if_rum.c revision 1.13 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.13 2007/07/11 20:13:14 drochner Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.13 2007/07/11 20:13:14 drochner Exp $");
28
29 #include "bpfilter.h"
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41
42 #include <machine/bus.h>
43 #include <machine/endian.h>
44 #include <machine/intr.h>
45
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/firmload.h>
67
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72
73 #include <dev/usb/if_rumreg.h>
74 #include <dev/usb/if_rumvar.h>
75
76 #ifdef USB_DEBUG
77 #define RUM_DEBUG
78 #endif
79
80 #ifdef RUM_DEBUG
81 #define DPRINTF(x) do { if (rum_debug) logprintf x; } while (0)
82 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) logprintf x; } while (0)
83 int rum_debug = 1;
84 #else
85 #define DPRINTF(x)
86 #define DPRINTFN(n, x)
87 #endif
88
89 /* various supported device vendors/products */
90 static const struct usb_devno rum_devs[] = {
91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
92 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
93 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
94 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
95 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
96 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
97 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
98 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
99 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
100 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
101 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
102 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
103 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
104 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
105 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
106 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
107 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
108 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
109 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
110 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
111 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
112 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
113 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
114 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
115 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
116 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
117 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
118 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
119 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
120 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
121 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
122 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
123 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
124 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
125 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
126 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
127 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2573 },
128 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
129 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
130 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
131 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }
132 };
133
134 Static int rum_attachhook(void *);
135 Static int rum_alloc_tx_list(struct rum_softc *);
136 Static void rum_free_tx_list(struct rum_softc *);
137 Static int rum_alloc_rx_list(struct rum_softc *);
138 Static void rum_free_rx_list(struct rum_softc *);
139 Static int rum_media_change(struct ifnet *);
140 Static void rum_next_scan(void *);
141 Static void rum_task(void *);
142 Static int rum_newstate(struct ieee80211com *,
143 enum ieee80211_state, int);
144 Static void rum_txeof(usbd_xfer_handle, usbd_private_handle,
145 usbd_status);
146 Static void rum_rxeof(usbd_xfer_handle, usbd_private_handle,
147 usbd_status);
148 #if NBPFILTER > 0
149 Static uint8_t rum_rxrate(struct rum_rx_desc *);
150 #endif
151 Static int rum_ack_rate(struct ieee80211com *, int);
152 Static uint16_t rum_txtime(int, int, uint32_t);
153 Static uint8_t rum_plcp_signal(int);
154 Static void rum_setup_tx_desc(struct rum_softc *,
155 struct rum_tx_desc *, uint32_t, uint16_t, int,
156 int);
157 Static int rum_tx_mgt(struct rum_softc *, struct mbuf *,
158 struct ieee80211_node *);
159 Static int rum_tx_data(struct rum_softc *, struct mbuf *,
160 struct ieee80211_node *);
161 Static void rum_start(struct ifnet *);
162 Static void rum_watchdog(struct ifnet *);
163 Static int rum_ioctl(struct ifnet *, u_long, void *);
164 Static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
165 int);
166 Static uint32_t rum_read(struct rum_softc *, uint16_t);
167 Static void rum_read_multi(struct rum_softc *, uint16_t, void *,
168 int);
169 Static void rum_write(struct rum_softc *, uint16_t, uint32_t);
170 Static void rum_write_multi(struct rum_softc *, uint16_t, void *,
171 size_t);
172 Static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
173 Static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
174 Static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
175 Static void rum_select_antenna(struct rum_softc *);
176 Static void rum_enable_mrr(struct rum_softc *);
177 Static void rum_set_txpreamble(struct rum_softc *);
178 Static void rum_set_basicrates(struct rum_softc *);
179 Static void rum_select_band(struct rum_softc *,
180 struct ieee80211_channel *);
181 Static void rum_set_chan(struct rum_softc *,
182 struct ieee80211_channel *);
183 Static void rum_enable_tsf_sync(struct rum_softc *);
184 Static void rum_update_slot(struct rum_softc *);
185 Static void rum_set_bssid(struct rum_softc *, const uint8_t *);
186 Static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
187 Static void rum_update_promisc(struct rum_softc *);
188 Static const char *rum_get_rf(int);
189 Static void rum_read_eeprom(struct rum_softc *);
190 Static int rum_bbp_init(struct rum_softc *);
191 Static int rum_init(struct ifnet *);
192 Static void rum_stop(struct ifnet *, int);
193 Static int rum_load_microcode(struct rum_softc *, const u_char *,
194 size_t);
195 Static int rum_prepare_beacon(struct rum_softc *);
196 Static void rum_amrr_start(struct rum_softc *,
197 struct ieee80211_node *);
198 Static void rum_amrr_timeout(void *);
199 Static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
200 usbd_status status);
201
202 /*
203 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
204 */
205 static const struct ieee80211_rateset rum_rateset_11a =
206 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
207
208 static const struct ieee80211_rateset rum_rateset_11b =
209 { 4, { 2, 4, 11, 22 } };
210
211 static const struct ieee80211_rateset rum_rateset_11g =
212 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
213
214 static const struct {
215 uint32_t reg;
216 uint32_t val;
217 } rum_def_mac[] = {
218 RT2573_DEF_MAC
219 };
220
221 static const struct {
222 uint8_t reg;
223 uint8_t val;
224 } rum_def_bbp[] = {
225 RT2573_DEF_BBP
226 };
227
228 static const struct rfprog {
229 uint8_t chan;
230 uint32_t r1, r2, r3, r4;
231 } rum_rf5226[] = {
232 RT2573_RF5226
233 }, rum_rf5225[] = {
234 RT2573_RF5225
235 };
236
237 USB_DECLARE_DRIVER(rum);
238
239 USB_MATCH(rum)
240 {
241 USB_MATCH_START(rum, uaa);
242
243 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
244 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
245 }
246
247 Static int
248 rum_attachhook(void *xsc)
249 {
250 struct rum_softc *sc = xsc;
251 firmware_handle_t fwh;
252 const char *name = "rum-rt2573";
253 u_char *ucode;
254 size_t size;
255 int error;
256
257 if ((error = firmware_open("rum", name, &fwh)) != 0) {
258 printf("%s: failed loadfirmware of file %s (error %d)\n",
259 USBDEVNAME(sc->sc_dev), name, error);
260 return error;
261 }
262 size = firmware_get_size(fwh);
263 ucode = firmware_malloc(size);
264 if (ucode == NULL) {
265 printf("%s: failed to allocate firmware memory\n",
266 USBDEVNAME(sc->sc_dev));
267 firmware_close(fwh);
268 return ENOMEM;;
269 }
270 error = firmware_read(fwh, 0, ucode, size);
271 firmware_close(fwh);
272 if (error != 0) {
273 printf("%s: failed to read firmware (error %d)\n",
274 USBDEVNAME(sc->sc_dev), error);
275 firmware_free(ucode, 0);
276 return error;
277 }
278
279 if (rum_load_microcode(sc, ucode, size) != 0) {
280 printf("%s: could not load 8051 microcode\n",
281 USBDEVNAME(sc->sc_dev));
282 firmware_free(ucode, 0);
283 return ENXIO;
284 }
285
286 firmware_free(ucode, 0);
287 sc->sc_flags |= RT2573_FWLOADED;
288
289 return 0;
290 }
291
292 USB_ATTACH(rum)
293 {
294 USB_ATTACH_START(rum, sc, uaa);
295 struct ieee80211com *ic = &sc->sc_ic;
296 struct ifnet *ifp = &sc->sc_if;
297 usb_interface_descriptor_t *id;
298 usb_endpoint_descriptor_t *ed;
299 usbd_status error;
300 char *devinfop;
301 int i, ntries;
302 uint32_t tmp;
303
304 sc->sc_udev = uaa->device;
305 sc->sc_flags = 0;
306
307 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
308 USB_ATTACH_SETUP;
309 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
310 usbd_devinfo_free(devinfop);
311
312 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
313 printf("%s: could not set configuration no\n",
314 USBDEVNAME(sc->sc_dev));
315 USB_ATTACH_ERROR_RETURN;
316 }
317
318 /* get the first interface handle */
319 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
320 &sc->sc_iface);
321 if (error != 0) {
322 printf("%s: could not get interface handle\n",
323 USBDEVNAME(sc->sc_dev));
324 USB_ATTACH_ERROR_RETURN;
325 }
326
327 /*
328 * Find endpoints.
