if_rum.c revision 1.21 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.21 2008/05/24 16:40:58 cube Exp $ */
3
4 /*-
5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com.tw/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.21 2008/05/24 16:40:58 cube Exp $");
28
29 #include "bpfilter.h"
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41
42 #include <sys/bus.h>
43 #include <machine/endian.h>
44 #include <sys/intr.h>
45
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/firmload.h>
67
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72
73 #include <dev/usb/if_rumreg.h>
74 #include <dev/usb/if_rumvar.h>
75
76 #ifdef USB_DEBUG
77 #define RUM_DEBUG
78 #endif
79
80 #ifdef RUM_DEBUG
81 #define DPRINTF(x) do { if (rum_debug) logprintf x; } while (0)
82 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) logprintf x; } while (0)
83 int rum_debug = 1;
84 #else
85 #define DPRINTF(x)
86 #define DPRINTFN(n, x)
87 #endif
88
89 /* various supported device vendors/products */
90 static const struct usb_devno rum_devs[] = {
91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
92 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
93 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
94 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
95 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
96 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
97 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
98 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
99 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
100 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
101 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
102 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
103 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
104 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL },
105 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
106 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
107 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
108 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
109 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
110 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
111 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
112 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
113 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
114 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
115 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
116 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
117 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
118 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
119 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
120 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
121 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
122 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
123 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
124 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
125 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
126 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
127 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
128 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
129 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2573 },
130 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
131 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
132 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
133 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }
134 };
135
136 Static int rum_attachhook(void *);
137 Static int rum_alloc_tx_list(struct rum_softc *);
138 Static void rum_free_tx_list(struct rum_softc *);
139 Static int rum_alloc_rx_list(struct rum_softc *);
140 Static void rum_free_rx_list(struct rum_softc *);
141 Static int rum_media_change(struct ifnet *);
142 Static void rum_next_scan(void *);
143 Static void rum_task(void *);
144 Static int rum_newstate(struct ieee80211com *,
145 enum ieee80211_state, int);
146 Static void rum_txeof(usbd_xfer_handle, usbd_private_handle,
147 usbd_status);
148 Static void rum_rxeof(usbd_xfer_handle, usbd_private_handle,
149 usbd_status);
150 #if NBPFILTER > 0
151 Static uint8_t rum_rxrate(const struct rum_rx_desc *);
152 #endif
153 Static int rum_ack_rate(struct ieee80211com *, int);
154 Static uint16_t rum_txtime(int, int, uint32_t);
155 Static uint8_t rum_plcp_signal(int);
156 Static void rum_setup_tx_desc(struct rum_softc *,
157 struct rum_tx_desc *, uint32_t, uint16_t, int,
158 int);
159 Static int rum_tx_mgt(struct rum_softc *, struct mbuf *,
160 struct ieee80211_node *);
161 Static int rum_tx_data(struct rum_softc *, struct mbuf *,
162 struct ieee80211_node *);
163 Static void rum_start(struct ifnet *);
164 Static void rum_watchdog(struct ifnet *);
165 Static int rum_ioctl(struct ifnet *, u_long, void *);
166 Static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
167 int);
