if_rum.c revision 1.19 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.19 2007/12/09 20:28:23 jmcneill Exp $ */
3
4 /*-
5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com.tw/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.19 2007/12/09 20:28:23 jmcneill Exp $");
28
29 #include "bpfilter.h"
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41
42 #include <sys/bus.h>
43 #include <machine/endian.h>
44 #include <sys/intr.h>
45
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/firmload.h>
67
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72
73 #include <dev/usb/if_rumreg.h>
74 #include <dev/usb/if_rumvar.h>
75
76 #ifdef USB_DEBUG
77 #define RUM_DEBUG
78 #endif
79
80 #ifdef RUM_DEBUG
81 #define DPRINTF(x) do { if (rum_debug) logprintf x; } while (0)
82 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) logprintf x; } while (0)
83 int rum_debug = 1;
84 #else
85 #define DPRINTF(x)
86 #define DPRINTFN(n, x)
87 #endif
88
89 /* various supported device vendors/products */
90 static const struct usb_devno rum_devs[] = {
91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
92 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
93 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
94 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
95 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
96 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
97 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
98 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
99 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
100 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
101 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
102 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
103 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
104 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL },
105 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
106 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
107 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
108 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
109 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
110 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
111 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
112 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
113 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
114 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
115 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
116 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
117 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
118 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
119 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
120 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
121 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
122 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
123 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
124 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
125 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
126 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
127 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
128 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
129 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2573 },
130 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
131 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
132 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
133 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }
134 };
135
136 Static int rum_attachhook(void *);
137 Static int rum_alloc_tx_list(struct rum_softc *);
138 Static void rum_free_tx_list(struct rum_softc *);
139 Static int rum_alloc_rx_list(struct rum_softc *);
140 Static void rum_free_rx_list(struct rum_softc *);
141 Static int rum_media_change(struct ifnet *);
142 Static void rum_next_scan(void *);
143 Static void rum_task(void *);
144 Static int rum_newstate(struct ieee80211com *,
145 enum ieee80211_state, int);
146 Static void rum_txeof(usbd_xfer_handle, usbd_private_handle,
147 usbd_status);
148 Static void rum_rxeof(usbd_xfer_handle, usbd_private_handle,
149 usbd_status);
150 #if NBPFILTER > 0
151 Static uint8_t rum_rxrate(const struct rum_rx_desc *);
152 #endif
153 Static int rum_ack_rate(struct ieee80211com *, int);
154 Static uint16_t rum_txtime(int, int, uint32_t);
155 Static uint8_t rum_plcp_signal(int);
156 Static void rum_setup_tx_desc(struct rum_softc *,
157 struct rum_tx_desc *, uint32_t, uint16_t, int,
158 int);
159 Static int rum_tx_mgt(struct rum_softc *, struct mbuf *,
160 struct ieee80211_node *);
161 Static int rum_tx_data(struct rum_softc *, struct mbuf *,
162 struct ieee80211_node *);
163 Static void rum_start(struct ifnet *);
164 Static void rum_watchdog(struct ifnet *);
165 Static int rum_ioctl(struct ifnet *, u_long, void *);
166 Static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
167 int);
168 Static uint32_t rum_read(struct rum_softc *, uint16_t);
169 Static void rum_read_multi(struct rum_softc *, uint16_t, void *,
170 int);
171 Static void rum_write(struct rum_softc *, uint16_t, uint32_t);
172 Static void rum_write_multi(struct rum_softc *, uint16_t, void *,
173 size_t);
174 Static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
175 Static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
176 Static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
177 Static void rum_select_antenna(struct rum_softc *);
178 Static void rum_enable_mrr(struct rum_softc *);
179 Static void rum_set_txpreamble(struct rum_softc *);
180 Static void rum_set_basicrates(struct rum_softc *);
181 Static void rum_select_band(struct rum_softc *,
182 struct ieee80211_channel *);
183 Static void rum_set_chan(struct rum_softc *,
184 struct ieee80211_channel *);
185 Static void rum_enable_tsf_sync(struct rum_softc *);
186 Static void rum_update_slot(struct rum_softc *);
187 Static void rum_set_bssid(struct rum_softc *, const uint8_t *);
188 Static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
189 Static void rum_update_promisc(struct rum_softc *);
190 Static const char *rum_get_rf(int);
191 Static void rum_read_eeprom(struct rum_softc *);
192 Static int rum_bbp_init(struct rum_softc *);
193 Static int rum_init(struct ifnet *);
194 Static void rum_stop(struct ifnet *, int);
195 Static int rum_load_microcode(struct rum_softc *, const u_char *,
196 size_t);
197 Static int rum_prepare_beacon(struct rum_softc *);
198 Static void rum_newassoc(struct ieee80211_node *, int);
199 Static void rum_amrr_start(struct rum_softc *,
200 struct ieee80211_node *);
201 Static void rum_amrr_timeout(void *);
202 Static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
203 usbd_status status);
204
205 /*
206 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
207 */
208 static const struct ieee80211_rateset rum_rateset_11a =
209 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
210
211 static const struct ieee80211_rateset rum_rateset_11b =
212 { 4, { 2, 4, 11, 22 } };
213
214 static const struct ieee80211_rateset rum_rateset_11g =
215 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
216
217 static const struct {
218 uint32_t reg;
219 uint32_t val;
220 } rum_def_mac[] = {
221 RT2573_DEF_MAC
222 };
223
224 static const struct {
225 uint8_t reg;
226 uint8_t val;
227 } rum_def_bbp[] = {
228 RT2573_DEF_BBP
229 };
230
231 static const struct rfprog {
232 uint8_t chan;
233 uint32_t r1, r2, r3, r4;
234 } rum_rf5226[] = {
235 RT2573_RF5226
236 }, rum_rf5225[] = {
237 RT2573_RF5225
238 };
239
240 USB_DECLARE_DRIVER(rum);
241
242 USB_MATCH(rum)
243 {
244 USB_MATCH_START(rum, uaa);
245
246 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
247 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
248 }
249
250 Static int
251 rum_attachhook(void *xsc)
252 {
253 struct rum_softc *sc = xsc;
254 firmware_handle_t fwh;
255 const char *name = "rum-rt2573";
256 u_char *ucode;
257 size_t size;
258 int error;
259
260 if ((error = firmware_open("rum", name, &fwh)) != 0) {
261 printf("%s: failed loadfirmware of file %s (error %d)\n",
262 USBDEVNAME(sc->sc_dev), name, error);
263 return error;
264 }
265 size = firmware_get_size(fwh);
266 ucode = firmware_malloc(size);
267 if (ucode == NULL) {
268 printf("%s: failed to allocate firmware memory\n",
269 USBDEVNAME(sc->sc_dev));
270 firmware_close(fwh);
271 return ENOMEM;;
272 }
273 error = firmware_read(fwh, 0, ucode, size);
274 firmware_close(fwh);
275 if (error != 0) {
276 printf("%s: failed to read firmware (error %d)\n",
277 USBDEVNAME(sc->sc_dev), error);
278 firmware_free(ucode, 0);
279 return error;
280 }
281
282 if (rum_load_microcode(sc, ucode, size) != 0) {
283 printf("%s: could not load 8051 microcode\n",
284 USBDEVNAME(sc->sc_dev));
285 firmware_free(ucode, 0);
286 return ENXIO;
287 }
288
289 firmware_free(ucode, 0);
290 sc->sc_flags |= RT2573_FWLOADED;
291
292 return 0;
293 }
294
295 USB_ATTACH(rum)
296 {
297 USB_ATTACH_START(rum, sc, uaa);
298 struct ieee80211com *ic = &sc->sc_ic;
299 struct ifnet *ifp = &sc->sc_if;
300 usb_interface_descriptor_t *id;
301 usb_endpoint_descriptor_t *ed;
302 usbd_status error;
303 char *devinfop;
304 int i, ntries;
305 uint32_t tmp;
306
307 sc->sc_udev = uaa->device;
308 sc->sc_flags = 0;
309
310 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
311 USB_ATTACH_SETUP;
312 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
313 usbd_devinfo_free(devinfop);
314
315 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
316 printf("%s: could not set configuration no\n",
317 USBDEVNAME(sc->sc_dev));
318 USB_ATTACH_ERROR_RETURN;
319 }
320
321 /* get the first interface handle */
322 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
323 &sc->sc_iface);
324 if (error != 0) {
325 printf("%s: could not get interface handle\n",
326 USBDEVNAME(sc->sc_dev));
327 USB_ATTACH_ERROR_RETURN;
328 }
329
330 /*
331 * Find endpoints.