329 */
330 id = usbd_get_interface_descriptor(sc->sc_iface);
331
332 sc->sc_rx_no = sc->sc_tx_no = -1;
333 for (i = 0; i < id->bNumEndpoints; i++) {
334 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
335 if (ed == NULL) {
336 printf("%s: no endpoint descriptor for iface %d\n",
337 USBDEVNAME(sc->sc_dev), i);
338 USB_ATTACH_ERROR_RETURN;
339 }
340
341 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
342 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
343 sc->sc_rx_no = ed->bEndpointAddress;
344 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
345 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
346 sc->sc_tx_no = ed->bEndpointAddress;
347 }
348 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
349 printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
350 USB_ATTACH_ERROR_RETURN;
351 }
352
353 usb_init_task(&sc->sc_task, rum_task, sc);
354 usb_callout_init(sc->sc_scan_ch);
355
356 sc->amrr.amrr_min_success_threshold = 1;
357 sc->amrr.amrr_max_success_threshold = 10;
358 usb_callout_init(sc->sc_amrr_ch);
359
360 /* retrieve RT2573 rev. no */
361 for (ntries = 0; ntries < 1000; ntries++) {
362 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
363 break;
364 DELAY(1000);
365 }
366 if (ntries == 1000) {
367 printf("%s: timeout waiting for chip to settle\n",
368 USBDEVNAME(sc->sc_dev));
369 USB_ATTACH_ERROR_RETURN;
370 }
371
372 /* retrieve MAC address and various other things from EEPROM */
373 rum_read_eeprom(sc);
374
375 printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
376 USBDEVNAME(sc->sc_dev), sc->macbbp_rev, tmp,
377 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
378
379 ic->ic_ifp = ifp;
380 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
381 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
382 ic->ic_state = IEEE80211_S_INIT;
383
384 /* set device capabilities */
385 ic->ic_caps =
386 IEEE80211_C_IBSS | /* IBSS mode supported */
387 IEEE80211_C_MONITOR | /* monitor mode supported */
388 IEEE80211_C_HOSTAP | /* HostAp mode supported */
389 IEEE80211_C_TXPMGT | /* tx power management */
390 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
391 IEEE80211_C_SHSLOT | /* short slot time supported */
392 IEEE80211_C_WPA; /* 802.11i */
393
394 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
395 /* set supported .11a rates */
396 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
397
398 /* set supported .11a channels */
399 for (i = 34; i <= 46; i += 4) {
400 ic->ic_channels[i].ic_freq =
401 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
402 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
403 }
404 for (i = 36; i <= 64; i += 4) {
405 ic->ic_channels[i].ic_freq =
406 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
407 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
408 }
409 for (i = 100; i <= 140; i += 4) {
410 ic->ic_channels[i].ic_freq =
411 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
412 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
413 }
414 for (i = 149; i <= 165; i += 4) {
415 ic->ic_channels[i].ic_freq =
416 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
417 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
418 }
419 }
420
421 /* set supported .11b and .11g rates */
422 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
423 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
424
425 /* set supported .11b and .11g channels (1 through 14) */
426 for (i = 1; i <= 14; i++) {
427 ic->ic_channels[i].ic_freq =
428 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
429 ic->ic_channels[i].ic_flags =
430 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
431 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
432 }
433
434 ifp->if_softc = sc;
435 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
436 ifp->if_init = rum_init;
437 ifp->if_ioctl = rum_ioctl;
438 ifp->if_start = rum_start;
439 ifp->if_watchdog = rum_watchdog;
440 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
441 IFQ_SET_READY(&ifp->if_snd);
442 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
443
444 if_attach(ifp);
445 ieee80211_ifattach(ic);
446
447 /* override state transition machine */
448 sc->sc_newstate = ic->ic_newstate;
449 ic->ic_newstate = rum_newstate;
450 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
451
452 #if NBPFILTER > 0
453 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
454 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf);
455
456 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
457 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
458 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
459
460 sc->sc_txtap_len = sizeof sc->sc_txtapu;
461 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
462 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
463 #endif
464
465 ieee80211_announce(ic);
466
467 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
468 USBDEV(sc->sc_dev));
469
470 USB_ATTACH_SUCCESS_RETURN;
471 }
472
473 USB_DETACH(rum)
474 {
475 USB_DETACH_START(rum, sc);
476 struct ieee80211com *ic = &sc->sc_ic;
477 struct ifnet *ifp = &sc->sc_if;
478 int s;
479
480 if (!ifp->if_softc)
481 return 0;
482
483 s = splusb();
484
485 rum_stop(ifp, 1);
486 usb_rem_task(sc->sc_udev, &sc->sc_task);
487 usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
488 usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
489
490 if (sc->amrr_xfer != NULL) {
491 usbd_free_xfer(sc->amrr_xfer);
492 sc->amrr_xfer = NULL;
493 }
494
495 if (sc->sc_rx_pipeh != NULL) {
496 usbd_abort_pipe(sc->sc_rx_pipeh);
497 usbd_close_pipe(sc->sc_rx_pipeh);
498 }
499
500 if (sc->sc_tx_pipeh != NULL) {
501 usbd_abort_pipe(sc->sc_tx_pipeh);
502 usbd_close_pipe(sc->sc_tx_pipeh);
503 }
504
505 rum_free_rx_list(sc);
506 rum_free_tx_list(sc);
507
508 #if NBPFILTER > 0
509 bpfdetach(ifp);
510 #endif
511 ieee80211_ifdetach(ic); /* free all nodes */
512 if_detach(ifp);
513
514 splx(s);
515
516 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
517 USBDEV(sc->sc_dev));
518
519 return 0;
520 }
521
522 Static int
523 rum_alloc_tx_list(struct rum_softc *sc)
524 {
525 struct rum_tx_data *data;
526 int i, error;
527
528 sc->tx_queued = 0;
529
530 for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
531 data = &sc->tx_data[i];
532
533 data->sc = sc;
534
535 data->xfer = usbd_alloc_xfer(sc->sc_udev);
536 if (data->xfer == NULL) {
537 printf("%s: could not allocate tx xfer\n",
538 USBDEVNAME(sc->sc_dev));
539 error = ENOMEM;
540 goto fail;
541 }
542
543 data->buf = usbd_alloc_buffer(data->xfer,
544 RT2573_TX_DESC_SIZE + MCLBYTES);
545 if (data->buf == NULL) {
546 printf("%s: could not allocate tx buffer\n",
547 USBDEVNAME(sc->sc_dev));
548 error = ENOMEM;
549 goto fail;
550 }
551
552 /* clean Tx descriptor */
553 bzero(data->buf, RT2573_TX_DESC_SIZE);
554 }
555
556 return 0;
557
