Home | History | Annotate | Line # | Download | only in usb
if_rum.c revision 1.8
      1  1.1     joerg /*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
      2  1.8   mlelstv /*	$NetBSD: if_rum.c,v 1.8 2007/03/11 09:38:24 mlelstv Exp $	*/
      3  1.1     joerg 
      4  1.1     joerg /*-
      5  1.1     joerg  * Copyright (c) 2005, 2006 Damien Bergamini <damien.bergamini (at) free.fr>
      6  1.1     joerg  * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
      7  1.1     joerg  *
      8  1.1     joerg  * Permission to use, copy, modify, and distribute this software for any
      9  1.1     joerg  * purpose with or without fee is hereby granted, provided that the above
     10  1.1     joerg  * copyright notice and this permission notice appear in all copies.
     11  1.1     joerg  *
     12  1.1     joerg  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     13  1.1     joerg  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     14  1.1     joerg  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     15  1.1     joerg  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     16  1.1     joerg  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     17  1.1     joerg  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     18  1.1     joerg  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     19  1.1     joerg  */
     20  1.1     joerg 
     21  1.1     joerg /*-
     22  1.1     joerg  * Ralink Technology RT2501USB/RT2601USB chipset driver
     23  1.1     joerg  * http://www.ralinktech.com/
     24  1.1     joerg  */
     25  1.1     joerg 
     26  1.2   xtraeme #include <sys/cdefs.h>
     27  1.8   mlelstv __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.8 2007/03/11 09:38:24 mlelstv Exp $");
     28  1.2   xtraeme 
     29  1.1     joerg #include "bpfilter.h"
     30  1.1     joerg 
     31  1.1     joerg #include <sys/param.h>
     32  1.1     joerg #include <sys/sockio.h>
     33  1.1     joerg #include <sys/sysctl.h>
     34  1.1     joerg #include <sys/mbuf.h>
     35  1.1     joerg #include <sys/kernel.h>
     36  1.1     joerg #include <sys/socket.h>
     37  1.1     joerg #include <sys/systm.h>
     38  1.1     joerg #include <sys/malloc.h>
     39  1.1     joerg #include <sys/conf.h>
     40  1.1     joerg #include <sys/device.h>
     41  1.1     joerg 
     42  1.1     joerg #include <machine/bus.h>
     43  1.1     joerg #include <machine/endian.h>
     44  1.1     joerg #include <machine/intr.h>
     45  1.1     joerg 
     46  1.1     joerg #if NBPFILTER > 0
     47  1.1     joerg #include <net/bpf.h>
     48  1.1     joerg #endif
     49  1.1     joerg #include <net/if.h>
     50  1.1     joerg #include <net/if_arp.h>
     51  1.1     joerg #include <net/if_dl.h>
     52  1.1     joerg #include <net/if_ether.h>
     53  1.1     joerg #include <net/if_media.h>
     54  1.1     joerg #include <net/if_types.h>
     55  1.1     joerg 
     56  1.1     joerg #include <netinet/in.h>
     57  1.1     joerg #include <netinet/in_systm.h>
     58  1.1     joerg #include <netinet/in_var.h>
     59  1.1     joerg #include <netinet/ip.h>
     60  1.1     joerg 
     61  1.1     joerg #include <net80211/ieee80211_netbsd.h>
     62  1.1     joerg #include <net80211/ieee80211_var.h>
     63  1.1     joerg #include <net80211/ieee80211_amrr.h>
     64  1.1     joerg #include <net80211/ieee80211_radiotap.h>
     65  1.1     joerg 
     66  1.1     joerg #include <dev/firmload.h>
     67  1.1     joerg 
     68  1.1     joerg #include <dev/usb/usb.h>
     69  1.1     joerg #include <dev/usb/usbdi.h>
     70  1.1     joerg #include <dev/usb/usbdi_util.h>
     71  1.1     joerg #include <dev/usb/usbdevs.h>
     72  1.1     joerg 
     73  1.1     joerg #include <dev/usb/if_rumreg.h>
     74  1.1     joerg #include <dev/usb/if_rumvar.h>
     75  1.1     joerg 
     76  1.1     joerg #ifdef USB_DEBUG
     77  1.1     joerg #define RUM_DEBUG
     78  1.1     joerg #endif
     79  1.1     joerg 
     80  1.1     joerg #ifdef RUM_DEBUG
     81  1.1     joerg #define DPRINTF(x)	do { if (rum_debug) logprintf x; } while (0)
     82  1.1     joerg #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) logprintf x; } while (0)
     83  1.1     joerg int rum_debug = 0;
     84  1.1     joerg #else
     85  1.1     joerg #define DPRINTF(x)
     86  1.1     joerg #define DPRINTFN(n, x)
     87  1.1     joerg #endif
     88  1.1     joerg 
     89  1.1     joerg /* various supported device vendors/products */
     90  1.1     joerg static const struct usb_devno rum_devs[] = {
     91  1.1     joerg 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573 },
     92  1.1     joerg 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
     93  1.1     joerg 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
     94  1.1     joerg 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
     95  1.1     joerg 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
     96  1.1     joerg 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
     97  1.1     joerg 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
     98  1.1     joerg 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
     99  1.1     joerg 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
    100  1.1     joerg 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
    101  1.1     joerg 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
    102  1.1     joerg 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
    103  1.1     joerg 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
    104  1.4      elad 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
    105  1.1     joerg 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
    106  1.1     joerg 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
    107  1.1     joerg 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
    108  1.4      elad 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
    109  1.1     joerg 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
    110  1.1     joerg 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
    111  1.1     joerg 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
    112  1.1     joerg 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
    113  1.3  christos 	{ USB_VENDOR_RALINK_2,          USB_PRODUCT_RALINK_2_RT2573 },
    114  1.1     joerg 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
    115  1.1     joerg 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
    116  1.1     joerg 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
    117  1.1     joerg 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 }
    118  1.1     joerg };
    119  1.1     joerg 
    120  1.1     joerg Static int		rum_attachhook(void *);
    121  1.1     joerg Static int		rum_alloc_tx_list(struct rum_softc *);
    122  1.1     joerg Static void		rum_free_tx_list(struct rum_softc *);
    123  1.1     joerg Static int		rum_alloc_rx_list(struct rum_softc *);
    124  1.1     joerg Static void		rum_free_rx_list(struct rum_softc *);
    125  1.1     joerg Static int		rum_media_change(struct ifnet *);
    126  1.1     joerg Static void		rum_next_scan(void *);
    127  1.1     joerg Static void		rum_task(void *);
    128  1.1     joerg Static int		rum_newstate(struct ieee80211com *,
    129  1.1     joerg 			    enum ieee80211_state, int);
    130  1.1     joerg Static void		rum_txeof(usbd_xfer_handle, usbd_private_handle,
    131  1.1     joerg 			    usbd_status);
    132  1.1     joerg Static void		rum_rxeof(usbd_xfer_handle, usbd_private_handle,
    133  1.1     joerg 			    usbd_status);
    134  1.1     joerg #if NBPFILTER > 0
    135  1.1     joerg Static uint8_t		rum_rxrate(struct rum_rx_desc *);
    136  1.1     joerg #endif
    137  1.1     joerg Static int		rum_ack_rate(struct ieee80211com *, int);
    138  1.1     joerg Static uint16_t		rum_txtime(int, int, uint32_t);
    139  1.1     joerg Static uint8_t		rum_plcp_signal(int);
    140  1.1     joerg Static void		rum_setup_tx_desc(struct rum_softc *,
    141  1.1     joerg 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
    142  1.1     joerg 			    int);
    143  1.1     joerg Static int		rum_tx_mgt(struct rum_softc *, struct mbuf *,
    144  1.1     joerg 			    struct ieee80211_node *);
    145  1.1     joerg Static int		rum_tx_data(struct rum_softc *, struct mbuf *,
    146  1.1     joerg 			    struct ieee80211_node *);
    147  1.1     joerg Static void		rum_start(struct ifnet *);
    148  1.1     joerg Static void		rum_watchdog(struct ifnet *);
    149  1.7  christos Static int		rum_ioctl(struct ifnet *, u_long, void *);
    150  1.1     joerg Static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
    151  1.1     joerg 			    int);
    152  1.1     joerg Static uint32_t		rum_read(struct rum_softc *, uint16_t);
    153  1.1     joerg Static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
    154  1.1     joerg 			    int);
    155  1.1     joerg Static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
    156  1.1     joerg Static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
    157  1.1     joerg 			    size_t);
    158  1.1     joerg Static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
    159  1.1     joerg Static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
    160  1.1     joerg Static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
    161  1.1     joerg Static void		rum_select_antenna(struct rum_softc *);
    162  1.1     joerg Static void		rum_enable_mrr(struct rum_softc *);
    163  1.1     joerg Static void		rum_set_txpreamble(struct rum_softc *);
    164  1.1     joerg Static void		rum_set_basicrates(struct rum_softc *);
    165  1.1     joerg Static void		rum_select_band(struct rum_softc *,
    166  1.1     joerg 			    struct ieee80211_channel *);
    167  1.1     joerg Static void		rum_set_chan(struct rum_softc *,
    168  1.1     joerg 			    struct ieee80211_channel *);
    169  1.1     joerg Static void		rum_enable_tsf_sync(struct rum_softc *);
    170  1.1     joerg Static void		rum_update_slot(struct rum_softc *);
    171  1.1     joerg Static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
    172  1.1     joerg Static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
    173  1.1     joerg Static void		rum_update_promisc(struct rum_softc *);
    174  1.1     joerg Static const char	*rum_get_rf(int);
    175  1.1     joerg Static void		rum_read_eeprom(struct rum_softc *);
    176  1.1     joerg Static int		rum_bbp_init(struct rum_softc *);
    177  1.1     joerg Static int		rum_init(struct ifnet *);
    178  1.1     joerg Static void		rum_stop(struct ifnet *, int);
    179  1.1     joerg Static int		rum_load_microcode(struct rum_softc *, const u_char *,
    180  1.1     joerg 			    size_t);
    181  1.1     joerg Static int		rum_prepare_beacon(struct rum_softc *);
    182  1.1     joerg Static void		rum_amrr_start(struct rum_softc *,
    183  1.1     joerg 			    struct ieee80211_node *);
    184  1.1     joerg Static void		rum_amrr_timeout(void *);
    185  1.1     joerg Static void		rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
    186  1.1     joerg 			    usbd_status status);
    187  1.1     joerg 
    188  1.1     joerg /*
    189  1.1     joerg  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    190  1.1     joerg  */
    191  1.1     joerg static const struct ieee80211_rateset rum_rateset_11a =
    192  1.1     joerg 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    193  1.1     joerg 
    194  1.1     joerg static const struct ieee80211_rateset rum_rateset_11b =
    195  1.1     joerg 	{ 4, { 2, 4, 11, 22 } };
    196  1.1     joerg 
    197  1.1     joerg static const struct ieee80211_rateset rum_rateset_11g =
    198  1.1     joerg 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    199  1.1     joerg 
    200  1.1     joerg static const struct {
    201  1.1     joerg 	uint32_t	reg;
    202  1.1     joerg 	uint32_t	val;
    203  1.1     joerg } rum_def_mac[] = {
    204  1.1     joerg 	RT2573_DEF_MAC
    205  1.1     joerg };
    206  1.1     joerg 
    207  1.1     joerg static const struct {
    208  1.1     joerg 	uint8_t	reg;
    209  1.1     joerg 	uint8_t	val;
    210  1.1     joerg } rum_def_bbp[] = {
    211  1.1     joerg 	RT2573_DEF_BBP
    212  1.1     joerg };
    213  1.1     joerg 
    214  1.1     joerg static const struct rfprog {
    215  1.1     joerg 	uint8_t		chan;
    216  1.1     joerg 	uint32_t	r1, r2, r3, r4;
    217  1.1     joerg }  rum_rf5226[] = {
    218  1.1     joerg 	RT2573_RF5226
    219  1.1     joerg }, rum_rf5225[] = {
    220  1.1     joerg 	RT2573_RF5225
    221  1.1     joerg };
    222  1.1     joerg 
    223  1.1     joerg USB_DECLARE_DRIVER(rum);
    224  1.1     joerg 
    225  1.1     joerg USB_MATCH(rum)
    226  1.1     joerg {
    227  1.1     joerg 	USB_MATCH_START(rum, uaa);
    228  1.1     joerg 
    229  1.1     joerg 	if (uaa->iface != NULL)
    230  1.1     joerg 		return UMATCH_NONE;
    231  1.1     joerg 
    232  1.1     joerg 	return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
    233  1.1     joerg 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
    234  1.1     joerg }
    235  1.1     joerg 
    236  1.1     joerg Static int
    237  1.1     joerg rum_attachhook(void *xsc)
    238  1.1     joerg {
    239  1.1     joerg 	struct rum_softc *sc = xsc;
    240  1.1     joerg 	firmware_handle_t fwh;
    241  1.1     joerg 	const char *name = "rum-rt2573";
    242  1.1     joerg 	u_char *ucode;
    243  1.1     joerg 	size_t size;
    244  1.1     joerg 	int error;
    245  1.1     joerg 
    246  1.1     joerg 	if ((error = firmware_open("rum", name, &fwh)) != 0) {
    247  1.1     joerg 		printf("%s: failed loadfirmware of file %s (error %d)\n",
    248  1.1     joerg 		    USBDEVNAME(sc->sc_dev), name, error);
    249  1.1     joerg 		return error;
    250  1.1     joerg 	}
    251  1.1     joerg 	size = firmware_get_size(fwh);
    252  1.1     joerg 	ucode = firmware_malloc(size);
    253  1.1     joerg 	if (ucode == NULL) {
    254  1.1     joerg 		printf("%s: failed to allocate firmware memory\n",
    255  1.1     joerg 		    USBDEVNAME(sc->sc_dev));
    256  1.1     joerg 		firmware_close(fwh);
    257  1.1     joerg 		return ENOMEM;;
    258  1.1     joerg 	}
    259  1.1     joerg 	error = firmware_read(fwh, 0, ucode, size);
    260  1.1     joerg 	firmware_close(fwh);
    261  1.1     joerg 	if (error != 0) {
    262  1.1     joerg 		printf("%s: failed to read firmware (error %d)\n",
    263  1.1     joerg 		    USBDEVNAME(sc->sc_dev), error);
    264  1.1     joerg 		firmware_free(ucode, 0);
    265  1.1     joerg 		return error;
    266  1.1     joerg 	}
    267  1.1     joerg 
    268  1.1     joerg 	if (rum_load_microcode(sc, ucode, size) != 0) {
    269  1.1     joerg 		printf("%s: could not load 8051 microcode\n",
    270  1.1     joerg 		    USBDEVNAME(sc->sc_dev));
    271  1.1     joerg 		firmware_free(ucode, 0);
    272  1.1     joerg 		return ENXIO;
    273  1.1     joerg 	}
    274  1.1     joerg 
    275  1.1     joerg 	firmware_free(ucode, 0);
    276  1.1     joerg 	sc->sc_flags |= RT2573_FWLOADED;
    277  1.1     joerg 
    278  1.1     joerg 	return 0;
    279  1.1     joerg }
    280  1.1     joerg 
    281  1.1     joerg USB_ATTACH(rum)
    282  1.1     joerg {
    283  1.1     joerg 	USB_ATTACH_START(rum, sc, uaa);
    284  1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    285  1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    286  1.1     joerg 	usb_interface_descriptor_t *id;
    287  1.1     joerg 	usb_endpoint_descriptor_t *ed;
    288  1.1     joerg 	usbd_status error;
    289  1.1     joerg 	char *devinfop;
    290  1.1     joerg 	int i, ntries;
    291  1.1     joerg 	uint32_t tmp;
    292  1.1     joerg 
    293  1.1     joerg 	sc->sc_udev = uaa->device;
    294  1.1     joerg 	sc->sc_flags = 0;
    295  1.1     joerg 
    296  1.1     joerg 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
    297  1.1     joerg 	USB_ATTACH_SETUP;
    298  1.1     joerg 	printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
    299  1.1     joerg 	usbd_devinfo_free(devinfop);
    300  1.1     joerg 
    301  1.1     joerg 	if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
    302  1.1     joerg 		printf("%s: could not set configuration no\n",
    303  1.1     joerg 		    USBDEVNAME(sc->sc_dev));
    304  1.1     joerg 		USB_ATTACH_ERROR_RETURN;
    305  1.1     joerg 	}
    306  1.1     joerg 
    307  1.1     joerg 	/* get the first interface handle */
    308  1.1     joerg 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
    309  1.1     joerg 	    &sc->sc_iface);
    310  1.1     joerg 	if (error != 0) {
    311  1.1     joerg 		printf("%s: could not get interface handle\n",
    312  1.1     joerg 		    USBDEVNAME(sc->sc_dev));
    313  1.1     joerg 		USB_ATTACH_ERROR_RETURN;
    314  1.1     joerg 	}
    315  1.1     joerg 
    316  1.1     joerg 	/*
    317  1.1     joerg 	 * Find endpoints.