168 Static uint32_t rum_read(struct rum_softc *, uint16_t);
169 Static void rum_read_multi(struct rum_softc *, uint16_t, void *,
170 int);
171 Static void rum_write(struct rum_softc *, uint16_t, uint32_t);
172 Static void rum_write_multi(struct rum_softc *, uint16_t, void *,
173 size_t);
174 Static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
175 Static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
176 Static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
177 Static void rum_select_antenna(struct rum_softc *);
178 Static void rum_enable_mrr(struct rum_softc *);
179 Static void rum_set_txpreamble(struct rum_softc *);
180 Static void rum_set_basicrates(struct rum_softc *);
181 Static void rum_select_band(struct rum_softc *,
182 struct ieee80211_channel *);
183 Static void rum_set_chan(struct rum_softc *,
184 struct ieee80211_channel *);
185 Static void rum_enable_tsf_sync(struct rum_softc *);
186 Static void rum_update_slot(struct rum_softc *);
187 Static void rum_set_bssid(struct rum_softc *, const uint8_t *);
188 Static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
189 Static void rum_update_promisc(struct rum_softc *);
190 Static const char *rum_get_rf(int);
191 Static void rum_read_eeprom(struct rum_softc *);
192 Static int rum_bbp_init(struct rum_softc *);
193 Static int rum_init(struct ifnet *);
194 Static void rum_stop(struct ifnet *, int);
195 Static int rum_load_microcode(struct rum_softc *, const u_char *,
196 size_t);
197 Static int rum_prepare_beacon(struct rum_softc *);
198 Static void rum_newassoc(struct ieee80211_node *, int);
199 Static void rum_amrr_start(struct rum_softc *,
200 struct ieee80211_node *);
201 Static void rum_amrr_timeout(void *);
202 Static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
203 usbd_status status);
204
205 /*
206 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
207 */
208 static const struct ieee80211_rateset rum_rateset_11a =
209 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
210
211 static const struct ieee80211_rateset rum_rateset_11b =
212 { 4, { 2, 4, 11, 22 } };
213
214 static const struct ieee80211_rateset rum_rateset_11g =
215 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
216
217 static const struct {
218 uint32_t reg;
219 uint32_t val;
220 } rum_def_mac[] = {
221 RT2573_DEF_MAC
222 };
223
224 static const struct {
225 uint8_t reg;
226 uint8_t val;
227 } rum_def_bbp[] = {
228 RT2573_DEF_BBP
229 };
230
231 static const struct rfprog {
232 uint8_t chan;
233 uint32_t r1, r2, r3, r4;
234 } rum_rf5226[] = {
235 RT2573_RF5226
236 }, rum_rf5225[] = {
237 RT2573_RF5225
238 };
239
240 USB_DECLARE_DRIVER(rum);
241
242 USB_MATCH(rum)
243 {
244 USB_MATCH_START(rum, uaa);
245
246 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
247 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
248 }
249
250 Static int
251 rum_attachhook(void *xsc)
252 {
253 struct rum_softc *sc = xsc;
254 firmware_handle_t fwh;
255 const char *name = "rum-rt2573";
256 u_char *ucode;
257 size_t size;
258 int error;
259
260 if ((error = firmware_open("rum", name, &fwh)) != 0) {
261 printf("%s: failed loadfirmware of file %s (error %d)\n",
262 USBDEVNAME(sc->sc_dev), name, error);
263 return error;
264 }
265 size = firmware_get_size(fwh);
266 ucode = firmware_malloc(size);
267 if (ucode == NULL) {
268 printf("%s: failed to allocate firmware memory\n",
269 USBDEVNAME(sc->sc_dev));
270 firmware_close(fwh);
271 return ENOMEM;;
272 }
273 error = firmware_read(fwh, 0, ucode, size);
274 firmware_close(fwh);
275 if (error != 0) {
276 printf("%s: failed to read firmware (error %d)\n",
277 USBDEVNAME(sc->sc_dev), error);
278 firmware_free(ucode, 0);
279 return error;
280 }
281
282 if (rum_load_microcode(sc, ucode, size) != 0) {
283 printf("%s: could not load 8051 microcode\n",
284 USBDEVNAME(sc->sc_dev));
285 firmware_free(ucode, 0);
286 return ENXIO;
287 }
288
289 firmware_free(ucode, 0);
290 sc->sc_flags |= RT2573_FWLOADED;
291
292 return 0;
293 }
294
295 USB_ATTACH(rum)
296 {
297 USB_ATTACH_START(rum, sc, uaa);
298 struct ieee80211com *ic = &sc->sc_ic;
299 struct ifnet *ifp = &sc->sc_if;
300 usb_interface_descriptor_t *id;
301 usb_endpoint_descriptor_t *ed;
302 usbd_status error;
303 char *devinfop;
304 int i, ntries;
305 uint32_t tmp;
306
307 sc->sc_dev = self;
308 sc->sc_udev = uaa->device;
309 sc->sc_flags = 0;
310
311 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
312 USB_ATTACH_SETUP;
313 aprint_normal_dev(self, "%s\n", devinfop);
314 usbd_devinfo_free(devinfop);
315
316 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
317 aprint_error_dev(self, "could not set configuration no\n");
318 USB_ATTACH_ERROR_RETURN;
319 }
320
321 /* get the first interface handle */
322 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
323 &sc->sc_iface);
324 if (error != 0) {
325 aprint_error_dev(self, "could not get interface handle\n");
326 USB_ATTACH_ERROR_RETURN;
327 }
328
329 /*
330 * Find endpoints.