558 fail: rum_free_tx_list(sc);
559 return error;
560 }
561
562 Static void
563 rum_free_tx_list(struct rum_softc *sc)
564 {
565 struct rum_tx_data *data;
566 int i;
567
568 for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
569 data = &sc->tx_data[i];
570
571 if (data->xfer != NULL) {
572 usbd_free_xfer(data->xfer);
573 data->xfer = NULL;
574 }
575
576 if (data->ni != NULL) {
577 ieee80211_free_node(data->ni);
578 data->ni = NULL;
579 }
580 }
581 }
582
583 Static int
584 rum_alloc_rx_list(struct rum_softc *sc)
585 {
586 struct rum_rx_data *data;
587 int i, error;
588
589 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
590 data = &sc->rx_data[i];
591
592 data->sc = sc;
593
594 data->xfer = usbd_alloc_xfer(sc->sc_udev);
595 if (data->xfer == NULL) {
596 printf("%s: could not allocate rx xfer\n",
597 USBDEVNAME(sc->sc_dev));
598 error = ENOMEM;
599 goto fail;
600 }
601
602 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
603 printf("%s: could not allocate rx buffer\n",
604 USBDEVNAME(sc->sc_dev));
605 error = ENOMEM;
606 goto fail;
607 }
608
609 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
610 if (data->m == NULL) {
611 printf("%s: could not allocate rx mbuf\n",
612 USBDEVNAME(sc->sc_dev));
613 error = ENOMEM;
614 goto fail;
615 }
616
617 MCLGET(data->m, M_DONTWAIT);
618 if (!(data->m->m_flags & M_EXT)) {
619 printf("%s: could not allocate rx mbuf cluster\n",
620 USBDEVNAME(sc->sc_dev));
621 error = ENOMEM;
622 goto fail;
623 }
624
625 data->buf = mtod(data->m, uint8_t *);
626 }
627
628 return 0;
629
630 fail: rum_free_tx_list(sc);
631 return error;
632 }
633
634 Static void
635 rum_free_rx_list(struct rum_softc *sc)
636 {
637 struct rum_rx_data *data;
638 int i;
639
640 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
641 data = &sc->rx_data[i];
642
643 if (data->xfer != NULL) {
644 usbd_free_xfer(data->xfer);
645 data->xfer = NULL;
646 }
647
648 if (data->m != NULL) {
649 m_freem(data->m);
650 data->m = NULL;
651 }
652 }
653 }
654
655 Static int
656 rum_media_change(struct ifnet *ifp)
657 {
658 int error;
659
660 error = ieee80211_media_change(ifp);
661 if (error != ENETRESET)
662 return error;
663
664 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
665 rum_init(ifp);
666
667 return 0;
668 }
669
670 /*
671 * This function is called periodically (every 200ms) during scanning to
672 * switch from one channel to another.
673 */
674 Static void
675 rum_next_scan(void *arg)
676 {
677 struct rum_softc *sc = arg;
678 struct ieee80211com *ic = &sc->sc_ic;
679
680 if (ic->ic_state == IEEE80211_S_SCAN)
681 ieee80211_next_scan(ic);
682 }
683
684 Static void
685 rum_task(void *arg)
686 {
687 struct rum_softc *sc = arg;
688 struct ieee80211com *ic = &sc->sc_ic;
689 enum ieee80211_state ostate;
690 struct ieee80211_node *ni;
691 uint32_t tmp;
692
693 ostate = ic->ic_state;
694
695 switch (sc->sc_state) {
696 case IEEE80211_S_INIT:
697 if (ostate == IEEE80211_S_RUN) {
698 /* abort TSF synchronization */
699 tmp = rum_read(sc, RT2573_TXRX_CSR9);
700 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
701 }
702 break;
703
704 case IEEE80211_S_SCAN:
705 rum_set_chan(sc, ic->ic_curchan);
706 usb_callout(sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
707 break;
708
709 case IEEE80211_S_AUTH:
710 rum_set_chan(sc, ic->ic_curchan);
711 break;
712
713 case IEEE80211_S_ASSOC:
714 rum_set_chan(sc, ic->ic_curchan);
715 break;
716
717 case IEEE80211_S_RUN:
718 rum_set_chan(sc, ic->ic_curchan);
719
720 ni = ic->ic_bss;
721
722 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
723 rum_update_slot(sc);
724 rum_enable_mrr(sc);
725 rum_set_txpreamble(sc);
726 rum_set_basicrates(sc);
727 rum_set_bssid(sc, ni->ni_bssid);
728 }
729
730 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
731 ic->ic_opmode == IEEE80211_M_IBSS)
732 rum_prepare_beacon(sc);
733
734 if (ic->ic_opmode != IEEE80211_M_MONITOR)
735 rum_enable_tsf_sync(sc);
736
737 /* enable automatic rate adaptation in STA mode */
738 if (ic->ic_opmode == IEEE80211_M_STA &&
739 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
740 rum_amrr_start(sc, ni);
741
742 break;
743 }
744
745 sc->sc_newstate(ic, sc->sc_state, -1);
746 }
747
748 Static int
749 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
750 {
751 struct rum_softc *sc = ic->ic_ifp->if_softc;
752
753 usb_rem_task(sc->sc_udev, &sc->sc_task);
754 usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
755 usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
756
757 /* do it in a process context */
758 sc->sc_state = nstate;
759 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
760
761 return 0;
762 }
763
764 /* quickly determine if a given rate is CCK or OFDM */
765 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
766
767 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
768 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
769
770 Static void
771 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
772 {
773 struct rum_tx_data *data = priv;
774 struct rum_softc *sc = data->sc;
775 struct ifnet *ifp = &sc->sc_if;
776 int s;
777
778 if (status != USBD_NORMAL_COMPLETION) {
779 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
780 return;
781
782 printf("%s: could not transmit buffer: %s\n",
783 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
784
785 if (status == USBD_STALLED)
786 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
787
788 ifp->if_oerrors++;
789 return;
790 }
791
792 s = splnet();
793
794 m_freem(data->m);
795 data->m = NULL;
796 ieee80211_free_node(data->ni);
797 data->ni = NULL;
798
799 sc->tx_queued--;
800 ifp->if_opackets++;
801
802 DPRINTFN(10, ("tx done\n"));
803
804 sc->sc_tx_timer = 0;
805 ifp->if_flags &= ~IFF_OACTIVE;
806 rum_start(ifp);
807
808 splx(s);
809 }
810
811 Static void
812 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
813 {
814 struct rum_rx_data *data = priv;
815 struct rum_softc *sc = data->sc;
816 struct ieee80211com *ic = &sc->sc_ic;
817 struct ifnet *ifp = &sc->sc_if;
818 struct rum_rx_desc *desc;
819 struct ieee80211_frame *wh;
820 struct ieee80211_node *ni;
821 struct mbuf *mnew, *m;
822 int s, len;
823
824 if (status != USBD_NORMAL_COMPLETION) {
825 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
826 return;
827
828 if (status == USBD_STALLED)
829 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
830 goto skip;
831 }
832
833 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
834
835 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
836 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
837 len));
838 ifp->if_ierrors++;
839 goto skip;
840 }
841
842 desc = (struct rum_rx_desc *)data->buf;
843
844 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
845 /*
846 * This should not happen since we did not request to receive
847 * those frames when we filled RT2573_TXRX_CSR0.