332 */
333 id = usbd_get_interface_descriptor(sc->sc_iface);
334
335 sc->sc_rx_no = sc->sc_tx_no = -1;
336 for (i = 0; i < id->bNumEndpoints; i++) {
337 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
338 if (ed == NULL) {
339 printf("%s: no endpoint descriptor for iface %d\n",
340 USBDEVNAME(sc->sc_dev), i);
341 USB_ATTACH_ERROR_RETURN;
342 }
343
344 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
345 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
346 sc->sc_rx_no = ed->bEndpointAddress;
347 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
348 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
349 sc->sc_tx_no = ed->bEndpointAddress;
350 }
351 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
352 printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
353 USB_ATTACH_ERROR_RETURN;
354 }
355
356 usb_init_task(&sc->sc_task, rum_task, sc);
357 usb_callout_init(sc->sc_scan_ch);
358
359 sc->amrr.amrr_min_success_threshold = 1;
360 sc->amrr.amrr_max_success_threshold = 10;
361 usb_callout_init(sc->sc_amrr_ch);
362
363 /* retrieve RT2573 rev. no */
364 for (ntries = 0; ntries < 1000; ntries++) {
365 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
366 break;
367 DELAY(1000);
368 }
369 if (ntries == 1000) {
370 printf("%s: timeout waiting for chip to settle\n",
371 USBDEVNAME(sc->sc_dev));
372 USB_ATTACH_ERROR_RETURN;
373 }
374
375 /* retrieve MAC address and various other things from EEPROM */
376 rum_read_eeprom(sc);
377
378 printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
379 USBDEVNAME(sc->sc_dev), sc->macbbp_rev, tmp,
380 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
381
382 ic->ic_ifp = ifp;
383 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
384 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
385 ic->ic_state = IEEE80211_S_INIT;
386
387 /* set device capabilities */
388 ic->ic_caps =
389 IEEE80211_C_IBSS | /* IBSS mode supported */
390 IEEE80211_C_MONITOR | /* monitor mode supported */
391 IEEE80211_C_HOSTAP | /* HostAp mode supported */
392 IEEE80211_C_TXPMGT | /* tx power management */
393 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
394 IEEE80211_C_SHSLOT | /* short slot time supported */
395 IEEE80211_C_WPA; /* 802.11i */
396
397 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
398 /* set supported .11a rates */
399 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
400
401 /* set supported .11a channels */
402 for (i = 34; i <= 46; i += 4) {
403 ic->ic_channels[i].ic_freq =
404 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
405 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
406 }
407 for (i = 36; i <= 64; i += 4) {
408 ic->ic_channels[i].ic_freq =
409 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
410 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
411 }
412 for (i = 100; i <= 140; i += 4) {
413 ic->ic_channels[i].ic_freq =
414 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
415 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
416 }
417 for (i = 149; i <= 165; i += 4) {
418 ic->ic_channels[i].ic_freq =
419 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
420 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
421 }
422 }
423
424 /* set supported .11b and .11g rates */
425 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
426 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
427
428 /* set supported .11b and .11g channels (1 through 14) */
429 for (i = 1; i <= 14; i++) {
430 ic->ic_channels[i].ic_freq =
431 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
432 ic->ic_channels[i].ic_flags =
433 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
434 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
435 }
436
437 ifp->if_softc = sc;
438 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
439 ifp->if_init = rum_init;
440 ifp->if_ioctl = rum_ioctl;
441 ifp->if_start = rum_start;
442 ifp->if_watchdog = rum_watchdog;
443 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
444 IFQ_SET_READY(&ifp->if_snd);
445 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
446
447 if_attach(ifp);
448 ieee80211_ifattach(ic);
449 ic->ic_newassoc = rum_newassoc;
450
451 /* override state transition machine */
452 sc->sc_newstate = ic->ic_newstate;
453 ic->ic_newstate = rum_newstate;
454 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
455
456 #if NBPFILTER > 0
457 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
458 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf);
459
460 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
461 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
462 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
463
464 sc->sc_txtap_len = sizeof sc->sc_txtapu;
465 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
466 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
467 #endif
468
469 ieee80211_announce(ic);
470
471 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
472 USBDEV(sc->sc_dev));
473
474 USB_ATTACH_SUCCESS_RETURN;
475 }
476
477 USB_DETACH(rum)
478 {
479 USB_DETACH_START(rum, sc);
480 struct ieee80211com *ic = &sc->sc_ic;
481 struct ifnet *ifp = &sc->sc_if;
482 int s;
483
484 if (!ifp->if_softc)
485 return 0;
486
487 s = splusb();
488
489 rum_stop(ifp, 1);
490 usb_rem_task(sc->sc_udev, &sc->sc_task);
491 usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
492 usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
493
494 if (sc->amrr_xfer != NULL) {
495 usbd_free_xfer(sc->amrr_xfer);
496 sc->amrr_xfer = NULL;
497 }
498
499 if (sc->sc_rx_pipeh != NULL) {
500 usbd_abort_pipe(sc->sc_rx_pipeh);
501 usbd_close_pipe(sc->sc_rx_pipeh);
502 }
503
504 if (sc->sc_tx_pipeh != NULL) {
505 usbd_abort_pipe(sc->sc_tx_pipeh);
506 usbd_close_pipe(sc->sc_tx_pipeh);
507 }
508
509 #if NBPFILTER > 0
510 bpfdetach(ifp);
511 #endif
512 ieee80211_ifdetach(ic); /* free all nodes */
513 if_detach(ifp);
514
515 splx(s);
516
517 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
518 USBDEV(sc->sc_dev));
519
520 return 0;
521 }
522
523 Static int
524 rum_alloc_tx_list(struct rum_softc *sc)
525 {
526 struct rum_tx_data *data;
527 int i, error;
528
529 sc->tx_queued = 0;
530
531 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
532 data = &sc->tx_data[i];
533
534 data->sc = sc;
535
536 data->xfer = usbd_alloc_xfer(sc->sc_udev);
537 if (data->xfer == NULL) {
538 printf("%s: could not allocate tx xfer\n",
539 USBDEVNAME(sc->sc_dev));
540 error = ENOMEM;
541 goto fail;
542 }
543
544 data->buf = usbd_alloc_buffer(data->xfer,
545 RT2573_TX_DESC_SIZE + MCLBYTES);
546 if (data->buf == NULL) {
547 printf("%s: could not allocate tx buffer\n",
548 USBDEVNAME(sc->sc_dev));
549 error = ENOMEM;
550 goto fail;
551 }
552
553 /* clean Tx descriptor */
554 bzero(data->buf, RT2573_TX_DESC_SIZE);
555 }
556
557 return 0;
558
559 fail: rum_free_tx_list(sc);
