if_rum.c revision 1.15.2.1 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.15.2.1 2007/11/06 23:30:32 matt Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.15.2.1 2007/11/06 23:30:32 matt Exp $");
28
29 #include "bpfilter.h"
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41
42 #include <sys/bus.h>
43 #include <machine/endian.h>
44 #include <sys/intr.h>
45
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/firmload.h>
67
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72
73 #include <dev/usb/if_rumreg.h>
74 #include <dev/usb/if_rumvar.h>
75
76 #ifdef USB_DEBUG
77 #define RUM_DEBUG
78 #endif
79
80 #ifdef RUM_DEBUG
81 #define DPRINTF(x) do { if (rum_debug) logprintf x; } while (0)
82 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) logprintf x; } while (0)
83 int rum_debug = 1;
84 #else
85 #define DPRINTF(x)
86 #define DPRINTFN(n, x)
87 #endif
88
89 /* various supported device vendors/products */
90 static const struct usb_devno rum_devs[] = {
91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
92 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
93 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
94 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
95 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
96 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
97 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
98 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
99 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
100 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
101 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
102 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
103 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
104 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
105 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
106 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
107 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
108 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
109 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
110 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
111 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
112 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
113 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
114 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
115 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
116 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
117 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
118 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
119 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
120 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
121 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
122 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
123 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
124 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
125 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
126 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
127 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2573 },
128 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
129 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
130 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
131 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }
132 };
133
134 Static int rum_attachhook(void *);
135 Static int rum_alloc_tx_list(struct rum_softc *);
136 Static void rum_free_tx_list(struct rum_softc *);
137 Static int rum_alloc_rx_list(struct rum_softc *);
138 Static void rum_free_rx_list(struct rum_softc *);
139 Static int rum_media_change(struct ifnet *);
140 Static void rum_next_scan(void *);
141 Static void rum_task(void *);
142 Static int rum_newstate(struct ieee80211com *,
143 enum ieee80211_state, int);
144 Static void rum_txeof(usbd_xfer_handle, usbd_private_handle,
145 usbd_status);
146 Static void rum_rxeof(usbd_xfer_handle, usbd_private_handle,
147 usbd_status);
148 #if NBPFILTER > 0
149 Static uint8_t rum_rxrate(struct rum_rx_desc *);
150 #endif
151 Static int rum_ack_rate(struct ieee80211com *, int);
152 Static uint16_t rum_txtime(int, int, uint32_t);
153 Static uint8_t rum_plcp_signal(int);
154 Static void rum_setup_tx_desc(struct rum_softc *,
155 struct rum_tx_desc *, uint32_t, uint16_t, int,
156 int);
157 Static int rum_tx_mgt(struct rum_softc *, struct mbuf *,
158 struct ieee80211_node *);
159 Static int rum_tx_data(struct rum_softc *, struct mbuf *,
160 struct ieee80211_node *);
161 Static void rum_start(struct ifnet *);
162 Static void rum_watchdog(struct ifnet *);
163 Static int rum_ioctl(struct ifnet *, u_long, void *);
164 Static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
165 int);
166 Static uint32_t rum_read(struct rum_softc *, uint16_t);
167 Static void rum_read_multi(struct rum_softc *, uint16_t, void *,
168 int);
169 Static void rum_write(struct rum_softc *, uint16_t, uint32_t);
170 Static void rum_write_multi(struct rum_softc *, uint16_t, void *,
171 size_t);
172 Static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
173 Static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
174 Static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
175 Static void rum_select_antenna(struct rum_softc *);
176 Static void rum_enable_mrr(struct rum_softc *);
177 Static void rum_set_txpreamble(struct rum_softc *);
178 Static void rum_set_basicrates(struct rum_softc *);
179 Static void rum_select_band(struct rum_softc *,
180 struct ieee80211_channel *);
181 Static void rum_set_chan(struct rum_softc *,
182 struct ieee80211_channel *);
183 Static void rum_enable_tsf_sync(struct rum_softc *);
184 Static void rum_update_slot(struct rum_softc *);
185 Static void rum_set_bssid(struct rum_softc *, const uint8_t *);
186 Static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
187 Static void rum_update_promisc(struct rum_softc *);
188 Static const char *rum_get_rf(int);
189 Static void rum_read_eeprom(struct rum_softc *);
190 Static int rum_bbp_init(struct rum_softc *);
191 Static int rum_init(struct ifnet *);
192 Static void rum_stop(struct ifnet *, int);
193 Static int rum_load_microcode(struct rum_softc *, const u_char *,
194 size_t);
195 Static int rum_prepare_beacon(struct rum_softc *);
196 Static void rum_amrr_start(struct rum_softc *,
197 struct ieee80211_node *);
198 Static void rum_amrr_timeout(void *);
199 Static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
200 usbd_status status);
201
202 /*
203 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
204 */
205 static const struct ieee80211_rateset rum_rateset_11a =
206 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
207
208 static const struct ieee80211_rateset rum_rateset_11b =
209 { 4, { 2, 4, 11, 22 } };
210
211 static const struct ieee80211_rateset rum_rateset_11g =
212 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
213
214 static const struct {
215 uint32_t reg;
216 uint32_t val;
217 } rum_def_mac[] = {
218 RT2573_DEF_MAC
219 };
220
221 static const struct {
222 uint8_t reg;
223 uint8_t val;
224 } rum_def_bbp[] = {
225 RT2573_DEF_BBP
226 };
227
228 static const struct rfprog {
229 uint8_t chan;
230 uint32_t r1, r2, r3, r4;
231 } rum_rf5226[] = {
232 RT2573_RF5226
233 }, rum_rf5225[] = {
234 RT2573_RF5225
235 };
236
237 USB_DECLARE_DRIVER(rum);
238
239 USB_MATCH(rum)
240 {
241 USB_MATCH_START(rum, uaa);
242
243 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
244 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
245 }
246
247 Static int
248 rum_attachhook(void *xsc)
249 {
250 struct rum_softc *sc = xsc;
251 firmware_handle_t fwh;
252 const char *name = "rum-rt2573";
253 u_char *ucode;
254 size_t size;
255 int error;
256
257 if ((error = firmware_open("rum", name, &fwh)) != 0) {
258 printf("%s: failed loadfirmware of file %s (error %d)\n",
259 USBDEVNAME(sc->sc_dev), name, error);
260 return error;
261 }
262 size = firmware_get_size(fwh);
263 ucode = firmware_malloc(size);
264 if (ucode == NULL) {
265 printf("%s: failed to allocate firmware memory\n",
266 USBDEVNAME(sc->sc_dev));
267 firmware_close(fwh);
268 return ENOMEM;;
269 }
270 error = firmware_read(fwh, 0, ucode, size);
271 firmware_close(fwh);
272 if (error != 0) {
273 printf("%s: failed to read firmware (error %d)\n",
274 USBDEVNAME(sc->sc_dev), error);
275 firmware_free(ucode, 0);
276 return error;
277 }
278
279 if (rum_load_microcode(sc, ucode, size) != 0) {
280 printf("%s: could not load 8051 microcode\n",
281 USBDEVNAME(sc->sc_dev));
282 firmware_free(ucode, 0);
283 return ENXIO;
284 }
285
286 firmware_free(ucode, 0);
287 sc->sc_flags |= RT2573_FWLOADED;
288
289 return 0;
290 }
291
292 USB_ATTACH(rum)
293 {
294 USB_ATTACH_START(rum, sc, uaa);
295 struct ieee80211com *ic = &sc->sc_ic;
296 struct ifnet *ifp = &sc->sc_if;
297 usb_interface_descriptor_t *id;
298 usb_endpoint_descriptor_t *ed;
299 usbd_status error;
300 char *devinfop;
301 int i, ntries;
302 uint32_t tmp;
303
304 sc->sc_udev = uaa->device;
305 sc->sc_flags = 0;
306
307 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
308 USB_ATTACH_SETUP;
309 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
310 usbd_devinfo_free(devinfop);
311
312 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
313 printf("%s: could not set configuration no\n",
314 USBDEVNAME(sc->sc_dev));
315 USB_ATTACH_ERROR_RETURN;
316 }
317
318 /* get the first interface handle */
319 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
320 &sc->sc_iface);
321 if (error != 0) {
322 printf("%s: could not get interface handle\n",
323 USBDEVNAME(sc->sc_dev));
324 USB_ATTACH_ERROR_RETURN;
325 }
326
327 /*
328 * Find endpoints.