848 */
849 DPRINTFN(5, ("CRC error\n"));
850 ifp->if_ierrors++;
851 goto skip;
852 }
853
854 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
855 if (mnew == NULL) {
856 printf("%s: could not allocate rx mbuf\n",
857 USBDEVNAME(sc->sc_dev));
858 ifp->if_ierrors++;
859 goto skip;
860 }
861
862 MCLGET(mnew, M_DONTWAIT);
863 if (!(mnew->m_flags & M_EXT)) {
864 printf("%s: could not allocate rx mbuf cluster\n",
865 USBDEVNAME(sc->sc_dev));
866 m_freem(mnew);
867 ifp->if_ierrors++;
868 goto skip;
869 }
870
871 m = data->m;
872 data->m = mnew;
873 data->buf = mtod(data->m, uint8_t *);
874
875 /* finalize mbuf */
876 m->m_pkthdr.rcvif = ifp;
877 m->m_data = (void *)(desc + 1);
878 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
879
880 s = splnet();
881
882 #if NBPFILTER > 0
883 if (sc->sc_drvbpf != NULL) {
884 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
885
886 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
887 tap->wr_rate = rum_rxrate(desc);
888 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
889 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
890 tap->wr_antenna = sc->rx_ant;
891 tap->wr_antsignal = desc->rssi;
892
893 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
894 }
895 #endif
896
897 wh = mtod(m, struct ieee80211_frame *);
898 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
899
900 /* send the frame to the 802.11 layer */
901 ieee80211_input(ic, m, ni, desc->rssi, 0);
902
903 /* node is no longer needed */
904 ieee80211_free_node(ni);
905
906 splx(s);
907
908 DPRINTFN(15, ("rx done\n"));
909
910 skip: /* setup a new transfer */
911 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
912 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
913 usbd_transfer(xfer);
914 }
915
916 /*
917 * This function is only used by the Rx radiotap code. It returns the rate at
918 * which a given frame was received.
919 */
920 #if NBPFILTER > 0
921 Static uint8_t
922 rum_rxrate(struct rum_rx_desc *desc)
923 {
924 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
925 /* reverse function of rum_plcp_signal */
926 switch (desc->rate) {
927 case 0xb: return 12;
928 case 0xf: return 18;
929 case 0xa: return 24;
930 case 0xe: return 36;
931 case 0x9: return 48;
932 case 0xd: return 72;
933 case 0x8: return 96;
934 case 0xc: return 108;
935 }
936 } else {
937 if (desc->rate == 10)
938 return 2;
939 if (desc->rate == 20)
940 return 4;
941 if (desc->rate == 55)
942 return 11;
943 if (desc->rate == 110)
944 return 22;
945 }
946 return 2; /* should not get there */
947 }
948 #endif
949
950 /*
951 * Return the expected ack rate for a frame transmitted at rate `rate'.
952 * XXX: this should depend on the destination node basic rate set.
953 */
954 Static int
955 rum_ack_rate(struct ieee80211com *ic, int rate)
956 {
957 switch (rate) {
958 /* CCK rates */
959 case 2:
960 return 2;
961 case 4:
962 case 11:
963 case 22:
964 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
965
966 /* OFDM rates */
967 case 12:
968 case 18:
969 return 12;
970 case 24:
971 case 36:
972 return 24;
973 case 48:
974 case 72:
975 case 96:
976 case 108:
977 return 48;
978 }
979
980 /* default to 1Mbps */
981 return 2;
982 }
983
984 /*
985 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
986 * The function automatically determines the operating mode depending on the
987 * given rate. `flags' indicates whether short preamble is in use or not.
988 */
989 Static uint16_t
990 rum_txtime(int len, int rate, uint32_t flags)
991 {
992 uint16_t txtime;
993
994 if (RUM_RATE_IS_OFDM(rate)) {
995 /* IEEE Std 802.11a-1999, pp. 37 */
996 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
997 txtime = 16 + 4 + 4 * txtime + 6;
998 } else {
999 /* IEEE Std 802.11b-1999, pp. 28 */
1000 txtime = (16 * len + rate - 1) / rate;
1001 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1002 txtime += 72 + 24;
1003 else
1004 txtime += 144 + 48;
1005 }
1006 return txtime;
1007 }
1008
1009 Static uint8_t
1010 rum_plcp_signal(int rate)
1011 {
1012 switch (rate) {
1013 /* CCK rates (returned values are device-dependent) */
1014 case 2: return 0x0;
1015 case 4: return 0x1;
1016 case 11: return 0x2;
1017 case 22: return 0x3;
1018
1019 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1020 case 12: return 0xb;
1021 case 18: return 0xf;
1022 case 24: return 0xa;
1023 case 36: return 0xe;
1024 case 48: return 0x9;
1025 case 72: return 0xd;
1026 case 96: return 0x8;
1027 case 108: return 0xc;
1028
1029 /* unsupported rates (should not get there) */
1030 default: return 0xff;
1031 }
1032 }
1033
1034 Static void
1035 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1036 uint32_t flags, uint16_t xflags, int len, int rate)
1037 {
1038 struct ieee80211com *ic = &sc->sc_ic;
1039 uint16_t plcp_length;
1040 int remainder;
1041
1042 desc->flags = htole32(flags);
1043 desc->flags |= htole32(RT2573_TX_VALID);
1044 desc->flags |= htole32(len << 16);
1045
1046 desc->xflags = htole16(xflags);
1047
1048 desc->wme = htole16(
1049 RT2573_QID(0) |
1050 RT2573_AIFSN(2) |
1051 RT2573_LOGCWMIN(4) |
1052 RT2573_LOGCWMAX(10));
1053
1054 /* setup PLCP fields */
1055 desc->plcp_signal = rum_plcp_signal(rate);
1056 desc->plcp_service = 4;
1057
1058 len += IEEE80211_CRC_LEN;
1059 if (RUM_RATE_IS_OFDM(rate)) {
1060 desc->flags |= htole32(RT2573_TX_OFDM);
1061
1062 plcp_length = len & 0xfff;
1063 desc->plcp_length_hi = plcp_length >> 6;
1064 desc->plcp_length_lo = plcp_length & 0x3f;
1065 } else {
1066 plcp_length = (16 * len + rate - 1) / rate;
1067 if (rate == 22) {
1068 remainder = (16 * len) % 22;
1069 if (remainder != 0 && remainder < 7)
1070 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1071 }
1072 desc->plcp_length_hi = plcp_length >> 8;
1073 desc->plcp_length_lo = plcp_length & 0xff;
1074
1075 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1076 desc->plcp_signal |= 0x08;
1077 }
1078 }
1079
1080 #define RUM_TX_TIMEOUT 5000
1081
1082 Static int
1083 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1084 {
1085 struct ieee80211com *ic = &sc->sc_ic;
1086 struct rum_tx_desc *desc;
1087 struct rum_tx_data *data;
1088 struct ieee80211_frame *wh;
1089 uint32_t flags = 0;
1090 uint16_t dur;
1091 usbd_status error;
1092 int xferlen, rate;
1093
1094 data = &sc->tx_data[0];
1095 desc = (struct rum_tx_desc *)data->buf;
1096
1097 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1098
1099 data->m = m0;
1100 data->ni = ni;
1101
1102 wh = mtod(m0, struct ieee80211_frame *);
1103
1104 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1105 flags |= RT2573_TX_ACK;
1106
1107 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1108 ic->ic_flags) + sc->sifs;
1109 *(uint16_t *)wh->i_dur = htole16(dur);
1110
1111 /* tell hardware to set timestamp in probe responses */
1112 if ((wh->i_fc[0] &
1113 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1114 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1115 flags |= RT2573_TX_TIMESTAMP;
1116 }
1117
1118 #if NBPFILTER > 0
1119 if (sc->sc_drvbpf != NULL) {
1120 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1121
1122 tap->wt_flags = 0;
1123 tap->wt_rate = rate;
1124 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1125 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1126 tap->wt_antenna = sc->tx_ant;
1127
1128 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1129 }
1130 #endif
1131
1132 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1133 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1134
1135 /* align end on a 4-bytes boundary */
1136 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1137
1138 /*
1139 * No space left in the last URB to store the extra 4 bytes, force
1140 * sending of another URB.