560 return error;
561 }
562
563 Static void
564 rum_free_tx_list(struct rum_softc *sc)
565 {
566 struct rum_tx_data *data;
567 int i;
568
569 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
570 data = &sc->tx_data[i];
571
572 if (data->xfer != NULL) {
573 usbd_free_xfer(data->xfer);
574 data->xfer = NULL;
575 }
576
577 if (data->ni != NULL) {
578 ieee80211_free_node(data->ni);
579 data->ni = NULL;
580 }
581 }
582 }
583
584 Static int
585 rum_alloc_rx_list(struct rum_softc *sc)
586 {
587 struct rum_rx_data *data;
588 int i, error;
589
590 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
591 data = &sc->rx_data[i];
592
593 data->sc = sc;
594
595 data->xfer = usbd_alloc_xfer(sc->sc_udev);
596 if (data->xfer == NULL) {
597 printf("%s: could not allocate rx xfer\n",
598 USBDEVNAME(sc->sc_dev));
599 error = ENOMEM;
600 goto fail;
601 }
602
603 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
604 printf("%s: could not allocate rx buffer\n",
605 USBDEVNAME(sc->sc_dev));
606 error = ENOMEM;
607 goto fail;
608 }
609
610 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
611 if (data->m == NULL) {
612 printf("%s: could not allocate rx mbuf\n",
613 USBDEVNAME(sc->sc_dev));
614 error = ENOMEM;
615 goto fail;
616 }
617
618 MCLGET(data->m, M_DONTWAIT);
619 if (!(data->m->m_flags & M_EXT)) {
620 printf("%s: could not allocate rx mbuf cluster\n",
621 USBDEVNAME(sc->sc_dev));
622 error = ENOMEM;
623 goto fail;
624 }
625
626 data->buf = mtod(data->m, uint8_t *);
627 }
628
629 return 0;
630
631 fail: rum_free_tx_list(sc);
632 return error;
633 }
634
635 Static void
636 rum_free_rx_list(struct rum_softc *sc)
637 {
638 struct rum_rx_data *data;
639 int i;
640
641 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
642 data = &sc->rx_data[i];
643
644 if (data->xfer != NULL) {
645 usbd_free_xfer(data->xfer);
646 data->xfer = NULL;
647 }
648
649 if (data->m != NULL) {
650 m_freem(data->m);
651 data->m = NULL;
652 }
653 }
654 }
655
656 Static int
657 rum_media_change(struct ifnet *ifp)
658 {
659 int error;
660
661 error = ieee80211_media_change(ifp);
662 if (error != ENETRESET)
663 return error;
664
665 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
666 rum_init(ifp);
667
668 return 0;
669 }
670
671 /*
672 * This function is called periodically (every 200ms) during scanning to
673 * switch from one channel to another.
674 */
675 Static void
676 rum_next_scan(void *arg)
677 {
678 struct rum_softc *sc = arg;
679 struct ieee80211com *ic = &sc->sc_ic;
680
681 if (ic->ic_state == IEEE80211_S_SCAN)
682 ieee80211_next_scan(ic);
683 }
684
685 Static void
686 rum_task(void *arg)
687 {
688 struct rum_softc *sc = arg;
689 struct ieee80211com *ic = &sc->sc_ic;
690 enum ieee80211_state ostate;
691 struct ieee80211_node *ni;
692 uint32_t tmp;
693
694 ostate = ic->ic_state;
695
696 switch (sc->sc_state) {
697 case IEEE80211_S_INIT:
698 if (ostate == IEEE80211_S_RUN) {
699 /* abort TSF synchronization */
700 tmp = rum_read(sc, RT2573_TXRX_CSR9);
701 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
702 }
703 break;
704
705 case IEEE80211_S_SCAN:
706 rum_set_chan(sc, ic->ic_curchan);
707 usb_callout(sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
708 break;
709
710 case IEEE80211_S_AUTH:
711 rum_set_chan(sc, ic->ic_curchan);
712 break;
713
714 case IEEE80211_S_ASSOC:
715 rum_set_chan(sc, ic->ic_curchan);
716 break;
717
718 case IEEE80211_S_RUN:
719 rum_set_chan(sc, ic->ic_curchan);
720
721 ni = ic->ic_bss;
722
723 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
724 rum_update_slot(sc);
725 rum_enable_mrr(sc);
726 rum_set_txpreamble(sc);
727 rum_set_basicrates(sc);
728 rum_set_bssid(sc, ni->ni_bssid);
729 }
730
731 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
732 ic->ic_opmode == IEEE80211_M_IBSS)
733 rum_prepare_beacon(sc);
734
735 if (ic->ic_opmode != IEEE80211_M_MONITOR)
736 rum_enable_tsf_sync(sc);
737
738 if (ic->ic_opmode == IEEE80211_M_STA) {
739 /* fake a join to init the tx rate */
740 rum_newassoc(ic->ic_bss, 1);
741
742 /* enable automatic rate adaptation in STA mode */
743 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
744 rum_amrr_start(sc, ni);
745 }
746
747 break;
748 }
749
750 sc->sc_newstate(ic, sc->sc_state, -1);
751 }
752
753 Static int
754 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
755 {
756 struct rum_softc *sc = ic->ic_ifp->if_softc;
757
758 usb_rem_task(sc->sc_udev, &sc->sc_task);
759 usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
760 usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
761
762 /* do it in a process context */
763 sc->sc_state = nstate;
764 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
765
766 return 0;
767 }
768
769 /* quickly determine if a given rate is CCK or OFDM */
770 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
771
772 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
773 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
774
775 Static void
776 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
777 {
778 struct rum_tx_data *data = priv;
779 struct rum_softc *sc = data->sc;
780 struct ifnet *ifp = &sc->sc_if;
781 int s;
782
783 if (status != USBD_NORMAL_COMPLETION) {
784 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
785 return;
786
787 printf("%s: could not transmit buffer: %s\n",
788 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
789
790 if (status == USBD_STALLED)
791 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
792
793 ifp->if_oerrors++;
794 return;
795 }
796
797 s = splnet();
798
799 ieee80211_free_node(data->ni);
800 data->ni = NULL;
801
802 sc->tx_queued--;
803 ifp->if_opackets++;
804
805 DPRINTFN(10, ("tx done\n"));
806
807 sc->sc_tx_timer = 0;
808 ifp->if_flags &= ~IFF_OACTIVE;
809 rum_start(ifp);
810
811 splx(s);
812 }
813
814 Static void
815 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
816 {
817 struct rum_rx_data *data = priv;
818 struct rum_softc *sc = data->sc;
819 struct ieee80211com *ic = &sc->sc_ic;
820 struct ifnet *ifp = &sc->sc_if;
821 struct rum_rx_desc *desc;
822 struct ieee80211_frame *wh;
823 struct ieee80211_node *ni;
824 struct mbuf *mnew, *m;
825 int s, len;
826
827 if (status != USBD_NORMAL_COMPLETION) {
828 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
829 return;
830
831 if (status == USBD_STALLED)
832 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
833 goto skip;
834 }
835
836 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
837
838 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
839 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
840 len));
841 ifp->if_ierrors++;
842 goto skip;
843 }
844
845 desc = (struct rum_rx_desc *)data->buf;
846
847 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
848 /*
849 * This should not happen since we did not request to receive
850 * those frames when we filled RT2573_TXRX_CSR0.
