Home | History | Annotate | Line # | Download | only in usb
if_rum.c revision 1.68
      1  1.19  jmcneill /*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
      2  1.68  christos /*	$NetBSD: if_rum.c,v 1.68 2020/03/14 02:35:33 christos Exp $	*/
      3   1.1     joerg 
      4   1.1     joerg /*-
      5  1.18  kiyohara  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini (at) free.fr>
      6   1.1     joerg  * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
      7   1.1     joerg  *
      8   1.1     joerg  * Permission to use, copy, modify, and distribute this software for any
      9   1.1     joerg  * purpose with or without fee is hereby granted, provided that the above
     10   1.1     joerg  * copyright notice and this permission notice appear in all copies.
     11   1.1     joerg  *
     12   1.1     joerg  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     13   1.1     joerg  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     14   1.1     joerg  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     15   1.1     joerg  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     16   1.1     joerg  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     17   1.1     joerg  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     18   1.1     joerg  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     19   1.1     joerg  */
     20   1.1     joerg 
     21   1.1     joerg /*-
     22   1.1     joerg  * Ralink Technology RT2501USB/RT2601USB chipset driver
     23  1.18  kiyohara  * http://www.ralinktech.com.tw/
     24   1.1     joerg  */
     25   1.1     joerg 
     26   1.2   xtraeme #include <sys/cdefs.h>
     27  1.68  christos __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.68 2020/03/14 02:35:33 christos Exp $");
     28  1.57     skrll 
     29  1.57     skrll #ifdef _KERNEL_OPT
     30  1.57     skrll #include "opt_usb.h"
     31  1.57     skrll #endif
     32   1.1     joerg 
     33   1.1     joerg #include <sys/param.h>
     34   1.1     joerg #include <sys/sockio.h>
     35   1.1     joerg #include <sys/sysctl.h>
     36   1.1     joerg #include <sys/mbuf.h>
     37   1.1     joerg #include <sys/kernel.h>
     38   1.1     joerg #include <sys/socket.h>
     39   1.1     joerg #include <sys/systm.h>
     40  1.38  pgoyette #include <sys/module.h>
     41   1.1     joerg #include <sys/conf.h>
     42   1.1     joerg #include <sys/device.h>
     43   1.1     joerg 
     44  1.16        ad #include <sys/bus.h>
     45   1.1     joerg #include <machine/endian.h>
     46  1.16        ad #include <sys/intr.h>
     47   1.1     joerg 
     48   1.1     joerg #include <net/bpf.h>
     49   1.1     joerg #include <net/if.h>
     50   1.1     joerg #include <net/if_arp.h>
     51   1.1     joerg #include <net/if_dl.h>
     52   1.1     joerg #include <net/if_ether.h>
     53   1.1     joerg #include <net/if_media.h>
     54   1.1     joerg #include <net/if_types.h>
     55   1.1     joerg 
     56   1.1     joerg #include <netinet/in.h>
     57   1.1     joerg #include <netinet/in_systm.h>
     58   1.1     joerg #include <netinet/in_var.h>
     59   1.1     joerg #include <netinet/ip.h>
     60   1.1     joerg 
     61   1.1     joerg #include <net80211/ieee80211_netbsd.h>
     62   1.1     joerg #include <net80211/ieee80211_var.h>
     63   1.1     joerg #include <net80211/ieee80211_amrr.h>
     64   1.1     joerg #include <net80211/ieee80211_radiotap.h>
     65   1.1     joerg 
     66   1.1     joerg #include <dev/firmload.h>
     67   1.1     joerg 
     68   1.1     joerg #include <dev/usb/usb.h>
     69   1.1     joerg #include <dev/usb/usbdi.h>
     70   1.1     joerg #include <dev/usb/usbdi_util.h>
     71   1.1     joerg #include <dev/usb/usbdevs.h>
     72   1.1     joerg 
     73   1.1     joerg #include <dev/usb/if_rumreg.h>
     74   1.1     joerg #include <dev/usb/if_rumvar.h>
     75   1.1     joerg 
     76   1.1     joerg #ifdef RUM_DEBUG
     77  1.33    dyoung #define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
     78  1.33    dyoung #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
     79  1.11   xtraeme int rum_debug = 1;
     80   1.1     joerg #else
     81   1.1     joerg #define DPRINTF(x)
     82   1.1     joerg #define DPRINTFN(n, x)
     83   1.1     joerg #endif
     84   1.1     joerg 
     85   1.1     joerg /* various supported device vendors/products */
     86   1.1     joerg static const struct usb_devno rum_devs[] = {
     87  1.11   xtraeme 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
     88  1.11   xtraeme 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
     89  1.11   xtraeme 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
     90  1.11   xtraeme 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
     91  1.18  kiyohara 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
     92  1.11   xtraeme 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
     93  1.10   xtraeme 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
     94  1.11   xtraeme 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
     95   1.1     joerg 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
     96   1.1     joerg 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
     97  1.43       chs 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050C },
     98  1.43       chs 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB200 },
     99   1.1     joerg 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
    100  1.11   xtraeme 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
    101   1.1     joerg 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
    102  1.43       chs 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_RT2573 },
    103  1.18  kiyohara 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
    104  1.23       jun 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
    105   1.1     joerg 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
    106   1.1     joerg 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
    107   1.1     joerg 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
    108   1.1     joerg 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
    109  1.40  christos 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA110 },
    110  1.29     pooka 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
    111  1.43       chs 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7318 },
    112  1.43       chs 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7618 },
    113   1.1     joerg 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
    114  1.11   xtraeme 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
    115   1.1     joerg 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
    116   1.1     joerg 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
    117  1.11   xtraeme 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
    118  1.11   xtraeme 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
    119   1.1     joerg 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
    120  1.11   xtraeme 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
    121   1.4      elad 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
    122  1.43       chs 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HG },
    123  1.27  tshiozak 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_WLIUCG },
    124   1.1     joerg 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
    125   1.1     joerg 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
    126   1.1     joerg 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
    127  1.11   xtraeme 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
    128  1.11   xtraeme 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
    129  1.11   xtraeme 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
    130   1.4      elad 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
    131   1.1     joerg 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
    132   1.1     joerg 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
    133   1.1     joerg 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
    134  1.22  uebayasi 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
    135   1.1     joerg 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
    136   1.1     joerg 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
    137   1.1     joerg 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
    138   1.1     joerg 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
    139  1.43       chs 	{ USB_VENDOR_SPARKLAN,		USB_PRODUCT_SPARKLAN_RT2573 },
    140  1.43       chs 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 },
    141  1.58   khorben 	{ USB_VENDOR_SYNET,		USB_PRODUCT_SYNET_MWP54SS },
    142  1.43       chs 	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_RT2573 }
    143   1.1     joerg };
    144   1.1     joerg 
    145  1.35  jmcneill static int		rum_attachhook(void *);
    146  1.35  jmcneill static int		rum_alloc_tx_list(struct rum_softc *);
    147  1.35  jmcneill static void		rum_free_tx_list(struct rum_softc *);
    148  1.35  jmcneill static int		rum_alloc_rx_list(struct rum_softc *);
    149  1.35  jmcneill static void		rum_free_rx_list(struct rum_softc *);
    150  1.35  jmcneill static int		rum_media_change(struct ifnet *);
    151  1.35  jmcneill static void		rum_next_scan(void *);
    152  1.35  jmcneill static void		rum_task(void *);
    153  1.35  jmcneill static int		rum_newstate(struct ieee80211com *,
    154   1.1     joerg 			    enum ieee80211_state, int);
    155  1.52     skrll static void		rum_txeof(struct usbd_xfer *, void *,
    156   1.1     joerg 			    usbd_status);
    157  1.52     skrll static void		rum_rxeof(struct usbd_xfer *, void *,
    158   1.1     joerg 			    usbd_status);
    159  1.35  jmcneill static uint8_t		rum_rxrate(const struct rum_rx_desc *);
    160  1.35  jmcneill static int		rum_ack_rate(struct ieee80211com *, int);
    161  1.35  jmcneill static uint16_t		rum_txtime(int, int, uint32_t);
    162  1.35  jmcneill static uint8_t		rum_plcp_signal(int);
    163  1.35  jmcneill static void		rum_setup_tx_desc(struct rum_softc *,
    164   1.1     joerg 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
    165   1.1     joerg 			    int);
    166  1.35  jmcneill static int		rum_tx_data(struct rum_softc *, struct mbuf *,
    167   1.1     joerg 			    struct ieee80211_node *);
    168  1.35  jmcneill static void		rum_start(struct ifnet *);
    169  1.35  jmcneill static void		rum_watchdog(struct ifnet *);
    170  1.35  jmcneill static int		rum_ioctl(struct ifnet *, u_long, void *);
    171  1.35  jmcneill static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
    172   1.1     joerg 			    int);
    173  1.35  jmcneill static uint32_t		rum_read(struct rum_softc *, uint16_t);
    174  1.35  jmcneill static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
    175   1.1     joerg 			    int);
    176  1.35  jmcneill static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
    177  1.35  jmcneill static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
    178   1.1     joerg 			    size_t);
    179  1.35  jmcneill static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
    180  1.35  jmcneill static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
    181  1.35  jmcneill static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
    182  1.35  jmcneill static void		rum_select_antenna(struct rum_softc *);
    183  1.35  jmcneill static void		rum_enable_mrr(struct rum_softc *);
    184  1.35  jmcneill static void		rum_set_txpreamble(struct rum_softc *);
    185  1.35  jmcneill static void		rum_set_basicrates(struct rum_softc *);
    186  1.35  jmcneill static void		rum_select_band(struct rum_softc *,
    187   1.1     joerg 			    struct ieee80211_channel *);
    188  1.35  jmcneill static void		rum_set_chan(struct rum_softc *,
    189   1.1     joerg 			    struct ieee80211_channel *);
    190  1.35  jmcneill static void		rum_enable_tsf_sync(struct rum_softc *);
    191  1.35  jmcneill static void		rum_update_slot(struct rum_softc *);
    192  1.35  jmcneill static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
    193  1.35  jmcneill static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
    194  1.35  jmcneill static void		rum_update_promisc(struct rum_softc *);
    195  1.35  jmcneill static const char	*rum_get_rf(int);
    196  1.35  jmcneill static void		rum_read_eeprom(struct rum_softc *);
    197  1.35  jmcneill static int		rum_bbp_init(struct rum_softc *);
    198  1.35  jmcneill static int		rum_init(struct ifnet *);
    199  1.35  jmcneill static void		rum_stop(struct ifnet *, int);
    200  1.35  jmcneill static int		rum_load_microcode(struct rum_softc *, const u_char *,
    201   1.1     joerg 			    size_t);
    202  1.35  jmcneill static int		rum_prepare_beacon(struct rum_softc *);
    203  1.35  jmcneill static void		rum_newassoc(struct ieee80211_node *, int);
    204  1.35  jmcneill static void		rum_amrr_start(struct rum_softc *,
    205   1.1     joerg 			    struct ieee80211_node *);
    206  1.35  jmcneill static void		rum_amrr_timeout(void *);
    207  1.52     skrll static void		rum_amrr_update(struct usbd_xfer *, void *,
    208  1.52     skrll 			    usbd_status);
    209   1.1     joerg 
    210   1.1     joerg static const struct {
    211   1.1     joerg 	uint32_t	reg;
    212   1.1     joerg 	uint32_t	val;
    213   1.1     joerg } rum_def_mac[] = {
    214   1.1     joerg 	RT2573_DEF_MAC
    215   1.1     joerg };
    216   1.1     joerg 
    217   1.1     joerg static const struct {
    218   1.1     joerg 	uint8_t	reg;
    219   1.1     joerg 	uint8_t	val;
    220   1.1     joerg } rum_def_bbp[] = {
    221   1.1     joerg 	RT2573_DEF_BBP
    222   1.1     joerg };
    223   1.1     joerg 
    224   1.1     joerg static const struct rfprog {
    225   1.1     joerg 	uint8_t		chan;
    226   1.1     joerg 	uint32_t	r1, r2, r3, r4;
    227   1.1     joerg }  rum_rf5226[] = {
    228   1.1     joerg 	RT2573_RF5226
    229   1.1     joerg }, rum_rf5225[] = {
    230   1.1     joerg 	RT2573_RF5225
    231   1.1     joerg };
    232   1.1     joerg 
    233  1.35  jmcneill static int rum_match(device_t, cfdata_t, void *);
    234  1.35  jmcneill static void rum_attach(device_t, device_t, void *);
    235  1.35  jmcneill static int rum_detach(device_t, int);
    236  1.35  jmcneill static int rum_activate(device_t, enum devact);
    237  1.65       mrg 
    238  1.33    dyoung CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
    239  1.33    dyoung     rum_detach, rum_activate);
    240   1.1     joerg 
    241  1.35  jmcneill static int
    242  1.33    dyoung rum_match(device_t parent, cfdata_t match, void *aux)
    243   1.1     joerg {
    244  1.33    dyoung 	struct usb_attach_arg *uaa = aux;
    245   1.1     joerg 
    246  1.52     skrll 	return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
    247   1.1     joerg 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
    248   1.1     joerg }
    249   1.1     joerg 
    250  1.35  jmcneill static int
    251   1.1     joerg rum_attachhook(void *xsc)
    252   1.1     joerg {
    253   1.1     joerg 	struct rum_softc *sc = xsc;
    254   1.1     joerg 	firmware_handle_t fwh;
    255   1.1     joerg 	const char *name = "rum-rt2573";
    256   1.1     joerg 	u_char *ucode;
    257   1.1     joerg 	size_t size;
    258   1.1     joerg 	int error;
    259   1.1     joerg 
    260   1.1     joerg 	if ((error = firmware_open("rum", name, &fwh)) != 0) {
    261  1.51     ryoon 		printf("%s: failed firmware_open of file %s (error %d)\n",
    262  1.33    dyoung 		    device_xname(sc->sc_dev), name, error);
    263   1.1     joerg 		return error;
    264   1.1     joerg 	}
    265   1.1     joerg 	size = firmware_get_size(fwh);
    266   1.1     joerg 	ucode = firmware_malloc(size);
    267   1.1     joerg 	if (ucode == NULL) {
    268   1.1     joerg 		printf("%s: failed to allocate firmware memory\n",
    269  1.33    dyoung 		    device_xname(sc->sc_dev));
    270   1.1     joerg 		firmware_close(fwh);
    271  1.25      yamt 		return ENOMEM;
    272   1.1     joerg 	}
    273   1.1     joerg 	error = firmware_read(fwh, 0, ucode, size);
    274   1.1     joerg 	firmware_close(fwh);
    275   1.1     joerg 	if (error != 0) {
    276   1.1     joerg 		printf("%s: failed to read firmware (error %d)\n",
    277  1.33    dyoung 		    device_xname(sc->sc_dev), error);
    278  1.49     ozaki 		firmware_free(ucode, size);
    279   1.1     joerg 		return error;
    280   1.1     joerg 	}
    281   1.1     joerg 
    282   1.1     joerg 	if (rum_load_microcode(sc, ucode, size) != 0) {
    283   1.1     joerg 		printf("%s: could not load 8051 microcode\n",
    284  1.33    dyoung 		    device_xname(sc->sc_dev));
    285  1.49     ozaki 		firmware_free(ucode, size);
    286   1.1     joerg 		return ENXIO;
    287   1.1     joerg 	}
    288   1.1     joerg 
    289  1.49     ozaki 	firmware_free(ucode, size);
    290   1.1     joerg 	sc->sc_flags |= RT2573_FWLOADED;
    291   1.1     joerg 
    292   1.1     joerg 	return 0;
    293   1.1     joerg }
    294   1.1     joerg 
    295  1.35  jmcneill static void
    296  1.33    dyoung rum_attach(device_t parent, device_t self, void *aux)
    297   1.1     joerg {
    298  1.33    dyoung 	struct rum_softc *sc = device_private(self);
    299  1.33    dyoung 	struct usb_attach_arg *uaa = aux;
    300   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    301   1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    302   1.1     joerg 	usb_interface_descriptor_t *id;
    303   1.1     joerg 	usb_endpoint_descriptor_t *ed;
    304   1.1     joerg 	usbd_status error;
    305   1.1     joerg 	char *devinfop;
    306   1.1     joerg 	int i, ntries;
    307   1.1     joerg 	uint32_t tmp;
    308   1.1     joerg 
    309  1.21      cube 	sc->sc_dev = self;
    310  1.52     skrll 	sc->sc_udev = uaa->uaa_device;
    311   1.1     joerg 	sc->sc_flags = 0;
    312   1.1     joerg 
    313  1.28    plunky 	aprint_naive("\n");
    314  1.28    plunky 	aprint_normal("\n");
    315  1.28    plunky 
    316   1.1     joerg 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
    317  1.21      cube 	aprint_normal_dev(self, "%s\n", devinfop);
    318   1.1     joerg 	usbd_devinfo_free(devinfop);
    319   1.1     joerg 
    320  1.44     skrll 	error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
    321  1.44     skrll 	if (error != 0) {
    322  1.44     skrll 		aprint_error_dev(self, "failed to set configuration"
    323  1.44     skrll 		    ", err=%s\n", usbd_errstr(error));
    324  1.33    dyoung 		return;
    325   1.1     joerg 	}
    326   1.1     joerg 
    327   1.1     joerg 	/* get the first interface handle */
    328   1.1     joerg 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
    329   1.1     joerg 	    &sc->sc_iface);
    330   1.1     joerg 	if (error != 0) {
    331  1.21      cube 		aprint_error_dev(self, "could not get interface handle\n");
    332  1.33    dyoung 		return;
    333   1.1     joerg 	}
    334   1.1     joerg 
    335   1.1     joerg 	/*
    336   1.1     joerg 	 * Find endpoints.