1141 */
1142 if ((xferlen % 64) == 0)
1143 xferlen += 4;
1144
1145 DPRINTFN(10, ("sending msg frame len=%zu rate=%u xfer len=%u\n",
1146 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1147 rate, xferlen));
1148
1149 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1150 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1151
1152 error = usbd_transfer(data->xfer);
1153 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1154 m_freem(m0);
1155 return error;
1156 }
1157
1158 sc->tx_queued++;
1159
1160 return 0;
1161 }
1162
1163 Static int
1164 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1165 {
1166 struct ieee80211com *ic = &sc->sc_ic;
1167 struct rum_tx_desc *desc;
1168 struct rum_tx_data *data;
1169 struct ieee80211_frame *wh;
1170 struct ieee80211_key *k;
1171 uint32_t flags = 0;
1172 uint16_t dur;
1173 usbd_status error;
1174 int xferlen, rate;
1175
1176 wh = mtod(m0, struct ieee80211_frame *);
1177
1178 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1179 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1180 else
1181 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1182 rate &= IEEE80211_RATE_VAL;
1183
1184 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1185 k = ieee80211_crypto_encap(ic, ni, m0);
1186 if (k == NULL) {
1187 m_freem(m0);
1188 return ENOBUFS;
1189 }
1190
1191 /* packet header may have moved, reset our local pointer */
1192 wh = mtod(m0, struct ieee80211_frame *);
1193 }
1194
1195 data = &sc->tx_data[0];
1196 desc = (struct rum_tx_desc *)data->buf;
1197
1198 data->m = m0;
1199 data->ni = ni;
1200
1201 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1202 flags |= RT2573_TX_ACK;
1203
1204 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1205 ic->ic_flags) + sc->sifs;
1206 *(uint16_t *)wh->i_dur = htole16(dur);
1207 }
1208
1209 #if NBPFILTER > 0
1210 if (sc->sc_drvbpf != NULL) {
1211 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1212
1213 tap->wt_flags = 0;
1214 tap->wt_rate = rate;
1215 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1216 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1217 tap->wt_antenna = sc->tx_ant;
1218
1219 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1220 }
1221 #endif
1222
1223 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1224 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1225
1226 /* align end on a 4-bytes boundary */
1227 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1228
1229 /*
1230 * No space left in the last URB to store the extra 4 bytes, force
1231 * sending of another URB.
1232 */
1233 if ((xferlen % 64) == 0)
1234 xferlen += 4;
1235
1236 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1237 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1238 rate, xferlen));
1239
1240 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1241 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1242
1243 error = usbd_transfer(data->xfer);
1244 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1245 m_freem(m0);
1246 return error;
1247 }
1248
1249 sc->tx_queued++;
1250
1251 return 0;
1252 }
1253
1254 Static void
1255 rum_start(struct ifnet *ifp)
1256 {
1257 struct rum_softc *sc = ifp->if_softc;
1258 struct ieee80211com *ic = &sc->sc_ic;
1259 struct ether_header *eh;
1260 struct ieee80211_node *ni;
1261 struct mbuf *m0;
1262
1263 for (;;) {
1264 IF_POLL(&ic->ic_mgtq, m0);
1265 if (m0 != NULL) {
1266 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1267 ifp->if_flags |= IFF_OACTIVE;
1268 break;
1269 }
1270 IF_DEQUEUE(&ic->ic_mgtq, m0);
1271
1272 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1273 m0->m_pkthdr.rcvif = NULL;
1274 #if NBPFILTER > 0
1275 if (ic->ic_rawbpf != NULL)
1276 bpf_mtap(ic->ic_rawbpf, m0);
1277 #endif
1278 if (rum_tx_mgt(sc, m0, ni) != 0)
1279 break;
1280
1281 } else {
1282 if (ic->ic_state != IEEE80211_S_RUN)
1283 break;
1284 IFQ_POLL(&ifp->if_snd, m0);
1285 if (m0 == NULL)
1286 break;
1287 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1288 ifp->if_flags |= IFF_OACTIVE;
1289 break;
1290 }
1291 IFQ_DEQUEUE(&ifp->if_snd, m0);
1292 if (m0->m_len < sizeof(struct ether_header) &&
1293 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1294 continue;
1295
1296 eh = mtod(m0, struct ether_header *);
1297 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1298 if (ni == NULL) {
1299 m_freem(m0);
1300 continue;
1301 }
1302 #if NBPFILTER > 0
1303 if (ifp->if_bpf != NULL)
1304 bpf_mtap(ifp->if_bpf, m0);
1305 #endif
1306 m0 = ieee80211_encap(ic, m0, ni);
1307 if (m0 == NULL) {
1308 ieee80211_free_node(ni);
1309 continue;
1310 }
1311 #if NBPFILTER > 0
1312 if (ic->ic_rawbpf != NULL)
1313 bpf_mtap(ic->ic_rawbpf, m0);
1314 #endif
1315 if (rum_tx_data(sc, m0, ni) != 0) {
1316 ieee80211_free_node(ni);
1317 ifp->if_oerrors++;
1318 break;
1319 }
1320 }
1321
1322 sc->sc_tx_timer = 5;
1323 ifp->if_timer = 1;
1324 }
1325 }
1326
1327 Static void
1328 rum_watchdog(struct ifnet *ifp)
1329 {
1330 struct rum_softc *sc = ifp->if_softc;
1331 struct ieee80211com *ic = &sc->sc_ic;
1332
1333 ifp->if_timer = 0;
1334
1335 if (sc->sc_tx_timer > 0) {
1336 if (--sc->sc_tx_timer == 0) {
1337 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1338 /*rum_init(ifp); XXX needs a process context! */
1339 ifp->if_oerrors++;
1340 return;
1341 }
1342 ifp->if_timer = 1;
1343 }
1344
1345 ieee80211_watchdog(ic);
1346 }
1347
1348 Static int
1349 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1350 {
1351 struct rum_softc *sc = ifp->if_softc;
1352 struct ieee80211com *ic = &sc->sc_ic;
1353 int s, error = 0;
1354
1355 s = splnet();
1356
1357 switch (cmd) {
1358 case SIOCSIFFLAGS:
1359 if (ifp->if_flags & IFF_UP) {
1360 if (ifp->if_flags & IFF_RUNNING)
1361 rum_update_promisc(sc);
1362 else
1363 rum_init(ifp);
1364 } else {
1365 if (ifp->if_flags & IFF_RUNNING)
1366 rum_stop(ifp, 1);
1367 }
1368 break;
1369
1370 default:
1371 error = ieee80211_ioctl(ic, cmd, data);
1372 }
1373
1374 if (error == ENETRESET) {
1375 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1376 (IFF_UP | IFF_RUNNING))
1377 rum_init(ifp);
1378 error = 0;
1379 }
1380
1381 splx(s);
1382
1383 return error;
1384 }
1385
1386 Static void
1387 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1388 {
1389 usb_device_request_t req;
1390 usbd_status error;
1391
1392 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1393 req.bRequest = RT2573_READ_EEPROM;
1394 USETW(req.wValue, 0);
1395 USETW(req.wIndex, addr);
1396 USETW(req.wLength, len);
1397
1398 error = usbd_do_request(sc->sc_udev, &req, buf);
1399 if (error != 0) {
1400 printf("%s: could not read EEPROM: %s\n",
1401 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1402 }
1403 }
1404
1405 Static uint32_t
1406 rum_read(struct rum_softc *sc, uint16_t reg)
1407 {
1408 uint32_t val;
1409
1410 rum_read_multi(sc, reg, &val, sizeof val);
1411
1412 return le32toh(val);
1413 }
1414
1415 Static void
1416 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1417 {
1418 usb_device_request_t req;
1419 usbd_status error;
1420
1421 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1422 req.bRequest = RT2573_READ_MULTI_MAC;
1423 USETW(req.wValue, 0);
1424 USETW(req.wIndex, reg);
1425 USETW(req.wLength, len);
1426
1427 error = usbd_do_request(sc->sc_udev, &req, buf);
1428 if (error != 0) {
1429 printf("%s: could not multi read MAC register: %s\n",