329 */
330 id = usbd_get_interface_descriptor(sc->sc_iface);
331
332 sc->sc_rx_no = sc->sc_tx_no = -1;
333 for (i = 0; i < id->bNumEndpoints; i++) {
334 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
335 if (ed == NULL) {
336 printf("%s: no endpoint descriptor for iface %d\n",
337 USBDEVNAME(sc->sc_dev), i);
338 USB_ATTACH_ERROR_RETURN;
339 }
340
341 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
342 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
343 sc->sc_rx_no = ed->bEndpointAddress;
344 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
345 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
346 sc->sc_tx_no = ed->bEndpointAddress;
347 }
348 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
349 printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
350 USB_ATTACH_ERROR_RETURN;
351 }
352
353 usb_init_task(&sc->sc_task, rum_task, sc);
354 usb_callout_init(sc->sc_scan_ch);
355
356 sc->amrr.amrr_min_success_threshold = 1;
357 sc->amrr.amrr_max_success_threshold = 10;
358 usb_callout_init(sc->sc_amrr_ch);
359
360 /* retrieve RT2573 rev. no */
361 for (ntries = 0; ntries < 1000; ntries++) {
362 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
363 break;
364 DELAY(1000);
365 }
366 if (ntries == 1000) {
367 printf("%s: timeout waiting for chip to settle\n",
368 USBDEVNAME(sc->sc_dev));
369 USB_ATTACH_ERROR_RETURN;
370 }
371
372 /* retrieve MAC address and various other things from EEPROM */
373 rum_read_eeprom(sc);
374
375 printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
376 USBDEVNAME(sc->sc_dev), sc->macbbp_rev, tmp,
377 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
378
379 ic->ic_ifp = ifp;
380 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
381 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
382 ic->ic_state = IEEE80211_S_INIT;
383
384 /* set device capabilities */
385 ic->ic_caps =
386 IEEE80211_C_IBSS | /* IBSS mode supported */
387 IEEE80211_C_MONITOR | /* monitor mode supported */
388 IEEE80211_C_HOSTAP | /* HostAp mode supported */
389 IEEE80211_C_TXPMGT | /* tx power management */
390 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
391 IEEE80211_C_SHSLOT | /* short slot time supported */
392 IEEE80211_C_WPA; /* 802.11i */
393
394 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
395 /* set supported .11a rates */
396 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
397
398 /* set supported .11a channels */
399 for (i = 34; i <= 46; i += 4) {
400 ic->ic_channels[i].ic_freq =
401 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
402 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
403 }
404 for (i = 36; i <= 64; i += 4) {
405 ic->ic_channels[i].ic_freq =
406 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
407 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
408 }
409 for (i = 100; i <= 140; i += 4) {
410 ic->ic_channels[i].ic_freq =
411 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
412 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
413 }
414 for (i = 149; i <= 165; i += 4) {
415 ic->ic_channels[i].ic_freq =
416 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
417 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
418 }
419 }
420
421 /* set supported .11b and .11g rates */
422 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
423 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
424
425 /* set supported .11b and .11g channels (1 through 14) */
426 for (i = 1; i <= 14; i++) {
427 ic->ic_channels[i].ic_freq =
428 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
429 ic->ic_channels[i].ic_flags =
430 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
431 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
432 }
433
434 ifp->if_softc = sc;
435 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
436 ifp->if_init = rum_init;
437 ifp->if_ioctl = rum_ioctl;
438 ifp->if_start = rum_start;
439 ifp->if_watchdog = rum_watchdog;
440 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
441 IFQ_SET_READY(&ifp->if_snd);
442 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
443
444 if_attach(ifp);
445 ieee80211_ifattach(ic);
446
447 /* override state transition machine */
448 sc->sc_newstate = ic->ic_newstate;
449 ic->ic_newstate = rum_newstate;
450 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
451
452 #if NBPFILTER > 0
453 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
454 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf);
455
456 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
457 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
458 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
459
460 sc->sc_txtap_len = sizeof sc->sc_txtapu;
461 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
462 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
463 #endif
464
465 ieee80211_announce(ic);
466
467 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
468 USBDEV(sc->sc_dev));
469
470 USB_ATTACH_SUCCESS_RETURN;
471 }
472
473 USB_DETACH(rum)
474 {
475 USB_DETACH_START(rum, sc);
476 struct ieee80211com *ic = &sc->sc_ic;
477 struct ifnet *ifp = &sc->sc_if;
478 int s;
479
480 if (!ifp->if_softc)
481 return 0;
482
483 s = splusb();
484
485 rum_stop(ifp, 1);
486 usb_rem_task(sc->sc_udev, &sc->sc_task);
487 usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
488 usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
489
490 if (sc->amrr_xfer != NULL) {
491 usbd_free_xfer(sc->amrr_xfer);
492 sc->amrr_xfer = NULL;
493 }
494
495 if (sc->sc_rx_pipeh != NULL) {
496 usbd_abort_pipe(sc->sc_rx_pipeh);
497 usbd_close_pipe(sc->sc_rx_pipeh);
498 }
499
500 if (sc->sc_tx_pipeh != NULL) {
501 usbd_abort_pipe(sc->sc_tx_pipeh);
502 usbd_close_pipe(sc->sc_tx_pipeh);
503 }
504
505 #if NBPFILTER > 0
506 bpfdetach(ifp);
507 #endif
508 ieee80211_ifdetach(ic); /* free all nodes */
509 if_detach(ifp);
510
511 splx(s);
512
513 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
514 USBDEV(sc->sc_dev));
515
516 return 0;
517 }
518
519 Static int
520 rum_alloc_tx_list(struct rum_softc *sc)
521 {
522 struct rum_tx_data *data;
523 int i, error;
524
525 sc->tx_queued = 0;
526
527 for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
528 data = &sc->tx_data[i];
529
530 data->sc = sc;
531
532 data->xfer = usbd_alloc_xfer(sc->sc_udev);
533 if (data->xfer == NULL) {
534 printf("%s: could not allocate tx xfer\n",
535 USBDEVNAME(sc->sc_dev));
536 error = ENOMEM;
537 goto fail;
538 }
539
540 data->buf = usbd_alloc_buffer(data->xfer,
541 RT2573_TX_DESC_SIZE + MCLBYTES);
542 if (data->buf == NULL) {
543 printf("%s: could not allocate tx buffer\n",
544 USBDEVNAME(sc->sc_dev));
545 error = ENOMEM;
546 goto fail;
547 }
548
549 /* clean Tx descriptor */
550 bzero(data->buf, RT2573_TX_DESC_SIZE);
551 }
552
553 return 0;
554
555 fail: rum_free_tx_list(sc);
