy error = EIO;
1890 1.1 joerg goto fail;
1891 1.6.4.2 itohy }
1892 1.1 joerg }
1893 1.1 joerg
1894 1.1 joerg rum_stop(ifp, 0);
1895 1.1 joerg
1896 1.1 joerg /* initialize MAC registers to default values */
1897 1.1 joerg for (i = 0; i < N(rum_def_mac); i++)
1898 1.1 joerg rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1899 1.1 joerg
1900 1.1 joerg /* set host ready */
1901 1.1 joerg rum_write(sc, RT2573_MAC_CSR1, 3);
1902 1.1 joerg rum_write(sc, RT2573_MAC_CSR1, 0);
1903 1.1 joerg
1904 1.1 joerg /* wait for BBP/RF to wakeup */
1905 1.1 joerg for (ntries = 0; ntries < 1000; ntries++) {
1906 1.1 joerg if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1907 1.1 joerg break;
1908 1.1 joerg rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1909 1.1 joerg DELAY(1000);
1910 1.1 joerg }
1911 1.1 joerg if (ntries == 1000) {
1912 1.1 joerg printf("%s: timeout waiting for BBP/RF to wakeup\n",
1913 1.1 joerg USBDEVNAME(sc->sc_dev));
1914 1.6.4.2 itohy error = EIO;
1915 1.1 joerg goto fail;
1916 1.1 joerg }
1917 1.1 joerg
1918 1.1 joerg if ((error = rum_bbp_init(sc)) != 0)
1919 1.1 joerg goto fail;
1920 1.1 joerg
1921 1.1 joerg /* select default channel */
1922 1.1 joerg rum_select_band(sc, ic->ic_curchan);
1923 1.1 joerg rum_select_antenna(sc);
1924 1.1 joerg rum_set_chan(sc, ic->ic_curchan);
1925 1.1 joerg
1926 1.1 joerg /* clear STA registers */
1927 1.1 joerg rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1928 1.1 joerg
1929 1.1 joerg IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1930 1.1 joerg rum_set_macaddr(sc, ic->ic_myaddr);
1931 1.1 joerg
1932 1.1 joerg /* initialize ASIC */
1933 1.1 joerg rum_write(sc, RT2573_MAC_CSR1, 4);
1934 1.1 joerg
1935 1.1 joerg /*
1936 1.1 joerg * Allocate xfer for AMRR statistics requests.
1937 1.1 joerg */
1938 1.6.4.1 itohy sc->amrr_xfer = usbd_alloc_default_xfer(sc->sc_udev);
1939 1.1 joerg if (sc->amrr_xfer == NULL) {
1940 1.1 joerg printf("%s: could not allocate AMRR xfer\n",
1941 1.1 joerg USBDEVNAME(sc->sc_dev));
1942 1.1 joerg goto fail;
1943 1.1 joerg }
1944 1.1 joerg
1945 1.1 joerg /*
1946 1.1 joerg * Open Tx and Rx USB bulk pipes.
1947 1.1 joerg */
1948 1.6.4.2 itohy uerror = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
1949 1.1 joerg &sc->sc_tx_pipeh);
1950 1.6.4.2 itohy if (uerror != USBD_NORMAL_COMPLETION) {
1951 1.1 joerg printf("%s: could not open Tx pipe: %s\n",
1952 1.6.4.2 itohy USBDEVNAME(sc->sc_dev), usbd_errstr(uerror));
1953 1.6.4.2 itohy error = EIO;
1954 1.1 joerg goto fail;
1955 1.1 joerg }
1956 1.1 joerg
1957 1.6.4.2 itohy uerror = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
1958 1.1 joerg &sc->sc_rx_pipeh);
1959 1.6.4.2 itohy if (uerror != USBD_NORMAL_COMPLETION) {
1960 1.1 joerg printf("%s: could not open Rx pipe: %s\n",
1961 1.6.4.2 itohy USBDEVNAME(sc->sc_dev), usbd_errstr(uerror));
1962 1.6.4.2 itohy error = EIO;
1963 1.1 joerg goto fail;
1964 1.1 joerg }
1965 1.1 joerg
1966 1.1 joerg /*
1967 1.1 joerg * Allocate Tx and Rx xfer queues.
