if_rum.c revision 1.2 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.2 2006/11/01 08:39:25 xtraeme Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.2 2006/11/01 08:39:25 xtraeme Exp $");
28
29 #include "bpfilter.h"
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41
42 #include <machine/bus.h>
43 #include <machine/endian.h>
44 #include <machine/intr.h>
45
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/firmload.h>
67
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72
73 #include <dev/usb/if_rumreg.h>
74 #include <dev/usb/if_rumvar.h>
75
76 #ifdef USB_DEBUG
77 #define RUM_DEBUG
78 #endif
79
80 #ifdef RUM_DEBUG
81 #define DPRINTF(x) do { if (rum_debug) logprintf x; } while (0)
82 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) logprintf x; } while (0)
83 int rum_debug = 0;
84 #else
85 #define DPRINTF(x)
86 #define DPRINTFN(n, x)
87 #endif
88
89 /* various supported device vendors/products */
90 static const struct usb_devno rum_devs[] = {
91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573 },
92 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
93 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
94 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
95 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
96 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
97 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
98 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
99 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
100 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
101 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
102 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
103 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
104 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
105 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
106 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
107 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
108 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
109 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
110 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
111 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
112 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
113 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
114 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }
115 };
116
117 Static int rum_attachhook(void *);
118 Static int rum_alloc_tx_list(struct rum_softc *);
119 Static void rum_free_tx_list(struct rum_softc *);
120 Static int rum_alloc_rx_list(struct rum_softc *);
121 Static void rum_free_rx_list(struct rum_softc *);
122 Static int rum_media_change(struct ifnet *);
123 Static void rum_next_scan(void *);
124 Static void rum_task(void *);
125 Static int rum_newstate(struct ieee80211com *,
126 enum ieee80211_state, int);
127 Static void rum_txeof(usbd_xfer_handle, usbd_private_handle,
128 usbd_status);
129 Static void rum_rxeof(usbd_xfer_handle, usbd_private_handle,
130 usbd_status);
131 #if NBPFILTER > 0
132 Static uint8_t rum_rxrate(struct rum_rx_desc *);
133 #endif
134 Static int rum_ack_rate(struct ieee80211com *, int);
135 Static uint16_t rum_txtime(int, int, uint32_t);
136 Static uint8_t rum_plcp_signal(int);
137 Static void rum_setup_tx_desc(struct rum_softc *,
138 struct rum_tx_desc *, uint32_t, uint16_t, int,
139 int);
140 Static int rum_tx_mgt(struct rum_softc *, struct mbuf *,
141 struct ieee80211_node *);
142 Static int rum_tx_data(struct rum_softc *, struct mbuf *,
143 struct ieee80211_node *);
144 Static void rum_start(struct ifnet *);
145 Static void rum_watchdog(struct ifnet *);
146 Static int rum_ioctl(struct ifnet *, u_long, caddr_t);
147 Static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
148 int);
149 Static uint32_t rum_read(struct rum_softc *, uint16_t);
150 Static void rum_read_multi(struct rum_softc *, uint16_t, void *,
151 int);
152 Static void rum_write(struct rum_softc *, uint16_t, uint32_t);
153 Static void rum_write_multi(struct rum_softc *, uint16_t, void *,
154 size_t);
155 Static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
156 Static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
157 Static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
158 Static void rum_select_antenna(struct rum_softc *);
159 Static void rum_enable_mrr(struct rum_softc *);
160 Static void rum_set_txpreamble(struct rum_softc *);
161 Static void rum_set_basicrates(struct rum_softc *);
162 Static void rum_select_band(struct rum_softc *,
163 struct ieee80211_channel *);
164 Static void rum_set_chan(struct rum_softc *,
165 struct ieee80211_channel *);
166 Static void rum_enable_tsf_sync(struct rum_softc *);
167 Static void rum_update_slot(struct rum_softc *);
168 Static void rum_set_bssid(struct rum_softc *, const uint8_t *);
169 Static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
170 Static void rum_update_promisc(struct rum_softc *);
171 Static const char *rum_get_rf(int);
172 Static void rum_read_eeprom(struct rum_softc *);
173 Static int rum_bbp_init(struct rum_softc *);
174 Static int rum_init(struct ifnet *);
175 Static void rum_stop(struct ifnet *, int);
176 Static int rum_load_microcode(struct rum_softc *, const u_char *,
177 size_t);
178 Static int rum_prepare_beacon(struct rum_softc *);
179 Static void rum_amrr_start(struct rum_softc *,
180 struct ieee80211_node *);
181 Static void rum_amrr_timeout(void *);
182 Static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
183 usbd_status status);
184
185 /*
186 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
187 */
188 static const struct ieee80211_rateset rum_rateset_11a =
189 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
190
191 static const struct ieee80211_rateset rum_rateset_11b =
192 { 4, { 2, 4, 11, 22 } };
193
194 static const struct ieee80211_rateset rum_rateset_11g =
195 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
196
197 static const struct {
198 uint32_t reg;
199 uint32_t val;
200 } rum_def_mac[] = {
201 RT2573_DEF_MAC
202 };
203
204 static const struct {
205 uint8_t reg;
206 uint8_t val;
207 } rum_def_bbp[] = {
208 RT2573_DEF_BBP
209 };
210
211 static const struct rfprog {
212 uint8_t chan;
213 uint32_t r1, r2, r3, r4;
214 } rum_rf5226[] = {
215 RT2573_RF5226
216 }, rum_rf5225[] = {
217 RT2573_RF5225
218 };
219
220 USB_DECLARE_DRIVER(rum);
221
222 USB_MATCH(rum)
223 {
224 USB_MATCH_START(rum, uaa);
225
226 if (uaa->iface != NULL)
227 return UMATCH_NONE;
228
229 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
230 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
231 }
232
233 Static int
234 rum_attachhook(void *xsc)
235 {
236 struct rum_softc *sc = xsc;
237 firmware_handle_t fwh;
238 const char *name = "rum-rt2573";
239 u_char *ucode;
240 size_t size;
241 int error;
242
243 if ((error = firmware_open("rum", name, &fwh)) != 0) {
244 printf("%s: failed loadfirmware of file %s (error %d)\n",
245 USBDEVNAME(sc->sc_dev), name, error);
246 return error;
247 }
248 size = firmware_get_size(fwh);
249 ucode = firmware_malloc(size);
250 if (ucode == NULL) {
251 printf("%s: failed to allocate firmware memory\n",
252 USBDEVNAME(sc->sc_dev));
253 firmware_close(fwh);
254 return ENOMEM;;
255 }
256 error = firmware_read(fwh, 0, ucode, size);
257 firmware_close(fwh);
258 if (error != 0) {
259 printf("%s: failed to read firmware (error %d)\n",
260 USBDEVNAME(sc->sc_dev), error);
261 firmware_free(ucode, 0);
262 return error;
263 }
264
265 if (rum_load_microcode(sc, ucode, size) != 0) {
266 printf("%s: could not load 8051 microcode\n",
267 USBDEVNAME(sc->sc_dev));
268 firmware_free(ucode, 0);
269 return ENXIO;
270 }
271
272 firmware_free(ucode, 0);
273 sc->sc_flags |= RT2573_FWLOADED;
274
275 return 0;
276 }
277
278 USB_ATTACH(rum)
279 {
280 USB_ATTACH_START(rum, sc, uaa);
281 struct ieee80211com *ic = &sc->sc_ic;
282 struct ifnet *ifp = &sc->sc_if;
283 usb_interface_descriptor_t *id;
284 usb_endpoint_descriptor_t *ed;
285 usbd_status error;
286 char *devinfop;
287 int i, ntries;
288 uint32_t tmp;
289
290 sc->sc_udev = uaa->device;
291 sc->sc_flags = 0;
292
293 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
294 USB_ATTACH_SETUP;
295 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
296 usbd_devinfo_free(devinfop);
297
298 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
299 printf("%s: could not set configuration no\n",
300 USBDEVNAME(sc->sc_dev));
301 USB_ATTACH_ERROR_RETURN;
302 }
303
304 /* get the first interface handle */
305 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
306 &sc->sc_iface);
307 if (error != 0) {
308 printf("%s: could not get interface handle\n",
309 USBDEVNAME(sc->sc_dev));
310 USB_ATTACH_ERROR_RETURN;
311 }
312
313 /*
314 * Find endpoints.