556 return error;
557 }
558
559 Static void
560 rum_free_tx_list(struct rum_softc *sc)
561 {
562 struct rum_tx_data *data;
563 int i;
564
565 for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
566 data = &sc->tx_data[i];
567
568 if (data->xfer != NULL) {
569 usbd_free_xfer(data->xfer);
570 data->xfer = NULL;
571 }
572
573 if (data->ni != NULL) {
574 ieee80211_free_node(data->ni);
575 data->ni = NULL;
576 }
577 }
578 }
579
580 Static int
581 rum_alloc_rx_list(struct rum_softc *sc)
582 {
583 struct rum_rx_data *data;
584 int i, error;
585
586 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
587 data = &sc->rx_data[i];
588
589 data->sc = sc;
590
591 data->xfer = usbd_alloc_xfer(sc->sc_udev);
592 if (data->xfer == NULL) {
593 printf("%s: could not allocate rx xfer\n",
594 USBDEVNAME(sc->sc_dev));
595 error = ENOMEM;
596 goto fail;
597 }
598
599 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
600 printf("%s: could not allocate rx buffer\n",
601 USBDEVNAME(sc->sc_dev));
602 error = ENOMEM;
603 goto fail;
604 }
605
606 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
607 if (data->m == NULL) {
608 printf("%s: could not allocate rx mbuf\n",
609 USBDEVNAME(sc->sc_dev));
610 error = ENOMEM;
611 goto fail;
612 }
613
614 MCLGET(data->m, M_DONTWAIT);
615 if (!(data->m->m_flags & M_EXT)) {
616 printf("%s: could not allocate rx mbuf cluster\n",
617 USBDEVNAME(sc->sc_dev));
618 error = ENOMEM;
619 goto fail;
620 }
621
622 data->buf = mtod(data->m, uint8_t *);
623 }
624
625 return 0;
626
627 fail: rum_free_tx_list(sc);
628 return error;
629 }
630
631 Static void
632 rum_free_rx_list(struct rum_softc *sc)
633 {
634 struct rum_rx_data *data;
635 int i;
636
637 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
638 data = &sc->rx_data[i];
639
640 if (data->xfer != NULL) {
641 usbd_free_xfer(data->xfer);
642 data->xfer = NULL;
643 }
644
645 if (data->m != NULL) {
646 m_freem(data->m);
647 data->m = NULL;
648 }
649 }
650 }
651
652 Static int
653 rum_media_change(struct ifnet *ifp)
654 {
655 int error;
656
657 error = ieee80211_media_change(ifp);
658 if (error != ENETRESET)
659 return error;
660
661 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
662 rum_init(ifp);
663
664 return 0;
665 }
666
667 /*
668 * This function is called periodically (every 200ms) during scanning to
669 * switch from one channel to another.
670 */
671 Static void
672 rum_next_scan(void *arg)
673 {
674 struct rum_softc *sc = arg;
675 struct ieee80211com *ic = &sc->sc_ic;
676
677 if (ic->ic_state == IEEE80211_S_SCAN)
678 ieee80211_next_scan(ic);
679 }
680
681 Static void
682 rum_task(void *arg)
683 {
684 struct rum_softc *sc = arg;
685 struct ieee80211com *ic = &sc->sc_ic;
686 enum ieee80211_state ostate;
687 struct ieee80211_node *ni;
688 uint32_t tmp;
689
690 ostate = ic->ic_state;
691
692 switch (sc->sc_state) {
693 case IEEE80211_S_INIT:
694 if (ostate == IEEE80211_S_RUN) {
695 /* abort TSF synchronization */
696 tmp = rum_read(sc, RT2573_TXRX_CSR9);
697 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
698 }
699 break;
700
701 case IEEE80211_S_SCAN:
702 rum_set_chan(sc, ic->ic_curchan);
703 usb_callout(sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
704 break;
705
706 case IEEE80211_S_AUTH:
707 rum_set_chan(sc, ic->ic_curchan);
708 break;
709
710 case IEEE80211_S_ASSOC:
711 rum_set_chan(sc, ic->ic_curchan);
712 break;
713
714 case IEEE80211_S_RUN:
715 rum_set_chan(sc, ic->ic_curchan);
716
717 ni = ic->ic_bss;
718
719 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
720 rum_update_slot(sc);
721 rum_enable_mrr(sc);
722 rum_set_txpreamble(sc);
723 rum_set_basicrates(sc);
724 rum_set_bssid(sc, ni->ni_bssid);
725 }
726
727 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
728 ic->ic_opmode == IEEE80211_M_IBSS)
729 rum_prepare_beacon(sc);
730
731 if (ic->ic_opmode != IEEE80211_M_MONITOR)
732 rum_enable_tsf_sync(sc);
733
734 /* enable automatic rate adaptation in STA mode */
735 if (ic->ic_opmode == IEEE80211_M_STA &&
736 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
737 rum_amrr_start(sc, ni);
738
739 break;
740 }
741
742 sc->sc_newstate(ic, sc->sc_state, -1);
743 }
744
745 Static int
746 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
747 {
748 struct rum_softc *sc = ic->ic_ifp->if_softc;
749
750 usb_rem_task(sc->sc_udev, &sc->sc_task);
751 usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
752 usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
753
754 /* do it in a process context */
755 sc->sc_state = nstate;
756 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
757
758 return 0;
759 }
760
761 /* quickly determine if a given rate is CCK or OFDM */
762 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
763
764 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
765 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
766
767 Static void
768 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
769 {
770 struct rum_tx_data *data = priv;
771 struct rum_softc *sc = data->sc;
772 struct ifnet *ifp = &sc->sc_if;
773 int s;
774
775 if (status != USBD_NORMAL_COMPLETION) {
776 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
777 return;
778
779 printf("%s: could not transmit buffer: %s\n",
780 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
781
782 if (status == USBD_STALLED)
783 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
784
785 ifp->if_oerrors++;
786 return;
787 }
788
789 s = splnet();
790
791 m_freem(data->m);
792 data->m = NULL;
793 ieee80211_free_node(data->ni);
794 data->ni = NULL;
795
796 sc->tx_queued--;
797 ifp->if_opackets++;
798
799 DPRINTFN(10, ("tx done\n"));
800
801 sc->sc_tx_timer = 0;
802 ifp->if_flags &= ~IFF_OACTIVE;
803 rum_start(ifp);
804
805 splx(s);
806 }
807
808 Static void
809 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
810 {
811 struct rum_rx_data *data = priv;
812 struct rum_softc *sc = data->sc;
813 struct ieee80211com *ic = &sc->sc_ic;
814 struct ifnet *ifp = &sc->sc_if;
815 struct rum_rx_desc *desc;
816 struct ieee80211_frame *wh;
817 struct ieee80211_node *ni;
818 struct mbuf *mnew, *m;
819 int s, len;
820
821 if (status != USBD_NORMAL_COMPLETION) {
822 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
823 return;
824
825 if (status == USBD_STALLED)
826 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
827 goto skip;
828 }
829
830 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
831
832 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
833 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
834 len));
835 ifp->if_ierrors++;
836 goto skip;
837 }
838
839 desc = (struct rum_rx_desc *)data->buf;
840
841 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
842 /*
843 * This should not happen since we did not request to receive
844 * those frames when we filled RT2573_TXRX_CSR0.