331 */
332 id = usbd_get_interface_descriptor(sc->sc_iface);
333
334 sc->sc_rx_no = sc->sc_tx_no = -1;
335 for (i = 0; i < id->bNumEndpoints; i++) {
336 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
337 if (ed == NULL) {
338 aprint_error_dev(self,
339 "no endpoint descriptor for iface %d\n", i);
340 USB_ATTACH_ERROR_RETURN;
341 }
342
343 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
344 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
345 sc->sc_rx_no = ed->bEndpointAddress;
346 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
347 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
348 sc->sc_tx_no = ed->bEndpointAddress;
349 }
350 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
351 aprint_error_dev(self, "missing endpoint\n");
352 USB_ATTACH_ERROR_RETURN;
353 }
354
355 usb_init_task(&sc->sc_task, rum_task, sc);
356 usb_callout_init(sc->sc_scan_ch);
357
358 sc->amrr.amrr_min_success_threshold = 1;
359 sc->amrr.amrr_max_success_threshold = 10;
360 usb_callout_init(sc->sc_amrr_ch);
361
362 /* retrieve RT2573 rev. no */
363 for (ntries = 0; ntries < 1000; ntries++) {
364 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
365 break;
366 DELAY(1000);
367 }
368 if (ntries == 1000) {
369 aprint_error_dev(self, "timeout waiting for chip to settle\n");
370 USB_ATTACH_ERROR_RETURN;
371 }
372
373 /* retrieve MAC address and various other things from EEPROM */
374 rum_read_eeprom(sc);
375
376 aprint_normal_dev(self,
377 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
378 sc->macbbp_rev, tmp,
379 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
380
381 ic->ic_ifp = ifp;
382 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
383 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
384 ic->ic_state = IEEE80211_S_INIT;
385
386 /* set device capabilities */
387 ic->ic_caps =
388 IEEE80211_C_IBSS | /* IBSS mode supported */
389 IEEE80211_C_MONITOR | /* monitor mode supported */
390 IEEE80211_C_HOSTAP | /* HostAp mode supported */
391 IEEE80211_C_TXPMGT | /* tx power management */
392 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
393 IEEE80211_C_SHSLOT | /* short slot time supported */
394 IEEE80211_C_WPA; /* 802.11i */
395
396 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
397 /* set supported .11a rates */
398 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
399
400 /* set supported .11a channels */
401 for (i = 34; i <= 46; i += 4) {
402 ic->ic_channels[i].ic_freq =
403 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
404 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
405 }
406 for (i = 36; i <= 64; i += 4) {
407 ic->ic_channels[i].ic_freq =
408 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
409 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
410 }
411 for (i = 100; i <= 140; i += 4) {
412 ic->ic_channels[i].ic_freq =
413 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
414 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
415 }
416 for (i = 149; i <= 165; i += 4) {
417 ic->ic_channels[i].ic_freq =
418 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
419 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
420 }
421 }
422
423 /* set supported .11b and .11g rates */
424 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
425 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
426
427 /* set supported .11b and .11g channels (1 through 14) */
428 for (i = 1; i <= 14; i++) {
429 ic->ic_channels[i].ic_freq =
430 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
431 ic->ic_channels[i].ic_flags =
432 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
433 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
434 }
435
436 ifp->if_softc = sc;
437 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
438 ifp->if_init = rum_init;
439 ifp->if_ioctl = rum_ioctl;
440 ifp->if_start = rum_start;
441 ifp->if_watchdog = rum_watchdog;
442 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
443 IFQ_SET_READY(&ifp->if_snd);
444 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
445
446 if_attach(ifp);
447 ieee80211_ifattach(ic);
448 ic->ic_newassoc = rum_newassoc;
449
450 /* override state transition machine */
451 sc->sc_newstate = ic->ic_newstate;
452 ic->ic_newstate = rum_newstate;
453 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
454
455 #if NBPFILTER > 0
456 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
457 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf);
458
459 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
460 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