315 */
316 id = usbd_get_interface_descriptor(sc->sc_iface);
317
318 sc->sc_rx_no = sc->sc_tx_no = -1;
319 for (i = 0; i < id->bNumEndpoints; i++) {
320 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
321 if (ed == NULL) {
322 printf("%s: no endpoint descriptor for iface %d\n",
323 USBDEVNAME(sc->sc_dev), i);
324 USB_ATTACH_ERROR_RETURN;
325 }
326
327 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
328 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
329 sc->sc_rx_no = ed->bEndpointAddress;
330 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
331 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
332 sc->sc_tx_no = ed->bEndpointAddress;
333 }
334 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
335 printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
336 USB_ATTACH_ERROR_RETURN;
337 }
338
339 usb_init_task(&sc->sc_task, rum_task, sc);
340 callout_init(&sc->scan_ch);
341
342 sc->amrr.amrr_min_success_threshold = 1;
343 sc->amrr.amrr_max_success_threshold = 10;
344 callout_init(&sc->amrr_ch);
345
346 /* retrieve RT2573 rev. no */
347 for (ntries = 0; ntries < 1000; ntries++) {
348 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
349 break;
350 DELAY(1000);
351 }
352 if (ntries == 1000) {
353 printf("%s: timeout waiting for chip to settle\n",
354 USBDEVNAME(sc->sc_dev));
355 USB_ATTACH_ERROR_RETURN;
356 }
357
358 /* retrieve MAC address and various other things from EEPROM */
359 rum_read_eeprom(sc);
360
361 printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
362 USBDEVNAME(sc->sc_dev), sc->macbbp_rev, tmp,
363 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
364
365 ic->ic_ifp = ifp;
366 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
367 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
368 ic->ic_state = IEEE80211_S_INIT;
369
370 /* set device capabilities */
371 ic->ic_caps =
372 IEEE80211_C_IBSS | /* IBSS mode supported */
373 IEEE80211_C_MONITOR | /* monitor mode supported */
374 IEEE80211_C_HOSTAP | /* HostAp mode supported */
375 IEEE80211_C_TXPMGT | /* tx power management */
376 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
377 IEEE80211_C_SHSLOT | /* short slot time supported */
378 IEEE80211_C_WPA; /* 802.11i */
379
380 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
381 /* set supported .11a rates */
382 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
383
384 /* set supported .11a channels */
385 for (i = 34; i <= 46; i += 4) {
386 ic->ic_channels[i].ic_freq =
387 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
388 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
389 }
390 for (i = 36; i <= 64; i += 4) {
391 ic->ic_channels[i].ic_freq =
392 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
393 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
394 }
395 for (i = 100; i <= 140; i += 4) {
396 ic->ic_channels[i].ic_freq =
397 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
398 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
399 }
400 for (i = 149; i <= 165; i += 4) {
401 ic->ic_channels[i].ic_freq =
402 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
403 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
404 }
405 }
406
407 /* set supported .11b and .11g rates */
408 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
409 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
410
411 /* set supported .11b and .11g channels (1 through 14) */
412 for (i = 1; i <= 14; i++) {
413 ic->ic_channels[i].ic_freq =
414 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
415 ic->ic_channels[i].ic_flags =
416 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
417 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
418 }
419
420 ifp->if_softc = sc;
421 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
422 ifp->if_init = rum_init;
423 ifp->if_ioctl = rum_ioctl;
424 ifp->if_start = rum_start;
425 ifp->if_watchdog = rum_watchdog;
426 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
427 IFQ_SET_READY(&ifp->if_snd);
428 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
429
430 if_attach(ifp);
431 ieee80211_ifattach(ic);
432
433 /* override state transition machine */
434 sc->sc_newstate = ic->ic_newstate;
435 ic->ic_newstate = rum_newstate;
436 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
437
438 #if NBPFILTER > 0
439 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
440 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf);
441
442 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
443 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
444 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
445
446 sc->sc_txtap_len = sizeof sc->sc_txtapu;
447 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
448 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
449 #endif
450
451 ieee80211_announce(ic);
452
453 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
454 USBDEV(sc->sc_dev));
455
456 USB_ATTACH_SUCCESS_RETURN;
457 }
458
459 USB_DETACH(rum)
460 {
461 USB_DETACH_START(rum, sc);
462 struct ieee80211com *ic = &sc->sc_ic;
463 struct ifnet *ifp = &sc->sc_if;
464 int s;
465
466 s = splusb();
467
468 rum_stop(ifp, 1);
469 usb_rem_task(sc->sc_udev, &sc->sc_task);
470 callout_stop(&sc->scan_ch);
471 callout_stop(&sc->amrr_ch);
472
473 if (sc->amrr_xfer != NULL) {
474 usbd_free_xfer(sc->amrr_xfer);
475 sc->amrr_xfer = NULL;
476 }
477
478 if (sc->sc_rx_pipeh != NULL) {
479 usbd_abort_pipe(sc->sc_rx_pipeh);
480 usbd_close_pipe(sc->sc_rx_pipeh);
481 }
482
483 if (sc->sc_tx_pipeh != NULL) {
484 usbd_abort_pipe(sc->sc_tx_pipeh);
485 usbd_close_pipe(sc->sc_tx_pipeh);
486 }
487
488 rum_free_rx_list(sc);
489 rum_free_tx_list(sc);
490
491 #if NBPFILTER > 0
492 bpfdetach(ifp);
493 #endif
494 ieee80211_ifdetach(ic); /* free all nodes */
495 if_detach(ifp);
496
497 splx(s);
498
499 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
500 USBDEV(sc->sc_dev));
501
502 return 0;
503 }
504
505 Static int
506 rum_alloc_tx_list(struct rum_softc *sc)
507 {
508 struct rum_tx_data *data;
509 int i, error;
510
511 sc->tx_queued = 0;
512
513 for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
514 data = &sc->tx_data[i];
515
516 data->sc = sc;
517
518 data->xfer = usbd_alloc_xfer(sc->sc_udev);
519 if (data->xfer == NULL) {
520 printf("%s: could not allocate tx xfer\n",
521 USBDEVNAME(sc->sc_dev));
522 error = ENOMEM;
523 goto fail;
524 }
525
526 data->buf = usbd_alloc_buffer(data->xfer,
527 RT2573_TX_DESC_SIZE + MCLBYTES);
528 if (data->buf == NULL) {
529 printf("%s: could not allocate tx buffer\n",
530 USBDEVNAME(sc->sc_dev));
531 error = ENOMEM;
532 goto fail;
533 }
534
535 /* clean Tx descriptor */
536 bzero(data->buf, RT2573_TX_DESC_SIZE);
537 }
538
539 return 0;
540
541 fail: rum_free_tx_list(sc);