    318  1.1     joerg 	 */
    319  1.1     joerg 	id = usbd_get_interface_descriptor(sc->sc_iface);
    320  1.1     joerg 
    321  1.1     joerg 	sc->sc_rx_no = sc->sc_tx_no = -1;
    322  1.1     joerg 	for (i = 0; i < id->bNumEndpoints; i++) {
    323  1.1     joerg 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
    324  1.1     joerg 		if (ed == NULL) {
    325  1.1     joerg 			printf("%s: no endpoint descriptor for iface %d\n",
    326  1.1     joerg 			    USBDEVNAME(sc->sc_dev), i);
    327  1.1     joerg 			USB_ATTACH_ERROR_RETURN;
    328  1.1     joerg 		}
    329  1.1     joerg 
    330  1.1     joerg 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
    331  1.1     joerg 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    332  1.1     joerg 			sc->sc_rx_no = ed->bEndpointAddress;
    333  1.1     joerg 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
    334  1.1     joerg 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    335  1.1     joerg 			sc->sc_tx_no = ed->bEndpointAddress;
    336  1.1     joerg 	}
    337  1.1     joerg 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
    338  1.1     joerg 		printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
    339  1.1     joerg 		USB_ATTACH_ERROR_RETURN;
    340  1.1     joerg 	}
    341  1.1     joerg 
    342  1.1     joerg 	usb_init_task(&sc->sc_task, rum_task, sc);
    343  1.1     joerg 	callout_init(&sc->scan_ch);
    344  1.1     joerg 
    345  1.1     joerg 	sc->amrr.amrr_min_success_threshold =  1;
    346  1.1     joerg 	sc->amrr.amrr_max_success_threshold = 10;
    347  1.1     joerg 	callout_init(&sc->amrr_ch);
    348  1.1     joerg 
    349  1.1     joerg 	/* retrieve RT2573 rev. no */
    350  1.1     joerg 	for (ntries = 0; ntries < 1000; ntries++) {
    351  1.1     joerg 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
    352  1.1     joerg 			break;
    353  1.1     joerg 		DELAY(1000);
    354  1.1     joerg 	}
    355  1.1     joerg 	if (ntries == 1000) {
    356  1.1     joerg 		printf("%s: timeout waiting for chip to settle\n",
    357  1.1     joerg 		    USBDEVNAME(sc->sc_dev));
    358  1.1     joerg 		USB_ATTACH_ERROR_RETURN;
    359  1.1     joerg 	}
    360  1.1     joerg 
    361  1.1     joerg 	/* retrieve MAC address and various other things from EEPROM */
    362  1.1     joerg 	rum_read_eeprom(sc);
    363  1.1     joerg 
    364  1.1     joerg 	printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
    365  1.1     joerg 	    USBDEVNAME(sc->sc_dev), sc->macbbp_rev, tmp,
    366  1.1     joerg 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
    367  1.1     joerg 
    368  1.1     joerg 	ic->ic_ifp = ifp;
    369  1.1     joerg 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    370  1.1     joerg 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    371  1.1     joerg 	ic->ic_state = IEEE80211_S_INIT;
    372  1.1     joerg 
    373  1.1     joerg 	/* set device capabilities */
    374  1.1     joerg 	ic->ic_caps =
    375  1.1     joerg 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
    376  1.1     joerg 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    377  1.1     joerg 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
    378  1.1     joerg 	    IEEE80211_C_TXPMGT |	/* tx power management */
    379  1.1     joerg 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    380  1.1     joerg 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    381  1.1     joerg 	    IEEE80211_C_WPA;		/* 802.11i */
    382  1.1     joerg 
    383  1.1     joerg 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
    384  1.1     joerg 		/* set supported .11a rates */
    385  1.1     joerg 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
    386  1.1     joerg 
    387  1.1     joerg 		/* set supported .11a channels */
    388  1.1     joerg 		for (i = 34; i <= 46; i += 4) {
    389  1.1     joerg 			ic->ic_channels[i].ic_freq =
    390  1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    391  1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    392  1.1     joerg 		}
    393  1.1     joerg 		for (i = 36; i <= 64; i += 4) {
    394  1.1     joerg 			ic->ic_channels[i].ic_freq =
    395  1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    396  1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    397  1.1     joerg 		}
    398  1.1     joerg 		for (i = 100; i <= 140; i += 4) {
    399  1.1     joerg 			ic->ic_channels[i].ic_freq =
    400  1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    401  1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    402  1.1     joerg 		}
    403  1.1     joerg 		for (i = 149; i <= 165; i += 4) {
    404  1.1     joerg 			ic->ic_channels[i].ic_freq =
    405  1.1     joerg 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    406  1.1     joerg 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    407  1.1     joerg 		}
    408  1.1     joerg 	}
    409  1.1     joerg 
    410  1.1     joerg 	/* set supported .11b and .11g rates */
    411  1.1     joerg 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
    412  1.1     joerg 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
    413  1.1     joerg 
    414  1.1     joerg 	/* set supported .11b and .11g channels (1 through 14) */
    415  1.1     joerg 	for (i = 1; i <= 14; i++) {
    416  1.1     joerg 		ic->ic_channels[i].ic_freq =
    417  1.1     joerg 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    418  1.1     joerg 		ic->ic_channels[i].ic_flags =
    419  1.1     joerg 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    420  1.1     joerg 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    421  1.1     joerg 	}
    422  1.1     joerg 
    423  1.1     joerg 	ifp->if_softc = sc;
    424  1.1     joerg 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    425  1.1     joerg 	ifp->if_init = rum_init;
    426  1.1     joerg 	ifp->if_ioctl = rum_ioctl;
    427  1.1     joerg 	ifp->if_start = rum_start;
    428  1.1     joerg 	ifp->if_watchdog = rum_watchdog;
    429  1.1     joerg 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
    430  1.1     joerg 	IFQ_SET_READY(&ifp->if_snd);
    431  1.1     joerg 	memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
    432  1.1     joerg 
    433  1.1     joerg 	if_attach(ifp);
    434  1.1     joerg 	ieee80211_ifattach(ic);
    435  1.1     joerg 
    436  1.1     joerg 	/* override state transition machine */
    437  1.1     joerg 	sc->sc_newstate = ic->ic_newstate;
    438  1.1     joerg 	ic->ic_newstate = rum_newstate;
    439  1.1     joerg 	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
    440  1.1     joerg 
    441  1.1     joerg #if NBPFILTER > 0
    442  1.1     joerg 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    443  1.1     joerg 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf);
    444  1.1     joerg 
    445  1.1     joerg 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    446  1.1     joerg 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    447  1.1     joerg 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
    448  1.1     joerg 
    449  1.1     joerg 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    450  1.1     joerg 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    451  1.1     joerg 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
    452  1.1     joerg #endif
    453  1.1     joerg 
    454  1.1     joerg 	ieee80211_announce(ic);
    455  1.1     joerg 
    456  1.1     joerg 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
    457  1.1     joerg 	    USBDEV(sc->sc_dev));
    458  1.1     joerg 
    459  1.1     joerg 	USB_ATTACH_SUCCESS_RETURN;
    460  1.1     joerg }
    461  1.1     joerg 
    462  1.1     joerg USB_DETACH(rum)
    463  1.1     joerg {
    464  1.1     joerg 	USB_DETACH_START(rum, sc);
    465  1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    466  1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    467  1.1     joerg 	int s;
    468  1.1     joerg 
    469  1.1     joerg 	s = splusb();
    470  1.1     joerg 
    471  1.1     joerg 	rum_stop(ifp, 1);
    472  1.1     joerg 	usb_rem_task(sc->sc_udev, &sc->sc_task);
    473  1.1     joerg 	callout_stop(&sc->scan_ch);
    474  1.1     joerg 	callout_stop(&sc->amrr_ch);
    475  1.1     joerg 
    476  1.1     joerg 	if (sc->amrr_xfer != NULL) {
    477  1.1     joerg 		usbd_free_xfer(sc->amrr_xfer);
    478  1.1     joerg 		sc->amrr_xfer = NULL;
    479  1.1     joerg 	}
    480  1.1     joerg 
    481  1.1     joerg 	if (sc->sc_rx_pipeh != NULL) {
    482  1.1     joerg 		usbd_abort_pipe(sc->sc_rx_pipeh);
    483  1.1     joerg 		usbd_close_pipe(sc->sc_rx_pipeh);
    484  1.1     joerg 	}
    485  1.1     joerg 
    486  1.1     joerg 	if (sc->sc_tx_pipeh != NULL) {
    487  1.1     joerg 		usbd_abort_pipe(sc->sc_tx_pipeh);
    488  1.1     joerg 		usbd_close_pipe(sc->sc_tx_pipeh);
    489  1.1     joerg 	}
    490  1.1     joerg 
    491  1.1     joerg 	rum_free_rx_list(sc);
    492  1.1     joerg 	rum_free_tx_list(sc);
    493  1.1     joerg 
    494  1.1     joerg #if NBPFILTER > 0
    495  1.1     joerg 	bpfdetach(ifp);
    496  1.1     joerg #endif
    497  1.1     joerg 	ieee80211_ifdetach(ic);	/* free all nodes */
    498  1.1     joerg 	if_detach(ifp);
    499  1.1     joerg 
    500  1.1     joerg 	splx(s);
    501  1.1     joerg 
    502  1.1     joerg 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
    503  1.1     joerg 	    USBDEV(sc->sc_dev));
    504  1.1     joerg 
    505  1.1     joerg 	return 0;
    506  1.1     joerg }
    507  1.1     joerg 
    508  1.1     joerg Static int
    509  1.1     joerg rum_alloc_tx_list(struct rum_softc *sc)
    510  1.1     joerg {
    511  1.1     joerg 	struct rum_tx_data *data;
    512  1.1     joerg 	int i, error;
    513  1.1     joerg 
    514  1.1     joerg 	sc->tx_queued = 0;
    515  1.1     joerg 
    516  1.1     joerg 	for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
    517  1.1     joerg 		data = &sc->tx_data[i];
    518  1.1     joerg 
    519  1.1     joerg 		data->sc = sc;
    520  1.1     joerg 
    521  1.1     joerg 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
    522  1.1     joerg 		if (data->xfer == NULL) {
    523  1.1     joerg 			printf("%s: could not allocate tx xfer\n",
    524  1.1     joerg 			    USBDEVNAME(sc->sc_dev));
    525  1.1     joerg 			error = ENOMEM;
    526  1.1     joerg 			goto fail;
    527  1.1     joerg 		}
    528  1.1     joerg 
    529  1.1     joerg 		data->buf = usbd_alloc_buffer(data->xfer,
    530  1.1     joerg 		    RT2573_TX_DESC_SIZE + MCLBYTES);
    531  1.1     joerg 		if (data->buf == NULL) {
    532  1.1     joerg 			printf("%s: could not allocate tx buffer\n",
    533  1.1     joerg 			    USBDEVNAME(sc->sc_dev));
    534  1.1     joerg 			error = ENOMEM;
    535  1.1     joerg 			goto fail;
    536  1.1     joerg 		}
    537  1.1     joerg 
    538  1.1     joerg 		/* clean Tx descriptor */
    539  1.1     joerg 		bzero(data->buf, RT2573_TX_DESC_SIZE);
    540  1.1     joerg 	}
    541  1.1     joerg 
    542  1.1     joerg 	return 0;
    543  1.1     joerg 
    544  1.1     joerg fail:	rum_free_tx_list(sc);
    545  1.1     joerg 	return error;
    546  1.1     joerg }
    547  1.1     joerg 
    548  1.1     joerg Static void
    549  1.1     joerg rum_free_tx_list(struct rum_softc *sc)
    550  1.1     joerg {
    551  1.1     joerg 	struct rum_tx_data *data;
    552  1.1     joerg 	int i;
    553  1.1     joerg 
    554  1.1     joerg 	for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
    555  1.1     joerg 		data = &sc->tx_data[i];
    556  1.1     joerg 
    557  1.1     joerg 		if (data->xfer != NULL) {
    558  1.1     joerg 			usbd_free_xfer(data->xfer);
    559  1.1     joerg 			data->xfer = NULL;
    560  1.1     joerg 		}
    561  1.1     joerg 