851 */
852 DPRINTFN(5, ("CRC error\n"));
853 ifp->if_ierrors++;
854 goto skip;
855 }
856
857 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
858 if (mnew == NULL) {
859 printf("%s: could not allocate rx mbuf\n",
860 USBDEVNAME(sc->sc_dev));
861 ifp->if_ierrors++;
862 goto skip;
863 }
864
865 MCLGET(mnew, M_DONTWAIT);
866 if (!(mnew->m_flags & M_EXT)) {
867 printf("%s: could not allocate rx mbuf cluster\n",
868 USBDEVNAME(sc->sc_dev));
869 m_freem(mnew);
870 ifp->if_ierrors++;
871 goto skip;
872 }
873
874 m = data->m;
875 data->m = mnew;
876 data->buf = mtod(data->m, uint8_t *);
877
878 /* finalize mbuf */
879 m->m_pkthdr.rcvif = ifp;
880 m->m_data = (void *)(desc + 1);
881 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
882
883 s = splnet();
884
885 #if NBPFILTER > 0
886 if (sc->sc_drvbpf != NULL) {
887 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
888
889 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
890 tap->wr_rate = rum_rxrate(desc);
891 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
892 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
893 tap->wr_antenna = sc->rx_ant;
894 tap->wr_antsignal = desc->rssi;
895
896 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
897 }
898 #endif
899
900 wh = mtod(m, struct ieee80211_frame *);
901 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
902
903 /* send the frame to the 802.11 layer */
904 ieee80211_input(ic, m, ni, desc->rssi, 0);
905
906 /* node is no longer needed */
907 ieee80211_free_node(ni);
908
909 splx(s);
910
911 DPRINTFN(15, ("rx done\n"));
912
913 skip: /* setup a new transfer */
914 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
915 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
916 usbd_transfer(xfer);
917 }
918
919 /*
920 * This function is only used by the Rx radiotap code. It returns the rate at
921 * which a given frame was received.
922 */
923 #if NBPFILTER > 0
924 Static uint8_t
925 rum_rxrate(const struct rum_rx_desc *desc)
926 {
927 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
928 /* reverse function of rum_plcp_signal */
929 switch (desc->rate) {
930 case 0xb: return 12;
931 case 0xf: return 18;
932 case 0xa: return 24;
933 case 0xe: return 36;
934 case 0x9: return 48;
935 case 0xd: return 72;
936 case 0x8: return 96;
937 case 0xc: return 108;
938 }
939 } else {
940 if (desc->rate == 10)
941 return 2;
942 if (desc->rate == 20)
943 return 4;
944 if (desc->rate == 55)
945 return 11;
946 if (desc->rate == 110)
947 return 22;
948 }
949 return 2; /* should not get there */
950 }
951 #endif
952
953 /*
954 * Return the expected ack rate for a frame transmitted at rate `rate'.
955 * XXX: this should depend on the destination node basic rate set.
956 */
957 Static int
958 rum_ack_rate(struct ieee80211com *ic, int rate)
959 {
960 switch (rate) {
961 /* CCK rates */
962 case 2:
963 return 2;
964 case 4:
965 case 11:
966 case 22:
967 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
968
969 /* OFDM rates */
970 case 12:
971 case 18:
972 return 12;
973 case 24:
974 case 36:
975 return 24;
976 case 48:
977 case 72:
978 case 96:
979 case 108:
980 return 48;
981 }
982
983 /* default to 1Mbps */
984 return 2;
985 }
986
987 /*
988 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
989 * The function automatically determines the operating mode depending on the
990 * given rate. `flags' indicates whether short preamble is in use or not.
991 */
992 Static uint16_t
993 rum_txtime(int len, int rate, uint32_t flags)
994 {
995 uint16_t txtime;
996
997 if (RUM_RATE_IS_OFDM(rate)) {
998 /* IEEE Std 802.11a-1999, pp. 37 */
999 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1000 txtime = 16 + 4 + 4 * txtime + 6;
1001 } else {
1002 /* IEEE Std 802.11b-1999, pp. 28 */
1003 txtime = (16 * len + rate - 1) / rate;
1004 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1005 txtime += 72 + 24;
1006 else
1007 txtime += 144 + 48;
1008 }
1009 return txtime;
1010 }
1011
1012 Static uint8_t
1013 rum_plcp_signal(int rate)
1014 {
1015 switch (rate) {
1016 /* CCK rates (returned values are device-dependent) */
1017 case 2: return 0x0;
1018 case 4: return 0x1;
1019 case 11: return 0x2;
1020 case 22: return 0x3;
1021
1022 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1023 case 12: return 0xb;
1024 case 18: return 0xf;
1025 case 24: return 0xa;
1026 case 36: return 0xe;
1027 case 48: return 0x9;
1028 case 72: return 0xd;
1029 case 96: return 0x8;
1030 case 108: return 0xc;
1031
1032 /* unsupported rates (should not get there) */
1033 default: return 0xff;
1034 }
1035 }
1036
1037 Static void
1038 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1039 uint32_t flags, uint16_t xflags, int len, int rate)
1040 {
1041 struct ieee80211com *ic = &sc->sc_ic;
1042 uint16_t plcp_length;
1043 int remainder;
1044
1045 desc->flags = htole32(flags);
1046 desc->flags |= htole32(RT2573_TX_VALID);
1047 desc->flags |= htole32(len << 16);
1048
1049 desc->xflags = htole16(xflags);
1050
1051 desc->wme = htole16(
1052 RT2573_QID(0) |
1053 RT2573_AIFSN(2) |
1054 RT2573_LOGCWMIN(4) |
1055 RT2573_LOGCWMAX(10));
1056
1057 /* setup PLCP fields */
1058 desc->plcp_signal = rum_plcp_signal(rate);
1059 desc->plcp_service = 4;
1060
1061 len += IEEE80211_CRC_LEN;
1062 if (RUM_RATE_IS_OFDM(rate)) {
1063 desc->flags |= htole32(RT2573_TX_OFDM);
1064
1065 plcp_length = len & 0xfff;
1066 desc->plcp_length_hi = plcp_length >> 6;
1067 desc->plcp_length_lo = plcp_length & 0x3f;
1068 } else {
1069 plcp_length = (16 * len + rate - 1) / rate;
1070 if (rate == 22) {
1071 remainder = (16 * len) % 22;
1072 if (remainder != 0 && remainder < 7)
1073 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1074 }
1075 desc->plcp_length_hi = plcp_length >> 8;
1076 desc->plcp_length_lo = plcp_length & 0xff;
1077
1078 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1079 desc->plcp_signal |= 0x08;
1080 }
1081 }
1082
1083 #define RUM_TX_TIMEOUT 5000
1084
1085 Static int
1086 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1087 {
1088 struct ieee80211com *ic = &sc->sc_ic;
1089 struct rum_tx_desc *desc;
1090 struct rum_tx_data *data;
1091 struct ieee80211_frame *wh;
1092 struct ieee80211_key *k;
1093 uint32_t flags = 0;
1094 uint16_t dur;
1095 usbd_status error;
1096 int xferlen, rate;
1097
1098 data = &sc->tx_data[0];
1099 desc = (struct rum_tx_desc *)data->buf;
1100
1101 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1102
1103 data->m = m0;
1104 data->ni = ni;
1105
1106 wh = mtod(m0, struct ieee80211_frame *);
1107
1108 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1109 k = ieee80211_crypto_encap(ic, ni, m0);
1110 if (k == NULL) {
1111 m_freem(m0);
1112 return ENOBUFS;
1113 }
1114 }
1115
1116 wh = mtod(m0, struct ieee80211_frame *);
1117
1118 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1119 flags |= RT2573_TX_NEED_ACK;
1120
1121 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1122 ic->ic_flags) + sc->sifs;
1123 *(uint16_t *)wh->i_dur = htole16(dur);
1124
1125 /* tell hardware to set timestamp in probe responses */
1126 if ((wh->i_fc[0] &
1127 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1128 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1129 flags |= RT2573_TX_TIMESTAMP;
1130 }
1131
1132 #if NBPFILTER > 0
1133 if (sc->sc_drvbpf != NULL) {
1134 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1135
1136 tap->wt_flags = 0;
1137 tap->wt_rate = rate;
1138 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1139 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1140 tap->wt_antenna = sc->tx_ant;
1141
1142 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1143 }
1144 #endif
1145
1146 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1147 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1148
1149 /* align end on a 4-bytes boundary */
1150 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1151
1152 /*
1153 * No space left in the last URB to store the extra 4 bytes, force
1154 * sending of another URB.