1430 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1431 }
1432 }
1433
1434 Static void
1435 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1436 {
1437 uint32_t tmp = htole32(val);
1438
1439 rum_write_multi(sc, reg, &tmp, sizeof tmp);
1440 }
1441
1442 Static void
1443 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1444 {
1445 usb_device_request_t req;
1446 usbd_status error;
1447
1448 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1449 req.bRequest = RT2573_WRITE_MULTI_MAC;
1450 USETW(req.wValue, 0);
1451 USETW(req.wIndex, reg);
1452 USETW(req.wLength, len);
1453
1454 error = usbd_do_request(sc->sc_udev, &req, buf);
1455 if (error != 0) {
1456 printf("%s: could not multi write MAC register: %s\n",
1457 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1458 }
1459 }
1460
1461 Static void
1462 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1463 {
1464 uint32_t tmp;
1465 int ntries;
1466
1467 for (ntries = 0; ntries < 5; ntries++) {
1468 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1469 break;
1470 }
1471 if (ntries == 5) {
1472 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1473 return;
1474 }
1475
1476 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1477 rum_write(sc, RT2573_PHY_CSR3, tmp);
1478 }
1479
1480 Static uint8_t
1481 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1482 {
1483 uint32_t val;
1484 int ntries;
1485
1486 for (ntries = 0; ntries < 5; ntries++) {
1487 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1488 break;
1489 }
1490 if (ntries == 5) {
1491 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1492 return 0;
1493 }
1494
1495 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1496 rum_write(sc, RT2573_PHY_CSR3, val);
1497
1498 for (ntries = 0; ntries < 100; ntries++) {
1499 val = rum_read(sc, RT2573_PHY_CSR3);
1500 if (!(val & RT2573_BBP_BUSY))
1501 return val & 0xff;
1502 DELAY(1);
1503 }
1504
1505 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1506 return 0;
1507 }
1508
1509 Static void
1510 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1511 {
1512 uint32_t tmp;
1513 int ntries;
1514
1515 for (ntries = 0; ntries < 5; ntries++) {
1516 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1517 break;
1518 }
1519 if (ntries == 5) {
1520 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1521 return;
1522 }
1523
1524 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1525 (reg & 3);
1526 rum_write(sc, RT2573_PHY_CSR4, tmp);
1527
1528 /* remember last written value in sc */
1529 sc->rf_regs[reg] = val;
1530
1531 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1532 }
1533
1534 Static void
1535 rum_select_antenna(struct rum_softc *sc)
1536 {
1537 uint8_t bbp4, bbp77;
1538 uint32_t tmp;
1539
1540 bbp4 = rum_bbp_read(sc, 4);
1541 bbp77 = rum_bbp_read(sc, 77);
1542
1543 /* TBD */
1544
1545 /* make sure Rx is disabled before switching antenna */
1546 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1547 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1548
1549 rum_bbp_write(sc, 4, bbp4);
1550 rum_bbp_write(sc, 77, bbp77);
1551
1552 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1553 }
1554
1555 /*
1556 * Enable multi-rate retries for frames sent at OFDM rates.
1557 * In 802.11b/g mode, allow fallback to CCK rates.
1558 */
1559 Static void
1560 rum_enable_mrr(struct rum_softc *sc)
1561 {
1562 struct ieee80211com *ic = &sc->sc_ic;
1563 uint32_t tmp;
1564
1565 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1566
1567 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1568 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1569 tmp |= RT2573_MRR_CCK_FALLBACK;
1570 tmp |= RT2573_MRR_ENABLED;
1571
1572 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1573 }
1574
1575 Static void
1576 rum_set_txpreamble(struct rum_softc *sc)
1577 {
1578 uint32_t tmp;
1579
1580 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1581
1582 tmp &= ~RT2573_SHORT_PREAMBLE;
1583 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1584 tmp |= RT2573_SHORT_PREAMBLE;
1585
1586 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1587 }
1588
1589 Static void
1590 rum_set_basicrates(struct rum_softc *sc)
1591 {
1592 struct ieee80211com *ic = &sc->sc_ic;
1593
1594 /* update basic rate set */
1595 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1596 /* 11b basic rates: 1, 2Mbps */
1597 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1598 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1599 /* 11a basic rates: 6, 12, 24Mbps */
1600 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1601 } else {
1602 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1603 rum_write(sc, RT2573_TXRX_CSR5, 0x15f);
1604 }
1605 }
1606
1607 /*
1608 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1609 * driver.
1610 */
1611 Static void
1612 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1613 {
1614 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1615 uint32_t tmp;
1616
1617 /* update all BBP registers that depend on the band */
1618 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1619 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1620 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1621 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1622 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1623 }
1624 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1625 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1626 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1627 }
1628
1629 sc->bbp17 = bbp17;
1630 rum_bbp_write(sc, 17, bbp17);
1631 rum_bbp_write(sc, 96, bbp96);
1632 rum_bbp_write(sc, 104, bbp104);
1633
1634 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1635 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1636 rum_bbp_write(sc, 75, 0x80);
1637 rum_bbp_write(sc, 86, 0x80);
1638 rum_bbp_write(sc, 88, 0x80);
1639 }
1640
1641 rum_bbp_write(sc, 35, bbp35);
1642 rum_bbp_write(sc, 97, bbp97);
1643 rum_bbp_write(sc, 98, bbp98);
1644
1645 tmp = rum_read(sc, RT2573_PHY_CSR0);
1646 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1647 if (IEEE80211_IS_CHAN_2GHZ(c))
1648 tmp |= RT2573_PA_PE_2GHZ;
1649 else
1650 tmp |= RT2573_PA_PE_5GHZ;
1651 rum_write(sc, RT2573_PHY_CSR0, tmp);
1652
1653 /* 802.11a uses a 16 microseconds short interframe space */
1654 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1655 }
1656
1657 Static void
1658 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1659 {
1660 struct ieee80211com *ic = &sc->sc_ic;
1661 const struct rfprog *rfprog;
1662 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1663 int8_t power;
1664 u_int i, chan;
1665
1666 chan = ieee80211_chan2ieee(ic, c);
1667 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1668 return;
1669
1670 /* select the appropriate RF settings based on what EEPROM says */
1671 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1672 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1673
1674 /* find the settings for this channel (we know it exists) */
1675 for (i = 0; rfprog[i].chan != chan; i++);
1676
1677 power = sc->txpow[i];
1678 if (power < 0) {
1679 bbp94 += power;
1680 power = 0;
1681 } else if (power > 31) {
1682 bbp94 += power - 31;
1683 power = 31;
1684 }
1685
1686 /*
1687 * If we are switching from the 2GHz band to the 5GHz band or
1688 * vice-versa, BBP registers need to be reprogrammed.