    562  1.1     joerg 		if (data->ni != NULL) {
    563  1.1     joerg 			ieee80211_free_node(data->ni);
    564  1.1     joerg 			data->ni = NULL;
    565  1.1     joerg 		}
    566  1.1     joerg 	}
    567  1.1     joerg }
    568  1.1     joerg 
    569  1.1     joerg Static int
    570  1.1     joerg rum_alloc_rx_list(struct rum_softc *sc)
    571  1.1     joerg {
    572  1.1     joerg 	struct rum_rx_data *data;
    573  1.1     joerg 	int i, error;
    574  1.1     joerg 
    575  1.1     joerg 	for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
    576  1.1     joerg 		data = &sc->rx_data[i];
    577  1.1     joerg 
    578  1.1     joerg 		data->sc = sc;
    579  1.1     joerg 
    580  1.1     joerg 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
    581  1.1     joerg 		if (data->xfer == NULL) {
    582  1.1     joerg 			printf("%s: could not allocate rx xfer\n",
    583  1.1     joerg 			    USBDEVNAME(sc->sc_dev));
    584  1.1     joerg 			error = ENOMEM;
    585  1.1     joerg 			goto fail;
    586  1.1     joerg 		}
    587  1.1     joerg 
    588  1.1     joerg 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
    589  1.1     joerg 			printf("%s: could not allocate rx buffer\n",
    590  1.1     joerg 			    USBDEVNAME(sc->sc_dev));
    591  1.1     joerg 			error = ENOMEM;
    592  1.1     joerg 			goto fail;
    593  1.1     joerg 		}
    594  1.1     joerg 
    595  1.1     joerg 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    596  1.1     joerg 		if (data->m == NULL) {
    597  1.1     joerg 			printf("%s: could not allocate rx mbuf\n",
    598  1.1     joerg 			    USBDEVNAME(sc->sc_dev));
    599  1.1     joerg 			error = ENOMEM;
    600  1.1     joerg 			goto fail;
    601  1.1     joerg 		}
    602  1.1     joerg 
    603  1.1     joerg 		MCLGET(data->m, M_DONTWAIT);
    604  1.1     joerg 		if (!(data->m->m_flags & M_EXT)) {
    605  1.1     joerg 			printf("%s: could not allocate rx mbuf cluster\n",
    606  1.1     joerg 			    USBDEVNAME(sc->sc_dev));
    607  1.1     joerg 			error = ENOMEM;
    608  1.1     joerg 			goto fail;
    609  1.1     joerg 		}
    610  1.1     joerg 
    611  1.1     joerg 		data->buf = mtod(data->m, uint8_t *);
    612  1.1     joerg 	}
    613  1.1     joerg 
    614  1.1     joerg 	return 0;
    615  1.1     joerg 
    616  1.1     joerg fail:	rum_free_tx_list(sc);
    617  1.1     joerg 	return error;
    618  1.1     joerg }
    619  1.1     joerg 
    620  1.1     joerg Static void
    621  1.1     joerg rum_free_rx_list(struct rum_softc *sc)
    622  1.1     joerg {
    623  1.1     joerg 	struct rum_rx_data *data;
    624  1.1     joerg 	int i;
    625  1.1     joerg 
    626  1.1     joerg 	for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
    627  1.1     joerg 		data = &sc->rx_data[i];
    628  1.1     joerg 
    629  1.1     joerg 		if (data->xfer != NULL) {
    630  1.1     joerg 			usbd_free_xfer(data->xfer);
    631  1.1     joerg 			data->xfer = NULL;
    632  1.1     joerg 		}
    633  1.1     joerg 
    634  1.1     joerg 		if (data->m != NULL) {
    635  1.1     joerg 			m_freem(data->m);
    636  1.1     joerg 			data->m = NULL;
    637  1.1     joerg 		}
    638  1.1     joerg 	}
    639  1.1     joerg }
    640  1.1     joerg 
    641  1.1     joerg Static int
    642  1.1     joerg rum_media_change(struct ifnet *ifp)
    643  1.1     joerg {
    644  1.1     joerg 	int error;
    645  1.1     joerg 
    646  1.1     joerg 	error = ieee80211_media_change(ifp);
    647  1.1     joerg 	if (error != ENETRESET)
    648  1.1     joerg 		return error;
    649  1.1     joerg 
    650  1.1     joerg 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    651  1.1     joerg 		rum_init(ifp);
    652  1.1     joerg 
    653  1.1     joerg 	return 0;
    654  1.1     joerg }
    655  1.1     joerg 
    656  1.1     joerg /*
    657  1.1     joerg  * This function is called periodically (every 200ms) during scanning to
    658  1.1     joerg  * switch from one channel to another.
    659  1.1     joerg  */
    660  1.1     joerg Static void
    661  1.1     joerg rum_next_scan(void *arg)
    662  1.1     joerg {
    663  1.1     joerg 	struct rum_softc *sc = arg;
    664  1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    665  1.1     joerg 
    666  1.1     joerg 	if (ic->ic_state == IEEE80211_S_SCAN)
    667  1.1     joerg 		ieee80211_next_scan(ic);
    668  1.1     joerg }
    669  1.1     joerg 
    670  1.1     joerg Static void
    671  1.1     joerg rum_task(void *arg)
    672  1.1     joerg {
    673  1.1     joerg 	struct rum_softc *sc = arg;
    674  1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    675  1.1     joerg 	enum ieee80211_state ostate;
    676  1.1     joerg 	struct ieee80211_node *ni;
    677  1.1     joerg 	uint32_t tmp;
    678  1.1     joerg 
    679  1.1     joerg 	ostate = ic->ic_state;
    680  1.1     joerg 
    681  1.1     joerg 	switch (sc->sc_state) {
    682  1.1     joerg 	case IEEE80211_S_INIT:
    683  1.1     joerg 		if (ostate == IEEE80211_S_RUN) {
    684  1.1     joerg 			/* abort TSF synchronization */
    685  1.1     joerg 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
    686  1.1     joerg 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
    687  1.1     joerg 		}
    688  1.1     joerg 		break;
    689  1.1     joerg 
    690  1.1     joerg 	case IEEE80211_S_SCAN:
    691  1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    692  1.1     joerg 		callout_reset(&sc->scan_ch, hz / 5, rum_next_scan, sc);
    693  1.1     joerg 		break;
    694  1.1     joerg 
    695  1.1     joerg 	case IEEE80211_S_AUTH:
    696  1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    697  1.1     joerg 		break;
    698  1.1     joerg 
    699  1.1     joerg 	case IEEE80211_S_ASSOC:
    700  1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    701  1.1     joerg 		break;
    702  1.1     joerg 
    703  1.1     joerg 	case IEEE80211_S_RUN:
    704  1.1     joerg 		rum_set_chan(sc, ic->ic_curchan);
    705  1.1     joerg 
    706  1.1     joerg 		ni = ic->ic_bss;
    707  1.1     joerg 
    708  1.1     joerg 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    709  1.1     joerg 			rum_update_slot(sc);
    710  1.1     joerg 			rum_enable_mrr(sc);
    711  1.1     joerg 			rum_set_txpreamble(sc);
    712  1.1     joerg 			rum_set_basicrates(sc);
    713  1.1     joerg 			rum_set_bssid(sc, ni->ni_bssid);
    714  1.1     joerg 		}
    715  1.1     joerg 
    716  1.1     joerg 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
    717  1.1     joerg 		    ic->ic_opmode == IEEE80211_M_IBSS)
    718  1.1     joerg 			rum_prepare_beacon(sc);
    719  1.1     joerg 
    720  1.1     joerg 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
    721  1.1     joerg 			rum_enable_tsf_sync(sc);
    722  1.1     joerg 
    723  1.1     joerg 		/* enable automatic rate adaptation in STA mode */
    724  1.1     joerg 		if (ic->ic_opmode == IEEE80211_M_STA &&
    725  1.1     joerg 		    ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
    726  1.1     joerg 			rum_amrr_start(sc, ni);
    727  1.1     joerg 
    728  1.1     joerg 		break;
    729  1.1     joerg 	}
    730  1.1     joerg 
    731  1.1     joerg 	sc->sc_newstate(ic, sc->sc_state, -1);
    732  1.1     joerg }
    733  1.1     joerg 
    734  1.1     joerg Static int
    735  1.1     joerg rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    736  1.1     joerg {
    737  1.1     joerg 	struct rum_softc *sc = ic->ic_ifp->if_softc;
    738  1.1     joerg 
    739  1.1     joerg 	usb_rem_task(sc->sc_udev, &sc->sc_task);
    740  1.1     joerg 	callout_stop(&sc->scan_ch);
    741  1.1     joerg 	callout_stop(&sc->amrr_ch);
    742  1.1     joerg 
    743  1.1     joerg 	/* do it in a process context */
    744  1.1     joerg 	sc->sc_state = nstate;
    745  1.1     joerg 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
    746  1.1     joerg 
    747  1.1     joerg 	return 0;
    748  1.1     joerg }
    749  1.1     joerg 
    750  1.1     joerg /* quickly determine if a given rate is CCK or OFDM */
    751  1.1     joerg #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
    752  1.1     joerg 
    753  1.1     joerg #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
    754  1.1     joerg #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
    755  1.1     joerg 
    756  1.1     joerg Static void
    757  1.1     joerg rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
    758  1.1     joerg {
    759  1.1     joerg 	struct rum_tx_data *data = priv;
    760  1.1     joerg 	struct rum_softc *sc = data->sc;
    761  1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    762  1.1     joerg 	int s;
    763  1.1     joerg 
    764  1.1     joerg 	if (status != USBD_NORMAL_COMPLETION) {
    765  1.1     joerg 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
    766  1.1     joerg 			return;
    767  1.1     joerg 
    768  1.1     joerg 		printf("%s: could not transmit buffer: %s\n",
    769  1.1     joerg 		    USBDEVNAME(sc->sc_dev), usbd_errstr(status));
    770  1.1     joerg 
    771  1.1     joerg 		if (status == USBD_STALLED)
    772  1.1     joerg 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
    773  1.1     joerg 
    774  1.1     joerg 		ifp->if_oerrors++;
    775  1.1     joerg 		return;
    776  1.1     joerg 	}
    777  1.1     joerg 
    778  1.1     joerg 	s = splnet();
    779  1.1     joerg 
    780  1.1     joerg 	m_freem(data->m);
    781  1.1     joerg 	data->m = NULL;
    782  1.1     joerg 	ieee80211_free_node(data->ni);
    783  1.1     joerg 	data->ni = NULL;
    784  1.1     joerg 
    785  1.1     joerg 	sc->tx_queued--;
    786  1.1     joerg 	ifp->if_opackets++;
    787  1.1     joerg 
    788  1.1     joerg 	DPRINTFN(10, ("tx done\n"));
    789  1.1     joerg 
    790  1.1     joerg 	sc->sc_tx_timer = 0;
    791  1.1     joerg 	ifp->if_flags &= ~IFF_OACTIVE;
    792  1.1     joerg 	rum_start(ifp);
    793  1.1     joerg 
    794  1.1     joerg 	splx(s);
    795  1.1     joerg }
    796  1.1     joerg 
    797  1.1     joerg Static void
    798  1.1     joerg rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
    799  1.1     joerg {
    800  1.1     joerg 	struct rum_rx_data *data = priv;
    801  1.1     joerg 	struct rum_softc *sc = data->sc;
    802  1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
    803  1.1     joerg 	struct ifnet *ifp = &sc->sc_if;
    804  1.1     joerg 	struct rum_rx_desc *desc;
    805  1.1     joerg 	struct ieee80211_frame *wh;
    806  1.1     joerg 	struct ieee80211_node *ni;
    807  1.1     joerg 	struct mbuf *mnew, *m;
    808  1.1     joerg 	int s, len;
    809  1.1     joerg 
    810  1.1     joerg 	if (status != USBD_NORMAL_COMPLETION) {
    811  1.1     joerg 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
    812  1.1     joerg 			return;
    813  1.1     joerg 
    814  1.1     joerg 		if (status == USBD_STALLED)
    815  1.1     joerg 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
    816  1.1     joerg 		goto skip;
    817  1.1     joerg 	}
    818  1.1     joerg 
    819  1.1     joerg 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
    820  1.1     joerg 
    821  1.1     joerg 	if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
    822  1.1     joerg 		DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
    823  1.1     joerg 		    len));
    824  1.1     joerg 		ifp->if_ierrors++;
    825  1.1     joerg 		goto skip;
    826  1.1     joerg 	}
    827  1.1     joerg 
    828  1.1     joerg 	desc = (struct rum_rx_desc *)data->buf;
    829  1.1     joerg 
    830  1.1     joerg 	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
    831  1.1     joerg 		/*
    832  1.1     joerg 		 * This should not happen since we did not request to receive
    833  1.1     joerg 		 * those frames when we filled RT2573_TXRX_CSR0.