1155 */
1156 if ((xferlen % 64) == 0)
1157 xferlen += 4;
1158
1159 DPRINTFN(10, ("sending msg frame len=%zu rate=%u xfer len=%u\n",
1160 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1161 rate, xferlen));
1162
1163 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1164 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1165
1166 error = usbd_transfer(data->xfer);
1167 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1168 m_freem(m0);
1169 return error;
1170 }
1171
1172 sc->tx_queued++;
1173
1174 return 0;
1175 }
1176
1177 Static int
1178 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1179 {
1180 struct ieee80211com *ic = &sc->sc_ic;
1181 struct rum_tx_desc *desc;
1182 struct rum_tx_data *data;
1183 struct ieee80211_frame *wh;
1184 struct ieee80211_key *k;
1185 uint32_t flags = 0;
1186 uint16_t dur;
1187 usbd_status error;
1188 int xferlen, rate;
1189
1190 wh = mtod(m0, struct ieee80211_frame *);
1191
1192 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1193 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1194 else
1195 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1196 if (rate == 0)
1197 rate = 2; /* XXX should not happen */
1198 rate &= IEEE80211_RATE_VAL;
1199
1200 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1201 k = ieee80211_crypto_encap(ic, ni, m0);
1202 if (k == NULL) {
1203 m_freem(m0);
1204 return ENOBUFS;
1205 }
1206
1207 /* packet header may have moved, reset our local pointer */
1208 wh = mtod(m0, struct ieee80211_frame *);
1209 }
1210
1211 data = &sc->tx_data[0];
1212 desc = (struct rum_tx_desc *)data->buf;
1213
1214 data->ni = ni;
1215
1216 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1217 flags |= RT2573_TX_NEED_ACK;
1218
1219 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1220 ic->ic_flags) + sc->sifs;
1221 *(uint16_t *)wh->i_dur = htole16(dur);
1222 }
1223
1224 #if NBPFILTER > 0
1225 if (sc->sc_drvbpf != NULL) {
1226 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1227
1228 tap->wt_flags = 0;
1229 tap->wt_rate = rate;
1230 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1231 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1232 tap->wt_antenna = sc->tx_ant;
1233
1234 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1235 }
1236 #endif
1237
1238 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1239 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1240
1241 /* align end on a 4-bytes boundary */
1242 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1243
1244 /*
1245 * No space left in the last URB to store the extra 4 bytes, force
1246 * sending of another URB.
1247 */
1248 if ((xferlen % 64) == 0)
1249 xferlen += 4;
1250
1251 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1252 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1253 rate, xferlen));
1254
1255 /* mbuf is no longer needed */
1256 m_freem(m0);
1257
1258 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1259 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1260
1261 error = usbd_transfer(data->xfer);
1262 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1263 return error;
1264
1265 sc->tx_queued++;
1266
1267 return 0;
1268 }
1269
1270 Static void
1271 rum_start(struct ifnet *ifp)
1272 {
1273 struct rum_softc *sc = ifp->if_softc;
1274 struct ieee80211com *ic = &sc->sc_ic;
1275 struct ether_header *eh;
1276 struct ieee80211_node *ni;
1277 struct mbuf *m0;
1278
1279 for (;;) {
1280 IF_POLL(&ic->ic_mgtq, m0);
1281 if (m0 != NULL) {
1282 if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
1283 ifp->if_flags |= IFF_OACTIVE;
1284 break;
1285 }
1286 IF_DEQUEUE(&ic->ic_mgtq, m0);
1287
1288 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1289 m0->m_pkthdr.rcvif = NULL;
1290 #if NBPFILTER > 0
1291 if (ic->ic_rawbpf != NULL)
1292 bpf_mtap(ic->ic_rawbpf, m0);
1293 #endif
1294 if (rum_tx_mgt(sc, m0, ni) != 0)
1295 break;
1296
1297 } else {
1298 if (ic->ic_state != IEEE80211_S_RUN)
1299 break;
1300 IFQ_POLL(&ifp->if_snd, m0);
1301 if (m0 == NULL)
1302 break;
1303 if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
1304 ifp->if_flags |= IFF_OACTIVE;
1305 break;
1306 }
1307 IFQ_DEQUEUE(&ifp->if_snd, m0);
1308 if (m0->m_len < sizeof(struct ether_header) &&
1309 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1310 continue;
1311
1312 eh = mtod(m0, struct ether_header *);
1313 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1314 if (ni == NULL) {
1315 m_freem(m0);
1316 continue;
1317 }
1318 #if NBPFILTER > 0
1319 if (ifp->if_bpf != NULL)
1320 bpf_mtap(ifp->if_bpf, m0);
1321 #endif
1322 m0 = ieee80211_encap(ic, m0, ni);
1323 if (m0 == NULL) {
1324 ieee80211_free_node(ni);
1325 continue;
1326 }
1327 #if NBPFILTER > 0
1328 if (ic->ic_rawbpf != NULL)
1329 bpf_mtap(ic->ic_rawbpf, m0);
1330 #endif
1331 if (rum_tx_data(sc, m0, ni) != 0) {
1332 ieee80211_free_node(ni);
1333 ifp->if_oerrors++;
1334 break;
1335 }
1336 }
1337
1338 sc->sc_tx_timer = 5;
1339 ifp->if_timer = 1;
1340 }
1341 }
1342
1343 Static void
1344 rum_watchdog(struct ifnet *ifp)
1345 {
1346 struct rum_softc *sc = ifp->if_softc;
1347 struct ieee80211com *ic = &sc->sc_ic;
1348
1349 ifp->if_timer = 0;
1350
1351 if (sc->sc_tx_timer > 0) {
1352 if (--sc->sc_tx_timer == 0) {
1353 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1354 /*rum_init(ifp); XXX needs a process context! */
1355 ifp->if_oerrors++;
1356 return;
1357 }
1358 ifp->if_timer = 1;
1359 }
1360
1361 ieee80211_watchdog(ic);
1362 }
1363
1364 Static int
1365 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1366 {
1367 struct rum_softc *sc = ifp->if_softc;
1368 struct ieee80211com *ic = &sc->sc_ic;
1369 int s, error = 0;
1370
1371 s = splnet();
1372
1373 switch (cmd) {
1374 case SIOCSIFFLAGS:
1375 if (ifp->if_flags & IFF_UP) {
1376 if (ifp->if_flags & IFF_RUNNING)
1377 rum_update_promisc(sc);
1378 else
1379 rum_init(ifp);
1380 } else {
1381 if (ifp->if_flags & IFF_RUNNING)
1382 rum_stop(ifp, 1);
1383 }
1384 break;
1385
1386 default:
1387 error = ieee80211_ioctl(ic, cmd, data);
1388 }
1389
1390 if (error == ENETRESET) {
1391 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1392 (IFF_UP | IFF_RUNNING))
1393 rum_init(ifp);
1394 error = 0;
1395 }
1396
1397 splx(s);
1398
1399 return error;
1400 }
1401
1402 Static void
1403 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1404 {
1405 usb_device_request_t req;
1406 usbd_status error;
1407
1408 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1409 req.bRequest = RT2573_READ_EEPROM;
1410 USETW(req.wValue, 0);
1411 USETW(req.wIndex, addr);
1412 USETW(req.wLength, len);
1413
1414 error = usbd_do_request(sc->sc_udev, &req, buf);
1415 if (error != 0) {
1416 printf("%s: could not read EEPROM: %s\n",
1417 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1418 }
1419 }
1420
1421 Static uint32_t
1422 rum_read(struct rum_softc *sc, uint16_t reg)
1423 {
1424 uint32_t val;
1425
1426 rum_read_multi(sc, reg, &val, sizeof val);
1427
1428 return le32toh(val);
1429 }
1430
1431 Static void
1432 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1433 {
1434 usb_device_request_t req;
1435 usbd_status error;
1436
1437 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1438 req.bRequest = RT2573_READ_MULTI_MAC;
1439 USETW(req.wValue, 0);
1440 USETW(req.wIndex, reg);
1441 USETW(req.wLength, len);
1442
1443 error = usbd_do_request(sc->sc_udev, &req, buf);
1444 if (error != 0) {
1445 printf("%s: could not multi read MAC register: %s\n",