845 */
846 DPRINTFN(5, ("CRC error\n"));
847 ifp->if_ierrors++;
848 goto skip;
849 }
850
851 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
852 if (mnew == NULL) {
853 printf("%s: could not allocate rx mbuf\n",
854 USBDEVNAME(sc->sc_dev));
855 ifp->if_ierrors++;
856 goto skip;
857 }
858
859 MCLGET(mnew, M_DONTWAIT);
860 if (!(mnew->m_flags & M_EXT)) {
861 printf("%s: could not allocate rx mbuf cluster\n",
862 USBDEVNAME(sc->sc_dev));
863 m_freem(mnew);
864 ifp->if_ierrors++;
865 goto skip;
866 }
867
868 m = data->m;
869 data->m = mnew;
870 data->buf = mtod(data->m, uint8_t *);
871
872 /* finalize mbuf */
873 m->m_pkthdr.rcvif = ifp;
874 m->m_data = (void *)(desc + 1);
875 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
876
877 s = splnet();
878
879 #if NBPFILTER > 0
880 if (sc->sc_drvbpf != NULL) {
881 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
882
883 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
884 tap->wr_rate = rum_rxrate(desc);
885 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
886 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
887 tap->wr_antenna = sc->rx_ant;
888 tap->wr_antsignal = desc->rssi;
889
890 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
891 }
892 #endif
893
894 wh = mtod(m, struct ieee80211_frame *);
895 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
896
897 /* send the frame to the 802.11 layer */
898 ieee80211_input(ic, m, ni, desc->rssi, 0);
899
900 /* node is no longer needed */
901 ieee80211_free_node(ni);
902
903 splx(s);
904
905 DPRINTFN(15, ("rx done\n"));
906
907 skip: /* setup a new transfer */
908 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
909 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
910 usbd_transfer(xfer);
911 }
912
913 /*
914 * This function is only used by the Rx radiotap code. It returns the rate at
915 * which a given frame was received.
916 */
917 #if NBPFILTER > 0
918 Static uint8_t
919 rum_rxrate(struct rum_rx_desc *desc)
920 {
921 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
922 /* reverse function of rum_plcp_signal */
923 switch (desc->rate) {
924 case 0xb: return 12;
925 case 0xf: return 18;
926 case 0xa: return 24;
927 case 0xe: return 36;
928 case 0x9: return 48;
929 case 0xd: return 72;
930 case 0x8: return 96;
931 case 0xc: return 108;
932 }
933 } else {
934 if (desc->rate == 10)
935 return 2;
936 if (desc->rate == 20)
937 return 4;
938 if (desc->rate == 55)
939 return 11;
940 if (desc->rate == 110)
941 return 22;
942 }
943 return 2; /* should not get there */
944 }
945 #endif
946
947 /*
948 * Return the expected ack rate for a frame transmitted at rate `rate'.
949 * XXX: this should depend on the destination node basic rate set.
950 */
951 Static int
952 rum_ack_rate(struct ieee80211com *ic, int rate)
953 {
954 switch (rate) {
955 /* CCK rates */
956 case 2:
957 return 2;
958 case 4:
959 case 11:
960 case 22:
961 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
962
963 /* OFDM rates */
964 case 12:
965 case 18:
966 return 12;
967 case 24:
968 case 36:
969 return 24;
970 case 48:
971 case 72:
972 case 96:
973 case 108:
974 return 48;
975 }
976
977 /* default to 1Mbps */
978 return 2;
979 }
980
981 /*
982 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
983 * The function automatically determines the operating mode depending on the
984 * given rate. `flags' indicates whether short preamble is in use or not.
985 */
986 Static uint16_t
987 rum_txtime(int len, int rate, uint32_t flags)
988 {
989 uint16_t txtime;
990
991 if (RUM_RATE_IS_OFDM(rate)) {
992 /* IEEE Std 802.11a-1999, pp. 37 */
993 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
994 txtime = 16 + 4 + 4 * txtime + 6;
995 } else {
996 /* IEEE Std 802.11b-1999, pp. 28 */
997 txtime = (16 * len + rate - 1) / rate;
998 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
999 txtime += 72 + 24;
1000 else
1001 txtime += 144 + 48;
1002 }
1003 return txtime;
1004 }
1005
1006 Static uint8_t
1007 rum_plcp_signal(int rate)
1008 {
1009 switch (rate) {
1010 /* CCK rates (returned values are device-dependent) */
1011 case 2: return 0x0;
1012 case 4: return 0x1;
1013 case 11: return 0x2;
1014 case 22: return 0x3;
1015
1016 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1017 case 12: return 0xb;
1018 case 18: return 0xf;
1019 case 24: return 0xa;
1020 case 36: return 0xe;
1021 case 48: return 0x9;
1022 case 72: return 0xd;
1023 case 96: return 0x8;
1024 case 108: return 0xc;
1025
1026 /* unsupported rates (should not get there) */
1027 default: return 0xff;
1028 }
1029 }
1030
1031 Static void
1032 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1033 uint32_t flags, uint16_t xflags, int len, int rate)
1034 {
1035 struct ieee80211com *ic = &sc->sc_ic;
1036 uint16_t plcp_length;
1037 int remainder;
1038
1039 desc->flags = htole32(flags);
1040 desc->flags |= htole32(RT2573_TX_VALID);
1041 desc->flags |= htole32(len << 16);
1042
1043 desc->xflags = htole16(xflags);
1044
1045 desc->wme = htole16(
1046 RT2573_QID(0) |
1047 RT2573_AIFSN(2) |
1048 RT2573_LOGCWMIN(4) |
1049 RT2573_LOGCWMAX(10));
1050
1051 /* setup PLCP fields */
1052 desc->plcp_signal = rum_plcp_signal(rate);
1053 desc->plcp_service = 4;
1054
1055 len += IEEE80211_CRC_LEN;
1056 if (RUM_RATE_IS_OFDM(rate)) {
1057 desc->flags |= htole32(RT2573_TX_OFDM);
1058
1059 plcp_length = len & 0xfff;
1060 desc->plcp_length_hi = plcp_length >> 6;
1061 desc->plcp_length_lo = plcp_length & 0x3f;
1062 } else {
1063 plcp_length = (16 * len + rate - 1) / rate;
1064 if (rate == 22) {
1065 remainder = (16 * len) % 22;
1066 if (remainder != 0 && remainder < 7)
1067 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1068 }
1069 desc->plcp_length_hi = plcp_length >> 8;
1070 desc->plcp_length_lo = plcp_length & 0xff;
1071
1072 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1073 desc->plcp_signal |= 0x08;
1074 }
1075 }
1076
1077 #define RUM_TX_TIMEOUT 5000
1078
1079 Static int
1080 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1081 {
1082 struct ieee80211com *ic = &sc->sc_ic;
1083 struct rum_tx_desc *desc;
1084 struct rum_tx_data *data;
1085 struct ieee80211_frame *wh;
1086 struct ieee80211_key *k;
1087 uint32_t flags = 0;
1088 uint16_t dur;
1089 usbd_status error;
1090 int xferlen, rate;
1091
1092 data = &sc->tx_data[0];
1093 desc = (struct rum_tx_desc *)data->buf;
1094
1095 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1096
1097 data->m = m0;
1098 data->ni = ni;
1099
1100 wh = mtod(m0, struct ieee80211_frame *);
1101
1102 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1103 k = ieee80211_crypto_encap(ic, ni, m0);
1104 if (k == NULL) {
1105 m_freem(m0);
1106 return ENOBUFS;
1107 }
1108 }
1109
1110 wh = mtod(m0, struct ieee80211_frame *);
1111
1112 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1113 flags |= RT2573_TX_ACK;
1114
1115 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1116 ic->ic_flags) + sc->sifs;
1117 *(uint16_t *)wh->i_dur = htole16(dur);
1118
1119 /* tell hardware to set timestamp in probe responses */
1120 if ((wh->i_fc[0] &
1121 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1122 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1123 flags |= RT2573_TX_TIMESTAMP;
1124 }
1125
1126 #if NBPFILTER > 0
1127 if (sc->sc_drvbpf != NULL) {
1128 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1129
1130 tap->wt_flags = 0;
1131 tap->wt_rate = rate;
1132 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1133 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1134 tap->wt_antenna = sc->tx_ant;
1135
1136 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1137 }
1138 #endif
1139
1140 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1141 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1142
1143 /* align end on a 4-bytes boundary */
1144 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1145
1146 /*
1147 * No space left in the last URB to store the extra 4 bytes, force
1148 * sending of another URB.