    834  1.1     joerg 		 */
    835  1.1     joerg 		DPRINTFN(5, ("CRC error\n"));
    836  1.1     joerg 		ifp->if_ierrors++;
    837  1.1     joerg 		goto skip;
    838  1.1     joerg 	}
    839  1.1     joerg 
    840  1.1     joerg 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
    841  1.1     joerg 	if (mnew == NULL) {
    842  1.1     joerg 		printf("%s: could not allocate rx mbuf\n",
    843  1.1     joerg 		    USBDEVNAME(sc->sc_dev));
    844  1.1     joerg 		ifp->if_ierrors++;
    845  1.1     joerg 		goto skip;
    846  1.1     joerg 	}
    847  1.1     joerg 
    848  1.1     joerg 	MCLGET(mnew, M_DONTWAIT);
    849  1.1     joerg 	if (!(mnew->m_flags & M_EXT)) {
    850  1.1     joerg 		printf("%s: could not allocate rx mbuf cluster\n",
    851  1.1     joerg 		    USBDEVNAME(sc->sc_dev));
    852  1.1     joerg 		m_freem(mnew);
    853  1.1     joerg 		ifp->if_ierrors++;
    854  1.1     joerg 		goto skip;
    855  1.1     joerg 	}
    856  1.1     joerg 
    857  1.1     joerg 	m = data->m;
    858  1.1     joerg 	data->m = mnew;
    859  1.1     joerg 	data->buf = mtod(data->m, uint8_t *);
    860  1.1     joerg 
    861  1.1     joerg 	/* finalize mbuf */
    862  1.1     joerg 	m->m_pkthdr.rcvif = ifp;
    863  1.7  christos 	m->m_data = (void *)(desc + 1);
    864  1.1     joerg 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
    865  1.1     joerg 
    866  1.1     joerg 	s = splnet();
    867  1.1     joerg 
    868  1.1     joerg #if NBPFILTER > 0
    869  1.1     joerg 	if (sc->sc_drvbpf != NULL) {
    870  1.1     joerg 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
    871  1.1     joerg 
    872  1.1     joerg 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
    873  1.1     joerg 		tap->wr_rate = rum_rxrate(desc);
    874  1.1     joerg 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
    875  1.1     joerg 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
    876  1.1     joerg 		tap->wr_antenna = sc->rx_ant;
    877  1.1     joerg 		tap->wr_antsignal = desc->rssi;
    878  1.1     joerg 
    879  1.1     joerg 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
    880  1.1     joerg 	}
    881  1.1     joerg #endif
    882  1.1     joerg 
    883  1.1     joerg 	wh = mtod(m, struct ieee80211_frame *);
    884  1.1     joerg 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
    885  1.1     joerg 
    886  1.1     joerg 	/* send the frame to the 802.11 layer */
    887  1.1     joerg 	ieee80211_input(ic, m, ni, desc->rssi, 0);
    888  1.1     joerg 
    889  1.1     joerg 	/* node is no longer needed */
    890  1.1     joerg 	ieee80211_free_node(ni);
    891  1.1     joerg 
    892  1.1     joerg 	splx(s);
    893  1.1     joerg 
    894  1.1     joerg 	DPRINTFN(15, ("rx done\n"));
    895  1.1     joerg 
    896  1.1     joerg skip:	/* setup a new transfer */
    897  1.1     joerg 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
    898  1.1     joerg 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
    899  1.1     joerg 	usbd_transfer(xfer);
    900  1.1     joerg }
    901  1.1     joerg 
    902  1.1     joerg /*
    903  1.1     joerg  * This function is only used by the Rx radiotap code. It returns the rate at
    904  1.1     joerg  * which a given frame was received.
    905  1.1     joerg  */
    906  1.1     joerg #if NBPFILTER > 0
    907  1.1     joerg Static uint8_t
    908  1.1     joerg rum_rxrate(struct rum_rx_desc *desc)
    909  1.1     joerg {
    910  1.1     joerg 	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
    911  1.1     joerg 		/* reverse function of rum_plcp_signal */
    912  1.1     joerg 		switch (desc->rate) {
    913  1.1     joerg 		case 0xb:	return 12;
    914  1.1     joerg 		case 0xf:	return 18;
    915  1.1     joerg 		case 0xa:	return 24;
    916  1.1     joerg 		case 0xe:	return 36;
    917  1.1     joerg 		case 0x9:	return 48;
    918  1.1     joerg 		case 0xd:	return 72;
    919  1.1     joerg 		case 0x8:	return 96;
    920  1.1     joerg 		case 0xc:	return 108;
    921  1.1     joerg 		}
    922  1.1     joerg 	} else {
    923  1.1     joerg 		if (desc->rate == 10)
    924  1.1     joerg 			return 2;
    925  1.1     joerg 		if (desc->rate == 20)
    926  1.1     joerg 			return 4;
    927  1.1     joerg 		if (desc->rate == 55)
    928  1.1     joerg 			return 11;
    929  1.1     joerg 		if (desc->rate == 110)
    930  1.1     joerg 			return 22;
    931  1.1     joerg 	}
    932  1.1     joerg 	return 2;	/* should not get there */
    933  1.1     joerg }
    934  1.1     joerg #endif
    935  1.1     joerg 
    936  1.1     joerg /*
    937  1.1     joerg  * Return the expected ack rate for a frame transmitted at rate `rate'.
    938  1.1     joerg  * XXX: this should depend on the destination node basic rate set.
    939  1.1     joerg  */
    940  1.1     joerg Static int
    941  1.1     joerg rum_ack_rate(struct ieee80211com *ic, int rate)
    942  1.1     joerg {
    943  1.1     joerg 	switch (rate) {
    944  1.1     joerg 	/* CCK rates */
    945  1.1     joerg 	case 2:
    946  1.1     joerg 		return 2;
    947  1.1     joerg 	case 4:
    948  1.1     joerg 	case 11:
    949  1.1     joerg 	case 22:
    950  1.1     joerg 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
    951  1.1     joerg 
    952  1.1     joerg 	/* OFDM rates */
    953  1.1     joerg 	case 12:
    954  1.1     joerg 	case 18:
    955  1.1     joerg 		return 12;
    956  1.1     joerg 	case 24:
    957  1.1     joerg 	case 36:
    958  1.1     joerg 		return 24;
    959  1.1     joerg 	case 48:
    960  1.1     joerg 	case 72:
    961  1.1     joerg 	case 96:
    962  1.1     joerg 	case 108:
    963  1.1     joerg 		return 48;
    964  1.1     joerg 	}
    965  1.1     joerg 
    966  1.1     joerg 	/* default to 1Mbps */
    967  1.1     joerg 	return 2;
    968  1.1     joerg }
    969  1.1     joerg 
    970  1.1     joerg /*
    971  1.1     joerg  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
    972  1.1     joerg  * The function automatically determines the operating mode depending on the
    973  1.1     joerg  * given rate. `flags' indicates whether short preamble is in use or not.
    974  1.1     joerg  */
    975  1.1     joerg Static uint16_t
    976  1.1     joerg rum_txtime(int len, int rate, uint32_t flags)
    977  1.1     joerg {
    978  1.1     joerg 	uint16_t txtime;
    979  1.1     joerg 
    980  1.1     joerg 	if (RUM_RATE_IS_OFDM(rate)) {
    981  1.1     joerg 		/* IEEE Std 802.11a-1999, pp. 37 */
    982  1.1     joerg 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
    983  1.1     joerg 		txtime = 16 + 4 + 4 * txtime + 6;
    984  1.1     joerg 	} else {
    985  1.1     joerg 		/* IEEE Std 802.11b-1999, pp. 28 */
    986  1.1     joerg 		txtime = (16 * len + rate - 1) / rate;
    987  1.1     joerg 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
    988  1.1     joerg 			txtime +=  72 + 24;
    989  1.1     joerg 		else
    990  1.1     joerg 			txtime += 144 + 48;
    991  1.1     joerg 	}
    992  1.1     joerg 	return txtime;
    993  1.1     joerg }
    994  1.1     joerg 
    995  1.1     joerg Static uint8_t
    996  1.1     joerg rum_plcp_signal(int rate)
    997  1.1     joerg {
    998  1.1     joerg 	switch (rate) {
    999  1.1     joerg 	/* CCK rates (returned values are device-dependent) */
   1000  1.1     joerg 	case 2:		return 0x0;
   1001  1.1     joerg 	case 4:		return 0x1;
   1002  1.1     joerg 	case 11:	return 0x2;
   1003  1.1     joerg 	case 22:	return 0x3;
   1004  1.1     joerg 
   1005  1.1     joerg 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1006  1.1     joerg 	case 12:	return 0xb;
   1007  1.1     joerg 	case 18:	return 0xf;
   1008  1.1     joerg 	case 24:	return 0xa;
   1009  1.1     joerg 	case 36:	return 0xe;
   1010  1.1     joerg 	case 48:	return 0x9;
   1011  1.1     joerg 	case 72:	return 0xd;
   1012  1.1     joerg 	case 96:	return 0x8;
   1013  1.1     joerg 	case 108:	return 0xc;
   1014  1.1     joerg 
   1015  1.1     joerg 	/* unsupported rates (should not get there) */
   1016  1.1     joerg 	default:	return 0xff;
   1017  1.1     joerg 	}
   1018  1.1     joerg }
   1019  1.1     joerg 
   1020  1.1     joerg Static void
   1021  1.1     joerg rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
   1022  1.1     joerg     uint32_t flags, uint16_t xflags, int len, int rate)
   1023  1.1     joerg {
   1024  1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1025  1.1     joerg 	uint16_t plcp_length;
   1026  1.1     joerg 	int remainder;
   1027  1.1     joerg 
   1028  1.1     joerg 	desc->flags = htole32(flags);
   1029  1.1     joerg 	desc->flags |= htole32(RT2573_TX_VALID);
   1030  1.1     joerg 	desc->flags |= htole32(len << 16);
   1031  1.1     joerg 
   1032  1.1     joerg 	desc->xflags = htole16(xflags);
   1033  1.1     joerg 
   1034  1.1     joerg 	desc->wme = htole16(
   1035  1.1     joerg 	    RT2573_QID(0) |
   1036  1.1     joerg 	    RT2573_AIFSN(2) |
   1037  1.1     joerg 	    RT2573_LOGCWMIN(4) |
   1038  1.1     joerg 	    RT2573_LOGCWMAX(10));
   1039  1.1     joerg 
   1040  1.1     joerg 	/* setup PLCP fields */
   1041  1.1     joerg 	desc->plcp_signal  = rum_plcp_signal(rate);
   1042  1.1     joerg 	desc->plcp_service = 4;
   1043  1.1     joerg 
   1044  1.1     joerg 	len += IEEE80211_CRC_LEN;
   1045  1.1     joerg 	if (RUM_RATE_IS_OFDM(rate)) {
   1046  1.1     joerg 		desc->flags |= htole32(RT2573_TX_OFDM);
   1047  1.1     joerg 
   1048  1.1     joerg 		plcp_length = len & 0xfff;
   1049  1.1     joerg 		desc->plcp_length_hi = plcp_length >> 6;
   1050  1.1     joerg 		desc->plcp_length_lo = plcp_length & 0x3f;
   1051  1.1     joerg 	} else {
   1052  1.1     joerg 		plcp_length = (16 * len + rate - 1) / rate;
   1053  1.1     joerg 		if (rate == 22) {
   1054  1.1     joerg 			remainder = (16 * len) % 22;
   1055  1.1     joerg 			if (remainder != 0 && remainder < 7)
   1056  1.1     joerg 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
   1057  1.1     joerg 		}
   1058  1.1     joerg 		desc->plcp_length_hi = plcp_length >> 8;
   1059  1.1     joerg 		desc->plcp_length_lo = plcp_length & 0xff;
   1060  1.1     joerg 
   1061  1.1     joerg 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1062  1.1     joerg 			desc->plcp_signal |= 0x08;
   1063  1.1     joerg 	}
   1064  1.1     joerg }
   1065  1.1     joerg 
   1066  1.1     joerg #define RUM_TX_TIMEOUT	5000
   1067  1.1     joerg 
   1068  1.1     joerg Static int
   1069  1.1     joerg rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
   1070  1.1     joerg {
   1071  1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1072  1.1     joerg 	struct rum_tx_desc *desc;
   1073  1.1     joerg 	struct rum_tx_data *data;
   1074  1.1     joerg 	struct ieee80211_frame *wh;
   1075  1.1     joerg 	uint32_t flags = 0;
   1076  1.1     joerg 	uint16_t dur;
   1077  1.1     joerg 	usbd_status error;
   1078  1.1     joerg 	int xferlen, rate;
   1079  1.1     joerg 
   1080  1.1     joerg 	data = &sc->tx_data[0];
   1081  1.1     joerg 	desc = (struct rum_tx_desc *)data->buf;
   1082  1.1     joerg 
   1083  1.1     joerg 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
   1084  1.1     joerg 
   1085  1.1     joerg 	data->m = m0;
   1086  1.1     joerg 	data->ni = ni;
   1087  1.1     joerg 
   1088  1.1     joerg 	wh = mtod(m0, struct ieee80211_frame *);
   1089  1.1     joerg 
   1090  1.1     joerg 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1091  1.1     joerg 		flags |= RT2573_TX_ACK;
   1092  1.1     joerg 
   1093  1.1     joerg 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
   1094  1.1     joerg 		    ic->ic_flags) + sc->sifs;
   1095  1.1     joerg 		*(uint16_t *)wh->i_dur = htole16(dur);
   1096  1.1     joerg 
   1097  1.1     joerg 		/* tell hardware to set timestamp in probe responses */
   1098  1.1     joerg 		if ((wh->i_fc[0] &
   1099  1.1     joerg 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1100  1.1     joerg 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1101  1.1     joerg 			flags |= RT2573_TX_TIMESTAMP;
   1102  1.1     joerg 	}
   1103  1.1     joerg 
   1104  1.1     joerg #if NBPFILTER > 0
   1105  1.1     joerg 	if (sc->sc_drvbpf != NULL) {
   1106  1.1     joerg 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
   1107  1.1     joerg 
   1108  1.1     joerg 		tap->wt_flags = 0;
   1109  1.1     joerg 		tap->wt_rate = rate;
   1110  1.1     joerg 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1111  1.1     joerg 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1112  1.1     joerg 		tap->wt_antenna = sc->tx_ant;
   1113  1.1     joerg 
   1114  1.1     joerg 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1115  1.1     joerg 	}
   1116  1.1     joerg #endif
   1117  1.1     joerg 
   1118  1.1     joerg 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
   1119  1.1     joerg 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
   1120  1.1     joerg 
   1121  1.1     joerg 	/* align end on a 4-bytes boundary */
   1122  1.1     joerg 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
   1123  1.1     joerg 
   1124  1.1     joerg 	/*
   1125  1.1     joerg 	 * No space left in the last URB to store the extra 4 bytes, force
   1126  1.1     joerg 	 * sending of another URB.