    337   1.1     joerg 	 */
    338   1.1     joerg 	id = usbd_get_interface_descriptor(sc->sc_iface);
    339   1.1     joerg 
    340   1.1     joerg 	sc->sc_rx_no = sc->sc_tx_no = -1;
    341   1.1     joerg 	for (i = 0; i < id->bNumEndpoints; i++) {
    342   1.1     joerg 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
    343   1.1     joerg 		if (ed == NULL) {
    344  1.21      cube 			aprint_error_dev(self,
    345  1.21      cube 			    "no endpoint descriptor for iface %d\n", i);
    346  1.33    dyoung 			return;
    347   1.1     joerg 		}
    348   1.1     joerg 
    349   1.1     joerg 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
    350   1.1     joerg 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    351   1.1     joerg 			sc->sc_rx_no = ed->bEndpointAddress;
    352   1.1     joerg 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
    353   1.1     joerg 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    354   1.1     joerg 			sc->sc_tx_no = ed->bEndpointAddress;
    355   1.1     joerg 	}
    356   1.1     joerg 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
    357  1.21      cube 		aprint_error_dev(self, "missing endpoint\n");
    358  1.33    dyoung 		return;
    359   1.1     joerg 	}
    360   1.1     joerg 
    361  1.47  jmcneill 	usb_init_task(&sc->sc_task, rum_task, sc, 0);
    362  1.33    dyoung 	callout_init(&sc->sc_scan_ch, 0);
    363   1.1     joerg 
    364   1.1     joerg 	sc->amrr.amrr_min_success_threshold =  1;
    365   1.1     joerg 	sc->amrr.amrr_max_success_threshold = 10;
    366  1.33    dyoung 	callout_init(&sc->sc_amrr_ch, 0);
    367   1.1     joerg 
    368   1.1     joerg 	/* retrieve RT2573 rev. no */
    369   1.1     joerg 	for (ntries = 0; ntries < 1000; ntries++) {
    370   1.1     joerg 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
    371   1.1     joerg 			break;
    372   1.1     joerg 		DELAY(1000);
    373   1.1     joerg 	}
    374   1.1     joerg 	if (ntries == 1000) {
    375  1.21      cube 		aprint_error_dev(self, "timeout waiting for chip to settle\n");
    376  1.33    dyoung 		return;
    377   1.1     joerg 	}
    378   1.1     joerg 
    379   1.1     joerg 	/* retrieve MAC address and various other things from EEPROM */
    380   1.1     joerg 	rum_read_eeprom(sc);
    381   1.1     joerg 
    382  1.21      cube 	aprint_normal_dev(self,
    383  1.68  christos 	    "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
    384  1.21      cube 	    sc->macbbp_rev, tmp,
    385   1.1     joerg 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
    386   1.1     joerg 
    387   1.1     joerg 	ic->ic_ifp = ifp;
    388   1.1     joerg 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    389   1.1     joerg 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    390   1.1     joerg 	ic->ic_state = IEEE80211_S_INIT;
    391   1.1     joerg 
    392   1.1     joerg 	/* set device capabilities */
    393   1.1     joerg 	ic->ic_caps =
    394   1.1     joerg 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
    395   1.1     joerg 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    396   1.1     joerg 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
    397   1.1     joerg 	    IEEE80211_C_TXPMGT |	/* tx power management */
    398   1.1     joerg 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    399   1.1     joerg 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    400   1.1     joerg 	    IEEE80211_C_WPA;		/* 802.11i */
    401   1.1     joerg 
    402   1.1     joerg 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
    403   1.1     joerg 		/* set supported .11a rates */
    404  1.60      maya 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
    405   1.1     joerg 
    406   1.1     joerg 		/* set supported .11a channels */
    407   1.1     joerg 		for (i = 34; i <= 46; i += 4) {
    408   1.1     joerg 			ic->ic_channels[i].ic_freq =
    409   1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    410   1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    411   1.1     joerg 		}
    412   1.1     joerg 		for (i = 36; i <= 64; i += 4) {
    413   1.1     joerg 			ic->ic_channels[i].ic_freq =
    414   1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    415   1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    416   1.1     joerg 		}
    417   1.1     joerg 		for (i = 100; i <= 140; i += 4) {
    418   1.1     joerg 			ic->ic_channels[i].ic_freq =
    419   1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    420   1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    421   1.1     joerg 		}
    422   1.1     joerg 		for (i = 149; i <= 165; i += 4) {
    423   1.1     joerg 			ic->ic_channels[i].ic_freq =
    424   1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    425   1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    426   1.1     joerg 		}
    427   1.1     joerg 	}
    428   1.1     joerg 
    429   1.1     joerg 	/* set supported .11b and .11g rates */
    430  1.60      maya 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
    431  1.60      maya 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
    432   1.1     joerg 
    433   1.1     joerg 	/* set supported .11b and .11g channels (1 through 14) */
    434   1.1     joerg 	for (i = 1; i <= 14; i++) {
    435   1.1     joerg 		ic->ic_channels[i].ic_freq =
    436   1.1     joerg 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    437   1.1     joerg 		ic->ic_channels[i].ic_flags =
    438   1.1     joerg 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    439   1.1     joerg 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    440   1.1     joerg 	}
    441   1.1     joerg 
    442   1.1     joerg 	ifp->if_softc = sc;
    443   1.1     joerg 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    444   1.1     joerg 	ifp->if_init = rum_init;
    445   1.1     joerg 	ifp->if_ioctl = rum_ioctl;
    446   1.1     joerg 	ifp->if_start = rum_start;
    447   1.1     joerg 	ifp->if_watchdog = rum_watchdog;
    448   1.1     joerg 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
    449   1.1     joerg 	IFQ_SET_READY(&ifp->if_snd);
    450  1.33    dyoung 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    451   1.1     joerg 
    452   1.1     joerg 	if_attach(ifp);
    453   1.1     joerg 	ieee80211_ifattach(ic);
    454  1.18  kiyohara 	ic->ic_newassoc = rum_newassoc;
    455   1.1     joerg 
    456   1.1     joerg 	/* override state transition machine */
    457   1.1     joerg 	sc->sc_newstate = ic->ic_newstate;
    458   1.1     joerg 	ic->ic_newstate = rum_newstate;
    459   1.1     joerg 	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
    460   1.1     joerg 
    461  1.32     joerg 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    462  1.52     skrll 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    463  1.31     pooka 	    &sc->sc_drvbpf);
    464   1.1     joerg 
    465  1.52     skrll 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
    466   1.1     joerg 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    467   1.1     joerg 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
    468   1.1     joerg 
    469  1.52     skrll 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
    470   1.1     joerg 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    471   1.1     joerg 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
    472   1.1     joerg 
    473   1.1     joerg 	ieee80211_announce(ic);
    474   1.1     joerg 
    475  1.56   msaitoh 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
    476   1.1     joerg 
    477  1.50    nonaka 	if (!pmf_device_register(self, NULL, NULL))
    478  1.50    nonaka 		aprint_error_dev(self, "couldn't establish power handler\n");
    479  1.50    nonaka 
    480  1.33    dyoung 	return;
    481   1.1     joerg }
    482   1.1     joerg 
    483  1.35  jmcneill static int
    484  1.33    dyoung rum_detach(device_t self, int flags)
    485   1.1     joerg {
    486  1.33    dyoung 	struct rum_softc *sc = device_private(self);
    487   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    488   1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    489   1.1     joerg 	int s;
    490   1.1     joerg 
    491  1.13  drochner 	if (!ifp->if_softc)
    492  1.13  drochner 		return 0;
    493  1.13  drochner 
    494  1.50    nonaka 	pmf_device_deregister(self);
    495  1.50    nonaka 
    496   1.1     joerg 	s = splusb();
    497   1.1     joerg 
    498   1.1     joerg 	rum_stop(ifp, 1);
    499  1.62  riastrad 	callout_halt(&sc->sc_scan_ch, NULL);
    500  1.62  riastrad 	callout_halt(&sc->sc_amrr_ch, NULL);
    501  1.63  riastrad 	usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
    502   1.1     joerg 
    503  1.32     joerg 	bpf_detach(ifp);
    504   1.1     joerg 	ieee80211_ifdetach(ic);	/* free all nodes */
    505   1.1     joerg 	if_detach(ifp);
    506   1.1     joerg 
    507   1.1     joerg 	splx(s);
    508   1.1     joerg 
    509  1.33    dyoung 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
    510   1.1     joerg 
    511   1.1     joerg 	return 0;
    512   1.1     joerg }
    513   1.1     joerg 
    514  1.35  jmcneill static int
    515   1.1     joerg rum_alloc_tx_list(struct rum_softc *sc)
    516   1.1     joerg {
    517   1.1     joerg 	struct rum_tx_data *data;
    518   1.1     joerg 	int i, error;
    519   1.1     joerg 
    520  1.35  jmcneill 	sc->tx_cur = sc->tx_queued = 0;
    521   1.1     joerg 
    522  1.18  kiyohara 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
    523   1.1     joerg 		data = &sc->tx_data[i];
    524   1.1     joerg 
    525   1.1     joerg 		data->sc = sc;
    526   1.1     joerg 
    527  1.52     skrll 		error = usbd_create_xfer(sc->sc_tx_pipeh,
    528  1.52     skrll 		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN,
    529  1.52     skrll 		    USBD_FORCE_SHORT_XFER, 0, &data->xfer);
    530  1.52     skrll 		if (error) {
    531   1.1     joerg 			printf("%s: could not allocate tx xfer\n",
    532  1.33    dyoung 			    device_xname(sc->sc_dev));
    533   1.1     joerg 			goto fail;
    534   1.1     joerg 		}
    535  1.52     skrll 		data->buf = usbd_get_buffer(data->xfer);
    536   1.1     joerg 
    537   1.1     joerg 		/* clean Tx descriptor */
    538  1.26    cegger 		memset(data->buf, 0, RT2573_TX_DESC_SIZE);
    539   1.1     joerg 	}
    540   1.1     joerg 
    541   1.1     joerg 	return 0;
    542   1.1     joerg 
    543   1.1     joerg fail:	rum_free_tx_list(sc);
    544   1.1     joerg 	return error;
    545   1.1     joerg }
    546   1.1     joerg 
    547  1.35  jmcneill static void
    548   1.1     joerg rum_free_tx_list(struct rum_softc *sc)
    549   1.1     joerg {
    550   1.1     joerg 	struct rum_tx_data *data;
    551   1.1     joerg 	int i;
    552   1.1     joerg 
    553  1.18  kiyohara 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
    554   1.1     joerg 		data = &sc->tx_data[i];
    555   1.1     joerg 
    556   1.1     joerg 		if (data->xfer != NULL) {
    557  1.52     skrll 			usbd_destroy_xfer(data->xfer);
    558   1.1     joerg 			data->xfer = NULL;
    559   1.1     joerg 		}
    560   1.1     joerg 
    561   1.1     joerg 		if (data->ni != NULL) {
    562   1.1     joerg 			ieee80211_free_node(data->ni);
    563   1.1     joerg 			data->ni = NULL;
    564   1.1     joerg 		}
    565   1.1     joerg 	}
    566   1.1     joerg }
    567   1.1     joerg 
    568  1.35  jmcneill static int
    569   1.1     joerg rum_alloc_rx_list(struct rum_softc *sc)
    570   1.1     joerg {
    571   1.1     joerg 	struct rum_rx_data *data;
    572   1.1     joerg 	int i, error;
    573   1.1     joerg 
    574  1.18  kiyohara 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
    575   1.1     joerg 		data = &sc->rx_data[i];
    576   1.1     joerg 
    577   1.1     joerg 		data->sc = sc;
    578   1.1     joerg 
    579  1.52     skrll 		error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
    580  1.59     skrll 		    0, 0, &data->xfer);
    581  1.52     skrll 		if (error) {
    582   1.1     joerg 			printf("%s: could not allocate rx xfer\n",
    583  1.33    dyoung 			    device_xname(sc->sc_dev));
    584   1.1     joerg 			goto fail;
    585   1.1     joerg 		}
    586   1.1     joerg 
    587   1.1     joerg 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    588   1.1     joerg 		if (data->m == NULL) {
    589   1.1     joerg 			printf("%s: could not allocate rx mbuf\n",
    590  1.33    dyoung 			    device_xname(sc->sc_dev));
    591   1.1     joerg 			error = ENOMEM;
    592   1.1     joerg 			goto fail;
    593   1.1     joerg 		}
    594   1.1     joerg 
    595   1.1     joerg 		MCLGET(data->m, M_DONTWAIT);
    596   1.1     joerg 		if (!(data->m->m_flags & M_EXT)) {
    597   1.1     joerg 			printf("%s: could not allocate rx mbuf cluster\n",
    598  1.33    dyoung 			    device_xname(sc->sc_dev));
    599   1.1     joerg 			error = ENOMEM;
    600   1.1     joerg 			goto fail;
    601   1.1     joerg 		}
    602   1.1     joerg 
    603   1.1     joerg 		data->buf = mtod(data->m, uint8_t *);
    604   1.1     joerg 	}
    605   1.1     joerg 
    606   1.1     joerg 	return 0;
    607   1.1     joerg 
    608  1.34  dholland fail:	rum_free_rx_list(sc);
    609   1.1     joerg 	return error;
    610   1.1     joerg }
    611   1.1     joerg 
    612  1.35  jmcneill static void
    613   1.1     joerg rum_free_rx_list(struct rum_softc *sc)
    614   1.1     joerg {
    615   1.1     joerg 	struct rum_rx_data *data;
    616   1.1     joerg 	int i;
    617   1.1     joerg 
    618  1.18  kiyohara 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
    619   1.1     joerg 		data = &sc->rx_data[i];
    620   1.1     joerg 
    621   1.1     joerg 		if (data->xfer != NULL) {
    622  1.52     skrll 			usbd_destroy_xfer(data->xfer);
    623   1.1     joerg 			data->xfer = NULL;
    624   1.1     joerg 		}
    625   1.1     joerg 
    626   1.1     joerg 		if (data->m != NULL) {
    627   1.1     joerg 			m_freem(data->m);
    628   1.1     joerg 			data->m = NULL;
    629   1.1     joerg 		}
    630   1.1     joerg 	}
    631   1.1     joerg }
    632   1.1     joerg 
    633  1.35  jmcneill static int
    634   1.1     joerg rum_media_change(struct ifnet *ifp)
    635   1.1     joerg {
    636   1.1     joerg 	int error;
    637   1.1     joerg 
    638   1.1     joerg 	error = ieee80211_media_change(ifp);
    639   1.1     joerg 	if (error != ENETRESET)
    640   1.1     joerg 		return error;
    641   1.1     joerg 
    642   1.1     joerg 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    643   1.1     joerg 		rum_init(ifp);
    644   1.1     joerg 
    645   1.1     joerg 	return 0;
    646   1.1     joerg }
    647   1.1     joerg 
    648   1.1     joerg /*
    649   1.1     joerg  * This function is called periodically (every 200ms) during scanning to
    650   1.1     joerg  * switch from one channel to another.