542 return error;
543 }
544
545 Static void
546 rum_free_tx_list(struct rum_softc *sc)
547 {
548 struct rum_tx_data *data;
549 int i;
550
551 for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
552 data = &sc->tx_data[i];
553
554 if (data->xfer != NULL) {
555 usbd_free_xfer(data->xfer);
556 data->xfer = NULL;
557 }
558
559 if (data->ni != NULL) {
560 ieee80211_free_node(data->ni);
561 data->ni = NULL;
562 }
563 }
564 }
565
566 Static int
567 rum_alloc_rx_list(struct rum_softc *sc)
568 {
569 struct rum_rx_data *data;
570 int i, error;
571
572 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
573 data = &sc->rx_data[i];
574
575 data->sc = sc;
576
577 data->xfer = usbd_alloc_xfer(sc->sc_udev);
578 if (data->xfer == NULL) {
579 printf("%s: could not allocate rx xfer\n",
580 USBDEVNAME(sc->sc_dev));
581 error = ENOMEM;
582 goto fail;
583 }
584
585 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
586 printf("%s: could not allocate rx buffer\n",
587 USBDEVNAME(sc->sc_dev));
588 error = ENOMEM;
589 goto fail;
590 }
591
592 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
593 if (data->m == NULL) {
594 printf("%s: could not allocate rx mbuf\n",
595 USBDEVNAME(sc->sc_dev));
596 error = ENOMEM;
597 goto fail;
598 }
599
600 MCLGET(data->m, M_DONTWAIT);
601 if (!(data->m->m_flags & M_EXT)) {
602 printf("%s: could not allocate rx mbuf cluster\n",
603 USBDEVNAME(sc->sc_dev));
604 error = ENOMEM;
605 goto fail;
606 }
607
608 data->buf = mtod(data->m, uint8_t *);
609 }
610
611 return 0;
612
613 fail: rum_free_tx_list(sc);
614 return error;
615 }
616
617 Static void
618 rum_free_rx_list(struct rum_softc *sc)
619 {
620 struct rum_rx_data *data;
621 int i;
622
623 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
624 data = &sc->rx_data[i];
625
626 if (data->xfer != NULL) {
627 usbd_free_xfer(data->xfer);
628 data->xfer = NULL;
629 }
630
631 if (data->m != NULL) {
632 m_freem(data->m);
633 data->m = NULL;
634 }
635 }
636 }
637
638 Static int
639 rum_media_change(struct ifnet *ifp)
640 {
641 int error;
642
643 error = ieee80211_media_change(ifp);
644 if (error != ENETRESET)
645 return error;
646
647 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
648 rum_init(ifp);
649
650 return 0;
651 }
652
653 /*
654 * This function is called periodically (every 200ms) during scanning to
655 * switch from one channel to another.
656 */
657 Static void
658 rum_next_scan(void *arg)
659 {
660 struct rum_softc *sc = arg;
661 struct ieee80211com *ic = &sc->sc_ic;
662
663 if (ic->ic_state == IEEE80211_S_SCAN)
664 ieee80211_next_scan(ic);
665 }
666
667 Static void
668 rum_task(void *arg)
669 {
670 struct rum_softc *sc = arg;
671 struct ieee80211com *ic = &sc->sc_ic;
672 enum ieee80211_state ostate;
673 struct ieee80211_node *ni;
674 uint32_t tmp;
675
676 ostate = ic->ic_state;
677
678 switch (sc->sc_state) {
679 case IEEE80211_S_INIT:
680 if (ostate == IEEE80211_S_RUN) {
681 /* abort TSF synchronization */
682 tmp = rum_read(sc, RT2573_TXRX_CSR9);
683 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
684 }
685 break;
686
687 case IEEE80211_S_SCAN:
688 rum_set_chan(sc, ic->ic_curchan);
689 callout_reset(&sc->scan_ch, hz / 5, rum_next_scan, sc);
690 break;
691
692 case IEEE80211_S_AUTH:
693 rum_set_chan(sc, ic->ic_curchan);
694 break;
695
696 case IEEE80211_S_ASSOC:
697 rum_set_chan(sc, ic->ic_curchan);
698 break;
699
700 case IEEE80211_S_RUN:
701 rum_set_chan(sc, ic->ic_curchan);
702
703 ni = ic->ic_bss;
704
705 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
706 rum_update_slot(sc);
707 rum_enable_mrr(sc);
708 rum_set_txpreamble(sc);
709 rum_set_basicrates(sc);
710 rum_set_bssid(sc, ni->ni_bssid);
711 }
712
713 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
714 ic->ic_opmode == IEEE80211_M_IBSS)
715 rum_prepare_beacon(sc);
716
717 if (ic->ic_opmode != IEEE80211_M_MONITOR)
718 rum_enable_tsf_sync(sc);
719
720 /* enable automatic rate adaptation in STA mode */
721 if (ic->ic_opmode == IEEE80211_M_STA &&
722 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
723 rum_amrr_start(sc, ni);
724
725 break;
726 }
727
728 sc->sc_newstate(ic, sc->sc_state, -1);
729 }
730
731 Static int
732 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
733 {
734 struct rum_softc *sc = ic->ic_ifp->if_softc;
735
736 usb_rem_task(sc->sc_udev, &sc->sc_task);
737 callout_stop(&sc->scan_ch);
738 callout_stop(&sc->amrr_ch);
739
740 /* do it in a process context */
741 sc->sc_state = nstate;
742 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
743
744 return 0;
745 }
746
747 /* quickly determine if a given rate is CCK or OFDM */
748 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
749
750 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
751 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
752
753 Static void
754 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
755 {
756 struct rum_tx_data *data = priv;
757 struct rum_softc *sc = data->sc;
758 struct ifnet *ifp = &sc->sc_if;
759 int s;
760
761 if (status != USBD_NORMAL_COMPLETION) {
762 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
763 return;
764
765 printf("%s: could not transmit buffer: %s\n",
766 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
767
768 if (status == USBD_STALLED)
769 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
770
771 ifp->if_oerrors++;
772 return;
773 }
774
775 s = splnet();
776
777 m_freem(data->m);
778 data->m = NULL;
779 ieee80211_free_node(data->ni);
780 data->ni = NULL;
781
782 sc->tx_queued--;
783 ifp->if_opackets++;
784
785 DPRINTFN(10, ("tx done\n"));
786
787 sc->sc_tx_timer = 0;
788 ifp->if_flags &= ~IFF_OACTIVE;
789 rum_start(ifp);
790
791 splx(s);
792 }
793
794 Static void
795 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
796 {
797 struct rum_rx_data *data = priv;
798 struct rum_softc *sc = data->sc;
799 struct ieee80211com *ic = &sc->sc_ic;
800 struct ifnet *ifp = &sc->sc_if;
801 struct rum_rx_desc *desc;
802 struct ieee80211_frame *wh;
803 struct ieee80211_node *ni;
804 struct mbuf *mnew, *m;
805 int s, len;
806
807 if (status != USBD_NORMAL_COMPLETION) {
808 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
809 return;
810
811 if (status == USBD_STALLED)
812 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
813 goto skip;
814 }
815
816 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
817
818 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
819 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
820 len));
821 ifp->if_ierrors++;
822 goto skip;
823 }
824
825 desc = (struct rum_rx_desc *)data->buf;
826
827 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
828 /*
829 * This should not happen since we did not request to receive
830 * those frames when we filled RT2573_TXRX_CSR0.