   1127  1.1     joerg 	 */
   1128  1.1     joerg 	if ((xferlen % 64) == 0)
   1129  1.1     joerg 		xferlen += 4;
   1130  1.1     joerg 
   1131  1.8   mlelstv 	DPRINTFN(10, ("sending msg frame len=%zu rate=%u xfer len=%u\n",
   1132  1.8   mlelstv 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
   1133  1.6       wiz 	    rate, xferlen));
   1134  1.1     joerg 
   1135  1.1     joerg 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
   1136  1.1     joerg 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
   1137  1.1     joerg 
   1138  1.1     joerg 	error = usbd_transfer(data->xfer);
   1139  1.1     joerg 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
   1140  1.1     joerg 		m_freem(m0);
   1141  1.1     joerg 		return error;
   1142  1.1     joerg 	}
   1143  1.1     joerg 
   1144  1.1     joerg 	sc->tx_queued++;
   1145  1.1     joerg 
   1146  1.1     joerg 	return 0;
   1147  1.1     joerg }
   1148  1.1     joerg 
   1149  1.1     joerg Static int
   1150  1.1     joerg rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
   1151  1.1     joerg {
   1152  1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1153  1.1     joerg 	struct rum_tx_desc *desc;
   1154  1.1     joerg 	struct rum_tx_data *data;
   1155  1.1     joerg 	struct ieee80211_frame *wh;
   1156  1.1     joerg 	struct ieee80211_key *k;
   1157  1.1     joerg 	uint32_t flags = 0;
   1158  1.1     joerg 	uint16_t dur;
   1159  1.1     joerg 	usbd_status error;
   1160  1.1     joerg 	int xferlen, rate;
   1161  1.1     joerg 
   1162  1.1     joerg 	wh = mtod(m0, struct ieee80211_frame *);
   1163  1.1     joerg 
   1164  1.1     joerg 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
   1165  1.1     joerg 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
   1166  1.1     joerg 	else
   1167  1.1     joerg 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1168  1.1     joerg 	rate &= IEEE80211_RATE_VAL;
   1169  1.1     joerg 
   1170  1.1     joerg 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1171  1.1     joerg 		k = ieee80211_crypto_encap(ic, ni, m0);
   1172  1.1     joerg 		if (k == NULL) {
   1173  1.1     joerg 			m_freem(m0);
   1174  1.1     joerg 			return ENOBUFS;
   1175  1.1     joerg 		}
   1176  1.1     joerg 
   1177  1.1     joerg 		/* packet header may have moved, reset our local pointer */
   1178  1.1     joerg 		wh = mtod(m0, struct ieee80211_frame *);
   1179  1.1     joerg 	}
   1180  1.1     joerg 
   1181  1.1     joerg 	data = &sc->tx_data[0];
   1182  1.1     joerg 	desc = (struct rum_tx_desc *)data->buf;
   1183  1.1     joerg 
   1184  1.1     joerg 	data->m = m0;
   1185  1.1     joerg 	data->ni = ni;
   1186  1.1     joerg 
   1187  1.1     joerg 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1188  1.1     joerg 		flags |= RT2573_TX_ACK;
   1189  1.1     joerg 
   1190  1.1     joerg 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
   1191  1.1     joerg 		    ic->ic_flags) + sc->sifs;
   1192  1.1     joerg 		*(uint16_t *)wh->i_dur = htole16(dur);
   1193  1.1     joerg 	}
   1194  1.1     joerg 
   1195  1.1     joerg #if NBPFILTER > 0
   1196  1.1     joerg 	if (sc->sc_drvbpf != NULL) {
   1197  1.1     joerg 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
   1198  1.1     joerg 
   1199  1.1     joerg 		tap->wt_flags = 0;
   1200  1.1     joerg 		tap->wt_rate = rate;
   1201  1.1     joerg 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1202  1.1     joerg 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1203  1.1     joerg 		tap->wt_antenna = sc->tx_ant;
   1204  1.1     joerg 
   1205  1.1     joerg 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1206  1.1     joerg 	}
   1207  1.1     joerg #endif
   1208  1.1     joerg 
   1209  1.1     joerg 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
   1210  1.1     joerg 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
   1211  1.1     joerg 
   1212  1.1     joerg 	/* align end on a 4-bytes boundary */
   1213  1.1     joerg 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
   1214  1.1     joerg 
   1215  1.1     joerg 	/*
   1216  1.1     joerg 	 * No space left in the last URB to store the extra 4 bytes, force
   1217  1.1     joerg 	 * sending of another URB.
   1218  1.1     joerg 	 */
   1219  1.1     joerg 	if ((xferlen % 64) == 0)
   1220  1.1     joerg 		xferlen += 4;
   1221  1.1     joerg 
   1222  1.8   mlelstv 	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
   1223  1.8   mlelstv 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
   1224  1.6       wiz 	    rate, xferlen));
   1225  1.1     joerg 
   1226  1.1     joerg 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
   1227  1.1     joerg 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
   1228  1.1     joerg 
   1229  1.1     joerg 	error = usbd_transfer(data->xfer);
   1230  1.1     joerg 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
   1231  1.1     joerg 		m_freem(m0);
   1232  1.1     joerg 		return error;
   1233  1.1     joerg 	}
   1234  1.1     joerg 
   1235  1.1     joerg 	sc->tx_queued++;
   1236  1.1     joerg 
   1237  1.1     joerg 	return 0;
   1238  1.1     joerg }
   1239  1.1     joerg 
   1240  1.1     joerg Static void
   1241  1.1     joerg rum_start(struct ifnet *ifp)
   1242  1.1     joerg {
   1243  1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1244  1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1245  1.1     joerg 	struct ether_header *eh;
   1246  1.1     joerg 	struct ieee80211_node *ni;
   1247  1.1     joerg 	struct mbuf *m0;
   1248  1.1     joerg 
   1249  1.1     joerg 	for (;;) {
   1250  1.1     joerg 		IF_POLL(&ic->ic_mgtq, m0);
   1251  1.1     joerg 		if (m0 != NULL) {
   1252  1.1     joerg 			if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
   1253  1.1     joerg 				ifp->if_flags |= IFF_OACTIVE;
   1254  1.1     joerg 				break;
   1255  1.1     joerg 			}
   1256  1.1     joerg 			IF_DEQUEUE(&ic->ic_mgtq, m0);
   1257  1.1     joerg 
   1258  1.1     joerg 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   1259  1.1     joerg 			m0->m_pkthdr.rcvif = NULL;
   1260  1.1     joerg #if NBPFILTER > 0
   1261  1.1     joerg 			if (ic->ic_rawbpf != NULL)
   1262  1.1     joerg 				bpf_mtap(ic->ic_rawbpf, m0);
   1263  1.1     joerg #endif
   1264  1.1     joerg 			if (rum_tx_mgt(sc, m0, ni) != 0)
   1265  1.1     joerg 				break;
   1266  1.1     joerg 
   1267  1.1     joerg 		} else {
   1268  1.1     joerg 			if (ic->ic_state != IEEE80211_S_RUN)
   1269  1.1     joerg 				break;
   1270  1.1     joerg 			IFQ_POLL(&ifp->if_snd, m0);
   1271  1.1     joerg 			if (m0 == NULL)
   1272  1.1     joerg 				break;
   1273  1.1     joerg 			if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
   1274  1.1     joerg 				ifp->if_flags |= IFF_OACTIVE;
   1275  1.1     joerg 				break;
   1276  1.1     joerg 			}
   1277  1.1     joerg 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1278  1.1     joerg 			if (m0->m_len < sizeof(struct ether_header) &&
   1279  1.1     joerg 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
   1280  1.1     joerg 				continue;
   1281  1.1     joerg 
   1282  1.1     joerg 			eh = mtod(m0, struct ether_header *);
   1283  1.1     joerg 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1284  1.1     joerg 			if (ni == NULL) {
   1285  1.1     joerg 				m_freem(m0);
   1286  1.1     joerg 				continue;
   1287  1.1     joerg 			}
   1288  1.1     joerg #if NBPFILTER > 0
   1289  1.1     joerg 			if (ifp->if_bpf != NULL)
   1290  1.1     joerg 				bpf_mtap(ifp->if_bpf, m0);
   1291  1.1     joerg #endif
   1292  1.1     joerg 			m0 = ieee80211_encap(ic, m0, ni);
   1293  1.1     joerg 			if (m0 == NULL) {
   1294  1.1     joerg 				ieee80211_free_node(ni);
   1295  1.1     joerg 				continue;
   1296  1.1     joerg 			}
   1297  1.1     joerg #if NBPFILTER > 0
   1298  1.1     joerg 			if (ic->ic_rawbpf != NULL)
   1299  1.1     joerg 				bpf_mtap(ic->ic_rawbpf, m0);
   1300  1.1     joerg #endif
   1301  1.1     joerg 			if (rum_tx_data(sc, m0, ni) != 0) {
   1302  1.1     joerg 				ieee80211_free_node(ni);
   1303  1.1     joerg 				ifp->if_oerrors++;
   1304  1.1     joerg 				break;
   1305  1.1     joerg 			}
   1306  1.1     joerg 		}
   1307  1.1     joerg 
   1308  1.1     joerg 		sc->sc_tx_timer = 5;
   1309  1.1     joerg 		ifp->if_timer = 1;
   1310  1.1     joerg 	}
   1311  1.1     joerg }
   1312  1.1     joerg 
   1313  1.1     joerg Static void
   1314  1.1     joerg rum_watchdog(struct ifnet *ifp)
   1315  1.1     joerg {
   1316  1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1317  1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1318  1.1     joerg 
   1319  1.1     joerg 	ifp->if_timer = 0;
   1320  1.1     joerg 
   1321  1.1     joerg 	if (sc->sc_tx_timer > 0) {
   1322  1.1     joerg 		if (--sc->sc_tx_timer == 0) {
   1323  1.1     joerg 			printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
   1324  1.1     joerg 			/*rum_init(ifp); XXX needs a process context! */
   1325  1.1     joerg 			ifp->if_oerrors++;
   1326  1.1     joerg 			return;
   1327  1.1     joerg 		}
   1328  1.1     joerg 		ifp->if_timer = 1;
   1329  1.1     joerg 	}
   1330  1.1     joerg 
   1331  1.1     joerg 	ieee80211_watchdog(ic);
   1332  1.1     joerg }
   1333  1.1     joerg 
   1334  1.1     joerg Static int
   1335  1.7  christos rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1336  1.1     joerg {
   1337  1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1338  1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1339  1.1     joerg 	int s, error = 0;
   1340  1.1     joerg 
   1341  1.1     joerg 	s = splnet();
   1342  1.1     joerg 
   1343  1.1     joerg 	switch (cmd) {
   1344  1.1     joerg 	case SIOCSIFFLAGS:
   1345  1.1     joerg 		if (ifp->if_flags & IFF_UP) {
   1346  1.1     joerg 			if (ifp->if_flags & IFF_RUNNING)
   1347  1.1     joerg 				rum_update_promisc(sc);
   1348  1.1     joerg 			else
   1349  1.1     joerg 				rum_init(ifp);
   1350  1.1     joerg 		} else {
   1351  1.1     joerg 			if (ifp->if_flags & IFF_RUNNING)
   1352  1.1     joerg 				rum_stop(ifp, 1);
   1353  1.1     joerg 		}
   1354  1.1     joerg 		break;
   1355  1.1     joerg 
   1356  1.1     joerg 	default:
   1357  1.1     joerg 		error = ieee80211_ioctl(ic, cmd, data);
   1358  1.1     joerg 	}
   1359  1.1     joerg 
   1360  1.1     joerg 	if (error == ENETRESET) {
   1361  1.1     joerg 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1362  1.1     joerg 		    (IFF_UP | IFF_RUNNING))
   1363  1.1     joerg 			rum_init(ifp);
   1364  1.1     joerg 		error = 0;
   1365  1.1     joerg 	}
   1366  1.1     joerg 
   1367  1.1     joerg 	splx(s);
   1368  1.1     joerg 
   1369  1.1     joerg 	return error;
   1370  1.1     joerg }
   1371  1.1     joerg 
   1372  1.1     joerg Static void
   1373  1.1     joerg rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
   1374  1.1     joerg {
   1375  1.1     joerg 	usb_device_request_t req;
   1376  1.1     joerg 	usbd_status error;
   1377  1.1     joerg 
   1378  1.1     joerg 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
   1379  1.1     joerg 	req.bRequest = RT2573_READ_EEPROM;
   1380  1.1     joerg 	USETW(req.wValue, 0);
   1381  1.1     joerg 	USETW(req.wIndex, addr);
   1382  1.1     joerg 	USETW(req.wLength, len);
   1383  1.1     joerg 
   1384  1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, buf);
   1385  1.1     joerg 	if (error != 0) {
   1386  1.1     joerg 		printf("%s: could not read EEPROM: %s\n",
   1387  1.1     joerg 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
   1388  1.1     joerg 	}
   1389  1.1     joerg }
   1390  1.1     joerg 
   1391  1.1     joerg Static uint32_t
   1392  1.1     joerg rum_read(struct rum_softc *sc, uint16_t reg)
   1393  1.1     joerg {
   1394  1.1     joerg 	uint32_t val;
   1395  1.1     joerg 
   1396  1.1     joerg 	rum_read_multi(sc, reg, &val, sizeof val);
   1397  1.1     joerg 
   1398  1.1     joerg 	return le32toh(val);
   1399  1.1     joerg }
   1400  1.1     joerg 
   1401  1.1     joerg Static void
   1402  1.1     joerg rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
   1403  1.1     joerg {
   1404  1.1     joerg 	usb_device_request_t req;
   1405  1.1     joerg 	usbd_status error;
   1406  1.1     joerg 
   1407  1.1     joerg 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
   1408  1.1     joerg 	req.bRequest = RT2573_READ_MULTI_MAC;