1149 */
1150 if ((xferlen % 64) == 0)
1151 xferlen += 4;
1152
1153 DPRINTFN(10, ("sending msg frame len=%zu rate=%u xfer len=%u\n",
1154 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1155 rate, xferlen));
1156
1157 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1158 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1159
1160 error = usbd_transfer(data->xfer);
1161 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1162 m_freem(m0);
1163 return error;
1164 }
1165
1166 sc->tx_queued++;
1167
1168 return 0;
1169 }
1170
1171 Static int
1172 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1173 {
1174 struct ieee80211com *ic = &sc->sc_ic;
1175 struct rum_tx_desc *desc;
1176 struct rum_tx_data *data;
1177 struct ieee80211_frame *wh;
1178 struct ieee80211_key *k;
1179 uint32_t flags = 0;
1180 uint16_t dur;
1181 usbd_status error;
1182 int xferlen, rate;
1183
1184 wh = mtod(m0, struct ieee80211_frame *);
1185
1186 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1187 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1188 else
1189 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1190 rate &= IEEE80211_RATE_VAL;
1191
1192 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1193 k = ieee80211_crypto_encap(ic, ni, m0);
1194 if (k == NULL) {
1195 m_freem(m0);
1196 return ENOBUFS;
1197 }
1198
1199 /* packet header may have moved, reset our local pointer */
1200 wh = mtod(m0, struct ieee80211_frame *);
1201 }
1202
1203 data = &sc->tx_data[0];
1204 desc = (struct rum_tx_desc *)data->buf;
1205
1206 data->m = m0;
1207 data->ni = ni;
1208
1209 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1210 flags |= RT2573_TX_ACK;
1211
1212 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1213 ic->ic_flags) + sc->sifs;
1214 *(uint16_t *)wh->i_dur = htole16(dur);
1215 }
1216
1217 #if NBPFILTER > 0
1218 if (sc->sc_drvbpf != NULL) {
1219 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1220
1221 tap->wt_flags = 0;
1222 tap->wt_rate = rate;
1223 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1224 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1225 tap->wt_antenna = sc->tx_ant;
1226
1227 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1228 }
1229 #endif
1230
1231 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1232 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1233
1234 /* align end on a 4-bytes boundary */
1235 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1236
1237 /*
1238 * No space left in the last URB to store the extra 4 bytes, force
1239 * sending of another URB.
1240 */
1241 if ((xferlen % 64) == 0)
1242 xferlen += 4;
1243
1244 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1245 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1246 rate, xferlen));
1247
1248 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1249 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1250
1251 error = usbd_transfer(data->xfer);
1252 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1253 m_freem(m0);
1254 return error;
1255 }
1256
1257 sc->tx_queued++;
1258
1259 return 0;
1260 }
1261
1262 Static void
1263 rum_start(struct ifnet *ifp)
1264 {
1265 struct rum_softc *sc = ifp->if_softc;
1266 struct ieee80211com *ic = &sc->sc_ic;
1267 struct ether_header *eh;
1268 struct ieee80211_node *ni;
1269 struct mbuf *m0;
1270
1271 for (;;) {
1272 IF_POLL(&ic->ic_mgtq, m0);
1273 if (m0 != NULL) {
1274 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1275 ifp->if_flags |= IFF_OACTIVE;
1276 break;
1277 }
1278 IF_DEQUEUE(&ic->ic_mgtq, m0);
1279
1280 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1281 m0->m_pkthdr.rcvif = NULL;
1282 #if NBPFILTER > 0
1283 if (ic->ic_rawbpf != NULL)
1284 bpf_mtap(ic->ic_rawbpf, m0);
1285 #endif
1286 if (rum_tx_mgt(sc, m0, ni) != 0)
1287 break;
1288
1289 } else {
1290 if (ic->ic_state != IEEE80211_S_RUN)
1291 break;
1292 IFQ_POLL(&ifp->if_snd, m0);
1293 if (m0 == NULL)
1294 break;
1295 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1296 ifp->if_flags |= IFF_OACTIVE;
1297 break;
1298 }
1299 IFQ_DEQUEUE(&ifp->if_snd, m0);
1300 if (m0->m_len < sizeof(struct ether_header) &&
1301 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1302 continue;
1303
1304 eh = mtod(m0, struct ether_header *);
1305 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1306 if (ni == NULL) {
1307 m_freem(m0);
1308 continue;
1309 }
1310 #if NBPFILTER > 0
1311 if (ifp->if_bpf != NULL)
1312 bpf_mtap(ifp->if_bpf, m0);
1313 #endif
1314 m0 = ieee80211_encap(ic, m0, ni);
1315 if (m0 == NULL) {
1316 ieee80211_free_node(ni);
1317 continue;
1318 }
1319 #if NBPFILTER > 0
1320 if (ic->ic_rawbpf != NULL)
1321 bpf_mtap(ic->ic_rawbpf, m0);
1322 #endif
1323 if (rum_tx_data(sc, m0, ni) != 0) {
1324 ieee80211_free_node(ni);
1325 ifp->if_oerrors++;
1326 break;
1327 }
1328 }
1329
1330 sc->sc_tx_timer = 5;
1331 ifp->if_timer = 1;
1332 }
1333 }
1334
1335 Static void
1336 rum_watchdog(struct ifnet *ifp)
1337 {
1338 struct rum_softc *sc = ifp->if_softc;
1339 struct ieee80211com *ic = &sc->sc_ic;
1340
1341 ifp->if_timer = 0;
1342
1343 if (sc->sc_tx_timer > 0) {
1344 if (--sc->sc_tx_timer == 0) {
1345 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1346 /*rum_init(ifp); XXX needs a process context! */
1347 ifp->if_oerrors++;
1348 return;
1349 }
1350 ifp->if_timer = 1;
1351 }
1352
1353 ieee80211_watchdog(ic);
1354 }
1355
1356 Static int
1357 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1358 {
1359 struct rum_softc *sc = ifp->if_softc;
1360 struct ieee80211com *ic = &sc->sc_ic;
1361 int s, error = 0;
1362
1363 s = splnet();
1364
1365 switch (cmd) {
1366 case SIOCSIFFLAGS:
1367 if (ifp->if_flags & IFF_UP) {
1368 if (ifp->if_flags & IFF_RUNNING)
1369 rum_update_promisc(sc);
1370 else
1371 rum_init(ifp);
1372 } else {
1373 if (ifp->if_flags & IFF_RUNNING)
1374 rum_stop(ifp, 1);
1375 }
1376 break;
1377
1378 default:
1379 error = ieee80211_ioctl(ic, cmd, data);
1380 }
1381
1382 if (error == ENETRESET) {
1383 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1384 (IFF_UP | IFF_RUNNING))
1385 rum_init(ifp);
1386 error = 0;
1387 }
1388
1389 splx(s);
1390
1391 return error;
1392 }
1393
1394 Static void
1395 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1396 {
1397 usb_device_request_t req;
1398 usbd_status error;
1399
1400 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1401 req.bRequest = RT2573_READ_EEPROM;
1402 USETW(req.wValue, 0);
1403 USETW(req.wIndex, addr);
1404 USETW(req.wLength, len);
1405
1406 error = usbd_do_request(sc->sc_udev, &req, buf);
1407 if (error != 0) {
1408 printf("%s: could not read EEPROM: %s\n",
1409 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1410 }
1411 }
1412
1413 Static uint32_t
1414 rum_read(struct rum_softc *sc, uint16_t reg)
1415 {
1416 uint32_t val;
1417
1418 rum_read_multi(sc, reg, &val, sizeof val);
1419
1420 return le32toh(val);
1421 }
1422
1423 Static void
1424 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1425 {
1426 usb_device_request_t req;
1427 usbd_status error;
1428
1429 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1430 req.bRequest = RT2573_READ_MULTI_MAC;
1431 USETW(req.wValue, 0);
1432 USETW(req.wIndex, reg);
1433 USETW(req.wLength, len);
1434
1435 error = usbd_do_request(sc->sc_udev, &req, buf);
1436 if (error != 0) {
1437 printf("%s: could not multi read MAC register: %s\n",