831 */
832 DPRINTFN(5, ("CRC error\n"));
833 ifp->if_ierrors++;
834 goto skip;
835 }
836
837 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
838 if (mnew == NULL) {
839 printf("%s: could not allocate rx mbuf\n",
840 USBDEVNAME(sc->sc_dev));
841 ifp->if_ierrors++;
842 goto skip;
843 }
844
845 MCLGET(mnew, M_DONTWAIT);
846 if (!(mnew->m_flags & M_EXT)) {
847 printf("%s: could not allocate rx mbuf cluster\n",
848 USBDEVNAME(sc->sc_dev));
849 m_freem(mnew);
850 ifp->if_ierrors++;
851 goto skip;
852 }
853
854 m = data->m;
855 data->m = mnew;
856 data->buf = mtod(data->m, uint8_t *);
857
858 /* finalize mbuf */
859 m->m_pkthdr.rcvif = ifp;
860 m->m_data = (caddr_t)(desc + 1);
861 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
862
863 s = splnet();
864
865 #if NBPFILTER > 0
866 if (sc->sc_drvbpf != NULL) {
867 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
868
869 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
870 tap->wr_rate = rum_rxrate(desc);
871 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
872 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
873 tap->wr_antenna = sc->rx_ant;
874 tap->wr_antsignal = desc->rssi;
875
876 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
877 }
878 #endif
879
880 wh = mtod(m, struct ieee80211_frame *);
881 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
882
883 /* send the frame to the 802.11 layer */
884 ieee80211_input(ic, m, ni, desc->rssi, 0);
885
886 /* node is no longer needed */
887 ieee80211_free_node(ni);
888
889 splx(s);
890
891 DPRINTFN(15, ("rx done\n"));
892
893 skip: /* setup a new transfer */
894 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
895 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
896 usbd_transfer(xfer);
897 }
898
899 /*
900 * This function is only used by the Rx radiotap code. It returns the rate at
901 * which a given frame was received.
902 */
903 #if NBPFILTER > 0
904 Static uint8_t
905 rum_rxrate(struct rum_rx_desc *desc)
906 {
907 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
908 /* reverse function of rum_plcp_signal */
909 switch (desc->rate) {
910 case 0xb: return 12;
911 case 0xf: return 18;
912 case 0xa: return 24;
913 case 0xe: return 36;
914 case 0x9: return 48;
915 case 0xd: return 72;
916 case 0x8: return 96;
917 case 0xc: return 108;
918 }
919 } else {
920 if (desc->rate == 10)
921 return 2;
922 if (desc->rate == 20)
923 return 4;
924 if (desc->rate == 55)
925 return 11;
926 if (desc->rate == 110)
927 return 22;
928 }
929 return 2; /* should not get there */
930 }
931 #endif
932
933 /*
934 * Return the expected ack rate for a frame transmitted at rate `rate'.
935 * XXX: this should depend on the destination node basic rate set.
936 */
937 Static int
938 rum_ack_rate(struct ieee80211com *ic, int rate)
939 {
940 switch (rate) {
941 /* CCK rates */
942 case 2:
943 return 2;
944 case 4:
945 case 11:
946 case 22:
947 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
948
949 /* OFDM rates */
950 case 12:
951 case 18:
952 return 12;
953 case 24:
954 case 36:
955 return 24;
956 case 48:
957 case 72:
958 case 96:
959 case 108:
960 return 48;
961 }
962
963 /* default to 1Mbps */
964 return 2;
965 }
966
967 /*
968 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
969 * The function automatically determines the operating mode depending on the
970 * given rate. `flags' indicates whether short preamble is in use or not.
971 */
972 Static uint16_t
973 rum_txtime(int len, int rate, uint32_t flags)
974 {
975 uint16_t txtime;
976
977 if (RUM_RATE_IS_OFDM(rate)) {
978 /* IEEE Std 802.11a-1999, pp. 37 */
979 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
980 txtime = 16 + 4 + 4 * txtime + 6;
981 } else {
982 /* IEEE Std 802.11b-1999, pp. 28 */
983 txtime = (16 * len + rate - 1) / rate;
984 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
985 txtime += 72 + 24;
986 else
987 txtime += 144 + 48;
988 }
989 return txtime;
990 }
991
992 Static uint8_t
993 rum_plcp_signal(int rate)
994 {
995 switch (rate) {
996 /* CCK rates (returned values are device-dependent) */
997 case 2: return 0x0;
998 case 4: return 0x1;
999 case 11: return 0x2;
1000 case 22: return 0x3;
1001
1002 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1003 case 12: return 0xb;
1004 case 18: return 0xf;
1005 case 24: return 0xa;
1006 case 36: return 0xe;
1007 case 48: return 0x9;
1008 case 72: return 0xd;
1009 case 96: return 0x8;
1010 case 108: return 0xc;
1011
1012 /* unsupported rates (should not get there) */
1013 default: return 0xff;
1014 }
1015 }
1016
1017 Static void
1018 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1019 uint32_t flags, uint16_t xflags, int len, int rate)
1020 {
1021 struct ieee80211com *ic = &sc->sc_ic;
1022 uint16_t plcp_length;
1023 int remainder;
1024
1025 desc->flags = htole32(flags);
1026 desc->flags |= htole32(RT2573_TX_VALID);
1027 desc->flags |= htole32(len << 16);
1028
1029 desc->xflags = htole16(xflags);
1030
1031 desc->wme = htole16(
1032 RT2573_QID(0) |
1033 RT2573_AIFSN(2) |
1034 RT2573_LOGCWMIN(4) |
1035 RT2573_LOGCWMAX(10));
1036
1037 /* setup PLCP fields */
1038 desc->plcp_signal = rum_plcp_signal(rate);
1039 desc->plcp_service = 4;
1040
1041 len += IEEE80211_CRC_LEN;
1042 if (RUM_RATE_IS_OFDM(rate)) {
1043 desc->flags |= htole32(RT2573_TX_OFDM);
1044
1045 plcp_length = len & 0xfff;
1046 desc->plcp_length_hi = plcp_length >> 6;
1047 desc->plcp_length_lo = plcp_length & 0x3f;
1048 } else {
1049 plcp_length = (16 * len + rate - 1) / rate;
1050 if (rate == 22) {
1051 remainder = (16 * len) % 22;
1052 if (remainder != 0 && remainder < 7)
1053 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1054 }
1055 desc->plcp_length_hi = plcp_length >> 8;
1056 desc->plcp_length_lo = plcp_length & 0xff;
1057
1058 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1059 desc->plcp_signal |= 0x08;
1060 }
1061 }
1062
1063 #define RUM_TX_TIMEOUT 5000
1064
1065 Static int
1066 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1067 {
1068 struct ieee80211com *ic = &sc->sc_ic;
1069 struct rum_tx_desc *desc;
1070 struct rum_tx_data *data;
1071 struct ieee80211_frame *wh;
1072 uint32_t flags = 0;
1073 uint16_t dur;
1074 usbd_status error;
1075 int xferlen, rate;
1076
1077 data = &sc->tx_data[0];
1078 desc = (struct rum_tx_desc *)data->buf;
1079
1080 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1081
1082 data->m = m0;
1083 data->ni = ni;
1084
1085 wh = mtod(m0, struct ieee80211_frame *);
1086
1087 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1088 flags |= RT2573_TX_ACK;
1089
1090 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1091 ic->ic_flags) + sc->sifs;
1092 *(uint16_t *)wh->i_dur = htole16(dur);
1093
1094 /* tell hardware to set timestamp in probe responses */
1095 if ((wh->i_fc[0] &
1096 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1097 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1098 flags |= RT2573_TX_TIMESTAMP;
1099 }
1100
1101 #if NBPFILTER > 0
1102 if (sc->sc_drvbpf != NULL) {
1103 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1104
1105 tap->wt_flags = 0;
1106 tap->wt_rate = rate;
1107 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1108 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1109 tap->wt_antenna = sc->tx_ant;
1110
1111 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1112 }
1113 #endif
1114
1115 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1116 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1117
1118 /* align end on a 4-bytes boundary */
1119 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1120
1121 /*
1122 * No space left in the last URB to store the extra 4 bytes, force
1123 * sending of another URB.