   1409  1.1     joerg 	USETW(req.wValue, 0);
   1410  1.1     joerg 	USETW(req.wIndex, reg);
   1411  1.1     joerg 	USETW(req.wLength, len);
   1412  1.1     joerg 
   1413  1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, buf);
   1414  1.1     joerg 	if (error != 0) {
   1415  1.1     joerg 		printf("%s: could not multi read MAC register: %s\n",
   1416  1.1     joerg 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
   1417  1.1     joerg 	}
   1418  1.1     joerg }
   1419  1.1     joerg 
   1420  1.1     joerg Static void
   1421  1.1     joerg rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
   1422  1.1     joerg {
   1423  1.1     joerg 	uint32_t tmp = htole32(val);
   1424  1.1     joerg 
   1425  1.1     joerg 	rum_write_multi(sc, reg, &tmp, sizeof tmp);
   1426  1.1     joerg }
   1427  1.1     joerg 
   1428  1.1     joerg Static void
   1429  1.1     joerg rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
   1430  1.1     joerg {
   1431  1.1     joerg 	usb_device_request_t req;
   1432  1.1     joerg 	usbd_status error;
   1433  1.1     joerg 
   1434  1.1     joerg 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
   1435  1.1     joerg 	req.bRequest = RT2573_WRITE_MULTI_MAC;
   1436  1.1     joerg 	USETW(req.wValue, 0);
   1437  1.1     joerg 	USETW(req.wIndex, reg);
   1438  1.1     joerg 	USETW(req.wLength, len);
   1439  1.1     joerg 
   1440  1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, buf);
   1441  1.1     joerg 	if (error != 0) {
   1442  1.1     joerg 		printf("%s: could not multi write MAC register: %s\n",
   1443  1.1     joerg 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
   1444  1.1     joerg 	}
   1445  1.1     joerg }
   1446  1.1     joerg 
   1447  1.1     joerg Static void
   1448  1.1     joerg rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
   1449  1.1     joerg {
   1450  1.1     joerg 	uint32_t tmp;
   1451  1.1     joerg 	int ntries;
   1452  1.1     joerg 
   1453  1.1     joerg 	for (ntries = 0; ntries < 5; ntries++) {
   1454  1.1     joerg 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
   1455  1.1     joerg 			break;
   1456  1.1     joerg 	}
   1457  1.1     joerg 	if (ntries == 5) {
   1458  1.1     joerg 		printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
   1459  1.1     joerg 		return;
   1460  1.1     joerg 	}
   1461  1.1     joerg 
   1462  1.1     joerg 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
   1463  1.1     joerg 	rum_write(sc, RT2573_PHY_CSR3, tmp);
   1464  1.1     joerg }
   1465  1.1     joerg 
   1466  1.1     joerg Static uint8_t
   1467  1.1     joerg rum_bbp_read(struct rum_softc *sc, uint8_t reg)
   1468  1.1     joerg {
   1469  1.1     joerg 	uint32_t val;
   1470  1.1     joerg 	int ntries;
   1471  1.1     joerg 
   1472  1.1     joerg 	for (ntries = 0; ntries < 5; ntries++) {
   1473  1.1     joerg 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
   1474  1.1     joerg 			break;
   1475  1.1     joerg 	}
   1476  1.1     joerg 	if (ntries == 5) {
   1477  1.1     joerg 		printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
   1478  1.1     joerg 		return 0;
   1479  1.1     joerg 	}
   1480  1.1     joerg 
   1481  1.1     joerg 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
   1482  1.1     joerg 	rum_write(sc, RT2573_PHY_CSR3, val);
   1483  1.1     joerg 
   1484  1.1     joerg 	for (ntries = 0; ntries < 100; ntries++) {
   1485  1.1     joerg 		val = rum_read(sc, RT2573_PHY_CSR3);
   1486  1.1     joerg 		if (!(val & RT2573_BBP_BUSY))
   1487  1.1     joerg 			return val & 0xff;
   1488  1.1     joerg 		DELAY(1);
   1489  1.1     joerg 	}
   1490  1.1     joerg 
   1491  1.1     joerg 	printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
   1492  1.1     joerg 	return 0;
   1493  1.1     joerg }
   1494  1.1     joerg 
   1495  1.1     joerg Static void
   1496  1.1     joerg rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
   1497  1.1     joerg {
   1498  1.1     joerg 	uint32_t tmp;
   1499  1.1     joerg 	int ntries;
   1500  1.1     joerg 
   1501  1.1     joerg 	for (ntries = 0; ntries < 5; ntries++) {
   1502  1.1     joerg 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
   1503  1.1     joerg 			break;
   1504  1.1     joerg 	}
   1505  1.1     joerg 	if (ntries == 5) {
   1506  1.1     joerg 		printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
   1507  1.1     joerg 		return;
   1508  1.1     joerg 	}
   1509  1.1     joerg 
   1510  1.1     joerg 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
   1511  1.1     joerg 	    (reg & 3);
   1512  1.1     joerg 	rum_write(sc, RT2573_PHY_CSR4, tmp);
   1513  1.1     joerg 
   1514  1.1     joerg 	/* remember last written value in sc */
   1515  1.1     joerg 	sc->rf_regs[reg] = val;
   1516  1.1     joerg 
   1517  1.1     joerg 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
   1518  1.1     joerg }
   1519  1.1     joerg 
   1520  1.1     joerg Static void
   1521  1.1     joerg rum_select_antenna(struct rum_softc *sc)
   1522  1.1     joerg {
   1523  1.1     joerg 	uint8_t bbp4, bbp77;
   1524  1.1     joerg 	uint32_t tmp;
   1525  1.1     joerg 
   1526  1.1     joerg 	bbp4  = rum_bbp_read(sc, 4);
   1527  1.1     joerg 	bbp77 = rum_bbp_read(sc, 77);
   1528  1.1     joerg 
   1529  1.1     joerg 	/* TBD */
   1530  1.1     joerg 
   1531  1.1     joerg 	/* make sure Rx is disabled before switching antenna */
   1532  1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
   1533  1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
   1534  1.1     joerg 
   1535  1.1     joerg 	rum_bbp_write(sc,  4, bbp4);
   1536  1.1     joerg 	rum_bbp_write(sc, 77, bbp77);
   1537  1.1     joerg 
   1538  1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
   1539  1.1     joerg }
   1540  1.1     joerg 
   1541  1.1     joerg /*
   1542  1.1     joerg  * Enable multi-rate retries for frames sent at OFDM rates.
   1543  1.1     joerg  * In 802.11b/g mode, allow fallback to CCK rates.
   1544  1.1     joerg  */
   1545  1.1     joerg Static void
   1546  1.1     joerg rum_enable_mrr(struct rum_softc *sc)
   1547  1.1     joerg {
   1548  1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1549  1.1     joerg 	uint32_t tmp;
   1550  1.1     joerg 
   1551  1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
   1552  1.1     joerg 
   1553  1.1     joerg 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
   1554  1.1     joerg 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
   1555  1.1     joerg 		tmp |= RT2573_MRR_CCK_FALLBACK;
   1556  1.1     joerg 	tmp |= RT2573_MRR_ENABLED;
   1557  1.1     joerg 
   1558  1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
   1559  1.1     joerg }
   1560  1.1     joerg 
   1561  1.1     joerg Static void
   1562  1.1     joerg rum_set_txpreamble(struct rum_softc *sc)
   1563  1.1     joerg {
   1564  1.1     joerg 	uint32_t tmp;
   1565  1.1     joerg 
   1566  1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
   1567  1.1     joerg 
   1568  1.1     joerg 	tmp &= ~RT2573_SHORT_PREAMBLE;
   1569  1.1     joerg 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
   1570  1.1     joerg 		tmp |= RT2573_SHORT_PREAMBLE;
   1571  1.1     joerg 
   1572  1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
   1573  1.1     joerg }
   1574  1.1     joerg 
   1575  1.1     joerg Static void
   1576  1.1     joerg rum_set_basicrates(struct rum_softc *sc)
   1577  1.1     joerg {
   1578  1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1579  1.1     joerg 
   1580  1.1     joerg 	/* update basic rate set */
   1581  1.1     joerg 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
   1582  1.1     joerg 		/* 11b basic rates: 1, 2Mbps */
   1583  1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
   1584  1.1     joerg 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
   1585  1.1     joerg 		/* 11a basic rates: 6, 12, 24Mbps */
   1586  1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
   1587  1.1     joerg 	} else {
   1588  1.1     joerg 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
   1589  1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR5, 0x15f);
   1590  1.1     joerg 	}
   1591  1.1     joerg }
   1592  1.1     joerg 
   1593  1.1     joerg /*
   1594  1.1     joerg  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
   1595  1.1     joerg  * driver.
   1596  1.1     joerg  */
   1597  1.1     joerg Static void
   1598  1.1     joerg rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
   1599  1.1     joerg {
   1600  1.1     joerg 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
   1601  1.1     joerg 	uint32_t tmp;
   1602  1.1     joerg 
   1603  1.1     joerg 	/* update all BBP registers that depend on the band */
   1604  1.1     joerg 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
   1605  1.1     joerg 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
   1606  1.1     joerg 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   1607  1.1     joerg 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
   1608  1.1     joerg 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
   1609  1.1     joerg 	}
   1610  1.1     joerg 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
   1611  1.1     joerg 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
   1612  1.1     joerg 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
   1613  1.1     joerg 	}
   1614  1.1     joerg 
   1615  1.1     joerg 	sc->bbp17 = bbp17;
   1616  1.1     joerg 	rum_bbp_write(sc,  17, bbp17);
   1617  1.1     joerg 	rum_bbp_write(sc,  96, bbp96);
   1618  1.1     joerg 	rum_bbp_write(sc, 104, bbp104);
   1619  1.1     joerg 
   1620  1.1     joerg 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
   1621  1.1     joerg 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
   1622  1.1     joerg 		rum_bbp_write(sc, 75, 0x80);
   1623  1.1     joerg 		rum_bbp_write(sc, 86, 0x80);
   1624  1.1     joerg 		rum_bbp_write(sc, 88, 0x80);
   1625  1.1     joerg 	}
   1626  1.1     joerg 
   1627  1.1     joerg 	rum_bbp_write(sc, 35, bbp35);
   1628  1.1     joerg 	rum_bbp_write(sc, 97, bbp97);
   1629  1.1     joerg 	rum_bbp_write(sc, 98, bbp98);
   1630  1.1     joerg 
   1631  1.1     joerg 	tmp = rum_read(sc, RT2573_PHY_CSR0);
   1632  1.1     joerg 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
   1633  1.1     joerg 	if (IEEE80211_IS_CHAN_2GHZ(c))
   1634  1.1     joerg 		tmp |= RT2573_PA_PE_2GHZ;
   1635  1.1     joerg 	else
   1636  1.1     joerg 		tmp |= RT2573_PA_PE_5GHZ;
   1637  1.1     joerg 	rum_write(sc, RT2573_PHY_CSR0, tmp);
   1638  1.1     joerg 
   1639  1.1     joerg 	/* 802.11a uses a 16 microseconds short interframe space */
   1640  1.1     joerg 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
   1641  1.1     joerg }
   1642  1.1     joerg 
   1643  1.1     joerg Static void
   1644  1.1     joerg rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
   1645  1.1     joerg {
   1646  1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1647  1.1     joerg 	const struct rfprog *rfprog;
   1648  1.1     joerg 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
   1649  1.1     joerg 	int8_t power;
   1650  1.1     joerg 	u_int i, chan;
   1651  1.1     joerg 
   1652  1.1     joerg 	chan = ieee80211_chan2ieee(ic, c);
   1653  1.1     joerg 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
   1654  1.1     joerg 		return;
   1655  1.1     joerg 
   1656  1.1     joerg 	/* select the appropriate RF settings based on what EEPROM says */
   1657  1.1     joerg 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
   1658  1.1     joerg 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
   1659  1.1     joerg 
   1660  1.1     joerg 	/* find the settings for this channel (we know it exists) */
   1661  1.1     joerg 	for (i = 0; rfprog[i].chan != chan; i++);
   1662  1.1     joerg 
   1663  1.1     joerg 	power = sc->txpow[i];
   1664  1.1     joerg 	if (power < 0) {
   1665  1.1     joerg 		bbp94 += power;
   1666  1.1     joerg 		power = 0;
   1667  1.1     joerg 	} else if (power > 31) {
   1668  1.1     joerg 		bbp94 += power - 31;
   1669  1.1     joerg 		power = 31;
   1670  1.1     joerg 	}
   1671  1.1     joerg 
   1672  1.1     joerg 	/*
   1673  1.1     joerg 	 * If we are switching from the 2GHz band to the 5GHz band or
   1674  1.1     joerg 	 * vice-versa, BBP registers need to be reprogrammed.