1446 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1447 }
1448 }
1449
1450 Static void
1451 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1452 {
1453 uint32_t tmp = htole32(val);
1454
1455 rum_write_multi(sc, reg, &tmp, sizeof tmp);
1456 }
1457
1458 Static void
1459 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1460 {
1461 usb_device_request_t req;
1462 usbd_status error;
1463
1464 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1465 req.bRequest = RT2573_WRITE_MULTI_MAC;
1466 USETW(req.wValue, 0);
1467 USETW(req.wIndex, reg);
1468 USETW(req.wLength, len);
1469
1470 error = usbd_do_request(sc->sc_udev, &req, buf);
1471 if (error != 0) {
1472 printf("%s: could not multi write MAC register: %s\n",
1473 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1474 }
1475 }
1476
1477 Static void
1478 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1479 {
1480 uint32_t tmp;
1481 int ntries;
1482
1483 for (ntries = 0; ntries < 5; ntries++) {
1484 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1485 break;
1486 }
1487 if (ntries == 5) {
1488 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1489 return;
1490 }
1491
1492 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1493 rum_write(sc, RT2573_PHY_CSR3, tmp);
1494 }
1495
1496 Static uint8_t
1497 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1498 {
1499 uint32_t val;
1500 int ntries;
1501
1502 for (ntries = 0; ntries < 5; ntries++) {
1503 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1504 break;
1505 }
1506 if (ntries == 5) {
1507 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1508 return 0;
1509 }
1510
1511 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1512 rum_write(sc, RT2573_PHY_CSR3, val);
1513
1514 for (ntries = 0; ntries < 100; ntries++) {
1515 val = rum_read(sc, RT2573_PHY_CSR3);
1516 if (!(val & RT2573_BBP_BUSY))
1517 return val & 0xff;
1518 DELAY(1);
1519 }
1520
1521 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1522 return 0;
1523 }
1524
1525 Static void
1526 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1527 {
1528 uint32_t tmp;
1529 int ntries;
1530
1531 for (ntries = 0; ntries < 5; ntries++) {
1532 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1533 break;
1534 }
1535 if (ntries == 5) {
1536 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1537 return;
1538 }
1539
1540 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1541 (reg & 3);
1542 rum_write(sc, RT2573_PHY_CSR4, tmp);
1543
1544 /* remember last written value in sc */
1545 sc->rf_regs[reg] = val;
1546
1547 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1548 }
1549
1550 Static void
1551 rum_select_antenna(struct rum_softc *sc)
1552 {
1553 uint8_t bbp4, bbp77;
1554 uint32_t tmp;
1555
1556 bbp4 = rum_bbp_read(sc, 4);
1557 bbp77 = rum_bbp_read(sc, 77);
1558
1559 /* TBD */
1560
1561 /* make sure Rx is disabled before switching antenna */
1562 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1563 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1564
1565 rum_bbp_write(sc, 4, bbp4);
1566 rum_bbp_write(sc, 77, bbp77);
1567
1568 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1569 }
1570
1571 /*
1572 * Enable multi-rate retries for frames sent at OFDM rates.
1573 * In 802.11b/g mode, allow fallback to CCK rates.
1574 */
1575 Static void
1576 rum_enable_mrr(struct rum_softc *sc)
1577 {
1578 struct ieee80211com *ic = &sc->sc_ic;
1579 uint32_t tmp;
1580
1581 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1582
1583 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1584 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1585 tmp |= RT2573_MRR_CCK_FALLBACK;
1586 tmp |= RT2573_MRR_ENABLED;
1587
1588 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1589 }
1590
1591 Static void
1592 rum_set_txpreamble(struct rum_softc *sc)
1593 {
1594 uint32_t tmp;
1595
1596 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1597
1598 tmp &= ~RT2573_SHORT_PREAMBLE;
1599 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1600 tmp |= RT2573_SHORT_PREAMBLE;
1601
1602 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1603 }
1604
1605 Static void
1606 rum_set_basicrates(struct rum_softc *sc)
1607 {
1608 struct ieee80211com *ic = &sc->sc_ic;
1609
1610 /* update basic rate set */
1611 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1612 /* 11b basic rates: 1, 2Mbps */
1613 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1614 } else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1615 /* 11a basic rates: 6, 12, 24Mbps */
1616 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1617 } else {
1618 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1619 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1620 }
1621 }
1622
1623 /*
1624 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1625 * driver.
1626 */
1627 Static void
1628 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1629 {
1630 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1631 uint32_t tmp;
1632
1633 /* update all BBP registers that depend on the band */
1634 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1635 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1636 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1637 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1638 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1639 }
1640 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1641 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1642 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1643 }
1644
1645 sc->bbp17 = bbp17;
1646 rum_bbp_write(sc, 17, bbp17);
1647 rum_bbp_write(sc, 96, bbp96);
1648 rum_bbp_write(sc, 104, bbp104);
1649
1650 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1651 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1652 rum_bbp_write(sc, 75, 0x80);
1653 rum_bbp_write(sc, 86, 0x80);
1654 rum_bbp_write(sc, 88, 0x80);
1655 }
1656
1657 rum_bbp_write(sc, 35, bbp35);
1658 rum_bbp_write(sc, 97, bbp97);
1659 rum_bbp_write(sc, 98, bbp98);
1660
1661 tmp = rum_read(sc, RT2573_PHY_CSR0);
1662 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1663 if (IEEE80211_IS_CHAN_2GHZ(c))
1664 tmp |= RT2573_PA_PE_2GHZ;
1665 else
1666 tmp |= RT2573_PA_PE_5GHZ;
1667 rum_write(sc, RT2573_PHY_CSR0, tmp);
1668
1669 /* 802.11a uses a 16 microseconds short interframe space */
1670 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1671 }
1672
1673 Static void
1674 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1675 {
1676 struct ieee80211com *ic = &sc->sc_ic;
1677 const struct rfprog *rfprog;
1678 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1679 int8_t power;
1680 u_int i, chan;
1681
1682 chan = ieee80211_chan2ieee(ic, c);
1683 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1684 return;
1685
1686 /* select the appropriate RF settings based on what EEPROM says */
1687 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1688 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1689
1690 /* find the settings for this channel (we know it exists) */
1691 for (i = 0; rfprog[i].chan != chan; i++);
1692
1693 power = sc->txpow[i];
1694 if (power < 0) {
1695 bbp94 += power;
1696 power = 0;
1697 } else if (power > 31) {
1698 bbp94 += power - 31;
1699 power = 31;
1700 }
1701
1702 /*
1703 * If we are switching from the 2GHz band to the 5GHz band or
1704 * vice-versa, BBP registers need to be reprogrammed.