1124 */
1125 if ((xferlen % 64) == 0)
1126 xferlen += 4;
1127
1128 DPRINTFN(10, ("sending msg frame len=%u rate=%u xfer len=%u\n",
1129 m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
1130
1131 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1132 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1133
1134 error = usbd_transfer(data->xfer);
1135 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1136 m_freem(m0);
1137 return error;
1138 }
1139
1140 sc->tx_queued++;
1141
1142 return 0;
1143 }
1144
1145 Static int
1146 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1147 {
1148 struct ieee80211com *ic = &sc->sc_ic;
1149 struct rum_tx_desc *desc;
1150 struct rum_tx_data *data;
1151 struct ieee80211_frame *wh;
1152 struct ieee80211_key *k;
1153 uint32_t flags = 0;
1154 uint16_t dur;
1155 usbd_status error;
1156 int xferlen, rate;
1157
1158 wh = mtod(m0, struct ieee80211_frame *);
1159
1160 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1161 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1162 else
1163 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1164 rate &= IEEE80211_RATE_VAL;
1165
1166 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1167 k = ieee80211_crypto_encap(ic, ni, m0);
1168 if (k == NULL) {
1169 m_freem(m0);
1170 return ENOBUFS;
1171 }
1172
1173 /* packet header may have moved, reset our local pointer */
1174 wh = mtod(m0, struct ieee80211_frame *);
1175 }
1176
1177 data = &sc->tx_data[0];
1178 desc = (struct rum_tx_desc *)data->buf;
1179
1180 data->m = m0;
1181 data->ni = ni;
1182
1183 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1184 flags |= RT2573_TX_ACK;
1185
1186 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1187 ic->ic_flags) + sc->sifs;
1188 *(uint16_t *)wh->i_dur = htole16(dur);
1189 }
1190
1191 #if NBPFILTER > 0
1192 if (sc->sc_drvbpf != NULL) {
1193 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1194
1195 tap->wt_flags = 0;
1196 tap->wt_rate = rate;
1197 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1198 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1199 tap->wt_antenna = sc->tx_ant;
1200
1201 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1202 }
1203 #endif
1204
1205 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1206 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1207
1208 /* align end on a 4-bytes boundary */
1209 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1210
1211 /*
1212 * No space left in the last URB to store the extra 4 bytes, force
1213 * sending of another URB.
1214 */
1215 if ((xferlen % 64) == 0)
1216 xferlen += 4;
1217
1218 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1219 m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
1220
1221 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1222 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1223
1224 error = usbd_transfer(data->xfer);
1225 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1226 m_freem(m0);
1227 return error;
1228 }
1229
1230 sc->tx_queued++;
1231
1232 return 0;
1233 }
1234
1235 Static void
1236 rum_start(struct ifnet *ifp)
1237 {
1238 struct rum_softc *sc = ifp->if_softc;
1239 struct ieee80211com *ic = &sc->sc_ic;
1240 struct ether_header *eh;
1241 struct ieee80211_node *ni;
1242 struct mbuf *m0;
1243
1244 for (;;) {
1245 IF_POLL(&ic->ic_mgtq, m0);
1246 if (m0 != NULL) {
1247 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1248 ifp->if_flags |= IFF_OACTIVE;
1249 break;
1250 }
1251 IF_DEQUEUE(&ic->ic_mgtq, m0);
1252
1253 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1254 m0->m_pkthdr.rcvif = NULL;
1255 #if NBPFILTER > 0
1256 if (ic->ic_rawbpf != NULL)
1257 bpf_mtap(ic->ic_rawbpf, m0);
1258 #endif
1259 if (rum_tx_mgt(sc, m0, ni) != 0)
1260 break;
1261
1262 } else {
1263 if (ic->ic_state != IEEE80211_S_RUN)
1264 break;
1265 IFQ_POLL(&ifp->if_snd, m0);
1266 if (m0 == NULL)
1267 break;
1268 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1269 ifp->if_flags |= IFF_OACTIVE;
1270 break;
1271 }
1272 IFQ_DEQUEUE(&ifp->if_snd, m0);
1273 if (m0->m_len < sizeof(struct ether_header) &&
1274 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1275 continue;
1276
1277 eh = mtod(m0, struct ether_header *);
1278 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1279 if (ni == NULL) {
1280 m_freem(m0);
1281 continue;
1282 }
1283 #if NBPFILTER > 0
1284 if (ifp->if_bpf != NULL)
1285 bpf_mtap(ifp->if_bpf, m0);
1286 #endif
1287 m0 = ieee80211_encap(ic, m0, ni);
1288 if (m0 == NULL) {
1289 ieee80211_free_node(ni);
1290 continue;
1291 }
1292 #if NBPFILTER > 0
1293 if (ic->ic_rawbpf != NULL)
1294 bpf_mtap(ic->ic_rawbpf, m0);
1295 #endif
1296 if (rum_tx_data(sc, m0, ni) != 0) {
1297 ieee80211_free_node(ni);
1298 ifp->if_oerrors++;
1299 break;
1300 }
1301 }
1302
1303 sc->sc_tx_timer = 5;
1304 ifp->if_timer = 1;
1305 }
1306 }
1307
1308 Static void
1309 rum_watchdog(struct ifnet *ifp)
1310 {
1311 struct rum_softc *sc = ifp->if_softc;
1312 struct ieee80211com *ic = &sc->sc_ic;
1313
1314 ifp->if_timer = 0;
1315
1316 if (sc->sc_tx_timer > 0) {
1317 if (--sc->sc_tx_timer == 0) {
1318 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1319 /*rum_init(ifp); XXX needs a process context! */
1320 ifp->if_oerrors++;
1321 return;
1322 }
1323 ifp->if_timer = 1;
1324 }
1325
1326 ieee80211_watchdog(ic);
1327 }
1328
1329 Static int
1330 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1331 {
1332 struct rum_softc *sc = ifp->if_softc;
1333 struct ieee80211com *ic = &sc->sc_ic;
1334 int s, error = 0;
1335
1336 s = splnet();
1337
1338 switch (cmd) {
1339 case SIOCSIFFLAGS:
1340 if (ifp->if_flags & IFF_UP) {
1341 if (ifp->if_flags & IFF_RUNNING)
1342 rum_update_promisc(sc);
1343 else
1344 rum_init(ifp);
1345 } else {
1346 if (ifp->if_flags & IFF_RUNNING)
1347 rum_stop(ifp, 1);
1348 }
1349 break;
1350
1351 default:
1352 error = ieee80211_ioctl(ic, cmd, data);
1353 }
1354
1355 if (error == ENETRESET) {
1356 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1357 (IFF_UP | IFF_RUNNING))
1358 rum_init(ifp);
1359 error = 0;
1360 }
1361
1362 splx(s);
1363
1364 return error;
1365 }
1366
1367 Static void
1368 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1369 {
1370 usb_device_request_t req;
1371 usbd_status error;
1372
1373 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1374 req.bRequest = RT2573_READ_EEPROM;
1375 USETW(req.wValue, 0);
1376 USETW(req.wIndex, addr);
1377 USETW(req.wLength, len);
1378
1379 error = usbd_do_request(sc->sc_udev, &req, buf);
1380 if (error != 0) {
1381 printf("%s: could not read EEPROM: %s\n",
1382 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1383 }
1384 }
1385
1386 Static uint32_t
1387 rum_read(struct rum_softc *sc, uint16_t reg)
1388 {
1389 uint32_t val;
1390
1391 rum_read_multi(sc, reg, &val, sizeof val);
1392
1393 return le32toh(val);
1394 }
1395
1396 Static void
1397 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1398 {
1399 usb_device_request_t req;
1400 usbd_status error;
1401
1402 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1403 req.bRequest = RT2573_READ_MULTI_MAC;
1404 USETW(req.wValue, 0);
1405 USETW(req.wIndex, reg);
1406 USETW(req.wLength, len);
1407
1408 error = usbd_do_request(sc->sc_udev, &req, buf);
1409 if (error != 0) {
1410 printf("%s: could not multi read MAC register: %s\n",
1411 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1412 }