   1675  1.1     joerg 	 */
   1676  1.1     joerg 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
   1677  1.1     joerg 		rum_select_band(sc, c);
   1678  1.1     joerg 		rum_select_antenna(sc);
   1679  1.1     joerg 	}
   1680  1.1     joerg 	ic->ic_curchan = c;
   1681  1.1     joerg 
   1682  1.1     joerg 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
   1683  1.1     joerg 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
   1684  1.1     joerg 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
   1685  1.1     joerg 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
   1686  1.1     joerg 
   1687  1.1     joerg 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
   1688  1.1     joerg 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
   1689  1.1     joerg 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
   1690  1.1     joerg 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
   1691  1.1     joerg 
   1692  1.1     joerg 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
   1693  1.1     joerg 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
   1694  1.1     joerg 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
   1695  1.1     joerg 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
   1696  1.1     joerg 
   1697  1.1     joerg 	DELAY(10);
   1698  1.1     joerg 
   1699  1.1     joerg 	/* enable smart mode for MIMO-capable RFs */
   1700  1.1     joerg 	bbp3 = rum_bbp_read(sc, 3);
   1701  1.1     joerg 
   1702  1.1     joerg 	bbp3 &= ~RT2573_SMART_MODE;
   1703  1.1     joerg 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
   1704  1.1     joerg 		bbp3 |= RT2573_SMART_MODE;
   1705  1.1     joerg 
   1706  1.1     joerg 	rum_bbp_write(sc, 3, bbp3);
   1707  1.1     joerg 
   1708  1.1     joerg 	if (bbp94 != RT2573_BBPR94_DEFAULT)
   1709  1.1     joerg 		rum_bbp_write(sc, 94, bbp94);
   1710  1.1     joerg }
   1711  1.1     joerg 
   1712  1.1     joerg /*
   1713  1.1     joerg  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
   1714  1.1     joerg  * and HostAP operating modes.
   1715  1.1     joerg  */
   1716  1.1     joerg Static void
   1717  1.1     joerg rum_enable_tsf_sync(struct rum_softc *sc)
   1718  1.1     joerg {
   1719  1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1720  1.1     joerg 	uint32_t tmp;
   1721  1.1     joerg 
   1722  1.1     joerg 	if (ic->ic_opmode != IEEE80211_M_STA) {
   1723  1.1     joerg 		/*
   1724  1.1     joerg 		 * Change default 16ms TBTT adjustment to 8ms.
   1725  1.1     joerg 		 * Must be done before enabling beacon generation.
   1726  1.1     joerg 		 */
   1727  1.1     joerg 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
   1728  1.1     joerg 	}
   1729  1.1     joerg 
   1730  1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
   1731  1.1     joerg 
   1732  1.1     joerg 	/* set beacon interval (in 1/16ms unit) */
   1733  1.1     joerg 	tmp |= ic->ic_bss->ni_intval * 16;
   1734  1.1     joerg 
   1735  1.1     joerg 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
   1736  1.1     joerg 	if (ic->ic_opmode == IEEE80211_M_STA)
   1737  1.1     joerg 		tmp |= RT2573_TSF_MODE(1);
   1738  1.1     joerg 	else
   1739  1.1     joerg 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
   1740  1.1     joerg 
   1741  1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
   1742  1.1     joerg }
   1743  1.1     joerg 
   1744  1.1     joerg Static void
   1745  1.1     joerg rum_update_slot(struct rum_softc *sc)
   1746  1.1     joerg {
   1747  1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1748  1.1     joerg 	uint8_t slottime;
   1749  1.1     joerg 	uint32_t tmp;
   1750  1.1     joerg 
   1751  1.1     joerg 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
   1752  1.1     joerg 
   1753  1.1     joerg 	tmp = rum_read(sc, RT2573_MAC_CSR9);
   1754  1.1     joerg 	tmp = (tmp & ~0xff) | slottime;
   1755  1.1     joerg 	rum_write(sc, RT2573_MAC_CSR9, tmp);
   1756  1.1     joerg 
   1757  1.1     joerg 	DPRINTF(("setting slot time to %uus\n", slottime));
   1758  1.1     joerg }
   1759  1.1     joerg 
   1760  1.1     joerg Static void
   1761  1.1     joerg rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
   1762  1.1     joerg {
   1763  1.1     joerg 	uint32_t tmp;
   1764  1.1     joerg 
   1765  1.1     joerg 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
   1766  1.1     joerg 	rum_write(sc, RT2573_MAC_CSR4, tmp);
   1767  1.1     joerg 
   1768  1.1     joerg 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
   1769  1.1     joerg 	rum_write(sc, RT2573_MAC_CSR5, tmp);
   1770  1.1     joerg }
   1771  1.1     joerg 
   1772  1.1     joerg Static void
   1773  1.1     joerg rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
   1774  1.1     joerg {
   1775  1.1     joerg 	uint32_t tmp;
   1776  1.1     joerg 
   1777  1.1     joerg 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
   1778  1.1     joerg 	rum_write(sc, RT2573_MAC_CSR2, tmp);
   1779  1.1     joerg 
   1780  1.1     joerg 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
   1781  1.1     joerg 	rum_write(sc, RT2573_MAC_CSR3, tmp);
   1782  1.1     joerg }
   1783  1.1     joerg 
   1784  1.1     joerg Static void
   1785  1.1     joerg rum_update_promisc(struct rum_softc *sc)
   1786  1.1     joerg {
   1787  1.1     joerg 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1788  1.1     joerg 	uint32_t tmp;
   1789  1.1     joerg 
   1790  1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
   1791  1.1     joerg 
   1792  1.1     joerg 	tmp &= ~RT2573_DROP_NOT_TO_ME;
   1793  1.1     joerg 	if (!(ifp->if_flags & IFF_PROMISC))
   1794  1.1     joerg 		tmp |= RT2573_DROP_NOT_TO_ME;
   1795  1.1     joerg 
   1796  1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
   1797  1.1     joerg 
   1798  1.1     joerg 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
   1799  1.1     joerg 	    "entering" : "leaving"));
   1800  1.1     joerg }
   1801  1.1     joerg 
   1802  1.1     joerg Static const char *
   1803  1.1     joerg rum_get_rf(int rev)
   1804  1.1     joerg {
   1805  1.1     joerg 	switch (rev) {
   1806  1.1     joerg 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
   1807  1.1     joerg 	case RT2573_RF_2528:	return "RT2528";
   1808  1.1     joerg 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
   1809  1.1     joerg 	case RT2573_RF_5226:	return "RT5226";
   1810  1.1     joerg 	default:		return "unknown";
   1811  1.1     joerg 	}
   1812  1.1     joerg }
   1813  1.1     joerg 
   1814  1.1     joerg Static void
   1815  1.1     joerg rum_read_eeprom(struct rum_softc *sc)
   1816  1.1     joerg {
   1817  1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1818  1.1     joerg 	uint16_t val;
   1819  1.1     joerg #ifdef RUM_DEBUG
   1820  1.1     joerg 	int i;
   1821  1.1     joerg #endif
   1822  1.1     joerg 
   1823  1.1     joerg 	/* read MAC/BBP type */
   1824  1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
   1825  1.1     joerg 	sc->macbbp_rev = le16toh(val);
   1826  1.1     joerg 
   1827  1.1     joerg 	/* read MAC address */
   1828  1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
   1829  1.1     joerg 
   1830  1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
   1831  1.1     joerg 	val = le16toh(val);
   1832  1.1     joerg 	sc->rf_rev =   (val >> 11) & 0x1f;
   1833  1.1     joerg 	sc->hw_radio = (val >> 10) & 0x1;
   1834  1.1     joerg 	sc->rx_ant =   (val >> 4)  & 0x3;
   1835  1.1     joerg 	sc->tx_ant =   (val >> 2)  & 0x3;
   1836  1.1     joerg 	sc->nb_ant =   val & 0x3;
   1837  1.1     joerg 
   1838  1.1     joerg 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
   1839  1.1     joerg 
   1840  1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
   1841  1.1     joerg 	val = le16toh(val);
   1842  1.1     joerg 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
   1843  1.1     joerg 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
   1844  1.1     joerg 
   1845  1.1     joerg 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
   1846  1.1     joerg 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
   1847  1.1     joerg 
   1848  1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
   1849  1.1     joerg 	val = le16toh(val);
   1850  1.1     joerg 	if ((val & 0xff) != 0xff)
   1851  1.1     joerg 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
   1852  1.1     joerg 
   1853  1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
   1854  1.1     joerg 	val = le16toh(val);
   1855  1.1     joerg 	if ((val & 0xff) != 0xff)
   1856  1.1     joerg 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
   1857  1.1     joerg 
   1858  1.1     joerg 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
   1859  1.1     joerg 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
   1860  1.1     joerg 
   1861  1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
   1862  1.1     joerg 	val = le16toh(val);
   1863  1.1     joerg 	if ((val & 0xff) != 0xff)
   1864  1.1     joerg 		sc->rffreq = val & 0xff;
   1865  1.1     joerg 
   1866  1.1     joerg 	DPRINTF(("RF freq=%d\n", sc->rffreq));
   1867  1.1     joerg 
   1868  1.1     joerg 	/* read Tx power for all a/b/g channels */
   1869  1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
   1870  1.1     joerg 	/* XXX default Tx power for 802.11a channels */
   1871  1.1     joerg 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
   1872  1.1     joerg #ifdef RUM_DEBUG
   1873  1.1     joerg 	for (i = 0; i < 14; i++)
   1874  1.1     joerg 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
   1875  1.1     joerg #endif
   1876  1.1     joerg 
   1877  1.1     joerg 	/* read default values for BBP registers */
   1878  1.1     joerg 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
   1879  1.1     joerg #ifdef RUM_DEBUG
   1880  1.1     joerg 	for (i = 0; i < 14; i++) {
   1881  1.1     joerg 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
   1882  1.1     joerg 			continue;
   1883  1.1     joerg 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
   1884  1.1     joerg 		    sc->bbp_prom[i].val));
   1885  1.1     joerg 	}
   1886  1.1     joerg #endif
   1887  1.1     joerg }
   1888  1.1     joerg 
   1889  1.1     joerg Static int
   1890  1.1     joerg rum_bbp_init(struct rum_softc *sc)
   1891  1.1     joerg {
   1892  1.1     joerg #define N(a)	(sizeof (a) / sizeof ((a)[0]))
   1893  1.1     joerg 	int i, ntries;
   1894  1.1     joerg 	uint8_t val;
   1895  1.1     joerg 
   1896  1.1     joerg 	/* wait for BBP to be ready */
   1897  1.1     joerg 	for (ntries = 0; ntries < 100; ntries++) {
   1898  1.1     joerg 		val = rum_bbp_read(sc, 0);
   1899  1.1     joerg 		if (val != 0 && val != 0xff)
   1900  1.1     joerg 			break;
   1901  1.1     joerg 		DELAY(1000);
   1902  1.1     joerg 	}
   1903  1.1     joerg 	if (ntries == 100) {
   1904  1.1     joerg 		printf("%s: timeout waiting for BBP\n",
   1905  1.1     joerg 		    USBDEVNAME(sc->sc_dev));
   1906  1.1     joerg 		return EIO;
   1907  1.1     joerg 	}
   1908  1.1     joerg 
   1909  1.1     joerg 	/* initialize BBP registers to default values */
   1910  1.1     joerg 	for (i = 0; i < N(rum_def_bbp); i++)
   1911  1.1     joerg 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
   1912  1.1     joerg 
   1913  1.1     joerg 	/* write vendor-specific BBP values (from EEPROM) */
   1914  1.1     joerg 	for (i = 0; i < 16; i++) {
   1915  1.1     joerg 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
   1916  1.1     joerg 			continue;
   1917  1.1     joerg 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
   1918  1.1     joerg 	}
   1919  1.1     joerg 
   1920  1.1     joerg 	return 0;
   1921  1.1     joerg #undef N
   1922  1.1     joerg }
   1923  1.1     joerg 
   1924  1.1     joerg Static int
   1925  1.1     joerg rum_init(struct ifnet *ifp)
   1926  1.1     joerg {
   1927  1.1     joerg #define N(a)	(sizeof (a) / sizeof ((a)[0]))
   1928  1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   1929  1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   1930  1.1     joerg 	struct rum_rx_data *data;
   1931  1.1     joerg 	uint32_t tmp;
   1932  1.1     joerg 	usbd_status error = 0;
   1933  1.1     joerg 	int i, ntries;
   1934  1.1     joerg 
   1935  1.1     joerg 	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
   1936  1.1     joerg 		if (rum_attachhook(sc))
   1937  1.1     joerg 			goto fail;
   1938  1.1     joerg 	}
   1939  1.1     joerg 
   1940  1.1     joerg 	rum_stop(ifp, 0);
   1941  1.1     joerg 
   1942  1.1     joerg 	/* initialize MAC registers to default values */
   1943  1.1     joerg 	for (i = 0; i < N(rum_def_mac); i++)
   1944  1.1     joerg 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
   1945  1.1     joerg 
   1946  1.1     joerg 	/* set host ready */
   1947  1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 3);
   1948  1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 0);
   1949  1.1     joerg 
   1950  1.1     joerg 	/* wait for BBP/RF to wakeup */
   1951  1.1     joerg 	for (ntries = 0; ntries < 1000; ntries++) {
   1952  1.1     joerg 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
   1953  1.1     joerg 			break;
   1954  1.1     joerg 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
   1955  1.1     joerg 		DELAY(1000);
   1956  1.1     joerg 	}
   1957  1.1     joerg 	if (ntries == 1000) {
   1958  1.1     joerg 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
   1959  1.1     joerg 		    USBDEVNAME(sc->sc_dev));
   1960  1.1     joerg 		goto fail;
   1961  1.1     joerg 	}
   1962  1.1     joerg 
   1963  1.1     joerg 	if ((error = rum_bbp_init(sc)) != 0)
   1964  1.1     joerg 		goto fail;
   1965  1.1     joerg 
   1966  1.1     joerg 	/* select default channel */
   1967  1.1     joerg 	rum_select_band(sc, ic->ic_curchan);
   1968  1.1     joerg 	rum_select_antenna(sc);
   1969  1.1     joerg 	rum_set_chan(sc, ic->ic_curchan);
   1970  1.1     joerg 
   1971  1.1     joerg 	/* clear STA registers */
   1972  1.1     joerg 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
   1973  1.1     joerg 
   1974  1.1     joerg 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
   1975  1.1     joerg 	rum_set_macaddr(sc, ic->ic_myaddr);
   1976  1.1     joerg 
   1977  1.1     joerg 	/* initialize ASIC */
   1978  1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 4);
   1979  1.1     joerg 
   1980  1.1     joerg 	/*
   1981  1.1     joerg 	 * Allocate xfer for AMRR statistics requests.