1689 */
1690 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1691 rum_select_band(sc, c);
1692 rum_select_antenna(sc);
1693 }
1694 ic->ic_curchan = c;
1695
1696 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1697 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1698 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1699 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1700
1701 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1702 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1703 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1704 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1705
1706 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1707 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1708 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1709 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1710
1711 DELAY(10);
1712
1713 /* enable smart mode for MIMO-capable RFs */
1714 bbp3 = rum_bbp_read(sc, 3);
1715
1716 bbp3 &= ~RT2573_SMART_MODE;
1717 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1718 bbp3 |= RT2573_SMART_MODE;
1719
1720 rum_bbp_write(sc, 3, bbp3);
1721
1722 if (bbp94 != RT2573_BBPR94_DEFAULT)
1723 rum_bbp_write(sc, 94, bbp94);
1724 }
1725
1726 /*
1727 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1728 * and HostAP operating modes.
1729 */
1730 Static void
1731 rum_enable_tsf_sync(struct rum_softc *sc)
1732 {
1733 struct ieee80211com *ic = &sc->sc_ic;
1734 uint32_t tmp;
1735
1736 if (ic->ic_opmode != IEEE80211_M_STA) {
1737 /*
1738 * Change default 16ms TBTT adjustment to 8ms.
1739 * Must be done before enabling beacon generation.
1740 */
1741 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1742 }
1743
1744 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1745
1746 /* set beacon interval (in 1/16ms unit) */
1747 tmp |= ic->ic_bss->ni_intval * 16;
1748
1749 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1750 if (ic->ic_opmode == IEEE80211_M_STA)
1751 tmp |= RT2573_TSF_MODE(1);
1752 else
1753 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1754
1755 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1756 }
1757
1758 Static void
1759 rum_update_slot(struct rum_softc *sc)
1760 {
1761 struct ieee80211com *ic = &sc->sc_ic;
1762 uint8_t slottime;
1763 uint32_t tmp;
1764
1765 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1766
1767 tmp = rum_read(sc, RT2573_MAC_CSR9);
1768 tmp = (tmp & ~0xff) | slottime;
1769 rum_write(sc, RT2573_MAC_CSR9, tmp);
1770
1771 DPRINTF(("setting slot time to %uus\n", slottime));
1772 }
1773
1774 Static void
1775 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1776 {
1777 uint32_t tmp;
1778
1779 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1780 rum_write(sc, RT2573_MAC_CSR4, tmp);
1781
1782 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1783 rum_write(sc, RT2573_MAC_CSR5, tmp);
1784 }
1785
1786 Static void
1787 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1788 {
1789 uint32_t tmp;
1790
1791 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1792 rum_write(sc, RT2573_MAC_CSR2, tmp);
1793
1794 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1795 rum_write(sc, RT2573_MAC_CSR3, tmp);
1796 }
1797
1798 Static void
1799 rum_update_promisc(struct rum_softc *sc)
1800 {
1801 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1802 uint32_t tmp;
1803
1804 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1805
1806 tmp &= ~RT2573_DROP_NOT_TO_ME;
1807 if (!(ifp->if_flags & IFF_PROMISC))
1808 tmp |= RT2573_DROP_NOT_TO_ME;
1809
1810 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1811
1812 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1813 "entering" : "leaving"));
1814 }
1815
1816 Static const char *
1817 rum_get_rf(int rev)
1818 {
1819 switch (rev) {
1820 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1821 case RT2573_RF_2528: return "RT2528";
1822 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1823 case RT2573_RF_5226: return "RT5226";
1824 default: return "unknown";
1825 }
1826 }
1827
1828 Static void
1829 rum_read_eeprom(struct rum_softc *sc)
1830 {
1831 struct ieee80211com *ic = &sc->sc_ic;
1832 uint16_t val;
1833 #ifdef RUM_DEBUG
1834 int i;
1835 #endif
1836
1837 /* read MAC/BBP type */
1838 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1839 sc->macbbp_rev = le16toh(val);
1840
1841 /* read MAC address */
1842 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1843
1844 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1845 val = le16toh(val);
1846 sc->rf_rev = (val >> 11) & 0x1f;
1847 sc->hw_radio = (val >> 10) & 0x1;
1848 sc->rx_ant = (val >> 4) & 0x3;
1849 sc->tx_ant = (val >> 2) & 0x3;
1850 sc->nb_ant = val & 0x3;
1851
1852 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1853
1854 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1855 val = le16toh(val);
1856 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1857 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1858
1859 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1860 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1861
1862 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1863 val = le16toh(val);
1864 if ((val & 0xff) != 0xff)
1865 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1866
1867 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1868 val = le16toh(val);
1869 if ((val & 0xff) != 0xff)
1870 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1871
1872 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1873 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1874
1875 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1876 val = le16toh(val);
1877 if ((val & 0xff) != 0xff)
1878 sc->rffreq = val & 0xff;
1879
1880 DPRINTF(("RF freq=%d\n", sc->rffreq));
1881
1882 /* read Tx power for all a/b/g channels */
1883 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1884 /* XXX default Tx power for 802.11a channels */
1885 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1886 #ifdef RUM_DEBUG
1887 for (i = 0; i < 14; i++)
1888 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1889 #endif
1890
1891 /* read default values for BBP registers */
1892 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1893 #ifdef RUM_DEBUG
1894 for (i = 0; i < 14; i++) {
1895 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1896 continue;
1897 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1898 sc->bbp_prom[i].val));
1899 }
1900 #endif
1901 }
1902
1903 Static int
1904 rum_bbp_init(struct rum_softc *sc)
1905 {
1906 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1907 int i, ntries;
1908 uint8_t val;
1909
1910 /* wait for BBP to be ready */
1911 for (ntries = 0; ntries < 100; ntries++) {
1912 val = rum_bbp_read(sc, 0);
1913 if (val != 0 && val != 0xff)
1914 break;
1915 DELAY(1000);
1916 }
1917 if (ntries == 100) {
1918 printf("%s: timeout waiting for BBP\n",
1919 USBDEVNAME(sc->sc_dev));
1920 return EIO;
1921 }
1922
1923 /* initialize BBP registers to default values */
1924 for (i = 0; i < N(rum_def_bbp); i++)
1925 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1926
1927 /* write vendor-specific BBP values (from EEPROM) */
1928 for (i = 0; i < 16; i++) {
1929 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1930 continue;
1931 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1932 }
1933
1934 return 0;
1935 #undef N
1936 }
1937
1938 Static int
1939 rum_init(struct ifnet *ifp)
1940 {
1941 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1942 struct rum_softc *sc = ifp->if_softc;
1943 struct ieee80211com *ic = &sc->sc_ic;
1944 struct rum_rx_data *data;
1945 uint32_t tmp;
1946 usbd_status error = 0;
1947 int i, ntries;
1948
1949 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1950 if (rum_attachhook(sc))
1951 goto fail;
1952 }
1953
1954 rum_stop(ifp, 0);
1955
1956 /* initialize MAC registers to default values */
1957 for (i = 0; i < N(rum_def_mac); i++)
1958 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1959
1960 /* set host ready */
1961 rum_write(sc, RT2573_MAC_CSR1, 3);
1962 rum_write(sc, RT2573_MAC_CSR1, 0);
1963
1964 /* wait for BBP/RF to wakeup */
1965 for (ntries = 0; ntries < 1000; ntries++) {
1966 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1967 break;
1968 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1969 DELAY(1000);
1970 }
1971 if (ntries == 1000) {
1972 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1973 USBDEVNAME(sc->sc_dev));
1974 goto fail;
1975 }
1976
1977 if ((error = rum_bbp_init(sc)) != 0)
1978 goto fail;
1979
1980 /* select default channel */
1981 rum_select_band(sc, ic->ic_curchan);
1982 rum_select_antenna(sc);
1983 rum_set_chan(sc, ic->ic_curchan);
1984
1985 /* clear STA registers */
1986 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1987
1988 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1989 rum_set_macaddr(sc, ic->ic_myaddr);
1990
1991 /* initialize ASIC */
1992 rum_write(sc, RT2573_MAC_CSR1, 4);
1993
1994 /*
1995 * Allocate xfer for AMRR statistics requests.