1413 }
1414
1415 Static void
1416 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1417 {
1418 uint32_t tmp = htole32(val);
1419
1420 rum_write_multi(sc, reg, &tmp, sizeof tmp);
1421 }
1422
1423 Static void
1424 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1425 {
1426 usb_device_request_t req;
1427 usbd_status error;
1428
1429 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1430 req.bRequest = RT2573_WRITE_MULTI_MAC;
1431 USETW(req.wValue, 0);
1432 USETW(req.wIndex, reg);
1433 USETW(req.wLength, len);
1434
1435 error = usbd_do_request(sc->sc_udev, &req, buf);
1436 if (error != 0) {
1437 printf("%s: could not multi write MAC register: %s\n",
1438 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1439 }
1440 }
1441
1442 Static void
1443 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1444 {
1445 uint32_t tmp;
1446 int ntries;
1447
1448 for (ntries = 0; ntries < 5; ntries++) {
1449 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1450 break;
1451 }
1452 if (ntries == 5) {
1453 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1454 return;
1455 }
1456
1457 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1458 rum_write(sc, RT2573_PHY_CSR3, tmp);
1459 }
1460
1461 Static uint8_t
1462 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1463 {
1464 uint32_t val;
1465 int ntries;
1466
1467 for (ntries = 0; ntries < 5; ntries++) {
1468 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1469 break;
1470 }
1471 if (ntries == 5) {
1472 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1473 return 0;
1474 }
1475
1476 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1477 rum_write(sc, RT2573_PHY_CSR3, val);
1478
1479 for (ntries = 0; ntries < 100; ntries++) {
1480 val = rum_read(sc, RT2573_PHY_CSR3);
1481 if (!(val & RT2573_BBP_BUSY))
1482 return val & 0xff;
1483 DELAY(1);
1484 }
1485
1486 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1487 return 0;
1488 }
1489
1490 Static void
1491 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1492 {
1493 uint32_t tmp;
1494 int ntries;
1495
1496 for (ntries = 0; ntries < 5; ntries++) {
1497 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1498 break;
1499 }
1500 if (ntries == 5) {
1501 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1502 return;
1503 }
1504
1505 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1506 (reg & 3);
1507 rum_write(sc, RT2573_PHY_CSR4, tmp);
1508
1509 /* remember last written value in sc */
1510 sc->rf_regs[reg] = val;
1511
1512 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1513 }
1514
1515 Static void
1516 rum_select_antenna(struct rum_softc *sc)
1517 {
1518 uint8_t bbp4, bbp77;
1519 uint32_t tmp;
1520
1521 bbp4 = rum_bbp_read(sc, 4);
1522 bbp77 = rum_bbp_read(sc, 77);
1523
1524 /* TBD */
1525
1526 /* make sure Rx is disabled before switching antenna */
1527 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1528 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1529
1530 rum_bbp_write(sc, 4, bbp4);
1531 rum_bbp_write(sc, 77, bbp77);
1532
1533 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1534 }
1535
1536 /*
1537 * Enable multi-rate retries for frames sent at OFDM rates.
1538 * In 802.11b/g mode, allow fallback to CCK rates.
1539 */
1540 Static void
1541 rum_enable_mrr(struct rum_softc *sc)
1542 {
1543 struct ieee80211com *ic = &sc->sc_ic;
1544 uint32_t tmp;
1545
1546 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1547
1548 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1549 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1550 tmp |= RT2573_MRR_CCK_FALLBACK;
1551 tmp |= RT2573_MRR_ENABLED;
1552
1553 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1554 }
1555
1556 Static void
1557 rum_set_txpreamble(struct rum_softc *sc)
1558 {
1559 uint32_t tmp;
1560
1561 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1562
1563 tmp &= ~RT2573_SHORT_PREAMBLE;
1564 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1565 tmp |= RT2573_SHORT_PREAMBLE;
1566
1567 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1568 }
1569
1570 Static void
1571 rum_set_basicrates(struct rum_softc *sc)
1572 {
1573 struct ieee80211com *ic = &sc->sc_ic;
1574
1575 /* update basic rate set */
1576 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1577 /* 11b basic rates: 1, 2Mbps */
1578 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1579 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1580 /* 11a basic rates: 6, 12, 24Mbps */
1581 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1582 } else {
1583 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1584 rum_write(sc, RT2573_TXRX_CSR5, 0x15f);
1585 }
1586 }
1587
1588 /*
1589 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1590 * driver.
1591 */
1592 Static void
1593 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1594 {
1595 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1596 uint32_t tmp;
1597
1598 /* update all BBP registers that depend on the band */
1599 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1600 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1601 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1602 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1603 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1604 }
1605 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1606 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1607 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1608 }
1609
1610 sc->bbp17 = bbp17;
1611 rum_bbp_write(sc, 17, bbp17);
1612 rum_bbp_write(sc, 96, bbp96);
1613 rum_bbp_write(sc, 104, bbp104);
1614
1615 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1616 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1617 rum_bbp_write(sc, 75, 0x80);
1618 rum_bbp_write(sc, 86, 0x80);
1619 rum_bbp_write(sc, 88, 0x80);
1620 }
1621
1622 rum_bbp_write(sc, 35, bbp35);
1623 rum_bbp_write(sc, 97, bbp97);
1624 rum_bbp_write(sc, 98, bbp98);
1625
1626 tmp = rum_read(sc, RT2573_PHY_CSR0);
1627 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1628 if (IEEE80211_IS_CHAN_2GHZ(c))
1629 tmp |= RT2573_PA_PE_2GHZ;
1630 else
1631 tmp |= RT2573_PA_PE_5GHZ;
1632 rum_write(sc, RT2573_PHY_CSR0, tmp);
1633
1634 /* 802.11a uses a 16 microseconds short interframe space */
1635 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1636 }
1637
1638 Static void
1639 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1640 {
1641 struct ieee80211com *ic = &sc->sc_ic;
1642 const struct rfprog *rfprog;
1643 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1644 int8_t power;
1645 u_int i, chan;
1646
1647 chan = ieee80211_chan2ieee(ic, c);
1648 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1649 return;
1650
1651 /* select the appropriate RF settings based on what EEPROM says */
1652 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1653 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1654
1655 /* find the settings for this channel (we know it exists) */
1656 for (i = 0; rfprog[i].chan != chan; i++);
1657
1658 power = sc->txpow[i];
1659 if (power < 0) {
1660 bbp94 += power;
1661 power = 0;
1662 } else if (power > 31) {
1663 bbp94 += power - 31;
1664 power = 31;
1665 }
1666
1667 /*
1668 * If we are switching from the 2GHz band to the 5GHz band or
1669 * vice-versa, BBP registers need to be reprogrammed.