1438 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1439 }
1440 }
1441
1442 Static void
1443 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1444 {
1445 uint32_t tmp = htole32(val);
1446
1447 rum_write_multi(sc, reg, &tmp, sizeof tmp);
1448 }
1449
1450 Static void
1451 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1452 {
1453 usb_device_request_t req;
1454 usbd_status error;
1455
1456 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1457 req.bRequest = RT2573_WRITE_MULTI_MAC;
1458 USETW(req.wValue, 0);
1459 USETW(req.wIndex, reg);
1460 USETW(req.wLength, len);
1461
1462 error = usbd_do_request(sc->sc_udev, &req, buf);
1463 if (error != 0) {
1464 printf("%s: could not multi write MAC register: %s\n",
1465 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1466 }
1467 }
1468
1469 Static void
1470 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1471 {
1472 uint32_t tmp;
1473 int ntries;
1474
1475 for (ntries = 0; ntries < 5; ntries++) {
1476 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1477 break;
1478 }
1479 if (ntries == 5) {
1480 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1481 return;
1482 }
1483
1484 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1485 rum_write(sc, RT2573_PHY_CSR3, tmp);
1486 }
1487
1488 Static uint8_t
1489 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1490 {
1491 uint32_t val;
1492 int ntries;
1493
1494 for (ntries = 0; ntries < 5; ntries++) {
1495 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1496 break;
1497 }
1498 if (ntries == 5) {
1499 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1500 return 0;
1501 }
1502
1503 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1504 rum_write(sc, RT2573_PHY_CSR3, val);
1505
1506 for (ntries = 0; ntries < 100; ntries++) {
1507 val = rum_read(sc, RT2573_PHY_CSR3);
1508 if (!(val & RT2573_BBP_BUSY))
1509 return val & 0xff;
1510 DELAY(1);
1511 }
1512
1513 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1514 return 0;
1515 }
1516
1517 Static void
1518 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1519 {
1520 uint32_t tmp;
1521 int ntries;
1522
1523 for (ntries = 0; ntries < 5; ntries++) {
1524 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1525 break;
1526 }
1527 if (ntries == 5) {
1528 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1529 return;
1530 }
1531
1532 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1533 (reg & 3);
1534 rum_write(sc, RT2573_PHY_CSR4, tmp);
1535
1536 /* remember last written value in sc */
1537 sc->rf_regs[reg] = val;
1538
1539 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1540 }
1541
1542 Static void
1543 rum_select_antenna(struct rum_softc *sc)
1544 {
1545 uint8_t bbp4, bbp77;
1546 uint32_t tmp;
1547
1548 bbp4 = rum_bbp_read(sc, 4);
1549 bbp77 = rum_bbp_read(sc, 77);
1550
1551 /* TBD */
1552
1553 /* make sure Rx is disabled before switching antenna */
1554 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1555 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1556
1557 rum_bbp_write(sc, 4, bbp4);
1558 rum_bbp_write(sc, 77, bbp77);
1559
1560 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1561 }
1562
1563 /*
1564 * Enable multi-rate retries for frames sent at OFDM rates.
1565 * In 802.11b/g mode, allow fallback to CCK rates.
1566 */
1567 Static void
1568 rum_enable_mrr(struct rum_softc *sc)
1569 {
1570 struct ieee80211com *ic = &sc->sc_ic;
1571 uint32_t tmp;
1572
1573 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1574
1575 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1576 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1577 tmp |= RT2573_MRR_CCK_FALLBACK;
1578 tmp |= RT2573_MRR_ENABLED;
1579
1580 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1581 }
1582
1583 Static void
1584 rum_set_txpreamble(struct rum_softc *sc)
1585 {
1586 uint32_t tmp;
1587
1588 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1589
1590 tmp &= ~RT2573_SHORT_PREAMBLE;
1591 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1592 tmp |= RT2573_SHORT_PREAMBLE;
1593
1594 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1595 }
1596
1597 Static void
1598 rum_set_basicrates(struct rum_softc *sc)
1599 {
1600 struct ieee80211com *ic = &sc->sc_ic;
1601
1602 /* update basic rate set */
1603 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1604 /* 11b basic rates: 1, 2Mbps */
1605 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1606 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1607 /* 11a basic rates: 6, 12, 24Mbps */
1608 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1609 } else {
1610 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1611 rum_write(sc, RT2573_TXRX_CSR5, 0x15f);
1612 }
1613 }
1614
1615 /*
1616 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1617 * driver.
1618 */
1619 Static void
1620 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1621 {
1622 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1623 uint32_t tmp;
1624
1625 /* update all BBP registers that depend on the band */
1626 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1627 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1628 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1629 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1630 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1631 }
1632 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1633 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1634 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1635 }
1636
1637 sc->bbp17 = bbp17;
1638 rum_bbp_write(sc, 17, bbp17);
1639 rum_bbp_write(sc, 96, bbp96);
1640 rum_bbp_write(sc, 104, bbp104);
1641
1642 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1643 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1644 rum_bbp_write(sc, 75, 0x80);
1645 rum_bbp_write(sc, 86, 0x80);
1646 rum_bbp_write(sc, 88, 0x80);
1647 }
1648
1649 rum_bbp_write(sc, 35, bbp35);
1650 rum_bbp_write(sc, 97, bbp97);
1651 rum_bbp_write(sc, 98, bbp98);
1652
1653 tmp = rum_read(sc, RT2573_PHY_CSR0);
1654 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1655 if (IEEE80211_IS_CHAN_2GHZ(c))
1656 tmp |= RT2573_PA_PE_2GHZ;
1657 else
1658 tmp |= RT2573_PA_PE_5GHZ;
1659 rum_write(sc, RT2573_PHY_CSR0, tmp);
1660
1661 /* 802.11a uses a 16 microseconds short interframe space */
1662 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1663 }
1664
1665 Static void
1666 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1667 {
1668 struct ieee80211com *ic = &sc->sc_ic;
1669 const struct rfprog *rfprog;
1670 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1671 int8_t power;
1672 u_int i, chan;
1673
1674 chan = ieee80211_chan2ieee(ic, c);
1675 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1676 return;
1677
1678 /* select the appropriate RF settings based on what EEPROM says */
1679 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1680 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1681
1682 /* find the settings for this channel (we know it exists) */
1683 for (i = 0; rfprog[i].chan != chan; i++);
1684
1685 power = sc->txpow[i];
1686 if (power < 0) {
1687 bbp94 += power;
1688 power = 0;
1689 } else if (power > 31) {
1690 bbp94 += power - 31;
1691 power = 31;
1692 }
1693
1694 /*
1695 * If we are switching from the 2GHz band to the 5GHz band or
1696 * vice-versa, BBP registers need to be reprogrammed.