1705 */
1706 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1707 rum_select_band(sc, c);
1708 rum_select_antenna(sc);
1709 }
1710 ic->ic_curchan = c;
1711
1712 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1713 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1714 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1715 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1716
1717 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1718 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1719 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1720 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1721
1722 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1723 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1724 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1725 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1726
1727 DELAY(10);
1728
1729 /* enable smart mode for MIMO-capable RFs */
1730 bbp3 = rum_bbp_read(sc, 3);
1731
1732 bbp3 &= ~RT2573_SMART_MODE;
1733 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1734 bbp3 |= RT2573_SMART_MODE;
1735
1736 rum_bbp_write(sc, 3, bbp3);
1737
1738 if (bbp94 != RT2573_BBPR94_DEFAULT)
1739 rum_bbp_write(sc, 94, bbp94);
1740 }
1741
1742 /*
1743 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1744 * and HostAP operating modes.
1745 */
1746 Static void
1747 rum_enable_tsf_sync(struct rum_softc *sc)
1748 {
1749 struct ieee80211com *ic = &sc->sc_ic;
1750 uint32_t tmp;
1751
1752 if (ic->ic_opmode != IEEE80211_M_STA) {
1753 /*
1754 * Change default 16ms TBTT adjustment to 8ms.
1755 * Must be done before enabling beacon generation.
1756 */
1757 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1758 }
1759
1760 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1761
1762 /* set beacon interval (in 1/16ms unit) */
1763 tmp |= ic->ic_bss->ni_intval * 16;
1764
1765 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1766 if (ic->ic_opmode == IEEE80211_M_STA)
1767 tmp |= RT2573_TSF_MODE(1);
1768 else
1769 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1770
1771 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1772 }
1773
1774 Static void
1775 rum_update_slot(struct rum_softc *sc)
1776 {
1777 struct ieee80211com *ic = &sc->sc_ic;
1778 uint8_t slottime;
1779 uint32_t tmp;
1780
1781 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1782
1783 tmp = rum_read(sc, RT2573_MAC_CSR9);
1784 tmp = (tmp & ~0xff) | slottime;
1785 rum_write(sc, RT2573_MAC_CSR9, tmp);
1786
1787 DPRINTF(("setting slot time to %uus\n", slottime));
1788 }
1789
1790 Static void
1791 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1792 {
1793 uint32_t tmp;
1794
1795 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1796 rum_write(sc, RT2573_MAC_CSR4, tmp);
1797
1798 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1799 rum_write(sc, RT2573_MAC_CSR5, tmp);
1800 }
1801
1802 Static void
1803 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1804 {
1805 uint32_t tmp;
1806
1807 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1808 rum_write(sc, RT2573_MAC_CSR2, tmp);
1809
1810 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1811 rum_write(sc, RT2573_MAC_CSR3, tmp);
1812 }
1813
1814 Static void
1815 rum_update_promisc(struct rum_softc *sc)
1816 {
1817 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1818 uint32_t tmp;
1819
1820 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1821
1822 tmp &= ~RT2573_DROP_NOT_TO_ME;
1823 if (!(ifp->if_flags & IFF_PROMISC))
1824 tmp |= RT2573_DROP_NOT_TO_ME;
1825
1826 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1827
1828 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1829 "entering" : "leaving"));
1830 }
1831
1832 Static const char *
1833 rum_get_rf(int rev)
1834 {
1835 switch (rev) {
1836 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1837 case RT2573_RF_2528: return "RT2528";
1838 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1839 case RT2573_RF_5226: return "RT5226";
1840 default: return "unknown";
1841 }
1842 }
1843
1844 Static void
1845 rum_read_eeprom(struct rum_softc *sc)
1846 {
1847 struct ieee80211com *ic = &sc->sc_ic;
1848 uint16_t val;
1849 #ifdef RUM_DEBUG
1850 int i;
1851 #endif
1852
1853 /* read MAC/BBP type */
1854 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1855 sc->macbbp_rev = le16toh(val);
1856
1857 /* read MAC address */
1858 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1859
1860 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1861 val = le16toh(val);
1862 sc->rf_rev = (val >> 11) & 0x1f;
1863 sc->hw_radio = (val >> 10) & 0x1;
1864 sc->rx_ant = (val >> 4) & 0x3;
1865 sc->tx_ant = (val >> 2) & 0x3;
1866 sc->nb_ant = val & 0x3;
1867
1868 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1869
1870 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1871 val = le16toh(val);
1872 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1873 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1874
1875 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1876 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1877
1878 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1879 val = le16toh(val);
1880 if ((val & 0xff) != 0xff)
1881 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1882
1883 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1884 val = le16toh(val);
1885 if ((val & 0xff) != 0xff)
1886 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1887
1888 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1889 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1890
1891 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1892 val = le16toh(val);
1893 if ((val & 0xff) != 0xff)
1894 sc->rffreq = val & 0xff;
1895
1896 DPRINTF(("RF freq=%d\n", sc->rffreq));
1897
1898 /* read Tx power for all a/b/g channels */
1899 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1900 /* XXX default Tx power for 802.11a channels */
1901 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1902 #ifdef RUM_DEBUG
1903 for (i = 0; i < 14; i++)
1904 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1905 #endif
1906
1907 /* read default values for BBP registers */
1908 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1909 #ifdef RUM_DEBUG
1910 for (i = 0; i < 14; i++) {
1911 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1912 continue;
1913 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1914 sc->bbp_prom[i].val));
1915 }
1916 #endif
1917 }
1918
1919 Static int
1920 rum_bbp_init(struct rum_softc *sc)
1921 {
1922 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1923 int i, ntries;
1924 uint8_t val;
1925
1926 /* wait for BBP to be ready */
1927 for (ntries = 0; ntries < 100; ntries++) {
1928 val = rum_bbp_read(sc, 0);
1929 if (val != 0 && val != 0xff)
1930 break;
1931 DELAY(1000);
1932 }
1933 if (ntries == 100) {
1934 printf("%s: timeout waiting for BBP\n",
1935 USBDEVNAME(sc->sc_dev));
1936 return EIO;
1937 }
1938
1939 /* initialize BBP registers to default values */
1940 for (i = 0; i < N(rum_def_bbp); i++)
1941 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1942
1943 /* write vendor-specific BBP values (from EEPROM) */
1944 for (i = 0; i < 16; i++) {
1945 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1946 continue;
1947 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1948 }
1949
1950 return 0;
1951 #undef N
1952 }
1953
1954 Static int
1955 rum_init(struct ifnet *ifp)
1956 {
1957 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1958 struct rum_softc *sc = ifp->if_softc;
1959 struct ieee80211com *ic = &sc->sc_ic;
1960 struct rum_rx_data *data;
1961 uint32_t tmp;
1962 usbd_status error = 0;
1963 int i, ntries;
1964
1965 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1966 if (rum_attachhook(sc))
1967 goto fail;
1968 }
1969
1970 rum_stop(ifp, 0);
1971
1972 /* initialize MAC registers to default values */
1973 for (i = 0; i < N(rum_def_mac); i++)
1974 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1975
1976 /* set host ready */
1977 rum_write(sc, RT2573_MAC_CSR1, 3);
1978 rum_write(sc, RT2573_MAC_CSR1, 0);
1979
1980 /* wait for BBP/RF to wakeup */
1981 for (ntries = 0; ntries < 1000; ntries++) {
1982 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1983 break;
1984 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1985 DELAY(1000);
1986 }
1987 if (ntries == 1000) {
1988 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1989 USBDEVNAME(sc->sc_dev));
1990 goto fail;
1991 }
1992
1993 if ((error = rum_bbp_init(sc)) != 0)
1994 goto fail;
1995
1996 /* select default channel */
1997 rum_select_band(sc, ic->ic_curchan);
1998 rum_select_antenna(sc);
1999 rum_set_chan(sc, ic->ic_curchan);
2000
2001 /* clear STA registers */
2002 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2003
2004 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2005 rum_set_macaddr(sc, ic->ic_myaddr);
2006
2007 /* initialize ASIC */
2008 rum_write(sc, RT2573_MAC_CSR1, 4);
2009
2010 /*
2011 * Allocate xfer for AMRR statistics requests.