1670 */
1671 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1672 rum_select_band(sc, c);
1673 rum_select_antenna(sc);
1674 }
1675 ic->ic_curchan = c;
1676
1677 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1678 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1679 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1680 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1681
1682 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1683 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1684 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1685 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1686
1687 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1688 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1689 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1690 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1691
1692 DELAY(10);
1693
1694 /* enable smart mode for MIMO-capable RFs */
1695 bbp3 = rum_bbp_read(sc, 3);
1696
1697 bbp3 &= ~RT2573_SMART_MODE;
1698 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1699 bbp3 |= RT2573_SMART_MODE;
1700
1701 rum_bbp_write(sc, 3, bbp3);
1702
1703 if (bbp94 != RT2573_BBPR94_DEFAULT)
1704 rum_bbp_write(sc, 94, bbp94);
1705 }
1706
1707 /*
1708 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1709 * and HostAP operating modes.
1710 */
1711 Static void
1712 rum_enable_tsf_sync(struct rum_softc *sc)
1713 {
1714 struct ieee80211com *ic = &sc->sc_ic;
1715 uint32_t tmp;
1716
1717 if (ic->ic_opmode != IEEE80211_M_STA) {
1718 /*
1719 * Change default 16ms TBTT adjustment to 8ms.
1720 * Must be done before enabling beacon generation.
1721 */
1722 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1723 }
1724
1725 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1726
1727 /* set beacon interval (in 1/16ms unit) */
1728 tmp |= ic->ic_bss->ni_intval * 16;
1729
1730 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1731 if (ic->ic_opmode == IEEE80211_M_STA)
1732 tmp |= RT2573_TSF_MODE(1);
1733 else
1734 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1735
1736 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1737 }
1738
1739 Static void
1740 rum_update_slot(struct rum_softc *sc)
1741 {
1742 struct ieee80211com *ic = &sc->sc_ic;
1743 uint8_t slottime;
1744 uint32_t tmp;
1745
1746 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1747
1748 tmp = rum_read(sc, RT2573_MAC_CSR9);
1749 tmp = (tmp & ~0xff) | slottime;
1750 rum_write(sc, RT2573_MAC_CSR9, tmp);
1751
1752 DPRINTF(("setting slot time to %uus\n", slottime));
1753 }
1754
1755 Static void
1756 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1757 {
1758 uint32_t tmp;
1759
1760 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1761 rum_write(sc, RT2573_MAC_CSR4, tmp);
1762
1763 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1764 rum_write(sc, RT2573_MAC_CSR5, tmp);
1765 }
1766
1767 Static void
1768 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1769 {
1770 uint32_t tmp;
1771
1772 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1773 rum_write(sc, RT2573_MAC_CSR2, tmp);
1774
1775 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1776 rum_write(sc, RT2573_MAC_CSR3, tmp);
1777 }
1778
1779 Static void
1780 rum_update_promisc(struct rum_softc *sc)
1781 {
1782 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1783 uint32_t tmp;
1784
1785 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1786
1787 tmp &= ~RT2573_DROP_NOT_TO_ME;
1788 if (!(ifp->if_flags & IFF_PROMISC))
1789 tmp |= RT2573_DROP_NOT_TO_ME;
1790
1791 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1792
1793 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1794 "entering" : "leaving"));
1795 }
1796
1797 Static const char *
1798 rum_get_rf(int rev)
1799 {
1800 switch (rev) {
1801 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1802 case RT2573_RF_2528: return "RT2528";
1803 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1804 case RT2573_RF_5226: return "RT5226";
1805 default: return "unknown";
1806 }
1807 }
1808
1809 Static void
1810 rum_read_eeprom(struct rum_softc *sc)
1811 {
1812 struct ieee80211com *ic = &sc->sc_ic;
1813 uint16_t val;
1814 #ifdef RUM_DEBUG
1815 int i;
1816 #endif
1817
1818 /* read MAC/BBP type */
1819 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1820 sc->macbbp_rev = le16toh(val);
1821
1822 /* read MAC address */
1823 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1824
1825 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1826 val = le16toh(val);
1827 sc->rf_rev = (val >> 11) & 0x1f;
1828 sc->hw_radio = (val >> 10) & 0x1;
1829 sc->rx_ant = (val >> 4) & 0x3;
1830 sc->tx_ant = (val >> 2) & 0x3;
1831 sc->nb_ant = val & 0x3;
1832
1833 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1834
1835 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1836 val = le16toh(val);
1837 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1838 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1839
1840 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1841 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1842
1843 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1844 val = le16toh(val);
1845 if ((val & 0xff) != 0xff)
1846 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1847
1848 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1849 val = le16toh(val);
1850 if ((val & 0xff) != 0xff)
1851 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1852
1853 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1854 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1855
1856 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1857 val = le16toh(val);
1858 if ((val & 0xff) != 0xff)
1859 sc->rffreq = val & 0xff;
1860
1861 DPRINTF(("RF freq=%d\n", sc->rffreq));
1862
1863 /* read Tx power for all a/b/g channels */
1864 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1865 /* XXX default Tx power for 802.11a channels */
1866 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1867 #ifdef RUM_DEBUG
1868 for (i = 0; i < 14; i++)
1869 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1870 #endif
1871
1872 /* read default values for BBP registers */
1873 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1874 #ifdef RUM_DEBUG
1875 for (i = 0; i < 14; i++) {
1876 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1877 continue;
1878 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1879 sc->bbp_prom[i].val));
1880 }
1881 #endif
1882 }
1883
1884 Static int
1885 rum_bbp_init(struct rum_softc *sc)
1886 {
1887 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1888 int i, ntries;
1889 uint8_t val;
1890
1891 /* wait for BBP to be ready */
1892 for (ntries = 0; ntries < 100; ntries++) {
1893 val = rum_bbp_read(sc, 0);
1894 if (val != 0 && val != 0xff)
1895 break;
1896 DELAY(1000);
1897 }
1898 if (ntries == 100) {
1899 printf("%s: timeout waiting for BBP\n",
1900 USBDEVNAME(sc->sc_dev));
1901 return EIO;
1902 }
1903
1904 /* initialize BBP registers to default values */
1905 for (i = 0; i < N(rum_def_bbp); i++)
1906 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1907
1908 /* write vendor-specific BBP values (from EEPROM) */
1909 for (i = 0; i < 16; i++) {
1910 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1911 continue;
1912 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1913 }
1914
1915 return 0;
1916 #undef N
1917 }
1918
1919 Static int
1920 rum_init(struct ifnet *ifp)
1921 {
1922 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1923 struct rum_softc *sc = ifp->if_softc;
1924 struct ieee80211com *ic = &sc->sc_ic;
1925 struct rum_rx_data *data;
1926 uint32_t tmp;
1927 usbd_status error = 0;
1928 int i, ntries;
1929
1930 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1931 if (rum_attachhook(sc))
1932 goto fail;
1933 }
1934
1935 rum_stop(ifp, 0);
1936
1937 /* initialize MAC registers to default values */
1938 for (i = 0; i < N(rum_def_mac); i++)
1939 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1940
1941 /* set host ready */
1942 rum_write(sc, RT2573_MAC_CSR1, 3);
1943 rum_write(sc, RT2573_MAC_CSR1, 0);
1944
1945 /* wait for BBP/RF to wakeup */
1946 for (ntries = 0; ntries < 1000; ntries++) {
1947 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1948 break;
1949 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1950 DELAY(1000);
1951 }
1952 if (ntries == 1000) {
1953 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1954 USBDEVNAME(sc->sc_dev));
1955 goto fail;
1956 }
1957
1958 if ((error = rum_bbp_init(sc)) != 0)
1959 goto fail;
1960
1961 /* select default channel */
1962 rum_select_band(sc, ic->ic_curchan);
1963 rum_select_antenna(sc);
1964 rum_set_chan(sc, ic->ic_curchan);
1965
1966 /* clear STA registers */
1967 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1968
1969 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1970 rum_set_macaddr(sc, ic->ic_myaddr);
1971
1972 /* initialize ASIC */
1973 rum_write(sc, RT2573_MAC_CSR1, 4);
1974
1975 /*
1976 * Allocate xfer for AMRR statistics requests.