    651   1.1     joerg  */
    652  1.35  jmcneill static void
    653   1.1     joerg rum_next_scan(void *arg)
    654   1.1     joerg {
    655   1.1     joerg 	struct rum_softc *sc = arg;
    656   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    657  1.35  jmcneill 	int s;
    658   1.1     joerg 
    659  1.35  jmcneill 	s = splnet();
    660   1.1     joerg 	if (ic->ic_state == IEEE80211_S_SCAN)
    661   1.1     joerg 		ieee80211_next_scan(ic);
    662  1.35  jmcneill 	splx(s);
    663   1.1     joerg }
    664   1.1     joerg 
    665  1.35  jmcneill static void
    666   1.1     joerg rum_task(void *arg)
    667   1.1     joerg {
    668   1.1     joerg 	struct rum_softc *sc = arg;
    669   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    670   1.1     joerg 	enum ieee80211_state ostate;
    671   1.1     joerg 	struct ieee80211_node *ni;
    672   1.1     joerg 	uint32_t tmp;
    673   1.1     joerg 
    674   1.1     joerg 	ostate = ic->ic_state;
    675   1.1     joerg 
    676   1.1     joerg 	switch (sc->sc_state) {
    677   1.1     joerg 	case IEEE80211_S_INIT:
    678   1.1     joerg 		if (ostate == IEEE80211_S_RUN) {
    679   1.1     joerg 			/* abort TSF synchronization */
    680   1.1     joerg 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
    681   1.1     joerg 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
    682   1.1     joerg 		}
    683   1.1     joerg 		break;
    684   1.1     joerg 
    685   1.1     joerg 	case IEEE80211_S_SCAN:
    686   1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    687  1.33    dyoung 		callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
    688   1.1     joerg 		break;
    689   1.1     joerg 
    690   1.1     joerg 	case IEEE80211_S_AUTH:
    691   1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    692   1.1     joerg 		break;
    693   1.1     joerg 
    694   1.1     joerg 	case IEEE80211_S_ASSOC:
    695   1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    696   1.1     joerg 		break;
    697   1.1     joerg 
    698   1.1     joerg 	case IEEE80211_S_RUN:
    699   1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    700   1.1     joerg 
    701   1.1     joerg 		ni = ic->ic_bss;
    702   1.1     joerg 
    703   1.1     joerg 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    704   1.1     joerg 			rum_update_slot(sc);
    705   1.1     joerg 			rum_enable_mrr(sc);
    706   1.1     joerg 			rum_set_txpreamble(sc);
    707   1.1     joerg 			rum_set_basicrates(sc);
    708   1.1     joerg 			rum_set_bssid(sc, ni->ni_bssid);
    709   1.1     joerg 		}
    710   1.1     joerg 
    711   1.1     joerg 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
    712   1.1     joerg 		    ic->ic_opmode == IEEE80211_M_IBSS)
    713   1.1     joerg 			rum_prepare_beacon(sc);
    714   1.1     joerg 
    715   1.1     joerg 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
    716   1.1     joerg 			rum_enable_tsf_sync(sc);
    717   1.1     joerg 
    718  1.18  kiyohara 		if (ic->ic_opmode == IEEE80211_M_STA) {
    719  1.18  kiyohara 			/* fake a join to init the tx rate */
    720  1.18  kiyohara 			rum_newassoc(ic->ic_bss, 1);
    721  1.18  kiyohara 
    722  1.18  kiyohara 			/* enable automatic rate adaptation in STA mode */
    723  1.18  kiyohara 			if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
    724  1.18  kiyohara 				rum_amrr_start(sc, ni);
    725  1.18  kiyohara 		}
    726   1.1     joerg 
    727   1.1     joerg 		break;
    728   1.1     joerg 	}
    729   1.1     joerg 
    730  1.35  jmcneill 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
    731   1.1     joerg }
    732   1.1     joerg 
    733  1.35  jmcneill static int
    734   1.1     joerg rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    735   1.1     joerg {
    736   1.1     joerg 	struct rum_softc *sc = ic->ic_ifp->if_softc;
    737   1.1     joerg 
    738  1.62  riastrad 	/*
    739  1.62  riastrad 	 * XXXSMP: This does not wait for the task, if it is in flight,
    740  1.62  riastrad 	 * to complete.  If this code works at all, it must rely on the
    741  1.62  riastrad 	 * kernel lock to serialize with the USB task thread.
    742  1.62  riastrad 	 */
    743   1.1     joerg 	usb_rem_task(sc->sc_udev, &sc->sc_task);
    744  1.33    dyoung 	callout_stop(&sc->sc_scan_ch);
    745  1.33    dyoung 	callout_stop(&sc->sc_amrr_ch);
    746   1.1     joerg 
    747   1.1     joerg 	/* do it in a process context */
    748   1.1     joerg 	sc->sc_state = nstate;
    749  1.35  jmcneill 	sc->sc_arg = arg;
    750   1.1     joerg 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
    751   1.1     joerg 
    752   1.1     joerg 	return 0;
    753   1.1     joerg }
    754   1.1     joerg 
    755   1.1     joerg /* quickly determine if a given rate is CCK or OFDM */
    756   1.1     joerg #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
    757   1.1     joerg 
    758   1.1     joerg #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
    759   1.1     joerg #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
    760   1.1     joerg 
    761  1.35  jmcneill static void
    762  1.52     skrll rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
    763   1.1     joerg {
    764   1.1     joerg 	struct rum_tx_data *data = priv;
    765   1.1     joerg 	struct rum_softc *sc = data->sc;
    766   1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    767   1.1     joerg 	int s;
    768   1.1     joerg 
    769   1.1     joerg 	if (status != USBD_NORMAL_COMPLETION) {
    770   1.1     joerg 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
    771   1.1     joerg 			return;
    772   1.1     joerg 
    773   1.1     joerg 		printf("%s: could not transmit buffer: %s\n",
    774  1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(status));
    775   1.1     joerg 
    776   1.1     joerg 		if (status == USBD_STALLED)
    777   1.1     joerg 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
    778   1.1     joerg 
    779  1.66   thorpej 		if_statinc(ifp, if_oerrors);
    780   1.1     joerg 		return;
    781   1.1     joerg 	}
    782   1.1     joerg 
    783   1.1     joerg 	s = splnet();
    784   1.1     joerg 
    785   1.1     joerg 	ieee80211_free_node(data->ni);
    786   1.1     joerg 	data->ni = NULL;
    787   1.1     joerg 
    788   1.1     joerg 	sc->tx_queued--;
    789  1.66   thorpej 	if_statinc(ifp, if_opackets);
    790   1.1     joerg 
    791   1.1     joerg 	DPRINTFN(10, ("tx done\n"));
    792   1.1     joerg 
    793   1.1     joerg 	sc->sc_tx_timer = 0;
    794   1.1     joerg 	ifp->if_flags &= ~IFF_OACTIVE;
    795   1.1     joerg 	rum_start(ifp);
    796   1.1     joerg 
    797   1.1     joerg 	splx(s);
    798   1.1     joerg }
    799   1.1     joerg 
    800  1.35  jmcneill static void
    801  1.52     skrll rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
    802   1.1     joerg {
    803   1.1     joerg 	struct rum_rx_data *data = priv;
    804   1.1     joerg 	struct rum_softc *sc = data->sc;
    805   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    806   1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    807   1.1     joerg 	struct rum_rx_desc *desc;
    808   1.1     joerg 	struct ieee80211_frame *wh;
    809   1.1     joerg 	struct ieee80211_node *ni;
    810   1.1     joerg 	struct mbuf *mnew, *m;
    811   1.1     joerg 	int s, len;
    812   1.1     joerg 
    813   1.1     joerg 	if (status != USBD_NORMAL_COMPLETION) {
    814   1.1     joerg 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
    815   1.1     joerg 			return;
    816   1.1     joerg 
    817   1.1     joerg 		if (status == USBD_STALLED)
    818   1.1     joerg 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
    819   1.1     joerg 		goto skip;
    820   1.1     joerg 	}
    821   1.1     joerg 
    822   1.1     joerg 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
    823   1.1     joerg 
    824  1.37  pgoyette 	if (len < (int)(RT2573_RX_DESC_SIZE +
    825  1.37  pgoyette 		        sizeof(struct ieee80211_frame_min))) {
    826  1.33    dyoung 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
    827   1.1     joerg 		    len));
    828  1.66   thorpej 		if_statinc(ifp, if_ierrors);
    829   1.1     joerg 		goto skip;
    830   1.1     joerg 	}
    831   1.1     joerg 
    832   1.1     joerg 	desc = (struct rum_rx_desc *)data->buf;
    833   1.1     joerg 
    834   1.1     joerg 	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
    835   1.1     joerg 		/*
    836   1.1     joerg 		 * This should not happen since we did not request to receive
    837   1.1     joerg 		 * those frames when we filled RT2573_TXRX_CSR0.
    838   1.1     joerg 		 */
    839   1.1     joerg 		DPRINTFN(5, ("CRC error\n"));
    840  1.66   thorpej 		if_statinc(ifp, if_ierrors);
    841   1.1     joerg 		goto skip;
    842   1.1     joerg 	}
    843   1.1     joerg 
    844   1.1     joerg 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
    845   1.1     joerg 	if (mnew == NULL) {
    846   1.1     joerg 		printf("%s: could not allocate rx mbuf\n",
    847  1.33    dyoung 		    device_xname(sc->sc_dev));
    848  1.66   thorpej 		if_statinc(ifp, if_ierrors);
    849   1.1     joerg 		goto skip;
    850   1.1     joerg 	}
    851   1.1     joerg 
    852   1.1     joerg 	MCLGET(mnew, M_DONTWAIT);
    853   1.1     joerg 	if (!(mnew->m_flags & M_EXT)) {
    854   1.1     joerg 		printf("%s: could not allocate rx mbuf cluster\n",
    855  1.33    dyoung 		    device_xname(sc->sc_dev));
    856   1.1     joerg 		m_freem(mnew);
    857  1.66   thorpej 		if_statinc(ifp, if_ierrors);
    858   1.1     joerg 		goto skip;
    859   1.1     joerg 	}
    860   1.1     joerg 
    861   1.1     joerg 	m = data->m;
    862   1.1     joerg 	data->m = mnew;
    863   1.1     joerg 	data->buf = mtod(data->m, uint8_t *);
    864   1.1     joerg 
    865   1.1     joerg 	/* finalize mbuf */
    866  1.55     ozaki 	m_set_rcvif(m, ifp);
    867   1.7  christos 	m->m_data = (void *)(desc + 1);
    868   1.1     joerg 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
    869   1.1     joerg 
    870   1.1     joerg 	s = splnet();
    871   1.1     joerg 
    872   1.1     joerg 	if (sc->sc_drvbpf != NULL) {
    873   1.1     joerg 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
    874   1.1     joerg 
    875   1.1     joerg 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
    876   1.1     joerg 		tap->wr_rate = rum_rxrate(desc);
    877   1.1     joerg 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
    878   1.1     joerg 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
    879   1.1     joerg 		tap->wr_antenna = sc->rx_ant;
    880   1.1     joerg 		tap->wr_antsignal = desc->rssi;
    881   1.1     joerg 
    882  1.61   msaitoh 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
    883   1.1     joerg 	}
    884   1.1     joerg 
    885   1.1     joerg 	wh = mtod(m, struct ieee80211_frame *);
    886   1.1     joerg 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
    887   1.1     joerg 
    888   1.1     joerg 	/* send the frame to the 802.11 layer */
    889   1.1     joerg 	ieee80211_input(ic, m, ni, desc->rssi, 0);
    890   1.1     joerg 
    891   1.1     joerg 	/* node is no longer needed */
    892   1.1     joerg 	ieee80211_free_node(ni);
    893   1.1     joerg 
    894   1.1     joerg 	splx(s);
    895   1.1     joerg 
    896   1.1     joerg 	DPRINTFN(15, ("rx done\n"));
    897   1.1     joerg 
    898   1.1     joerg skip:	/* setup a new transfer */
    899  1.52     skrll 	usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK,
    900  1.52     skrll 	    USBD_NO_TIMEOUT, rum_rxeof);
    901   1.1     joerg 	usbd_transfer(xfer);
    902   1.1     joerg }
    903   1.1     joerg 
    904   1.1     joerg /*
    905   1.1     joerg  * This function is only used by the Rx radiotap code. It returns the rate at
    906   1.1     joerg  * which a given frame was received.