2012 */
2013 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2014 if (sc->amrr_xfer == NULL) {
2015 printf("%s: could not allocate AMRR xfer\n",
2016 USBDEVNAME(sc->sc_dev));
2017 goto fail;
2018 }
2019
2020 /*
2021 * Open Tx and Rx USB bulk pipes.
2022 */
2023 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2024 &sc->sc_tx_pipeh);
2025 if (error != 0) {
2026 printf("%s: could not open Tx pipe: %s\n",
2027 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2028 goto fail;
2029 }
2030
2031 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2032 &sc->sc_rx_pipeh);
2033 if (error != 0) {
2034 printf("%s: could not open Rx pipe: %s\n",
2035 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2036 goto fail;
2037 }
2038
2039 /*
2040 * Allocate Tx and Rx xfer queues.
2041 */
2042 error = rum_alloc_tx_list(sc);
2043 if (error != 0) {
2044 printf("%s: could not allocate Tx list\n",
2045 USBDEVNAME(sc->sc_dev));
2046 goto fail;
2047 }
2048
2049 error = rum_alloc_rx_list(sc);
2050 if (error != 0) {
2051 printf("%s: could not allocate Rx list\n",
2052 USBDEVNAME(sc->sc_dev));
2053 goto fail;
2054 }
2055
2056 /*
2057 * Start up the receive pipe.
2058 */
2059 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2060 data = &sc->rx_data[i];
2061
2062 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2063 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2064 error = usbd_transfer(data->xfer);
2065 if (error != USBD_NORMAL_COMPLETION &&
2066 error != USBD_IN_PROGRESS) {
2067 printf("%s: could not queue Rx transfer\n",
2068 USBDEVNAME(sc->sc_dev));
2069 goto fail;
2070 }
2071 }
2072
2073 /* update Rx filter */
2074 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2075
2076 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2077 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2078 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2079 RT2573_DROP_ACKCTS;
2080 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2081 tmp |= RT2573_DROP_TODS;
2082 if (!(ifp->if_flags & IFF_PROMISC))
2083 tmp |= RT2573_DROP_NOT_TO_ME;
2084 }
2085 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2086
2087 ifp->if_flags &= ~IFF_OACTIVE;
2088 ifp->if_flags |= IFF_RUNNING;
2089
2090 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2091 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2092 else
2093 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2094
2095 return 0;
2096
2097 fail: rum_stop(ifp, 1);
2098 return error;
2099 #undef N
2100 }
2101
2102 Static void
2103 rum_stop(struct ifnet *ifp, int disable)
2104 {
2105 struct rum_softc *sc = ifp->if_softc;
2106 struct ieee80211com *ic = &sc->sc_ic;
2107 uint32_t tmp;
2108
2109 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2110
2111 sc->sc_tx_timer = 0;
2112 ifp->if_timer = 0;
2113 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2114
2115 /* disable Rx */
2116 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2117 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2118
2119 /* reset ASIC */
2120 rum_write(sc, RT2573_MAC_CSR1, 3);
2121 rum_write(sc, RT2573_MAC_CSR1, 0);
2122
2123 if (sc->sc_rx_pipeh != NULL) {
2124 usbd_abort_pipe(sc->sc_rx_pipeh);
2125 usbd_close_pipe(sc->sc_rx_pipeh);
2126 sc->sc_rx_pipeh = NULL;
2127 }
2128
2129 if (sc->sc_tx_pipeh != NULL) {
2130 usbd_abort_pipe(sc->sc_tx_pipeh);
2131 usbd_close_pipe(sc->sc_tx_pipeh);
2132 sc->sc_tx_pipeh = NULL;
2133 }
2134
2135 rum_free_rx_list(sc);
2136 rum_free_tx_list(sc);
2137 }
2138
2139 Static int
2140 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2141 {
2142 usb_device_request_t req;
2143 uint16_t reg = RT2573_MCU_CODE_BASE;
2144 usbd_status error;
2145
2146 /* copy firmware image into NIC */
2147 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2148 rum_write(sc, reg, UGETDW(ucode));
2149
2150 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2151 req.bRequest = RT2573_MCU_CNTL;
2152 USETW(req.wValue, RT2573_MCU_RUN);
2153 USETW(req.wIndex, 0);
2154 USETW(req.wLength, 0);
2155
2156 error = usbd_do_request(sc->sc_udev, &req, NULL);
2157 if (error != 0) {
2158 printf("%s: could not run firmware: %s\n",
2159 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2160 }
2161 return error;
2162 }
2163
2164 Static int
2165 rum_prepare_beacon(struct rum_softc *sc)
2166 {
2167 struct ieee80211com *ic = &sc->sc_ic;
2168 struct rum_tx_desc desc;
2169 struct mbuf *m0;
2170 int rate;
2171
2172 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2173 if (m0 == NULL) {
2174 printf("%s: could not allocate beacon frame\n",
2175 sc->sc_dev.dv_xname);
2176 return ENOBUFS;
2177 }
2178
2179 /* send beacons at the lowest available rate */
2180 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2181
2182 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2183 m0->m_pkthdr.len, rate);
2184
2185 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2186 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2187
2188 /* copy beacon header and payload into NIC memory */
2189 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2190 m0->m_pkthdr.len);
2191
2192 m_freem(m0);
2193
2194 return 0;
2195 }
2196
2197 Static void
2198 rum_newassoc(struct ieee80211_node *ni, int isnew)
2199 {
2200 /* start with lowest Tx rate */
2201 ni->ni_txrate = 0;
2202 }
2203
2204 Static void
2205 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2206 {
2207 int i;
2208
2209 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2210 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2211
2212 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2213
2214 /* set rate to some reasonable initial value */
2215 for (i = ni->ni_rates.rs_nrates - 1;
2216 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2217 i--);
2218 ni->ni_txrate = i;
2219
2220 usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2221 }
2222
2223 Static void
2224 rum_amrr_timeout(void *arg)
2225 {
2226 struct rum_softc *sc = arg;
2227 usb_device_request_t req;
2228
2229 /*
2230 * Asynchronously read statistic registers (cleared by read).
2231 */
2232 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2233 req.bRequest = RT2573_READ_MULTI_MAC;
2234 USETW(req.wValue, 0);
2235 USETW(req.wIndex, RT2573_STA_CSR0);
2236 USETW(req.wLength, sizeof sc->sta);
2237
2238 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2239 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2240 rum_amrr_update);
2241 (void)usbd_transfer(sc->amrr_xfer);
2242 }
2243
2244 Static void
2245 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2246 usbd_status status)
2247 {
2248 struct rum_softc *sc = (struct rum_softc *)priv;
2249 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2250
2251 if (status != USBD_NORMAL_COMPLETION) {
2252 printf("%s: could not retrieve Tx statistics - cancelling "
2253 "automatic rate control\n", USBDEVNAME(sc->sc_dev));
2254 return;
2255 }
2256
2257 /* count TX retry-fail as Tx errors */
2258 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2259
2260 sc->amn.amn_retrycnt =
2261 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2262 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2263 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2264
2265 sc->amn.amn_txcnt =
2266 sc->amn.amn_retrycnt +
2267 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2268
2269 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2270
2271 usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2272 }
2273
2274 int
2275 rum_activate(device_ptr_t self, enum devact act)
2276 {
2277 switch (act) {
2278 case DVACT_ACTIVATE:
2279 return EOPNOTSUPP;
2280
2281 case DVACT_DEACTIVATE:
2282 /*if_deactivate(&sc->sc_ic.ic_if);*/
2283 break;
2284 }
2285
2286 return 0;
2287 }
2288