1697 */
1698 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1699 rum_select_band(sc, c);
1700 rum_select_antenna(sc);
1701 }
1702 ic->ic_curchan = c;
1703
1704 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1705 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1706 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1707 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1708
1709 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1710 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1711 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1712 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1713
1714 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1715 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1716 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1717 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1718
1719 DELAY(10);
1720
1721 /* enable smart mode for MIMO-capable RFs */
1722 bbp3 = rum_bbp_read(sc, 3);
1723
1724 bbp3 &= ~RT2573_SMART_MODE;
1725 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1726 bbp3 |= RT2573_SMART_MODE;
1727
1728 rum_bbp_write(sc, 3, bbp3);
1729
1730 if (bbp94 != RT2573_BBPR94_DEFAULT)
1731 rum_bbp_write(sc, 94, bbp94);
1732 }
1733
1734 /*
1735 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1736 * and HostAP operating modes.
1737 */
1738 Static void
1739 rum_enable_tsf_sync(struct rum_softc *sc)
1740 {
1741 struct ieee80211com *ic = &sc->sc_ic;
1742 uint32_t tmp;
1743
1744 if (ic->ic_opmode != IEEE80211_M_STA) {
1745 /*
1746 * Change default 16ms TBTT adjustment to 8ms.
1747 * Must be done before enabling beacon generation.
1748 */
1749 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1750 }
1751
1752 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1753
1754 /* set beacon interval (in 1/16ms unit) */
1755 tmp |= ic->ic_bss->ni_intval * 16;
1756
1757 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1758 if (ic->ic_opmode == IEEE80211_M_STA)
1759 tmp |= RT2573_TSF_MODE(1);
1760 else
1761 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1762
1763 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1764 }
1765
1766 Static void
1767 rum_update_slot(struct rum_softc *sc)
1768 {
1769 struct ieee80211com *ic = &sc->sc_ic;
1770 uint8_t slottime;
1771 uint32_t tmp;
1772
1773 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1774
1775 tmp = rum_read(sc, RT2573_MAC_CSR9);
1776 tmp = (tmp & ~0xff) | slottime;
1777 rum_write(sc, RT2573_MAC_CSR9, tmp);
1778
1779 DPRINTF(("setting slot time to %uus\n", slottime));
1780 }
1781
1782 Static void
1783 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1784 {
1785 uint32_t tmp;
1786
1787 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1788 rum_write(sc, RT2573_MAC_CSR4, tmp);
1789
1790 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1791 rum_write(sc, RT2573_MAC_CSR5, tmp);
1792 }
1793
1794 Static void
1795 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1796 {
1797 uint32_t tmp;
1798
1799 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1800 rum_write(sc, RT2573_MAC_CSR2, tmp);
1801
1802 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1803 rum_write(sc, RT2573_MAC_CSR3, tmp);
1804 }
1805
1806 Static void
1807 rum_update_promisc(struct rum_softc *sc)
1808 {
1809 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1810 uint32_t tmp;
1811
1812 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1813
1814 tmp &= ~RT2573_DROP_NOT_TO_ME;
1815 if (!(ifp->if_flags & IFF_PROMISC))
1816 tmp |= RT2573_DROP_NOT_TO_ME;
1817
1818 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1819
1820 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1821 "entering" : "leaving"));
1822 }
1823
1824 Static const char *
1825 rum_get_rf(int rev)
1826 {
1827 switch (rev) {
1828 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1829 case RT2573_RF_2528: return "RT2528";
1830 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1831 case RT2573_RF_5226: return "RT5226";
1832 default: return "unknown";
1833 }
1834 }
1835
1836 Static void
1837 rum_read_eeprom(struct rum_softc *sc)
1838 {
1839 struct ieee80211com *ic = &sc->sc_ic;
1840 uint16_t val;
1841 #ifdef RUM_DEBUG
1842 int i;
1843 #endif
1844
1845 /* read MAC/BBP type */
1846 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1847 sc->macbbp_rev = le16toh(val);
1848
1849 /* read MAC address */
1850 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1851
1852 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1853 val = le16toh(val);
1854 sc->rf_rev = (val >> 11) & 0x1f;
1855 sc->hw_radio = (val >> 10) & 0x1;
1856 sc->rx_ant = (val >> 4) & 0x3;
1857 sc->tx_ant = (val >> 2) & 0x3;
1858 sc->nb_ant = val & 0x3;
1859
1860 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1861
1862 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1863 val = le16toh(val);
1864 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1865 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1866
1867 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1868 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1869
1870 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1871 val = le16toh(val);
1872 if ((val & 0xff) != 0xff)
1873 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1874
1875 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1876 val = le16toh(val);
1877 if ((val & 0xff) != 0xff)
1878 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1879
1880 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1881 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1882
1883 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1884 val = le16toh(val);
1885 if ((val & 0xff) != 0xff)
1886 sc->rffreq = val & 0xff;
1887
1888 DPRINTF(("RF freq=%d\n", sc->rffreq));
1889
1890 /* read Tx power for all a/b/g channels */
1891 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1892 /* XXX default Tx power for 802.11a channels */
1893 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1894 #ifdef RUM_DEBUG
1895 for (i = 0; i < 14; i++)
1896 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1897 #endif
1898
1899 /* read default values for BBP registers */
1900 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1901 #ifdef RUM_DEBUG
1902 for (i = 0; i < 14; i++) {
1903 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1904 continue;
1905 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1906 sc->bbp_prom[i].val));
1907 }
1908 #endif
1909 }
1910
1911 Static int
1912 rum_bbp_init(struct rum_softc *sc)
1913 {
1914 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1915 int i, ntries;
1916 uint8_t val;
1917
1918 /* wait for BBP to be ready */
1919 for (ntries = 0; ntries < 100; ntries++) {
1920 val = rum_bbp_read(sc, 0);
1921 if (val != 0 && val != 0xff)
1922 break;
1923 DELAY(1000);
1924 }
1925 if (ntries == 100) {
1926 printf("%s: timeout waiting for BBP\n",
1927 USBDEVNAME(sc->sc_dev));
1928 return EIO;
1929 }
1930
1931 /* initialize BBP registers to default values */
1932 for (i = 0; i < N(rum_def_bbp); i++)
1933 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1934
1935 /* write vendor-specific BBP values (from EEPROM) */
1936 for (i = 0; i < 16; i++) {
1937 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1938 continue;
1939 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1940 }
1941
1942 return 0;
1943 #undef N
1944 }
1945
1946 Static int
1947 rum_init(struct ifnet *ifp)
1948 {
1949 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1950 struct rum_softc *sc = ifp->if_softc;
1951 struct ieee80211com *ic = &sc->sc_ic;
1952 struct rum_rx_data *data;
1953 uint32_t tmp;
1954 usbd_status error = 0;
1955 int i, ntries;
1956
1957 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1958 if (rum_attachhook(sc))
1959 goto fail;
1960 }
1961
1962 rum_stop(ifp, 0);
1963
1964 /* initialize MAC registers to default values */
1965 for (i = 0; i < N(rum_def_mac); i++)
1966 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1967
1968 /* set host ready */
1969 rum_write(sc, RT2573_MAC_CSR1, 3);
1970 rum_write(sc, RT2573_MAC_CSR1, 0);
1971
1972 /* wait for BBP/RF to wakeup */
1973 for (ntries = 0; ntries < 1000; ntries++) {
1974 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1975 break;
1976 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1977 DELAY(1000);
1978 }
1979 if (ntries == 1000) {
1980 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1981 USBDEVNAME(sc->sc_dev));
1982 goto fail;
1983 }
1984
1985 if ((error = rum_bbp_init(sc)) != 0)
1986 goto fail;
1987
1988 /* select default channel */
1989 rum_select_band(sc, ic->ic_curchan);
1990 rum_select_antenna(sc);
1991 rum_set_chan(sc, ic->ic_curchan);
1992
1993 /* clear STA registers */
1994 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1995
1996 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1997 rum_set_macaddr(sc, ic->ic_myaddr);
1998
1999 /* initialize ASIC */
2000 rum_write(sc, RT2573_MAC_CSR1, 4);
2001
2002 /*
2003 * Allocate xfer for AMRR statistics requests.