    907   1.1     joerg  */
    908  1.35  jmcneill static uint8_t
    909  1.18  kiyohara rum_rxrate(const struct rum_rx_desc *desc)
    910   1.1     joerg {
    911   1.1     joerg 	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
    912   1.1     joerg 		/* reverse function of rum_plcp_signal */
    913   1.1     joerg 		switch (desc->rate) {
    914   1.1     joerg 		case 0xb:	return 12;
    915   1.1     joerg 		case 0xf:	return 18;
    916   1.1     joerg 		case 0xa:	return 24;
    917   1.1     joerg 		case 0xe:	return 36;
    918   1.1     joerg 		case 0x9:	return 48;
    919   1.1     joerg 		case 0xd:	return 72;
    920   1.1     joerg 		case 0x8:	return 96;
    921   1.1     joerg 		case 0xc:	return 108;
    922   1.1     joerg 		}
    923   1.1     joerg 	} else {
    924   1.1     joerg 		if (desc->rate == 10)
    925   1.1     joerg 			return 2;
    926   1.1     joerg 		if (desc->rate == 20)
    927   1.1     joerg 			return 4;
    928   1.1     joerg 		if (desc->rate == 55)
    929   1.1     joerg 			return 11;
    930   1.1     joerg 		if (desc->rate == 110)
    931   1.1     joerg 			return 22;
    932   1.1     joerg 	}
    933   1.1     joerg 	return 2;	/* should not get there */
    934   1.1     joerg }
    935   1.1     joerg 
    936   1.1     joerg /*
    937   1.1     joerg  * Return the expected ack rate for a frame transmitted at rate `rate'.
    938   1.1     joerg  * XXX: this should depend on the destination node basic rate set.
    939   1.1     joerg  */
    940  1.35  jmcneill static int
    941   1.1     joerg rum_ack_rate(struct ieee80211com *ic, int rate)
    942   1.1     joerg {
    943   1.1     joerg 	switch (rate) {
    944   1.1     joerg 	/* CCK rates */
    945   1.1     joerg 	case 2:
    946   1.1     joerg 		return 2;
    947   1.1     joerg 	case 4:
    948   1.1     joerg 	case 11:
    949   1.1     joerg 	case 22:
    950   1.1     joerg 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
    951   1.1     joerg 
    952   1.1     joerg 	/* OFDM rates */
    953   1.1     joerg 	case 12:
    954   1.1     joerg 	case 18:
    955   1.1     joerg 		return 12;
    956   1.1     joerg 	case 24:
    957   1.1     joerg 	case 36:
    958   1.1     joerg 		return 24;
    959   1.1     joerg 	case 48:
    960   1.1     joerg 	case 72:
    961   1.1     joerg 	case 96:
    962   1.1     joerg 	case 108:
    963   1.1     joerg 		return 48;
    964   1.1     joerg 	}
    965   1.1     joerg 
    966   1.1     joerg 	/* default to 1Mbps */
    967   1.1     joerg 	return 2;
    968   1.1     joerg }
    969   1.1     joerg 
    970   1.1     joerg /*
    971   1.1     joerg  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
    972   1.1     joerg  * The function automatically determines the operating mode depending on the
    973   1.1     joerg  * given rate. `flags' indicates whether short preamble is in use or not.
    974   1.1     joerg  */
    975  1.35  jmcneill static uint16_t
    976   1.1     joerg rum_txtime(int len, int rate, uint32_t flags)
    977   1.1     joerg {
    978   1.1     joerg 	uint16_t txtime;
    979   1.1     joerg 
    980   1.1     joerg 	if (RUM_RATE_IS_OFDM(rate)) {
    981   1.1     joerg 		/* IEEE Std 802.11a-1999, pp. 37 */
    982   1.1     joerg 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
    983   1.1     joerg 		txtime = 16 + 4 + 4 * txtime + 6;
    984   1.1     joerg 	} else {
    985   1.1     joerg 		/* IEEE Std 802.11b-1999, pp. 28 */
    986   1.1     joerg 		txtime = (16 * len + rate - 1) / rate;
    987   1.1     joerg 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
    988   1.1     joerg 			txtime +=  72 + 24;
    989   1.1     joerg 		else
    990   1.1     joerg 			txtime += 144 + 48;
    991   1.1     joerg 	}
    992   1.1     joerg 	return txtime;
    993   1.1     joerg }
    994   1.1     joerg 
    995  1.35  jmcneill static uint8_t
    996   1.1     joerg rum_plcp_signal(int rate)
    997   1.1     joerg {
    998   1.1     joerg 	switch (rate) {
    999   1.1     joerg 	/* CCK rates (returned values are device-dependent) */
   1000   1.1     joerg 	case 2:		return 0x0;
   1001   1.1     joerg 	case 4:		return 0x1;
   1002   1.1     joerg 	case 11:	return 0x2;
   1003   1.1     joerg 	case 22:	return 0x3;
   1004   1.1     joerg 
   1005   1.1     joerg 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1006   1.1     joerg 	case 12:	return 0xb;
   1007   1.1     joerg 	case 18:	return 0xf;
   1008   1.1     joerg 	case 24:	return 0xa;
   1009   1.1     joerg 	case 36:	return 0xe;
   1010   1.1     joerg 	case 48:	return 0x9;
   1011   1.1     joerg 	case 72:	return 0xd;
   1012   1.1     joerg 	case 96:	return 0x8;
   1013   1.1     joerg 	case 108:	return 0xc;
   1014   1.1     joerg 
   1015   1.1     joerg 	/* unsupported rates (should not get there) */
   1016   1.1     joerg 	default:	return 0xff;
   1017   1.1     joerg 	}
   1018   1.1     joerg }
   1019   1.1     joerg 
   1020  1.35  jmcneill static void
   1021   1.1     joerg rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
   1022   1.1     joerg     uint32_t flags, uint16_t xflags, int len, int rate)
   1023   1.1     joerg {
   1024   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1025   1.1     joerg 	uint16_t plcp_length;
   1026   1.1     joerg 	int remainder;
   1027   1.1     joerg 
   1028   1.1     joerg 	desc->flags = htole32(flags);
   1029   1.1     joerg 	desc->flags |= htole32(RT2573_TX_VALID);
   1030   1.1     joerg 	desc->flags |= htole32(len << 16);
   1031   1.1     joerg 
   1032   1.1     joerg 	desc->xflags = htole16(xflags);
   1033   1.1     joerg 
   1034   1.1     joerg 	desc->wme = htole16(
   1035   1.1     joerg 	    RT2573_QID(0) |
   1036   1.1     joerg 	    RT2573_AIFSN(2) |
   1037   1.1     joerg 	    RT2573_LOGCWMIN(4) |
   1038   1.1     joerg 	    RT2573_LOGCWMAX(10));
   1039   1.1     joerg 
   1040   1.1     joerg 	/* setup PLCP fields */
   1041   1.1     joerg 	desc->plcp_signal  = rum_plcp_signal(rate);
   1042   1.1     joerg 	desc->plcp_service = 4;
   1043   1.1     joerg 
   1044   1.1     joerg 	len += IEEE80211_CRC_LEN;
   1045   1.1     joerg 	if (RUM_RATE_IS_OFDM(rate)) {
   1046   1.1     joerg 		desc->flags |= htole32(RT2573_TX_OFDM);
   1047   1.1     joerg 
   1048   1.1     joerg 		plcp_length = len & 0xfff;
   1049   1.1     joerg 		desc->plcp_length_hi = plcp_length >> 6;
   1050   1.1     joerg 		desc->plcp_length_lo = plcp_length & 0x3f;
   1051   1.1     joerg 	} else {
   1052   1.1     joerg 		plcp_length = (16 * len + rate - 1) / rate;
   1053   1.1     joerg 		if (rate == 22) {
   1054   1.1     joerg 			remainder = (16 * len) % 22;
   1055   1.1     joerg 			if (remainder != 0 && remainder < 7)
   1056   1.1     joerg 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
   1057   1.1     joerg 		}
   1058   1.1     joerg 		desc->plcp_length_hi = plcp_length >> 8;
   1059   1.1     joerg 		desc->plcp_length_lo = plcp_length & 0xff;
   1060   1.1     joerg 
   1061   1.1     joerg 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1062   1.1     joerg 			desc->plcp_signal |= 0x08;
   1063   1.1     joerg 	}
   1064   1.1     joerg }
   1065   1.1     joerg 
   1066   1.1     joerg #define RUM_TX_TIMEOUT	5000
   1067   1.1     joerg 
   1068  1.35  jmcneill static int
   1069  1.35  jmcneill rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
   1070   1.1     joerg {
   1071   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1072   1.1     joerg 	struct rum_tx_desc *desc;
   1073   1.1     joerg 	struct rum_tx_data *data;
   1074   1.1     joerg 	struct ieee80211_frame *wh;
   1075  1.17  degroote 	struct ieee80211_key *k;
   1076   1.1     joerg 	uint32_t flags = 0;
   1077   1.1     joerg 	uint16_t dur;
   1078   1.1     joerg 	usbd_status error;
   1079  1.35  jmcneill 	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
   1080   1.1     joerg 
   1081   1.1     joerg 	wh = mtod(m0, struct ieee80211_frame *);
   1082   1.1     joerg 
   1083  1.17  degroote 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1084  1.17  degroote 		k = ieee80211_crypto_encap(ic, ni, m0);
   1085  1.17  degroote 		if (k == NULL) {
   1086  1.17  degroote 			m_freem(m0);
   1087  1.17  degroote 			return ENOBUFS;
   1088  1.17  degroote 		}
   1089  1.17  degroote 
   1090  1.35  jmcneill 		/* packet header may have moved, reset our local pointer */
   1091  1.35  jmcneill 		wh = mtod(m0, struct ieee80211_frame *);
   1092   1.1     joerg 	}
   1093   1.1     joerg 
   1094  1.35  jmcneill 	/* compute actual packet length (including CRC and crypto overhead) */
   1095  1.35  jmcneill 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
   1096   1.1     joerg 
   1097  1.35  jmcneill 	/* pickup a rate */
   1098  1.35  jmcneill 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   1099  1.35  jmcneill 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1100  1.35  jmcneill 	     IEEE80211_FC0_TYPE_MGT)) {
   1101  1.35  jmcneill 		/* mgmt/multicast frames are sent at the lowest avail. rate */
   1102  1.35  jmcneill 		rate = ni->ni_rates.rs_rates[0];
   1103  1.35  jmcneill 	} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
   1104  1.35  jmcneill 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
   1105  1.35  jmcneill 	} else
   1106  1.35  jmcneill 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1107  1.35  jmcneill 	if (rate == 0)
   1108  1.35  jmcneill 		rate = 2;	/* XXX should not happen */
   1109  1.35  jmcneill 	rate &= IEEE80211_RATE_VAL;
   1110   1.1     joerg 
   1111  1.35  jmcneill 	/* check if RTS/CTS or CTS-to-self protection must be used */
   1112  1.35  jmcneill 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1113  1.35  jmcneill 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
   1114  1.35  jmcneill 		if (pktlen > ic->ic_rtsthreshold) {
   1115  1.35  jmcneill 			needrts = 1;	/* RTS/CTS based on frame length */
   1116  1.35  jmcneill 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   1117  1.35  jmcneill 		    RUM_RATE_IS_OFDM(rate)) {
   1118  1.35  jmcneill 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   1119  1.35  jmcneill 				needcts = 1;	/* CTS-to-self */
   1120  1.35  jmcneill 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   1121  1.35  jmcneill 				needrts = 1;	/* RTS/CTS */
   1122  1.35  jmcneill 		}
   1123  1.35  jmcneill 	}
   1124  1.35  jmcneill 	if (needrts || needcts) {
   1125  1.35  jmcneill 		struct mbuf *mprot;
   1126  1.35  jmcneill 		int protrate, ackrate;
   1127  1.35  jmcneill 
   1128  1.35  jmcneill 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
   1129  1.35  jmcneill 		ackrate  = rum_ack_rate(ic, rate);
   1130  1.35  jmcneill 
   1131  1.35  jmcneill 		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
   1132  1.35  jmcneill 		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
   1133  1.35  jmcneill 		      2 * sc->sifs;
   1134  1.35  jmcneill 		if (needrts) {
   1135  1.35  jmcneill 			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
   1136  1.35  jmcneill 			    protrate), ic->ic_flags) + sc->sifs;
   1137  1.35  jmcneill 			mprot = ieee80211_get_rts(ic, wh, dur);
   1138  1.35  jmcneill 		} else {
   1139  1.35  jmcneill 			mprot = ieee80211_get_cts_to_self(ic, dur);
   1140  1.35  jmcneill 		}
   1141  1.35  jmcneill 		if (mprot == NULL) {
   1142  1.35  jmcneill 			aprint_error_dev(sc->sc_dev,
   1143  1.35  jmcneill 			    "couldn't allocate protection frame\n");
   1144  1.35  jmcneill 			m_freem(m0);
   1145  1.35  jmcneill 			return ENOBUFS;
   1146  1.35  jmcneill 		}
   1147   1.1     joerg 
   1148  1.35  jmcneill 		data = &sc->tx_data[sc->tx_cur];
   1149  1.35  jmcneill 		desc = (struct rum_tx_desc *)data->buf;
   1150   1.1     joerg 
   1151  1.35  jmcneill 		/* avoid multiple free() of the same node for each fragment */
   1152  1.35  jmcneill 		data->ni = ieee80211_ref_node(ni);
   1153   1.1     joerg 
   1154  1.35  jmcneill 		m_copydata(mprot, 0, mprot->m_pkthdr.len,
   1155  1.35  jmcneill 		    data->buf + RT2573_TX_DESC_SIZE);
   1156  1.35  jmcneill 		rum_setup_tx_desc(sc, desc,
   1157  1.35  jmcneill 		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
   1158  1.35  jmcneill 		    0, mprot->m_pkthdr.len, protrate);
   1159   1.1     joerg 
   1160  1.35  jmcneill 		/* no roundup necessary here */
   1161  1.35  jmcneill 		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
   1162   1.1     joerg 
   1163  1.35  jmcneill 		/* XXX may want to pass the protection frame to BPF */
   1164   1.1     joerg 
   1165  1.35  jmcneill 		/* mbuf is no longer needed */
   1166  1.35  jmcneill 		m_freem(mprot);
   1167   1.1     joerg 
   1168  1.52     skrll 		usbd_setup_xfer(data->xfer, data, data->buf,
   1169  1.52     skrll 		    xferlen, USBD_FORCE_SHORT_XFER,
   1170  1.35  jmcneill 		    RUM_TX_TIMEOUT, rum_txeof);
   1171  1.35  jmcneill 		error = usbd_transfer(data->xfer);
   1172  1.35  jmcneill 		if (error != USBD_NORMAL_COMPLETION &&
   1173  1.35  jmcneill 		    error != USBD_IN_PROGRESS) {
   1174   1.1     joerg 			m_freem(m0);
   1175  1.35  jmcneill 			return error;
   1176   1.1     joerg 		}
   1177   1.1     joerg 
   1178  1.35  jmcneill 		sc->tx_queued++;