1968 1.1 joerg */
1969 1.6.4.2 itohy sc->tx_queued = 0;
1970 1.6.4.2 itohy error = usb_ether_tx_list_init(USBDEV(sc->sc_dev),
1971 1.6.4.2 itohy sc->tx_data, RT2573_TX_LIST_COUNT,
1972 1.6.4.2 itohy sc->sc_udev, sc->sc_tx_pipeh, NULL);
1973 1.1 joerg if (error != 0) {
1974 1.1 joerg printf("%s: could not allocate Tx list\n",
1975 1.1 joerg USBDEVNAME(sc->sc_dev));
1976 1.1 joerg goto fail;
1977 1.1 joerg }
1978 1.1 joerg
1979 1.6.4.2 itohy error = usb_ether_rx_list_init(USBDEV(sc->sc_dev),
1980 1.6.4.2 itohy sc->rx_data, RT2573_RX_LIST_COUNT,
1981 1.6.4.2 itohy sc->sc_udev, sc->sc_rx_pipeh);
1982 1.1 joerg if (error != 0) {
1983 1.1 joerg printf("%s: could not allocate Rx list\n",
1984 1.1 joerg USBDEVNAME(sc->sc_dev));
1985 1.1 joerg goto fail;
1986 1.1 joerg }
1987 1.1 joerg
1988 1.1 joerg /*
1989 1.1 joerg * Start up the receive pipe.
1990 1.1 joerg */
1991 1.1 joerg for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
1992 1.1 joerg data = &sc->rx_data[i];
1993 1.1 joerg
1994 1.6.4.2 itohy (void)usbd_map_buffer_mbuf(data->ue_xfer, data->ue_mbuf);
1995 1.6.4.2 itohy usbd_setup_xfer(data->ue_xfer, sc->sc_rx_pipeh, data, NULL /* XXX buf */,
1996 1.1 joerg MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
1997 1.6.4.2 itohy usbd_transfer(data->ue_xfer);
1998 1.1 joerg }
1999 1.1 joerg
2000 1.1 joerg /* update Rx filter */
2001 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2002 1.1 joerg
2003 1.1 joerg tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2004 1.1 joerg if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2005 1.1 joerg tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2006 1.1 joerg RT2573_DROP_ACKCTS;
2007 1.1 joerg if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2008 1.1 joerg tmp |= RT2573_DROP_TODS;
2009 1.1 joerg if (!(ifp->if_flags & IFF_PROMISC))
2010 1.1 joerg tmp |= RT2573_DROP_NOT_TO_ME;
2011 1.1 joerg }
2012 1.1 joerg rum_write(sc, RT2573_TXRX_CSR0, tmp);
2013 1.1 joerg
2014 1.1 joerg ifp->if_flags &= ~IFF_OACTIVE;
2015 1.1 joerg ifp->if_flags |= IFF_RUNNING;
2016 1.1 joerg
2017 1.1 joerg if (ic->ic_opmode == IEEE80211_M_MONITOR)
2018 1.1 joerg ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2019 1.1 joerg else
2020 1.1 joerg ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2021 1.1 joerg
2022 1.1 joerg return 0;
2023 1.1 joerg
2024 1.1 joerg fail: rum_stop(ifp, 1);
2025 1.1 joerg return error;
2026 1.1 joerg #undef N
2027 1.1 joerg }
2028 1.1 joerg
2029 1.1 joerg Static void
2030 1.1 joerg rum_stop(struct ifnet *ifp, int disable)
2031 1.1 joerg {
2032 1.1 joerg struct rum_softc *sc = ifp->if_softc;
2033 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
2034 1.1 joerg uint32_t tmp;
2035 1.1 joerg
2036 1.1 joerg ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2037 1.1 joerg
2038 1.1 joerg sc->sc_tx_timer = 0;
2039 1.1 joerg ifp->if_timer = 0;
2040 1.1 joerg ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2041 1.1 joerg
2042 1.1 joerg /* disable Rx */
2043 1.1 joerg tmp = rum_read(sc, RT2573_TXRX_CSR0);
2044 1.1 joerg rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2045 1.1 joerg
2046 1.1 joerg /* reset ASIC */
2047 1.1 joerg rum_write(sc, RT2573_MAC_CSR1, 3);