   1982  1.1     joerg 	 */
   1983  1.1     joerg 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
   1984  1.1     joerg 	if (sc->amrr_xfer == NULL) {
   1985  1.1     joerg 		printf("%s: could not allocate AMRR xfer\n",
   1986  1.1     joerg 		    USBDEVNAME(sc->sc_dev));
   1987  1.1     joerg 		goto fail;
   1988  1.1     joerg 	}
   1989  1.1     joerg 
   1990  1.1     joerg 	/*
   1991  1.1     joerg 	 * Open Tx and Rx USB bulk pipes.
   1992  1.1     joerg 	 */
   1993  1.1     joerg 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
   1994  1.1     joerg 	    &sc->sc_tx_pipeh);
   1995  1.1     joerg 	if (error != 0) {
   1996  1.1     joerg 		printf("%s: could not open Tx pipe: %s\n",
   1997  1.1     joerg 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
   1998  1.1     joerg 		goto fail;
   1999  1.1     joerg 	}
   2000  1.1     joerg 
   2001  1.1     joerg 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
   2002  1.1     joerg 	    &sc->sc_rx_pipeh);
   2003  1.1     joerg 	if (error != 0) {
   2004  1.1     joerg 		printf("%s: could not open Rx pipe: %s\n",
   2005  1.1     joerg 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
   2006  1.1     joerg 		goto fail;
   2007  1.1     joerg 	}
   2008  1.1     joerg 
   2009  1.1     joerg 	/*
   2010  1.1     joerg 	 * Allocate Tx and Rx xfer queues.
   2011  1.1     joerg 	 */
   2012  1.1     joerg 	error = rum_alloc_tx_list(sc);
   2013  1.1     joerg 	if (error != 0) {
   2014  1.1     joerg 		printf("%s: could not allocate Tx list\n",
   2015  1.1     joerg 		    USBDEVNAME(sc->sc_dev));
   2016  1.1     joerg 		goto fail;
   2017  1.1     joerg 	}
   2018  1.1     joerg 
   2019  1.1     joerg 	error = rum_alloc_rx_list(sc);
   2020  1.1     joerg 	if (error != 0) {
   2021  1.1     joerg 		printf("%s: could not allocate Rx list\n",
   2022  1.1     joerg 		    USBDEVNAME(sc->sc_dev));
   2023  1.1     joerg 		goto fail;
   2024  1.1     joerg 	}
   2025  1.1     joerg 
   2026  1.1     joerg 	/*
   2027  1.1     joerg 	 * Start up the receive pipe.
   2028  1.1     joerg 	 */
   2029  1.1     joerg 	for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
   2030  1.1     joerg 		data = &sc->rx_data[i];
   2031  1.1     joerg 
   2032  1.1     joerg 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
   2033  1.1     joerg 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
   2034  1.1     joerg 		usbd_transfer(data->xfer);
   2035  1.1     joerg 	}
   2036  1.1     joerg 
   2037  1.1     joerg 	/* update Rx filter */
   2038  1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
   2039  1.1     joerg 
   2040  1.1     joerg 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
   2041  1.1     joerg 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2042  1.1     joerg 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
   2043  1.1     joerg 		       RT2573_DROP_ACKCTS;
   2044  1.1     joerg 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
   2045  1.1     joerg 			tmp |= RT2573_DROP_TODS;
   2046  1.1     joerg 		if (!(ifp->if_flags & IFF_PROMISC))
   2047  1.1     joerg 			tmp |= RT2573_DROP_NOT_TO_ME;
   2048  1.1     joerg 	}
   2049  1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
   2050  1.1     joerg 
   2051  1.1     joerg 	ifp->if_flags &= ~IFF_OACTIVE;
   2052  1.1     joerg 	ifp->if_flags |= IFF_RUNNING;
   2053  1.1     joerg 
   2054  1.1     joerg 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   2055  1.1     joerg 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   2056  1.1     joerg 	else
   2057  1.1     joerg 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   2058  1.1     joerg 
   2059  1.1     joerg 	return 0;
   2060  1.1     joerg 
   2061  1.1     joerg fail:	rum_stop(ifp, 1);
   2062  1.1     joerg 	return error;
   2063  1.1     joerg #undef N
   2064  1.1     joerg }
   2065  1.1     joerg 
   2066  1.1     joerg Static void
   2067  1.1     joerg rum_stop(struct ifnet *ifp, int disable)
   2068  1.1     joerg {
   2069  1.1     joerg 	struct rum_softc *sc = ifp->if_softc;
   2070  1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   2071  1.1     joerg 	uint32_t tmp;
   2072  1.1     joerg 
   2073  1.1     joerg 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
   2074  1.1     joerg 
   2075  1.1     joerg 	sc->sc_tx_timer = 0;
   2076  1.1     joerg 	ifp->if_timer = 0;
   2077  1.1     joerg 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2078  1.1     joerg 
   2079  1.1     joerg 	/* disable Rx */
   2080  1.1     joerg 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
   2081  1.1     joerg 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
   2082  1.1     joerg 
   2083  1.1     joerg 	/* reset ASIC */
   2084  1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 3);
   2085  1.1     joerg 	rum_write(sc, RT2573_MAC_CSR1, 0);
   2086  1.1     joerg 
   2087  1.1     joerg 	if (sc->sc_rx_pipeh != NULL) {
   2088  1.1     joerg 		usbd_abort_pipe(sc->sc_rx_pipeh);
   2089  1.1     joerg 		usbd_close_pipe(sc->sc_rx_pipeh);
   2090  1.1     joerg 		sc->sc_rx_pipeh = NULL;
   2091  1.1     joerg 	}
   2092  1.1     joerg 
   2093  1.1     joerg 	if (sc->sc_tx_pipeh != NULL) {
   2094  1.1     joerg 		usbd_abort_pipe(sc->sc_tx_pipeh);
   2095  1.1     joerg 		usbd_close_pipe(sc->sc_tx_pipeh);
   2096  1.1     joerg 		sc->sc_tx_pipeh = NULL;
   2097  1.1     joerg 	}
   2098  1.1     joerg 
   2099  1.1     joerg 	rum_free_rx_list(sc);
   2100  1.1     joerg 	rum_free_tx_list(sc);
   2101  1.1     joerg }
   2102  1.1     joerg 
   2103  1.1     joerg Static int
   2104  1.1     joerg rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
   2105  1.1     joerg {
   2106  1.1     joerg 	usb_device_request_t req;
   2107  1.1     joerg 	uint16_t reg = RT2573_MCU_CODE_BASE;
   2108  1.1     joerg 	usbd_status error;
   2109  1.1     joerg 
   2110  1.1     joerg 	/* copy firmware image into NIC */
   2111  1.1     joerg 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
   2112  1.1     joerg 		rum_write(sc, reg, UGETDW(ucode));
   2113  1.1     joerg 
   2114  1.1     joerg 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
   2115  1.1     joerg 	req.bRequest = RT2573_MCU_CNTL;
   2116  1.1     joerg 	USETW(req.wValue, RT2573_MCU_RUN);
   2117  1.1     joerg 	USETW(req.wIndex, 0);
   2118  1.1     joerg 	USETW(req.wLength, 0);
   2119  1.1     joerg 
   2120  1.1     joerg 	error = usbd_do_request(sc->sc_udev, &req, NULL);
   2121  1.1     joerg 	if (error != 0) {
   2122  1.1     joerg 		printf("%s: could not run firmware: %s\n",
   2123  1.1     joerg 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
   2124  1.1     joerg 	}
   2125  1.1     joerg 	return error;
   2126  1.1     joerg }
   2127  1.1     joerg 
   2128  1.1     joerg Static int
   2129  1.1     joerg rum_prepare_beacon(struct rum_softc *sc)
   2130  1.1     joerg {
   2131  1.1     joerg 	struct ieee80211com *ic = &sc->sc_ic;
   2132  1.1     joerg 	struct rum_tx_desc desc;
   2133  1.1     joerg 	struct mbuf *m0;
   2134  1.1     joerg 	int rate;
   2135  1.1     joerg 
   2136  1.1     joerg 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
   2137  1.1     joerg 	if (m0 == NULL) {
   2138  1.1     joerg 		printf("%s: could not allocate beacon frame\n",
   2139  1.1     joerg 		    sc->sc_dev.dv_xname);
   2140  1.1     joerg 		return ENOBUFS;
   2141  1.1     joerg 	}
   2142  1.1     joerg 
   2143  1.1     joerg 	/* send beacons at the lowest available rate */
   2144  1.1     joerg 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
   2145  1.1     joerg 
   2146  1.1     joerg 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
   2147  1.1     joerg 	    m0->m_pkthdr.len, rate);
   2148  1.1     joerg 
   2149  1.1     joerg 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
   2150  1.1     joerg 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
   2151  1.1     joerg 
   2152  1.1     joerg 	/* copy beacon header and payload into NIC memory */
   2153  1.1     joerg 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
   2154  1.1     joerg 	    m0->m_pkthdr.len);
   2155  1.1     joerg 
   2156  1.1     joerg 	m_freem(m0);
   2157  1.1     joerg 
   2158  1.1     joerg 	return 0;
   2159  1.1     joerg }
   2160  1.1     joerg 
   2161  1.1     joerg Static void
   2162  1.1     joerg rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
   2163  1.1     joerg {
   2164  1.1     joerg 	int i;
   2165  1.1     joerg 
   2166  1.1     joerg 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
   2167  1.1     joerg 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
   2168  1.1     joerg 
   2169  1.1     joerg 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
   2170  1.1     joerg 
   2171  1.1     joerg 	/* set rate to some reasonable initial value */
   2172  1.1     joerg 	for (i = ni->ni_rates.rs_nrates - 1;
   2173  1.1     joerg 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
   2174  1.1     joerg 	     i--);
   2175  1.1     joerg 	ni->ni_txrate = i;
   2176  1.1     joerg 
   2177  1.1     joerg 	callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
   2178  1.1     joerg }
   2179  1.1     joerg 
   2180  1.1     joerg Static void
   2181  1.1     joerg rum_amrr_timeout(void *arg)
   2182  1.1     joerg {
   2183  1.1     joerg 	struct rum_softc *sc = arg;
   2184  1.1     joerg 	usb_device_request_t req;
   2185  1.1     joerg 	int s;
   2186  1.1     joerg 
   2187  1.1     joerg 	s = splusb();
   2188  1.1     joerg 
   2189  1.1     joerg 	/*
   2190  1.1     joerg 	 * Asynchronously read statistic registers (cleared by read).
   2191  1.1     joerg 	 */
   2192  1.1     joerg 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
   2193  1.1     joerg 	req.bRequest = RT2573_READ_MULTI_MAC;
   2194  1.1     joerg 	USETW(req.wValue, 0);
   2195  1.1     joerg 	USETW(req.wIndex, RT2573_STA_CSR0);
   2196  1.1     joerg 	USETW(req.wLength, sizeof sc->sta);
   2197  1.1     joerg 
   2198  1.1     joerg 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
   2199  1.1     joerg 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
   2200  1.1     joerg 	    rum_amrr_update);
   2201  1.1     joerg 	(void)usbd_transfer(sc->amrr_xfer);
   2202  1.1     joerg 
   2203  1.1     joerg 	splx(s);
   2204  1.1     joerg }
   2205  1.1     joerg 
   2206  1.1     joerg Static void
   2207  1.1     joerg rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
   2208  1.1     joerg     usbd_status status)
   2209  1.1     joerg {
   2210  1.1     joerg 	struct rum_softc *sc = (struct rum_softc *)priv;
   2211  1.1     joerg 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2212  1.1     joerg 
   2213  1.1     joerg 	if (status != USBD_NORMAL_COMPLETION) {
   2214  1.1     joerg 		printf("%s: could not retrieve Tx statistics - cancelling "
   2215  1.1     joerg 		    "automatic rate control\n", USBDEVNAME(sc->sc_dev));
   2216  1.1     joerg 		return;
   2217  1.1     joerg 	}
   2218  1.1     joerg 
   2219  1.1     joerg 	/* count TX retry-fail as Tx errors */
   2220  1.1     joerg 	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
   2221  1.1     joerg 
   2222  1.1     joerg 	sc->amn.amn_retrycnt =
   2223  1.1     joerg 	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
   2224  1.1     joerg 	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
   2225  1.1     joerg 	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
   2226  1.1     joerg 
   2227  1.1     joerg 	sc->amn.amn_txcnt =
   2228  1.1     joerg 	    sc->amn.amn_retrycnt +
   2229  1.1     joerg 	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
   2230  1.1     joerg 
   2231  1.1     joerg 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
   2232  1.1     joerg 
   2233  1.1     joerg 	callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
   2234  1.1     joerg }
   2235  1.1     joerg 
   2236  1.1     joerg int
   2237  1.1     joerg rum_activate(device_ptr_t self, enum devact act)
   2238  1.1     joerg {
   2239  1.1     joerg 	switch (act) {
   2240  1.1     joerg 	case DVACT_ACTIVATE:
   2241  1.1     joerg 		return EOPNOTSUPP;
   2242  1.1     joerg 
   2243  1.1     joerg 	case DVACT_DEACTIVATE:
   2244  1.1     joerg 		/*if_deactivate(&sc->sc_ic.ic_if);*/
   2245  1.1     joerg 		break;
   2246  1.1     joerg 	}
   2247  1.1     joerg 
   2248  1.1     joerg 	return 0;
   2249  1.1     joerg }
   2250