   1179  1.35  jmcneill 		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
   1180  1.35  jmcneill 
   1181  1.35  jmcneill 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
   1182   1.1     joerg 	}
   1183   1.1     joerg 
   1184  1.35  jmcneill 	data = &sc->tx_data[sc->tx_cur];
   1185   1.1     joerg 	desc = (struct rum_tx_desc *)data->buf;
   1186   1.1     joerg 
   1187   1.1     joerg 	data->ni = ni;
   1188   1.1     joerg 
   1189   1.1     joerg 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1190  1.18  kiyohara 		flags |= RT2573_TX_NEED_ACK;
   1191   1.1     joerg 
   1192   1.1     joerg 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
   1193   1.1     joerg 		    ic->ic_flags) + sc->sifs;
   1194   1.1     joerg 		*(uint16_t *)wh->i_dur = htole16(dur);
   1195  1.35  jmcneill 
   1196  1.35  jmcneill 		/* tell hardware to set timestamp in probe responses */
   1197  1.35  jmcneill 		if ((wh->i_fc[0] &
   1198  1.35  jmcneill 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1199  1.35  jmcneill 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1200  1.35  jmcneill 			flags |= RT2573_TX_TIMESTAMP;
   1201   1.1     joerg 	}
   1202   1.1     joerg 
   1203   1.1     joerg 	if (sc->sc_drvbpf != NULL) {
   1204   1.1     joerg 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
   1205   1.1     joerg 
   1206   1.1     joerg 		tap->wt_flags = 0;
   1207   1.1     joerg 		tap->wt_rate = rate;
   1208   1.1     joerg 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1209   1.1     joerg 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1210   1.1     joerg 		tap->wt_antenna = sc->tx_ant;
   1211   1.1     joerg 
   1212  1.61   msaitoh 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
   1213   1.1     joerg 	}
   1214   1.1     joerg 
   1215   1.1     joerg 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
   1216   1.1     joerg 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
   1217   1.1     joerg 
   1218   1.1     joerg 	/* align end on a 4-bytes boundary */
   1219   1.1     joerg 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
   1220   1.1     joerg 
   1221   1.1     joerg 	/*
   1222   1.1     joerg 	 * No space left in the last URB to store the extra 4 bytes, force
   1223   1.1     joerg 	 * sending of another URB.
   1224   1.1     joerg 	 */
   1225   1.1     joerg 	if ((xferlen % 64) == 0)
   1226   1.1     joerg 		xferlen += 4;
   1227   1.1     joerg 
   1228   1.8   mlelstv 	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
   1229   1.8   mlelstv 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
   1230   1.6       wiz 	    rate, xferlen));
   1231   1.1     joerg 
   1232  1.18  kiyohara 	/* mbuf is no longer needed */
   1233  1.18  kiyohara 	m_freem(m0);
   1234  1.18  kiyohara 
   1235  1.52     skrll 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
   1236  1.52     skrll 	    USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof);
   1237   1.1     joerg 	error = usbd_transfer(data->xfer);
   1238  1.18  kiyohara 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
   1239   1.1     joerg 		return error;
   1240   1.1     joerg 
   1241   1.1     joerg 	sc->tx_queued++;
   1242  1.35  jmcneill 	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
   1243   1.1     joerg 
   1244   1.1     joerg 	return 0;
   1245   1.1     joerg }
   1246   1.1     joerg 
   1247  1.35  jmcneill static void
   1248   1.1     joerg rum_start(struct ifnet *ifp)
   1249   1.1     joerg {
   1250   1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1251   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1252   1.1     joerg 	struct ether_header *eh;
   1253   1.1     joerg 	struct ieee80211_node *ni;
   1254   1.1     joerg 	struct mbuf *m0;
   1255   1.1     joerg 
   1256  1.35  jmcneill 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1257  1.35  jmcneill 		return;
   1258  1.35  jmcneill 
   1259   1.1     joerg 	for (;;) {
   1260   1.1     joerg 		IF_POLL(&ic->ic_mgtq, m0);
   1261   1.1     joerg 		if (m0 != NULL) {
   1262  1.35  jmcneill 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
   1263   1.1     joerg 				ifp->if_flags |= IFF_OACTIVE;
   1264   1.1     joerg 				break;
   1265   1.1     joerg 			}
   1266   1.1     joerg 			IF_DEQUEUE(&ic->ic_mgtq, m0);
   1267   1.1     joerg 
   1268  1.53     ozaki 			ni = M_GETCTX(m0, struct ieee80211_node *);
   1269  1.54     ozaki 			M_CLEARCTX(m0);
   1270  1.61   msaitoh 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
   1271  1.35  jmcneill 			if (rum_tx_data(sc, m0, ni) != 0)
   1272   1.1     joerg 				break;
   1273   1.1     joerg 
   1274   1.1     joerg 		} else {
   1275   1.1     joerg 			if (ic->ic_state != IEEE80211_S_RUN)
   1276   1.1     joerg 				break;
   1277   1.1     joerg 			IFQ_POLL(&ifp->if_snd, m0);
   1278   1.1     joerg 			if (m0 == NULL)
   1279   1.1     joerg 				break;
   1280  1.35  jmcneill 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
   1281   1.1     joerg 				ifp->if_flags |= IFF_OACTIVE;
   1282   1.1     joerg 				break;
   1283   1.1     joerg 			}
   1284   1.1     joerg 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1285  1.37  pgoyette 			if (m0->m_len < (int)sizeof(struct ether_header) &&
   1286   1.1     joerg 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
   1287   1.1     joerg 				continue;
   1288   1.1     joerg 
   1289   1.1     joerg 			eh = mtod(m0, struct ether_header *);
   1290   1.1     joerg 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1291   1.1     joerg 			if (ni == NULL) {
   1292   1.1     joerg 				m_freem(m0);
   1293   1.1     joerg 				continue;
   1294   1.1     joerg 			}
   1295  1.61   msaitoh 			bpf_mtap(ifp, m0, BPF_D_OUT);
   1296   1.1     joerg 			m0 = ieee80211_encap(ic, m0, ni);
   1297   1.1     joerg 			if (m0 == NULL) {
   1298   1.1     joerg 				ieee80211_free_node(ni);
   1299   1.1     joerg 				continue;
   1300   1.1     joerg 			}
   1301  1.61   msaitoh 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
   1302   1.1     joerg 			if (rum_tx_data(sc, m0, ni) != 0) {
   1303   1.1     joerg 				ieee80211_free_node(ni);
   1304  1.66   thorpej 				if_statinc(ifp, if_oerrors);
   1305   1.1     joerg 				break;
   1306   1.1     joerg 			}
   1307   1.1     joerg 		}
   1308   1.1     joerg 
   1309   1.1     joerg 		sc->sc_tx_timer = 5;
   1310   1.1     joerg 		ifp->if_timer = 1;
   1311   1.1     joerg 	}
   1312   1.1     joerg }
   1313   1.1     joerg 
   1314  1.35  jmcneill static void
   1315   1.1     joerg rum_watchdog(struct ifnet *ifp)
   1316   1.1     joerg {
   1317   1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1318   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1319   1.1     joerg 
   1320   1.1     joerg 	ifp->if_timer = 0;
   1321   1.1     joerg 
   1322   1.1     joerg 	if (sc->sc_tx_timer > 0) {
   1323   1.1     joerg 		if (--sc->sc_tx_timer == 0) {
   1324  1.33    dyoung 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
   1325   1.1     joerg 			/*rum_init(ifp); XXX needs a process context! */
   1326  1.66   thorpej 			if_statinc(ifp, if_oerrors);
   1327   1.1     joerg 			return;
   1328   1.1     joerg 		}
   1329   1.1     joerg 		ifp->if_timer = 1;
   1330   1.1     joerg 	}
   1331   1.1     joerg 
   1332   1.1     joerg 	ieee80211_watchdog(ic);
   1333   1.1     joerg }
   1334   1.1     joerg 
   1335  1.35  jmcneill static int
   1336   1.7  christos rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1337   1.1     joerg {
   1338  1.36  jmcneill #define IS_RUNNING(ifp) \
   1339  1.36  jmcneill 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
   1340  1.36  jmcneill 
   1341   1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1342   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1343   1.1     joerg 	int s, error = 0;
   1344   1.1     joerg 
   1345   1.1     joerg 	s = splnet();
   1346   1.1     joerg 
   1347   1.1     joerg 	switch (cmd) {
   1348   1.1     joerg 	case SIOCSIFFLAGS:
   1349  1.24    dyoung 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1350  1.24    dyoung 			break;
   1351  1.24    dyoung 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   1352  1.24    dyoung 		case IFF_UP|IFF_RUNNING:
   1353  1.24    dyoung 			rum_update_promisc(sc);
   1354  1.24    dyoung 			break;
   1355  1.24    dyoung 		case IFF_UP:
   1356  1.24    dyoung 			rum_init(ifp);
   1357  1.24    dyoung 			break;
   1358  1.24    dyoung 		case IFF_RUNNING:
   1359  1.24    dyoung 			rum_stop(ifp, 1);
   1360  1.24    dyoung 			break;
   1361  1.24    dyoung 		case 0:
   1362  1.24    dyoung 			break;
   1363   1.1     joerg 		}
   1364   1.1     joerg 		break;
   1365   1.1     joerg 
   1366  1.36  jmcneill 	case SIOCADDMULTI:
   1367  1.36  jmcneill 	case SIOCDELMULTI:
   1368  1.36  jmcneill 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   1369  1.36  jmcneill 			error = 0;
   1370  1.36  jmcneill 		}
   1371  1.36  jmcneill 		break;
   1372  1.36  jmcneill 
   1373   1.1     joerg 	default:
   1374   1.1     joerg 		error = ieee80211_ioctl(ic, cmd, data);
   1375   1.1     joerg 	}
   1376   1.1     joerg 
   1377   1.1     joerg 	if (error == ENETRESET) {
   1378  1.36  jmcneill 		if (IS_RUNNING(ifp) &&
   1379  1.36  jmcneill 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   1380   1.1     joerg 			rum_init(ifp);
   1381   1.1     joerg 		error = 0;
   1382   1.1     joerg 	}
   1383   1.1     joerg 
   1384   1.1     joerg 	splx(s);
   1385   1.1     joerg 
   1386   1.1     joerg 	return error;
   1387  1.36  jmcneill #undef IS_RUNNING
   1388   1.1     joerg }
   1389   1.1     joerg 
   1390  1.35  jmcneill static void
   1391   1.1     joerg rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
   1392   1.1     joerg {
   1393   1.1     joerg 	usb_device_request_t req;
   1394   1.1     joerg 	usbd_status error;
   1395   1.1     joerg 
   1396   1.1     joerg 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
   1397   1.1     joerg 	req.bRequest = RT2573_READ_EEPROM;
   1398   1.1     joerg 	USETW(req.wValue, 0);
   1399   1.1     joerg 	USETW(req.wIndex, addr);
   1400   1.1     joerg 	USETW(req.wLength, len);
   1401   1.1     joerg 
   1402   1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, buf);
   1403   1.1     joerg 	if (error != 0) {
   1404   1.1     joerg 		printf("%s: could not read EEPROM: %s\n",
   1405  1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   1406   1.1     joerg 	}
   1407   1.1     joerg }
   1408   1.1     joerg 
   1409  1.35  jmcneill static uint32_t
   1410   1.1     joerg rum_read(struct rum_softc *sc, uint16_t reg)
   1411   1.1     joerg {
   1412   1.1     joerg 	uint32_t val;
   1413   1.1     joerg 
   1414  1.52     skrll 	rum_read_multi(sc, reg, &val, sizeof(val));
   1415   1.1     joerg 
   1416   1.1     joerg 	return le32toh(val);
   1417   1.1     joerg }
   1418   1.1     joerg 
   1419  1.35  jmcneill static void
   1420   1.1     joerg rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
   1421   1.1     joerg {
   1422   1.1     joerg 	usb_device_request_t req;
   1423   1.1     joerg 	usbd_status error;
   1424   1.1     joerg 
   1425   1.1     joerg 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
   1426   1.1     joerg 	req.bRequest = RT2573_READ_MULTI_MAC;
   1427   1.1     joerg 	USETW(req.wValue, 0);
   1428   1.1     joerg 	USETW(req.wIndex, reg);
   1429   1.1     joerg 	USETW(req.wLength, len);
   1430   1.1     joerg 
   1431   1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, buf);
   1432   1.1     joerg 	if (error != 0) {
   1433   1.1     joerg 		printf("%s: could not multi read MAC register: %s\n",
   1434  1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   1435   1.1     joerg 	}
   1436   1.1     joerg }
   1437   1.1     joerg 
   1438  1.35  jmcneill static void
   1439   1.1     joerg rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
   1440   1.1     joerg {
   1441   1.1     joerg 	uint32_t tmp = htole32(val);
   1442   1.1     joerg 
   1443  1.52     skrll 	rum_write_multi(sc, reg, &tmp, sizeof(tmp));
   1444   1.1     joerg }
   1445   1.1     joerg 
   1446  1.35  jmcneill static void
   1447   1.1     joerg rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
   1448   1.1     joerg {
   1449   1.1     joerg 	usb_device_request_t req;
   1450   1.1     joerg 	usbd_status error;
   1451  1.48     zafer 	int offset;
   1452   1.1     joerg 
   1453   1.1     joerg 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
   1454   1.1     joerg 	req.bRequest = RT2573_WRITE_MULTI_MAC;
   1455   1.1     joerg 	USETW(req.wValue, 0);
   1456   1.1     joerg 
   1457  1.48     zafer 	/* write at most 64 bytes at a time */
   1458  1.48     zafer 	for (offset = 0; offset < len; offset += 64) {
   1459  1.48     zafer 		USETW(req.wIndex, reg + offset);
   1460  1.48     zafer 		USETW(req.wLength, MIN(len - offset, 64));
   1461  1.48     zafer 
   1462  1.48     zafer 		error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
   1463  1.48     zafer 		if (error != 0) {
   1464  1.48     zafer 			printf("%s: could not multi write MAC register: %s\n",