2048 1.1 joerg rum_write(sc, RT2573_MAC_CSR1, 0);
2049 1.1 joerg
2050 1.6.4.2 itohy /* Stop transfers. */
2051 1.6.4.2 itohy if (sc->sc_rx_pipeh != NULL)
2052 1.1 joerg usbd_abort_pipe(sc->sc_rx_pipeh);
2053 1.6.4.2 itohy if (sc->sc_tx_pipeh != NULL)
2054 1.6.4.2 itohy usbd_abort_pipe(sc->sc_tx_pipeh);
2055 1.6.4.2 itohy
2056 1.6.4.2 itohy /* Free RX/TX resources. */
2057 1.6.4.2 itohy rum_free_rx_list(sc);
2058 1.6.4.2 itohy rum_free_tx_list(sc);
2059 1.6.4.2 itohy
2060 1.6.4.2 itohy /* Close pipes. */
2061 1.6.4.2 itohy if (sc->sc_rx_pipeh != NULL) {
2062 1.1 joerg usbd_close_pipe(sc->sc_rx_pipeh);
2063 1.1 joerg sc->sc_rx_pipeh = NULL;
2064 1.1 joerg }
2065 1.1 joerg
2066 1.1 joerg if (sc->sc_tx_pipeh != NULL) {
2067 1.1 joerg usbd_close_pipe(sc->sc_tx_pipeh);
2068 1.1 joerg sc->sc_tx_pipeh = NULL;
2069 1.1 joerg }
2070 1.1 joerg }
2071 1.1 joerg
2072 1.1 joerg Static int
2073 1.1 joerg rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2074 1.1 joerg {
2075 1.1 joerg usb_device_request_t req;
2076 1.1 joerg uint16_t reg = RT2573_MCU_CODE_BASE;
2077 1.1 joerg usbd_status error;
2078 1.1 joerg
2079 1.1 joerg /* copy firmware image into NIC */
2080 1.1 joerg for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2081 1.1 joerg rum_write(sc, reg, UGETDW(ucode));
2082 1.1 joerg
2083 1.1 joerg req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2084 1.1 joerg req.bRequest = RT2573_MCU_CNTL;
2085 1.1 joerg USETW(req.wValue, RT2573_MCU_RUN);
2086 1.1 joerg USETW(req.wIndex, 0);
2087 1.1 joerg USETW(req.wLength, 0);
2088 1.1 joerg
2089 1.1 joerg error = usbd_do_request(sc->sc_udev, &req, NULL);
2090 1.1 joerg if (error != 0) {
2091 1.1 joerg printf("%s: could not run firmware: %s\n",
2092 1.1 joerg USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2093 1.1 joerg }
2094 1.1 joerg return error;
2095 1.1 joerg }
2096 1.1 joerg
2097 1.1 joerg Static int
2098 1.1 joerg rum_prepare_beacon(struct rum_softc *sc)
2099 1.1 joerg {
2100 1.1 joerg struct ieee80211com *ic = &sc->sc_ic;
2101 1.1 joerg struct rum_tx_desc desc;
2102 1.1 joerg struct mbuf *m0;
2103 1.1 joerg int rate;
2104 1.1 joerg
2105 1.1 joerg m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2106 1.1 joerg if (m0 == NULL) {
2107 1.1 joerg printf("%s: could not allocate beacon frame\n",
2108 1.1 joerg sc->sc_dev.dv_xname);
2109 1.1 joerg return ENOBUFS;
2110 1.1 joerg }
2111 1.1 joerg
2112 1.1 joerg /* send beacons at the lowest available rate */
2113 1.1 joerg rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2114 1.1 joerg
2115 1.1 joerg rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2116 1.1 joerg m0->m_pkthdr.len, rate);
2117 1.1 joerg
2118 1.1 joerg /* copy the first 24 bytes of Tx descriptor into NIC memory */
2119 1.1 joerg rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2120 1.1 joerg
2121 1.1 joerg /* copy beacon header and payload into NIC memory */
2122 1.1 joerg rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2123 1.1 joerg m0->m_pkthdr.len);
2124 1.1 joerg
2125 1.1 joerg m_freem(m0);
2126 1.1 joerg
2127 1.1 joerg return 0;
2128 1.1 joerg }
2129 1.1 joerg
2130 1.1 joerg Static void
2131 1.1 joerg rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2132 1.1 joerg {
2133 1.1 joerg int i;