1996 */
1997 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
1998 if (sc->amrr_xfer == NULL) {
1999 printf("%s: could not allocate AMRR xfer\n",
2000 USBDEVNAME(sc->sc_dev));
2001 goto fail;
2002 }
2003
2004 /*
2005 * Open Tx and Rx USB bulk pipes.
2006 */
2007 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2008 &sc->sc_tx_pipeh);
2009 if (error != 0) {
2010 printf("%s: could not open Tx pipe: %s\n",
2011 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2012 goto fail;
2013 }
2014
2015 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2016 &sc->sc_rx_pipeh);
2017 if (error != 0) {
2018 printf("%s: could not open Rx pipe: %s\n",
2019 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2020 goto fail;
2021 }
2022
2023 /*
2024 * Allocate Tx and Rx xfer queues.
2025 */
2026 error = rum_alloc_tx_list(sc);
2027 if (error != 0) {
2028 printf("%s: could not allocate Tx list\n",
2029 USBDEVNAME(sc->sc_dev));
2030 goto fail;
2031 }
2032
2033 error = rum_alloc_rx_list(sc);
2034 if (error != 0) {
2035 printf("%s: could not allocate Rx list\n",
2036 USBDEVNAME(sc->sc_dev));
2037 goto fail;
2038 }
2039
2040 /*
2041 * Start up the receive pipe.
2042 */
2043 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
2044 data = &sc->rx_data[i];
2045
2046 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2047 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2048 usbd_transfer(data->xfer);
2049 }
2050
2051 /* update Rx filter */
2052 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2053
2054 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2055 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2056 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2057 RT2573_DROP_ACKCTS;
2058 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2059 tmp |= RT2573_DROP_TODS;
2060 if (!(ifp->if_flags & IFF_PROMISC))
2061 tmp |= RT2573_DROP_NOT_TO_ME;
2062 }
2063 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2064
2065 ifp->if_flags &= ~IFF_OACTIVE;
2066 ifp->if_flags |= IFF_RUNNING;
2067
2068 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2069 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2070 else
2071 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2072
2073 return 0;
2074
2075 fail: rum_stop(ifp, 1);
2076 return error;
2077 #undef N
2078 }
2079
2080 Static void
2081 rum_stop(struct ifnet *ifp, int disable)
2082 {
2083 struct rum_softc *sc = ifp->if_softc;
2084 struct ieee80211com *ic = &sc->sc_ic;
2085 uint32_t tmp;
2086
2087 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2088
2089 sc->sc_tx_timer = 0;
2090 ifp->if_timer = 0;
2091 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2092
2093 /* disable Rx */
2094 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2095 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2096
2097 /* reset ASIC */
2098 rum_write(sc, RT2573_MAC_CSR1, 3);
2099 rum_write(sc, RT2573_MAC_CSR1, 0);
2100
2101 if (sc->sc_rx_pipeh != NULL) {
2102 usbd_abort_pipe(sc->sc_rx_pipeh);
2103 usbd_close_pipe(sc->sc_rx_pipeh);
2104 sc->sc_rx_pipeh = NULL;
2105 }
2106
2107 if (sc->sc_tx_pipeh != NULL) {
2108 usbd_abort_pipe(sc->sc_tx_pipeh);
2109 usbd_close_pipe(sc->sc_tx_pipeh);
2110 sc->sc_tx_pipeh = NULL;
2111 }
2112
2113 rum_free_rx_list(sc);
2114 rum_free_tx_list(sc);
2115 }
2116
2117 Static int
2118 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2119 {
2120 usb_device_request_t req;
2121 uint16_t reg = RT2573_MCU_CODE_BASE;
2122 usbd_status error;
2123
2124 /* copy firmware image into NIC */
2125 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2126 rum_write(sc, reg, UGETDW(ucode));
2127
2128 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2129 req.bRequest = RT2573_MCU_CNTL;
2130 USETW(req.wValue, RT2573_MCU_RUN);
2131 USETW(req.wIndex, 0);
2132 USETW(req.wLength, 0);
2133
2134 error = usbd_do_request(sc->sc_udev, &req, NULL);
2135 if (error != 0) {
2136 printf("%s: could not run firmware: %s\n",
2137 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2138 }
2139 return error;
2140 }
2141
2142 Static int
2143 rum_prepare_beacon(struct rum_softc *sc)
2144 {
2145 struct ieee80211com *ic = &sc->sc_ic;
2146 struct rum_tx_desc desc;
2147 struct mbuf *m0;
2148 int rate;
2149
2150 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2151 if (m0 == NULL) {
2152 printf("%s: could not allocate beacon frame\n",
2153 sc->sc_dev.dv_xname);
2154 return ENOBUFS;
2155 }
2156
2157 /* send beacons at the lowest available rate */
2158 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2159
2160 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2161 m0->m_pkthdr.len, rate);
2162
2163 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2164 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2165
2166 /* copy beacon header and payload into NIC memory */
2167 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2168 m0->m_pkthdr.len);
2169
2170 m_freem(m0);
2171
2172 return 0;
2173 }
2174
2175 Static void
2176 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2177 {
2178 int i;
2179
2180 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2181 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2182
2183 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2184
2185 /* set rate to some reasonable initial value */
2186 for (i = ni->ni_rates.rs_nrates - 1;
2187 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2188 i--);
2189 ni->ni_txrate = i;
2190
2191 usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2192 }
2193
2194 Static void
2195 rum_amrr_timeout(void *arg)
2196 {
2197 struct rum_softc *sc = arg;
2198 usb_device_request_t req;
2199 int s;
2200
2201 s = splusb();
2202
2203 /*
2204 * Asynchronously read statistic registers (cleared by read).
2205 */
2206 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2207 req.bRequest = RT2573_READ_MULTI_MAC;
2208 USETW(req.wValue, 0);
2209 USETW(req.wIndex, RT2573_STA_CSR0);
2210 USETW(req.wLength, sizeof sc->sta);
2211
2212 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2213 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2214 rum_amrr_update);
2215 (void)usbd_transfer(sc->amrr_xfer);
2216
2217 splx(s);
2218 }
2219
2220 Static void
2221 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2222 usbd_status status)
2223 {
2224 struct rum_softc *sc = (struct rum_softc *)priv;
2225 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2226
2227 if (status != USBD_NORMAL_COMPLETION) {
2228 printf("%s: could not retrieve Tx statistics - cancelling "
2229 "automatic rate control\n", USBDEVNAME(sc->sc_dev));
2230 return;
2231 }
2232
2233 /* count TX retry-fail as Tx errors */
2234 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2235
2236 sc->amn.amn_retrycnt =
2237 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2238 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2239 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2240
2241 sc->amn.amn_txcnt =
2242 sc->amn.amn_retrycnt +
2243 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2244
2245 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2246
2247 usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2248 }
2249
2250 int
2251 rum_activate(device_ptr_t self, enum devact act)
2252 {
2253 switch (act) {
2254 case DVACT_ACTIVATE:
2255 return EOPNOTSUPP;
2256
2257 case DVACT_DEACTIVATE:
2258 /*if_deactivate(&sc->sc_ic.ic_if);*/
2259 break;
2260 }
2261
2262 return 0;
2263 }
2264