   1465  1.48     zafer 			    device_xname(sc->sc_dev), usbd_errstr(error));
   1466  1.48     zafer 		}
   1467   1.1     joerg 	}
   1468   1.1     joerg }
   1469   1.1     joerg 
   1470  1.35  jmcneill static void
   1471   1.1     joerg rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
   1472   1.1     joerg {
   1473   1.1     joerg 	uint32_t tmp;
   1474   1.1     joerg 	int ntries;
   1475   1.1     joerg 
   1476   1.1     joerg 	for (ntries = 0; ntries < 5; ntries++) {
   1477   1.1     joerg 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
   1478   1.1     joerg 			break;
   1479   1.1     joerg 	}
   1480   1.1     joerg 	if (ntries == 5) {
   1481  1.33    dyoung 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
   1482   1.1     joerg 		return;
   1483   1.1     joerg 	}
   1484   1.1     joerg 
   1485   1.1     joerg 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
   1486   1.1     joerg 	rum_write(sc, RT2573_PHY_CSR3, tmp);
   1487   1.1     joerg }
   1488   1.1     joerg 
   1489  1.35  jmcneill static uint8_t
   1490   1.1     joerg rum_bbp_read(struct rum_softc *sc, uint8_t reg)
   1491   1.1     joerg {
   1492   1.1     joerg 	uint32_t val;
   1493   1.1     joerg 	int ntries;
   1494   1.1     joerg 
   1495   1.1     joerg 	for (ntries = 0; ntries < 5; ntries++) {
   1496   1.1     joerg 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
   1497   1.1     joerg 			break;
   1498   1.1     joerg 	}
   1499   1.1     joerg 	if (ntries == 5) {
   1500  1.33    dyoung 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
   1501   1.1     joerg 		return 0;
   1502   1.1     joerg 	}
   1503   1.1     joerg 
   1504   1.1     joerg 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
   1505   1.1     joerg 	rum_write(sc, RT2573_PHY_CSR3, val);
   1506   1.1     joerg 
   1507   1.1     joerg 	for (ntries = 0; ntries < 100; ntries++) {
   1508   1.1     joerg 		val = rum_read(sc, RT2573_PHY_CSR3);
   1509   1.1     joerg 		if (!(val & RT2573_BBP_BUSY))
   1510   1.1     joerg 			return val & 0xff;
   1511   1.1     joerg 		DELAY(1);
   1512   1.1     joerg 	}
   1513   1.1     joerg 
   1514  1.33    dyoung 	printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
   1515   1.1     joerg 	return 0;
   1516   1.1     joerg }
   1517   1.1     joerg 
   1518  1.35  jmcneill static void
   1519   1.1     joerg rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
   1520   1.1     joerg {
   1521   1.1     joerg 	uint32_t tmp;
   1522   1.1     joerg 	int ntries;
   1523   1.1     joerg 
   1524   1.1     joerg 	for (ntries = 0; ntries < 5; ntries++) {
   1525   1.1     joerg 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
   1526   1.1     joerg 			break;
   1527   1.1     joerg 	}
   1528   1.1     joerg 	if (ntries == 5) {
   1529  1.33    dyoung 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
   1530   1.1     joerg 		return;
   1531   1.1     joerg 	}
   1532   1.1     joerg 
   1533   1.1     joerg 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
   1534   1.1     joerg 	    (reg & 3);
   1535   1.1     joerg 	rum_write(sc, RT2573_PHY_CSR4, tmp);
   1536   1.1     joerg 
   1537   1.1     joerg 	/* remember last written value in sc */
   1538   1.1     joerg 	sc->rf_regs[reg] = val;
   1539   1.1     joerg 
   1540  1.68  christos 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
   1541   1.1     joerg }
   1542   1.1     joerg 
   1543  1.35  jmcneill static void
   1544   1.1     joerg rum_select_antenna(struct rum_softc *sc)
   1545   1.1     joerg {
   1546   1.1     joerg 	uint8_t bbp4, bbp77;
   1547   1.1     joerg 	uint32_t tmp;
   1548   1.1     joerg 
   1549   1.1     joerg 	bbp4  = rum_bbp_read(sc, 4);
   1550   1.1     joerg 	bbp77 = rum_bbp_read(sc, 77);
   1551   1.1     joerg 
   1552   1.1     joerg 	/* TBD */
   1553   1.1     joerg 
   1554   1.1     joerg 	/* make sure Rx is disabled before switching antenna */
   1555   1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
   1556   1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
   1557   1.1     joerg 
   1558   1.1     joerg 	rum_bbp_write(sc,  4, bbp4);
   1559   1.1     joerg 	rum_bbp_write(sc, 77, bbp77);
   1560   1.1     joerg 
   1561   1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
   1562   1.1     joerg }
   1563   1.1     joerg 
   1564   1.1     joerg /*
   1565   1.1     joerg  * Enable multi-rate retries for frames sent at OFDM rates.
   1566   1.1     joerg  * In 802.11b/g mode, allow fallback to CCK rates.
   1567   1.1     joerg  */
   1568  1.35  jmcneill static void
   1569   1.1     joerg rum_enable_mrr(struct rum_softc *sc)
   1570   1.1     joerg {
   1571   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1572   1.1     joerg 	uint32_t tmp;
   1573   1.1     joerg 
   1574   1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
   1575   1.1     joerg 
   1576   1.1     joerg 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
   1577   1.1     joerg 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
   1578   1.1     joerg 		tmp |= RT2573_MRR_CCK_FALLBACK;
   1579   1.1     joerg 	tmp |= RT2573_MRR_ENABLED;
   1580   1.1     joerg 
   1581   1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
   1582   1.1     joerg }
   1583   1.1     joerg 
   1584  1.35  jmcneill static void
   1585   1.1     joerg rum_set_txpreamble(struct rum_softc *sc)
   1586   1.1     joerg {
   1587   1.1     joerg 	uint32_t tmp;
   1588   1.1     joerg 
   1589   1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
   1590   1.1     joerg 
   1591   1.1     joerg 	tmp &= ~RT2573_SHORT_PREAMBLE;
   1592   1.1     joerg 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
   1593   1.1     joerg 		tmp |= RT2573_SHORT_PREAMBLE;
   1594   1.1     joerg 
   1595   1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
   1596   1.1     joerg }
   1597   1.1     joerg 
   1598  1.35  jmcneill static void
   1599   1.1     joerg rum_set_basicrates(struct rum_softc *sc)
   1600   1.1     joerg {
   1601   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1602   1.1     joerg 
   1603   1.1     joerg 	/* update basic rate set */
   1604   1.1     joerg 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
   1605   1.1     joerg 		/* 11b basic rates: 1, 2Mbps */
   1606   1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
   1607  1.18  kiyohara 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
   1608   1.1     joerg 		/* 11a basic rates: 6, 12, 24Mbps */
   1609   1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
   1610   1.1     joerg 	} else {
   1611  1.18  kiyohara 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
   1612  1.18  kiyohara 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
   1613   1.1     joerg 	}
   1614   1.1     joerg }
   1615   1.1     joerg 
   1616   1.1     joerg /*
   1617   1.1     joerg  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
   1618   1.1     joerg  * driver.
   1619   1.1     joerg  */
   1620  1.35  jmcneill static void
   1621   1.1     joerg rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
   1622   1.1     joerg {
   1623   1.1     joerg 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
   1624   1.1     joerg 	uint32_t tmp;
   1625   1.1     joerg 
   1626   1.1     joerg 	/* update all BBP registers that depend on the band */
   1627   1.1     joerg 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
   1628   1.1     joerg 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
   1629   1.1     joerg 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   1630   1.1     joerg 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
   1631   1.1     joerg 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
   1632   1.1     joerg 	}
   1633   1.1     joerg 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
   1634   1.1     joerg 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
   1635   1.1     joerg 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
   1636   1.1     joerg 	}
   1637   1.1     joerg 
   1638   1.1     joerg 	sc->bbp17 = bbp17;
   1639   1.1     joerg 	rum_bbp_write(sc,  17, bbp17);
   1640   1.1     joerg 	rum_bbp_write(sc,  96, bbp96);
   1641   1.1     joerg 	rum_bbp_write(sc, 104, bbp104);
   1642   1.1     joerg 
   1643   1.1     joerg 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
   1644   1.1     joerg 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
   1645   1.1     joerg 		rum_bbp_write(sc, 75, 0x80);
   1646   1.1     joerg 		rum_bbp_write(sc, 86, 0x80);
   1647   1.1     joerg 		rum_bbp_write(sc, 88, 0x80);
   1648   1.1     joerg 	}
   1649   1.1     joerg 
   1650   1.1     joerg 	rum_bbp_write(sc, 35, bbp35);
   1651   1.1     joerg 	rum_bbp_write(sc, 97, bbp97);
   1652   1.1     joerg 	rum_bbp_write(sc, 98, bbp98);
   1653   1.1     joerg 
   1654   1.1     joerg 	tmp = rum_read(sc, RT2573_PHY_CSR0);
   1655   1.1     joerg 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
   1656   1.1     joerg 	if (IEEE80211_IS_CHAN_2GHZ(c))
   1657   1.1     joerg 		tmp |= RT2573_PA_PE_2GHZ;
   1658   1.1     joerg 	else
   1659   1.1     joerg 		tmp |= RT2573_PA_PE_5GHZ;
   1660   1.1     joerg 	rum_write(sc, RT2573_PHY_CSR0, tmp);
   1661   1.1     joerg 
   1662   1.1     joerg 	/* 802.11a uses a 16 microseconds short interframe space */
   1663   1.1     joerg 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
   1664   1.1     joerg }
   1665   1.1     joerg 
   1666  1.35  jmcneill static void
   1667   1.1     joerg rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
   1668   1.1     joerg {
   1669   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1670   1.1     joerg 	const struct rfprog *rfprog;
   1671   1.1     joerg 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
   1672   1.1     joerg 	int8_t power;
   1673   1.1     joerg 	u_int i, chan;
   1674   1.1     joerg 
   1675   1.1     joerg 	chan = ieee80211_chan2ieee(ic, c);
   1676   1.1     joerg 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
   1677   1.1     joerg 		return;
   1678   1.1     joerg 
   1679   1.1     joerg 	/* select the appropriate RF settings based on what EEPROM says */
   1680   1.1     joerg 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
   1681   1.1     joerg 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
   1682   1.1     joerg 
   1683   1.1     joerg 	/* find the settings for this channel (we know it exists) */
   1684   1.1     joerg 	for (i = 0; rfprog[i].chan != chan; i++);
   1685   1.1     joerg 
   1686   1.1     joerg 	power = sc->txpow[i];
   1687   1.1     joerg 	if (power < 0) {
   1688   1.1     joerg 		bbp94 += power;
   1689   1.1     joerg 		power = 0;
   1690   1.1     joerg 	} else if (power > 31) {
   1691   1.1     joerg 		bbp94 += power - 31;
   1692   1.1     joerg 		power = 31;
   1693   1.1     joerg 	}
   1694   1.1     joerg 
   1695   1.1     joerg 	/*
   1696   1.1     joerg 	 * If we are switching from the 2GHz band to the 5GHz band or
   1697   1.1     joerg 	 * vice-versa, BBP registers need to be reprogrammed.
   1698   1.1     joerg 	 */
   1699   1.1     joerg 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
   1700   1.1     joerg 		rum_select_band(sc, c);
   1701   1.1     joerg 		rum_select_antenna(sc);
   1702   1.1     joerg 	}
   1703   1.1     joerg 	ic->ic_curchan = c;
   1704   1.1     joerg 
   1705   1.1     joerg 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
   1706   1.1     joerg 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
   1707   1.1     joerg 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
   1708   1.1     joerg 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
   1709   1.1     joerg 
   1710   1.1     joerg 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
   1711   1.1     joerg 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
   1712   1.1     joerg 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
   1713   1.1     joerg 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
   1714   1.1     joerg 
   1715   1.1     joerg 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
   1716   1.1     joerg 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
   1717   1.1     joerg 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
   1718   1.1     joerg 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
   1719   1.1     joerg 
   1720   1.1     joerg 	DELAY(10);
   1721   1.1     joerg 
   1722   1.1     joerg 	/* enable smart mode for MIMO-capable RFs */
   1723   1.1     joerg 	bbp3 = rum_bbp_read(sc, 3);
   1724   1.1     joerg 
   1725   1.1     joerg 	bbp3 &= ~RT2573_SMART_MODE;
   1726   1.1     joerg 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
   1727   1.1     joerg 		bbp3 |= RT2573_SMART_MODE;
   1728   1.1     joerg 
   1729   1.1     joerg 	rum_bbp_write(sc, 3, bbp3);
   1730   1.1     joerg 
   1731   1.1     joerg 	if (bbp94 != RT2573_BBPR94_DEFAULT)
   1732   1.1     joerg 		rum_bbp_write(sc, 94, bbp94);
   1733   1.1     joerg }
   1734   1.1     joerg 
   1735   1.1     joerg /*
   1736   1.1     joerg  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
   1737   1.1     joerg  * and HostAP operating modes.