2134 1.1 joerg
2135 1.1 joerg /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2136 1.1 joerg rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2137 1.1 joerg
2138 1.1 joerg ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2139 1.1 joerg
2140 1.1 joerg /* set rate to some reasonable initial value */
2141 1.1 joerg for (i = ni->ni_rates.rs_nrates - 1;
2142 1.1 joerg i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2143 1.1 joerg i--);
2144 1.1 joerg ni->ni_txrate = i;
2145 1.1 joerg
2146 1.6.4.5 itohy usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2147 1.1 joerg }
2148 1.1 joerg
2149 1.1 joerg Static void
2150 1.1 joerg rum_amrr_timeout(void *arg)
2151 1.1 joerg {
2152 1.1 joerg struct rum_softc *sc = arg;
2153 1.1 joerg usb_device_request_t req;
2154 1.1 joerg int s;
2155 1.1 joerg
2156 1.1 joerg s = splusb();
2157 1.1 joerg
2158 1.1 joerg /*
2159 1.1 joerg * Asynchronously read statistic registers (cleared by read).
2160 1.1 joerg */
2161 1.1 joerg req.bmRequestType = UT_READ_VENDOR_DEVICE;
2162 1.1 joerg req.bRequest = RT2573_READ_MULTI_MAC;
2163 1.1 joerg USETW(req.wValue, 0);
2164 1.1 joerg USETW(req.wIndex, RT2573_STA_CSR0);
2165 1.1 joerg USETW(req.wLength, sizeof sc->sta);
2166 1.1 joerg
2167 1.1 joerg usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2168 1.1 joerg USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2169 1.1 joerg rum_amrr_update);
2170 1.1 joerg (void)usbd_transfer(sc->amrr_xfer);
2171 1.1 joerg
2172 1.1 joerg splx(s);
2173 1.1 joerg }
2174 1.1 joerg
2175 1.1 joerg Static void
2176 1.1 joerg rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2177 1.1 joerg usbd_status status)
2178 1.1 joerg {
2179 1.1 joerg struct rum_softc *sc = (struct rum_softc *)priv;
2180 1.1 joerg struct ifnet *ifp = sc->sc_ic.ic_ifp;
2181 1.1 joerg
2182 1.1 joerg if (status != USBD_NORMAL_COMPLETION) {
2183 1.1 joerg printf("%s: could not retrieve Tx statistics - cancelling "
2184 1.1 joerg "automatic rate control\n", USBDEVNAME(sc->sc_dev));
2185 1.1 joerg return;
2186 1.1 joerg }
2187 1.1 joerg
2188 1.1 joerg /* count TX retry-fail as Tx errors */
2189 1.1 joerg ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2190 1.1 joerg
2191 1.1 joerg sc->amn.amn_retrycnt =
2192 1.1 joerg (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2193 1.1 joerg (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2194 1.1 joerg (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2195 1.1 joerg
2196 1.1 joerg sc->amn.amn_txcnt =
2197 1.1 joerg sc->amn.amn_retrycnt +
2198 1.1 joerg (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2199 1.1 joerg
2200 1.1 joerg ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2201 1.1 joerg
2202 1.6.4.5 itohy usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2203 1.1 joerg }
2204 1.1 joerg
2205 1.1 joerg int
2206 1.1 joerg rum_activate(device_ptr_t self, enum devact act)
2207 1.1 joerg {
2208 1.1 joerg switch (act) {
2209 1.1 joerg case DVACT_ACTIVATE:
2210 1.1 joerg return EOPNOTSUPP;
2211 1.1 joerg
2212 1.1 joerg case DVACT_DEACTIVATE:
2213 1.1 joerg /*if_deactivate(&sc->sc_ic.ic_if);*/
2214 1.1 joerg break;
2215 1.1 joerg }
2216 1.1 joerg
2217 1.1 joerg return 0;
2218 1.1 joerg }
2219