2004 */
2005 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2006 if (sc->amrr_xfer == NULL) {
2007 printf("%s: could not allocate AMRR xfer\n",
2008 USBDEVNAME(sc->sc_dev));
2009 goto fail;
2010 }
2011
2012 /*
2013 * Open Tx and Rx USB bulk pipes.
2014 */
2015 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2016 &sc->sc_tx_pipeh);
2017 if (error != 0) {
2018 printf("%s: could not open Tx pipe: %s\n",
2019 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2020 goto fail;
2021 }
2022
2023 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2024 &sc->sc_rx_pipeh);
2025 if (error != 0) {
2026 printf("%s: could not open Rx pipe: %s\n",
2027 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2028 goto fail;
2029 }
2030
2031 /*
2032 * Allocate Tx and Rx xfer queues.
2033 */
2034 error = rum_alloc_tx_list(sc);
2035 if (error != 0) {
2036 printf("%s: could not allocate Tx list\n",
2037 USBDEVNAME(sc->sc_dev));
2038 goto fail;
2039 }
2040
2041 error = rum_alloc_rx_list(sc);
2042 if (error != 0) {
2043 printf("%s: could not allocate Rx list\n",
2044 USBDEVNAME(sc->sc_dev));
2045 goto fail;
2046 }
2047
2048 /*
2049 * Start up the receive pipe.
2050 */
2051 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
2052 data = &sc->rx_data[i];
2053
2054 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2055 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2056 usbd_transfer(data->xfer);
2057 }
2058
2059 /* update Rx filter */
2060 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2061
2062 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2063 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2064 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2065 RT2573_DROP_ACKCTS;
2066 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2067 tmp |= RT2573_DROP_TODS;
2068 if (!(ifp->if_flags & IFF_PROMISC))
2069 tmp |= RT2573_DROP_NOT_TO_ME;
2070 }
2071 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2072
2073 ifp->if_flags &= ~IFF_OACTIVE;
2074 ifp->if_flags |= IFF_RUNNING;
2075
2076 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2077 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2078 else
2079 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2080
2081 return 0;
2082
2083 fail: rum_stop(ifp, 1);
2084 return error;
2085 #undef N
2086 }
2087
2088 Static void
2089 rum_stop(struct ifnet *ifp, int disable)
2090 {
2091 struct rum_softc *sc = ifp->if_softc;
2092 struct ieee80211com *ic = &sc->sc_ic;
2093 uint32_t tmp;
2094
2095 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2096
2097 sc->sc_tx_timer = 0;
2098 ifp->if_timer = 0;
2099 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2100
2101 /* disable Rx */
2102 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2103 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2104
2105 /* reset ASIC */
2106 rum_write(sc, RT2573_MAC_CSR1, 3);
2107 rum_write(sc, RT2573_MAC_CSR1, 0);
2108
2109 if (sc->sc_rx_pipeh != NULL) {
2110 usbd_abort_pipe(sc->sc_rx_pipeh);
2111 usbd_close_pipe(sc->sc_rx_pipeh);
2112 sc->sc_rx_pipeh = NULL;
2113 }
2114
2115 if (sc->sc_tx_pipeh != NULL) {
2116 usbd_abort_pipe(sc->sc_tx_pipeh);
2117 usbd_close_pipe(sc->sc_tx_pipeh);
2118 sc->sc_tx_pipeh = NULL;
2119 }
2120
2121 rum_free_rx_list(sc);
2122 rum_free_tx_list(sc);
2123 }
2124
2125 Static int
2126 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2127 {
2128 usb_device_request_t req;
2129 uint16_t reg = RT2573_MCU_CODE_BASE;
2130 usbd_status error;
2131
2132 /* copy firmware image into NIC */
2133 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2134 rum_write(sc, reg, UGETDW(ucode));
2135
2136 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2137 req.bRequest = RT2573_MCU_CNTL;
2138 USETW(req.wValue, RT2573_MCU_RUN);
2139 USETW(req.wIndex, 0);
2140 USETW(req.wLength, 0);
2141
2142 error = usbd_do_request(sc->sc_udev, &req, NULL);
2143 if (error != 0) {
2144 printf("%s: could not run firmware: %s\n",
2145 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2146 }
2147 return error;
2148 }
2149
2150 Static int
2151 rum_prepare_beacon(struct rum_softc *sc)
2152 {
2153 struct ieee80211com *ic = &sc->sc_ic;
2154 struct rum_tx_desc desc;
2155 struct mbuf *m0;
2156 int rate;
2157
2158 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2159 if (m0 == NULL) {
2160 printf("%s: could not allocate beacon frame\n",
2161 sc->sc_dev.dv_xname);
2162 return ENOBUFS;
2163 }
2164
2165 /* send beacons at the lowest available rate */
2166 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2167
2168 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2169 m0->m_pkthdr.len, rate);
2170
2171 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2172 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2173
2174 /* copy beacon header and payload into NIC memory */
2175 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2176 m0->m_pkthdr.len);
2177
2178 m_freem(m0);
2179
2180 return 0;
2181 }
2182
2183 Static void
2184 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2185 {
2186 int i;
2187
2188 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2189 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2190
2191 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2192
2193 /* set rate to some reasonable initial value */
2194 for (i = ni->ni_rates.rs_nrates - 1;
2195 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2196 i--);
2197 ni->ni_txrate = i;
2198
2199 usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2200 }
2201
2202 Static void
2203 rum_amrr_timeout(void *arg)
2204 {
2205 struct rum_softc *sc = arg;
2206 usb_device_request_t req;
2207 int s;
2208
2209 s = splusb();
2210
2211 /*
2212 * Asynchronously read statistic registers (cleared by read).
2213 */
2214 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2215 req.bRequest = RT2573_READ_MULTI_MAC;
2216 USETW(req.wValue, 0);
2217 USETW(req.wIndex, RT2573_STA_CSR0);
2218 USETW(req.wLength, sizeof sc->sta);
2219
2220 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2221 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2222 rum_amrr_update);
2223 (void)usbd_transfer(sc->amrr_xfer);
2224
2225 splx(s);
2226 }
2227
2228 Static void
2229 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2230 usbd_status status)
2231 {
2232 struct rum_softc *sc = (struct rum_softc *)priv;
2233 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2234
2235 if (status != USBD_NORMAL_COMPLETION) {
2236 printf("%s: could not retrieve Tx statistics - cancelling "
2237 "automatic rate control\n", USBDEVNAME(sc->sc_dev));
2238 return;
2239 }
2240
2241 /* count TX retry-fail as Tx errors */
2242 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2243
2244 sc->amn.amn_retrycnt =
2245 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2246 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2247 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2248
2249 sc->amn.amn_txcnt =
2250 sc->amn.amn_retrycnt +
2251 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2252
2253 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2254
2255 usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2256 }
2257
2258 int
2259 rum_activate(device_ptr_t self, enum devact act)
2260 {
2261 switch (act) {
2262 case DVACT_ACTIVATE:
2263 return EOPNOTSUPP;
2264
2265 case DVACT_DEACTIVATE:
2266 /*if_deactivate(&sc->sc_ic.ic_if);*/
2267 break;
2268 }
2269
2270 return 0;
2271 }
2272