   1738   1.1     joerg  */
   1739  1.35  jmcneill static void
   1740   1.1     joerg rum_enable_tsf_sync(struct rum_softc *sc)
   1741   1.1     joerg {
   1742   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1743   1.1     joerg 	uint32_t tmp;
   1744   1.1     joerg 
   1745   1.1     joerg 	if (ic->ic_opmode != IEEE80211_M_STA) {
   1746   1.1     joerg 		/*
   1747   1.1     joerg 		 * Change default 16ms TBTT adjustment to 8ms.
   1748   1.1     joerg 		 * Must be done before enabling beacon generation.
   1749   1.1     joerg 		 */
   1750   1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
   1751   1.1     joerg 	}
   1752   1.1     joerg 
   1753   1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
   1754   1.1     joerg 
   1755   1.1     joerg 	/* set beacon interval (in 1/16ms unit) */
   1756   1.1     joerg 	tmp |= ic->ic_bss->ni_intval * 16;
   1757   1.1     joerg 
   1758   1.1     joerg 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
   1759   1.1     joerg 	if (ic->ic_opmode == IEEE80211_M_STA)
   1760   1.1     joerg 		tmp |= RT2573_TSF_MODE(1);
   1761   1.1     joerg 	else
   1762   1.1     joerg 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
   1763   1.1     joerg 
   1764   1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
   1765   1.1     joerg }
   1766   1.1     joerg 
   1767  1.35  jmcneill static void
   1768   1.1     joerg rum_update_slot(struct rum_softc *sc)
   1769   1.1     joerg {
   1770   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1771   1.1     joerg 	uint8_t slottime;
   1772   1.1     joerg 	uint32_t tmp;
   1773   1.1     joerg 
   1774   1.1     joerg 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
   1775   1.1     joerg 
   1776   1.1     joerg 	tmp = rum_read(sc, RT2573_MAC_CSR9);
   1777   1.1     joerg 	tmp = (tmp & ~0xff) | slottime;
   1778   1.1     joerg 	rum_write(sc, RT2573_MAC_CSR9, tmp);
   1779   1.1     joerg 
   1780   1.1     joerg 	DPRINTF(("setting slot time to %uus\n", slottime));
   1781   1.1     joerg }
   1782   1.1     joerg 
   1783  1.35  jmcneill static void
   1784   1.1     joerg rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
   1785   1.1     joerg {
   1786   1.1     joerg 	uint32_t tmp;
   1787   1.1     joerg 
   1788   1.1     joerg 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
   1789   1.1     joerg 	rum_write(sc, RT2573_MAC_CSR4, tmp);
   1790   1.1     joerg 
   1791   1.1     joerg 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
   1792   1.1     joerg 	rum_write(sc, RT2573_MAC_CSR5, tmp);
   1793   1.1     joerg }
   1794   1.1     joerg 
   1795  1.35  jmcneill static void
   1796   1.1     joerg rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
   1797   1.1     joerg {
   1798   1.1     joerg 	uint32_t tmp;
   1799   1.1     joerg 
   1800   1.1     joerg 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
   1801   1.1     joerg 	rum_write(sc, RT2573_MAC_CSR2, tmp);
   1802   1.1     joerg 
   1803   1.1     joerg 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
   1804   1.1     joerg 	rum_write(sc, RT2573_MAC_CSR3, tmp);
   1805   1.1     joerg }
   1806   1.1     joerg 
   1807  1.35  jmcneill static void
   1808   1.1     joerg rum_update_promisc(struct rum_softc *sc)
   1809   1.1     joerg {
   1810   1.1     joerg 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1811   1.1     joerg 	uint32_t tmp;
   1812   1.1     joerg 
   1813   1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
   1814   1.1     joerg 
   1815   1.1     joerg 	tmp &= ~RT2573_DROP_NOT_TO_ME;
   1816   1.1     joerg 	if (!(ifp->if_flags & IFF_PROMISC))
   1817   1.1     joerg 		tmp |= RT2573_DROP_NOT_TO_ME;
   1818   1.1     joerg 
   1819   1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
   1820   1.1     joerg 
   1821   1.1     joerg 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
   1822   1.1     joerg 	    "entering" : "leaving"));
   1823   1.1     joerg }
   1824   1.1     joerg 
   1825  1.35  jmcneill static const char *
   1826   1.1     joerg rum_get_rf(int rev)
   1827   1.1     joerg {
   1828   1.1     joerg 	switch (rev) {
   1829   1.1     joerg 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
   1830   1.1     joerg 	case RT2573_RF_2528:	return "RT2528";
   1831   1.1     joerg 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
   1832   1.1     joerg 	case RT2573_RF_5226:	return "RT5226";
   1833   1.1     joerg 	default:		return "unknown";
   1834   1.1     joerg 	}
   1835   1.1     joerg }
   1836   1.1     joerg 
   1837  1.35  jmcneill static void
   1838   1.1     joerg rum_read_eeprom(struct rum_softc *sc)
   1839   1.1     joerg {
   1840   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1841   1.1     joerg 	uint16_t val;
   1842   1.1     joerg #ifdef RUM_DEBUG
   1843   1.1     joerg 	int i;
   1844   1.1     joerg #endif
   1845   1.1     joerg 
   1846   1.1     joerg 	/* read MAC/BBP type */
   1847   1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
   1848   1.1     joerg 	sc->macbbp_rev = le16toh(val);
   1849   1.1     joerg 
   1850   1.1     joerg 	/* read MAC address */
   1851   1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
   1852   1.1     joerg 
   1853   1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
   1854   1.1     joerg 	val = le16toh(val);
   1855   1.1     joerg 	sc->rf_rev =   (val >> 11) & 0x1f;
   1856   1.1     joerg 	sc->hw_radio = (val >> 10) & 0x1;
   1857   1.1     joerg 	sc->rx_ant =   (val >> 4)  & 0x3;
   1858   1.1     joerg 	sc->tx_ant =   (val >> 2)  & 0x3;
   1859   1.1     joerg 	sc->nb_ant =   val & 0x3;
   1860   1.1     joerg 
   1861   1.1     joerg 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
   1862   1.1     joerg 
   1863   1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
   1864   1.1     joerg 	val = le16toh(val);
   1865   1.1     joerg 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
   1866   1.1     joerg 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
   1867   1.1     joerg 
   1868   1.1     joerg 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
   1869   1.1     joerg 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
   1870   1.1     joerg 
   1871   1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
   1872   1.1     joerg 	val = le16toh(val);
   1873   1.1     joerg 	if ((val & 0xff) != 0xff)
   1874   1.1     joerg 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
   1875   1.1     joerg 
   1876   1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
   1877   1.1     joerg 	val = le16toh(val);
   1878   1.1     joerg 	if ((val & 0xff) != 0xff)
   1879   1.1     joerg 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
   1880   1.1     joerg 
   1881   1.1     joerg 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
   1882   1.1     joerg 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
   1883   1.1     joerg 
   1884   1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
   1885   1.1     joerg 	val = le16toh(val);
   1886   1.1     joerg 	if ((val & 0xff) != 0xff)
   1887   1.1     joerg 		sc->rffreq = val & 0xff;
   1888   1.1     joerg 
   1889   1.1     joerg 	DPRINTF(("RF freq=%d\n", sc->rffreq));
   1890   1.1     joerg 
   1891   1.1     joerg 	/* read Tx power for all a/b/g channels */
   1892   1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
   1893   1.1     joerg 	/* XXX default Tx power for 802.11a channels */
   1894  1.52     skrll 	memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14);
   1895   1.1     joerg #ifdef RUM_DEBUG
   1896   1.1     joerg 	for (i = 0; i < 14; i++)
   1897   1.1     joerg 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
   1898   1.1     joerg #endif
   1899   1.1     joerg 
   1900   1.1     joerg 	/* read default values for BBP registers */
   1901   1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
   1902   1.1     joerg #ifdef RUM_DEBUG
   1903   1.1     joerg 	for (i = 0; i < 14; i++) {
   1904   1.1     joerg 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
   1905   1.1     joerg 			continue;
   1906   1.1     joerg 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
   1907   1.1     joerg 		    sc->bbp_prom[i].val));
   1908   1.1     joerg 	}
   1909   1.1     joerg #endif
   1910   1.1     joerg }
   1911   1.1     joerg 
   1912  1.35  jmcneill static int
   1913   1.1     joerg rum_bbp_init(struct rum_softc *sc)
   1914   1.1     joerg {
   1915  1.37  pgoyette 	unsigned int i, ntries;
   1916   1.1     joerg 	uint8_t val;
   1917   1.1     joerg 
   1918   1.1     joerg 	/* wait for BBP to be ready */
   1919   1.1     joerg 	for (ntries = 0; ntries < 100; ntries++) {
   1920   1.1     joerg 		val = rum_bbp_read(sc, 0);
   1921   1.1     joerg 		if (val != 0 && val != 0xff)
   1922   1.1     joerg 			break;
   1923   1.1     joerg 		DELAY(1000);
   1924   1.1     joerg 	}
   1925   1.1     joerg 	if (ntries == 100) {
   1926   1.1     joerg 		printf("%s: timeout waiting for BBP\n",
   1927  1.33    dyoung 		    device_xname(sc->sc_dev));
   1928   1.1     joerg 		return EIO;
   1929   1.1     joerg 	}
   1930   1.1     joerg 
   1931   1.1     joerg 	/* initialize BBP registers to default values */
   1932  1.52     skrll 	for (i = 0; i < __arraycount(rum_def_bbp); i++)
   1933   1.1     joerg 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
   1934   1.1     joerg 
   1935   1.1     joerg 	/* write vendor-specific BBP values (from EEPROM) */
   1936   1.1     joerg 	for (i = 0; i < 16; i++) {
   1937   1.1     joerg 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
   1938   1.1     joerg 			continue;
   1939   1.1     joerg 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
   1940   1.1     joerg 	}
   1941   1.1     joerg 
   1942   1.1     joerg 	return 0;
   1943   1.1     joerg }
   1944   1.1     joerg 
   1945  1.35  jmcneill static int
   1946   1.1     joerg rum_init(struct ifnet *ifp)
   1947   1.1     joerg {
   1948   1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1949   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1950   1.1     joerg 	uint32_t tmp;
   1951   1.1     joerg 	usbd_status error = 0;
   1952  1.37  pgoyette 	unsigned int i, ntries;
   1953   1.1     joerg 
   1954   1.1     joerg 	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
   1955   1.1     joerg 		if (rum_attachhook(sc))
   1956   1.1     joerg 			goto fail;
   1957   1.1     joerg 	}
   1958   1.1     joerg 
   1959   1.1     joerg 	rum_stop(ifp, 0);
   1960   1.1     joerg 
   1961   1.1     joerg 	/* initialize MAC registers to default values */
   1962  1.52     skrll 	for (i = 0; i < __arraycount(rum_def_mac); i++)
   1963   1.1     joerg 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
   1964   1.1     joerg 
   1965   1.1     joerg 	/* set host ready */
   1966   1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 3);
   1967   1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 0);
   1968   1.1     joerg 
   1969   1.1     joerg 	/* wait for BBP/RF to wakeup */
   1970   1.1     joerg 	for (ntries = 0; ntries < 1000; ntries++) {
   1971   1.1     joerg 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
   1972   1.1     joerg 			break;
   1973   1.1     joerg 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
   1974   1.1     joerg 		DELAY(1000);
   1975   1.1     joerg 	}
   1976   1.1     joerg 	if (ntries == 1000) {
   1977   1.1     joerg 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
   1978  1.33    dyoung 		    device_xname(sc->sc_dev));
   1979   1.1     joerg 		goto fail;
   1980   1.1     joerg 	}
   1981   1.1     joerg 
   1982   1.1     joerg 	if ((error = rum_bbp_init(sc)) != 0)
   1983   1.1     joerg 		goto fail;
   1984   1.1     joerg 
   1985   1.1     joerg 	/* select default channel */
   1986   1.1     joerg 	rum_select_band(sc, ic->ic_curchan);
   1987   1.1     joerg 	rum_select_antenna(sc);
   1988   1.1     joerg 	rum_set_chan(sc, ic->ic_curchan);
   1989   1.1     joerg 
   1990   1.1     joerg 	/* clear STA registers */
   1991  1.52     skrll 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
   1992   1.1     joerg 
   1993  1.15    dyoung 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   1994   1.1     joerg 	rum_set_macaddr(sc, ic->ic_myaddr);
   1995   1.1     joerg 
   1996   1.1     joerg 	/* initialize ASIC */
   1997   1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 4);
   1998   1.1     joerg 
   1999   1.1     joerg 	/*
   2000   1.1     joerg 	 * Allocate xfer for AMRR statistics requests.
   2001   1.1     joerg 	 */
   2002  1.52     skrll 	struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
   2003  1.52     skrll 	error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0,
   2004  1.52     skrll 	    &sc->amrr_xfer);
   2005  1.52     skrll 	if (error) {
   2006   1.1     joerg 		printf("%s: could not allocate AMRR xfer\n",
   2007  1.33    dyoung 		    device_xname(sc->sc_dev));
   2008   1.1     joerg 		goto fail;
   2009   1.1     joerg 	}
   2010   1.1     joerg 
   2011   1.1     joerg 	/*
   2012   1.1     joerg 	 * Open Tx and Rx USB bulk pipes.
   2013   1.1     joerg 	 */
   2014   1.1     joerg 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
   2015   1.1     joerg 	    &sc->sc_tx_pipeh);
   2016   1.1     joerg 	if (error != 0) {
   2017   1.1     joerg 		printf("%s: could not open Tx pipe: %s\n",
   2018  1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   2019   1.1     joerg 		goto fail;
   2020   1.1     joerg 	}
   2021   1.1     joerg 
   2022   1.1     joerg 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
   2023   1.1     joerg 	    &sc->sc_rx_pipeh);
   2024   1.1     joerg 	if (error != 0) {
   2025   1.1     joerg 		printf("%s: could not open Rx pipe: %s\n",
   2026  1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   2027   1.1     joerg 		goto fail;
   2028   1.1     joerg 	}
   2029   1.1     joerg 
   2030   1.1     joerg 	/*
   2031   1.1     joerg 	 * Allocate Tx and Rx xfer queues.