1977 */
1978 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
1979 if (sc->amrr_xfer == NULL) {
1980 printf("%s: could not allocate AMRR xfer\n",
1981 USBDEVNAME(sc->sc_dev));
1982 goto fail;
1983 }
1984
1985 /*
1986 * Open Tx and Rx USB bulk pipes.
1987 */
1988 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
1989 &sc->sc_tx_pipeh);
1990 if (error != 0) {
1991 printf("%s: could not open Tx pipe: %s\n",
1992 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1993 goto fail;
1994 }
1995
1996 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
1997 &sc->sc_rx_pipeh);
1998 if (error != 0) {
1999 printf("%s: could not open Rx pipe: %s\n",
2000 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2001 goto fail;
2002 }
2003
2004 /*
2005 * Allocate Tx and Rx xfer queues.
2006 */
2007 error = rum_alloc_tx_list(sc);
2008 if (error != 0) {
2009 printf("%s: could not allocate Tx list\n",
2010 USBDEVNAME(sc->sc_dev));
2011 goto fail;
2012 }
2013
2014 error = rum_alloc_rx_list(sc);
2015 if (error != 0) {
2016 printf("%s: could not allocate Rx list\n",
2017 USBDEVNAME(sc->sc_dev));
2018 goto fail;
2019 }
2020
2021 /*
2022 * Start up the receive pipe.
2023 */
2024 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
2025 data = &sc->rx_data[i];
2026
2027 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2028 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2029 usbd_transfer(data->xfer);
2030 }
2031
2032 /* update Rx filter */
2033 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2034
2035 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2036 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2037 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2038 RT2573_DROP_ACKCTS;
2039 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2040 tmp |= RT2573_DROP_TODS;
2041 if (!(ifp->if_flags & IFF_PROMISC))
2042 tmp |= RT2573_DROP_NOT_TO_ME;
2043 }
2044 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2045
2046 ifp->if_flags &= ~IFF_OACTIVE;
2047 ifp->if_flags |= IFF_RUNNING;
2048
2049 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2050 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2051 else
2052 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2053
2054 return 0;
2055
2056 fail: rum_stop(ifp, 1);
2057 return error;
2058 #undef N
2059 }
2060
2061 Static void
2062 rum_stop(struct ifnet *ifp, int disable)
2063 {
2064 struct rum_softc *sc = ifp->if_softc;
2065 struct ieee80211com *ic = &sc->sc_ic;
2066 uint32_t tmp;
2067
2068 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2069
2070 sc->sc_tx_timer = 0;
2071 ifp->if_timer = 0;
2072 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2073
2074 /* disable Rx */
2075 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2076 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2077
2078 /* reset ASIC */
2079 rum_write(sc, RT2573_MAC_CSR1, 3);
2080 rum_write(sc, RT2573_MAC_CSR1, 0);
2081
2082 if (sc->sc_rx_pipeh != NULL) {
2083 usbd_abort_pipe(sc->sc_rx_pipeh);
2084 usbd_close_pipe(sc->sc_rx_pipeh);
2085 sc->sc_rx_pipeh = NULL;
2086 }
2087
2088 if (sc->sc_tx_pipeh != NULL) {
2089 usbd_abort_pipe(sc->sc_tx_pipeh);
2090 usbd_close_pipe(sc->sc_tx_pipeh);
2091 sc->sc_tx_pipeh = NULL;
2092 }
2093
2094 rum_free_rx_list(sc);
2095 rum_free_tx_list(sc);
2096 }
2097
2098 Static int
2099 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2100 {
2101 usb_device_request_t req;
2102 uint16_t reg = RT2573_MCU_CODE_BASE;
2103 usbd_status error;
2104
2105 /* copy firmware image into NIC */
2106 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2107 rum_write(sc, reg, UGETDW(ucode));
2108
2109 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2110 req.bRequest = RT2573_MCU_CNTL;
2111 USETW(req.wValue, RT2573_MCU_RUN);
2112 USETW(req.wIndex, 0);
2113 USETW(req.wLength, 0);
2114
2115 error = usbd_do_request(sc->sc_udev, &req, NULL);
2116 if (error != 0) {
2117 printf("%s: could not run firmware: %s\n",
2118 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2119 }
2120 return error;
2121 }
2122
2123 Static int
2124 rum_prepare_beacon(struct rum_softc *sc)
2125 {
2126 struct ieee80211com *ic = &sc->sc_ic;
2127 struct rum_tx_desc desc;
2128 struct mbuf *m0;
2129 int rate;
2130
2131 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2132 if (m0 == NULL) {
2133 printf("%s: could not allocate beacon frame\n",
2134 sc->sc_dev.dv_xname);
2135 return ENOBUFS;
2136 }
2137
2138 /* send beacons at the lowest available rate */
2139 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2140
2141 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2142 m0->m_pkthdr.len, rate);
2143
2144 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2145 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2146
2147 /* copy beacon header and payload into NIC memory */
2148 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2149 m0->m_pkthdr.len);
2150
2151 m_freem(m0);
2152
2153 return 0;
2154 }
2155
2156 Static void
2157 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2158 {
2159 int i;
2160
2161 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2162 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2163
2164 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2165
2166 /* set rate to some reasonable initial value */
2167 for (i = ni->ni_rates.rs_nrates - 1;
2168 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2169 i--);
2170 ni->ni_txrate = i;
2171
2172 callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
2173 }
2174
2175 Static void
2176 rum_amrr_timeout(void *arg)
2177 {
2178 struct rum_softc *sc = arg;
2179 usb_device_request_t req;
2180 int s;
2181
2182 s = splusb();
2183
2184 /*
2185 * Asynchronously read statistic registers (cleared by read).
2186 */
2187 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2188 req.bRequest = RT2573_READ_MULTI_MAC;
2189 USETW(req.wValue, 0);
2190 USETW(req.wIndex, RT2573_STA_CSR0);
2191 USETW(req.wLength, sizeof sc->sta);
2192
2193 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2194 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2195 rum_amrr_update);
2196 (void)usbd_transfer(sc->amrr_xfer);
2197
2198 splx(s);
2199 }
2200
2201 Static void
2202 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2203 usbd_status status)
2204 {
2205 struct rum_softc *sc = (struct rum_softc *)priv;
2206 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2207
2208 if (status != USBD_NORMAL_COMPLETION) {
2209 printf("%s: could not retrieve Tx statistics - cancelling "
2210 "automatic rate control\n", USBDEVNAME(sc->sc_dev));
2211 return;
2212 }
2213
2214 /* count TX retry-fail as Tx errors */
2215 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2216
2217 sc->amn.amn_retrycnt =
2218 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2219 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2220 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2221
2222 sc->amn.amn_txcnt =
2223 sc->amn.amn_retrycnt +
2224 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2225
2226 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2227
2228 callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
2229 }
2230
2231 int
2232 rum_activate(device_ptr_t self, enum devact act)
2233 {
2234 switch (act) {
2235 case DVACT_ACTIVATE:
2236 return EOPNOTSUPP;
2237
2238 case DVACT_DEACTIVATE:
2239 /*if_deactivate(&sc->sc_ic.ic_if);*/
2240 break;
2241 }
2242
2243 return 0;
2244 }
2245