   2032   1.1     joerg 	 */
   2033   1.1     joerg 	error = rum_alloc_tx_list(sc);
   2034   1.1     joerg 	if (error != 0) {
   2035   1.1     joerg 		printf("%s: could not allocate Tx list\n",
   2036  1.33    dyoung 		    device_xname(sc->sc_dev));
   2037   1.1     joerg 		goto fail;
   2038   1.1     joerg 	}
   2039   1.1     joerg 
   2040   1.1     joerg 	error = rum_alloc_rx_list(sc);
   2041   1.1     joerg 	if (error != 0) {
   2042   1.1     joerg 		printf("%s: could not allocate Rx list\n",
   2043  1.33    dyoung 		    device_xname(sc->sc_dev));
   2044   1.1     joerg 		goto fail;
   2045   1.1     joerg 	}
   2046   1.1     joerg 
   2047   1.1     joerg 	/*
   2048   1.1     joerg 	 * Start up the receive pipe.
   2049   1.1     joerg 	 */
   2050  1.18  kiyohara 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
   2051  1.52     skrll 		struct rum_rx_data *data;
   2052  1.52     skrll 
   2053   1.1     joerg 		data = &sc->rx_data[i];
   2054   1.1     joerg 
   2055  1.52     skrll 		usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
   2056  1.52     skrll 		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
   2057  1.18  kiyohara 		error = usbd_transfer(data->xfer);
   2058  1.18  kiyohara 		if (error != USBD_NORMAL_COMPLETION &&
   2059  1.18  kiyohara 		    error != USBD_IN_PROGRESS) {
   2060  1.18  kiyohara 			printf("%s: could not queue Rx transfer\n",
   2061  1.33    dyoung 			    device_xname(sc->sc_dev));
   2062  1.18  kiyohara 			goto fail;
   2063  1.18  kiyohara 		}
   2064   1.1     joerg 	}
   2065   1.1     joerg 
   2066   1.1     joerg 	/* update Rx filter */
   2067   1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
   2068   1.1     joerg 
   2069   1.1     joerg 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
   2070   1.1     joerg 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2071   1.1     joerg 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
   2072   1.1     joerg 		       RT2573_DROP_ACKCTS;
   2073   1.1     joerg 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
   2074   1.1     joerg 			tmp |= RT2573_DROP_TODS;
   2075   1.1     joerg 		if (!(ifp->if_flags & IFF_PROMISC))
   2076   1.1     joerg 			tmp |= RT2573_DROP_NOT_TO_ME;
   2077   1.1     joerg 	}
   2078   1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
   2079   1.1     joerg 
   2080   1.1     joerg 	ifp->if_flags &= ~IFF_OACTIVE;
   2081   1.1     joerg 	ifp->if_flags |= IFF_RUNNING;
   2082   1.1     joerg 
   2083   1.1     joerg 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   2084   1.1     joerg 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   2085   1.1     joerg 	else
   2086   1.1     joerg 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   2087   1.1     joerg 
   2088   1.1     joerg 	return 0;
   2089   1.1     joerg 
   2090   1.1     joerg fail:	rum_stop(ifp, 1);
   2091   1.1     joerg 	return error;
   2092   1.1     joerg }
   2093   1.1     joerg 
   2094  1.35  jmcneill static void
   2095   1.1     joerg rum_stop(struct ifnet *ifp, int disable)
   2096   1.1     joerg {
   2097   1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   2098   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   2099   1.1     joerg 	uint32_t tmp;
   2100   1.1     joerg 
   2101   1.1     joerg 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
   2102   1.1     joerg 
   2103   1.1     joerg 	sc->sc_tx_timer = 0;
   2104   1.1     joerg 	ifp->if_timer = 0;
   2105   1.1     joerg 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2106   1.1     joerg 
   2107   1.1     joerg 	/* disable Rx */
   2108   1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
   2109   1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
   2110   1.1     joerg 
   2111   1.1     joerg 	/* reset ASIC */
   2112   1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 3);
   2113   1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 0);
   2114   1.1     joerg 
   2115  1.35  jmcneill 	if (sc->amrr_xfer != NULL) {
   2116  1.52     skrll 		usbd_destroy_xfer(sc->amrr_xfer);
   2117  1.35  jmcneill 		sc->amrr_xfer = NULL;
   2118  1.35  jmcneill 	}
   2119  1.35  jmcneill 
   2120   1.1     joerg 	if (sc->sc_rx_pipeh != NULL) {
   2121   1.1     joerg 		usbd_abort_pipe(sc->sc_rx_pipeh);
   2122  1.52     skrll 	}
   2123  1.52     skrll 
   2124  1.52     skrll 	if (sc->sc_tx_pipeh != NULL) {
   2125  1.52     skrll 		usbd_abort_pipe(sc->sc_tx_pipeh);
   2126  1.52     skrll 	}
   2127  1.52     skrll 
   2128  1.52     skrll 	rum_free_rx_list(sc);
   2129  1.52     skrll 	rum_free_tx_list(sc);
   2130  1.52     skrll 
   2131  1.52     skrll 	if (sc->sc_rx_pipeh != NULL) {
   2132   1.1     joerg 		usbd_close_pipe(sc->sc_rx_pipeh);
   2133   1.1     joerg 		sc->sc_rx_pipeh = NULL;
   2134   1.1     joerg 	}
   2135   1.1     joerg 
   2136   1.1     joerg 	if (sc->sc_tx_pipeh != NULL) {
   2137   1.1     joerg 		usbd_close_pipe(sc->sc_tx_pipeh);
   2138   1.1     joerg 		sc->sc_tx_pipeh = NULL;
   2139   1.1     joerg 	}
   2140   1.1     joerg }
   2141   1.1     joerg 
   2142  1.35  jmcneill static int
   2143   1.1     joerg rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
   2144   1.1     joerg {
   2145   1.1     joerg 	usb_device_request_t req;
   2146   1.1     joerg 	uint16_t reg = RT2573_MCU_CODE_BASE;
   2147   1.1     joerg 	usbd_status error;
   2148   1.1     joerg 
   2149   1.1     joerg 	/* copy firmware image into NIC */
   2150   1.1     joerg 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
   2151   1.1     joerg 		rum_write(sc, reg, UGETDW(ucode));
   2152   1.1     joerg 
   2153   1.1     joerg 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
   2154   1.1     joerg 	req.bRequest = RT2573_MCU_CNTL;
   2155   1.1     joerg 	USETW(req.wValue, RT2573_MCU_RUN);
   2156   1.1     joerg 	USETW(req.wIndex, 0);
   2157   1.1     joerg 	USETW(req.wLength, 0);
   2158   1.1     joerg 
   2159   1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, NULL);
   2160   1.1     joerg 	if (error != 0) {
   2161   1.1     joerg 		printf("%s: could not run firmware: %s\n",
   2162  1.33    dyoung 		    device_xname(sc->sc_dev), usbd_errstr(error));
   2163   1.1     joerg 	}
   2164   1.1     joerg 	return error;
   2165   1.1     joerg }
   2166   1.1     joerg 
   2167  1.35  jmcneill static int
   2168   1.1     joerg rum_prepare_beacon(struct rum_softc *sc)
   2169   1.1     joerg {
   2170   1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   2171   1.1     joerg 	struct rum_tx_desc desc;
   2172   1.1     joerg 	struct mbuf *m0;
   2173   1.1     joerg 	int rate;
   2174   1.1     joerg 
   2175   1.1     joerg 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
   2176   1.1     joerg 	if (m0 == NULL) {
   2177  1.21      cube 		aprint_error_dev(sc->sc_dev,
   2178  1.21      cube 		    "could not allocate beacon frame\n");
   2179   1.1     joerg 		return ENOBUFS;
   2180   1.1     joerg 	}
   2181   1.1     joerg 
   2182   1.1     joerg 	/* send beacons at the lowest available rate */
   2183   1.1     joerg 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
   2184   1.1     joerg 
   2185   1.1     joerg 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
   2186   1.1     joerg 	    m0->m_pkthdr.len, rate);
   2187   1.1     joerg 
   2188   1.1     joerg 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
   2189   1.1     joerg 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
   2190   1.1     joerg 
   2191   1.1     joerg 	/* copy beacon header and payload into NIC memory */
   2192   1.1     joerg 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
   2193   1.1     joerg 	    m0->m_pkthdr.len);
   2194   1.1     joerg 
   2195   1.1     joerg 	m_freem(m0);
   2196   1.1     joerg 
   2197   1.1     joerg 	return 0;
   2198   1.1     joerg }
   2199   1.1     joerg 
   2200  1.35  jmcneill static void
   2201  1.18  kiyohara rum_newassoc(struct ieee80211_node *ni, int isnew)
   2202  1.18  kiyohara {
   2203  1.18  kiyohara 	/* start with lowest Tx rate */
   2204  1.18  kiyohara 	ni->ni_txrate = 0;
   2205  1.18  kiyohara }
   2206  1.18  kiyohara 
   2207  1.35  jmcneill static void
   2208   1.1     joerg rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
   2209   1.1     joerg {
   2210   1.1     joerg 	int i;
   2211   1.1     joerg 
   2212   1.1     joerg 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
   2213  1.52     skrll 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
   2214   1.1     joerg 
   2215   1.1     joerg 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
   2216   1.1     joerg 
   2217   1.1     joerg 	/* set rate to some reasonable initial value */
   2218   1.1     joerg 	for (i = ni->ni_rates.rs_nrates - 1;
   2219   1.1     joerg 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
   2220   1.1     joerg 	     i--);
   2221   1.1     joerg 	ni->ni_txrate = i;
   2222   1.1     joerg 
   2223  1.33    dyoung 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
   2224   1.1     joerg }
   2225   1.1     joerg 
   2226  1.35  jmcneill static void
   2227   1.1     joerg rum_amrr_timeout(void *arg)
   2228   1.1     joerg {
   2229   1.1     joerg 	struct rum_softc *sc = arg;
   2230   1.1     joerg 	usb_device_request_t req;
   2231   1.1     joerg 
   2232   1.1     joerg 	/*
   2233   1.1     joerg 	 * Asynchronously read statistic registers (cleared by read).
   2234   1.1     joerg 	 */
   2235   1.1     joerg 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
   2236   1.1     joerg 	req.bRequest = RT2573_READ_MULTI_MAC;
   2237   1.1     joerg 	USETW(req.wValue, 0);
   2238   1.1     joerg 	USETW(req.wIndex, RT2573_STA_CSR0);
   2239  1.52     skrll 	USETW(req.wLength, sizeof(sc->sta));
   2240   1.1     joerg 
   2241   1.1     joerg 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
   2242  1.52     skrll 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
   2243   1.1     joerg 	    rum_amrr_update);
   2244   1.1     joerg 	(void)usbd_transfer(sc->amrr_xfer);
   2245   1.1     joerg }
   2246   1.1     joerg 
   2247  1.35  jmcneill static void
   2248  1.52     skrll rum_amrr_update(struct usbd_xfer *xfer, void *priv,
   2249   1.1     joerg     usbd_status status)
   2250   1.1     joerg {
   2251   1.1     joerg 	struct rum_softc *sc = (struct rum_softc *)priv;
   2252   1.1     joerg 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2253   1.1     joerg 
   2254   1.1     joerg 	if (status != USBD_NORMAL_COMPLETION) {
   2255   1.1     joerg 		printf("%s: could not retrieve Tx statistics - cancelling "
   2256  1.33    dyoung 		    "automatic rate control\n", device_xname(sc->sc_dev));
   2257   1.1     joerg 		return;
   2258   1.1     joerg 	}
   2259   1.1     joerg 
   2260   1.1     joerg 	/* count TX retry-fail as Tx errors */
   2261  1.66   thorpej 	if_statadd(ifp, if_oerrors, le32toh(sc->sta[5]) >> 16);
   2262   1.1     joerg 
   2263   1.1     joerg 	sc->amn.amn_retrycnt =
   2264   1.1     joerg 	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
   2265   1.1     joerg 	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
   2266   1.1     joerg 	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
   2267   1.1     joerg 
   2268   1.1     joerg 	sc->amn.amn_txcnt =
   2269   1.1     joerg 	    sc->amn.amn_retrycnt +
   2270   1.1     joerg 	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
   2271   1.1     joerg 
   2272   1.1     joerg 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
   2273   1.1     joerg 
   2274  1.33    dyoung 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
   2275   1.1     joerg }
   2276   1.1     joerg 
   2277  1.35  jmcneill static int
   2278  1.33    dyoung rum_activate(device_t self, enum devact act)
   2279   1.1     joerg {
   2280   1.1     joerg 	switch (act) {
   2281   1.1     joerg 	case DVACT_DEACTIVATE:
   2282   1.1     joerg 		/*if_deactivate(&sc->sc_ic.ic_if);*/
   2283  1.30    dyoung 		return 0;
   2284  1.30    dyoung 	default:
   2285  1.35  jmcneill 		return 0;
   2286   1.1     joerg 	}
   2287   1.1     joerg }
   2288  1.38  pgoyette 
   2289  1.64  christos MODULE(MODULE_CLASS_DRIVER, if_rum, NULL);
   2290  1.38  pgoyette 
   2291  1.38  pgoyette #ifdef _MODULE
   2292  1.38  pgoyette #include "ioconf.c"
   2293  1.38  pgoyette #endif
   2294  1.38  pgoyette 
   2295  1.38  pgoyette static int
   2296  1.38  pgoyette if_rum_modcmd(modcmd_t cmd, void *aux)
   2297  1.38  pgoyette {
   2298  1.38  pgoyette 	int error = 0;
   2299  1.38  pgoyette 
   2300  1.38  pgoyette 	switch (cmd) {
   2301  1.38  pgoyette 	case MODULE_CMD_INIT:
   2302  1.38  pgoyette #ifdef _MODULE
   2303  1.39  pgoyette 		error = config_init_component(cfdriver_ioconf_rum,
   2304  1.39  pgoyette 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
   2305  1.38  pgoyette #endif
   2306  1.38  pgoyette 		return error;
   2307  1.38  pgoyette 	case MODULE_CMD_FINI:
   2308  1.38  pgoyette #ifdef _MODULE
   2309  1.39  pgoyette 		error = config_fini_component(cfdriver_ioconf_rum,
   2310  1.39  pgoyette 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
   2311  1.38  pgoyette #endif
   2312  1.38  pgoyette 		return error;
   2313  1.38  pgoyette 	default:
   2314  1.38  pgoyette 		return ENOTTY;
   2315  1.38  pgoyette 	}
   2316  1.38  pgoyette }
   2317