461 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
462
463 sc->sc_txtap_len = sizeof sc->sc_txtapu;
464 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
465 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
466 #endif
467
468 ieee80211_announce(ic);
469
470 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
471 USBDEV(sc->sc_dev));
472
473 USB_ATTACH_SUCCESS_RETURN;
474 }
475
476 USB_DETACH(rum)
477 {
478 USB_DETACH_START(rum, sc);
479 struct ieee80211com *ic = &sc->sc_ic;
480 struct ifnet *ifp = &sc->sc_if;
481 int s;
482
483 if (!ifp->if_softc)
484 return 0;
485
486 s = splusb();
487
488 rum_stop(ifp, 1);
489 usb_rem_task(sc->sc_udev, &sc->sc_task);
490 usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
491 usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
492
493 if (sc->amrr_xfer != NULL) {
494 usbd_free_xfer(sc->amrr_xfer);
495 sc->amrr_xfer = NULL;
496 }
497
498 if (sc->sc_rx_pipeh != NULL) {
499 usbd_abort_pipe(sc->sc_rx_pipeh);
500 usbd_close_pipe(sc->sc_rx_pipeh);
501 }
502
503 if (sc->sc_tx_pipeh != NULL) {
504 usbd_abort_pipe(sc->sc_tx_pipeh);
505 usbd_close_pipe(sc->sc_tx_pipeh);
506 }
507
508 #if NBPFILTER > 0
509 bpfdetach(ifp);
510 #endif
511 ieee80211_ifdetach(ic); /* free all nodes */
512 if_detach(ifp);
513
514 splx(s);
515
516 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
517 USBDEV(sc->sc_dev));
518
519 return 0;
520 }
521
522 Static int
523 rum_alloc_tx_list(struct rum_softc *sc)
524 {
525 struct rum_tx_data *data;
526 int i, error;
527
528 sc->tx_queued = 0;
529
530 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
531 data = &sc->tx_data[i];
532
533 data->sc = sc;
534
535 data->xfer = usbd_alloc_xfer(sc->sc_udev);
536 if (data->xfer == NULL) {
537 printf("%s: could not allocate tx xfer\n",
538 USBDEVNAME(sc->sc_dev));
539 error = ENOMEM;
540 goto fail;
541 }
542
543 data->buf = usbd_alloc_buffer(data->xfer,
544 RT2573_TX_DESC_SIZE + MCLBYTES);
545 if (data->buf == NULL) {
546 printf("%s: could not allocate tx buffer\n",
547 USBDEVNAME(sc->sc_dev));
548 error = ENOMEM;
549 goto fail;
550 }
551
552 /* clean Tx descriptor */
553 bzero(data->buf, RT2573_TX_DESC_SIZE);
554 }
555
556 return 0;
557
558 fail: rum_free_tx_list(sc);
559 return error;
560 }
561
562 Static void
563 rum_free_tx_list(struct rum_softc *sc)
564 {
565 struct rum_tx_data *data;
566 int i;
567
568 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
569 data = &sc->tx_data[i];
570
571 if (data->xfer != NULL) {
572 usbd_free_xfer(data->xfer);
573 data->xfer = NULL;
574 }
575
576 if (data->ni != NULL) {
577 ieee80211_free_node(data->ni);
578 data->ni = NULL;
579 }
580 }
581 }
582
583 Static int
584 rum_alloc_rx_list(struct rum_softc *sc)
585 {
586 struct rum_rx_data *data;
587 int i, error;
588
589 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
590 data = &sc->rx_data[i];
591
592 data->sc = sc;
593
594 data->xfer = usbd_alloc_xfer(sc->sc_udev);
595 if (data->xfer == NULL) {
596 printf("%s: could not allocate rx xfer\n",
597 USBDEVNAME(sc->sc_dev));
598 error = ENOMEM;
599 goto fail;
600 }
601
602 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
603 printf("%s: could not allocate rx buffer\n",
604 USBDEVNAME(sc->sc_dev));
605 error = ENOMEM;
606 goto fail;
607 }
608
609 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
610 if (data->m == NULL) {
611 printf("%s: could not allocate rx mbuf\n",
612 USBDEVNAME(sc->sc_dev));
613 error = ENOMEM;
614 goto fail;
615 }
616
617 MCLGET(data->m, M_DONTWAIT);
618 if (!(data->m->m_flags & M_EXT)) {
619 printf("%s: could not allocate rx mbuf cluster\n",
620 USBDEVNAME(sc->sc_dev));
621 error = ENOMEM;
622 goto fail;
623 }
624
625 data->buf = mtod(data->m, uint8_t *);
626 }
627
628 return 0;
629
630 fail: rum_free_tx_list(sc);
631 return error;
632 }
633
634 Static void
635 rum_free_rx_list(struct rum_softc *sc)
636 {
637 struct rum_rx_data *data;
638 int i;
639
640 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
641 data = &sc->rx_data[i];
642
643 if (data->xfer != NULL) {
644 usbd_free_xfer(data->xfer);
645 data->xfer = NULL;
646 }
647
648 if (data->m != NULL) {
649 m_freem(data->m);
650 data->m = NULL;
651 }
652 }
653 }
654
655 Static int
656 rum_media_change(struct ifnet *ifp)
657 {
658 int error;
659
660 error = ieee80211_media_change(ifp);
661 if (error != ENETRESET)
662 return error;
663
664 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
665 rum_init(ifp);
666
667 return 0;
668 }
669
670 /*
671 * This function is called periodically (every 200ms) during scanning to
672 * switch from one channel to another.
673 */
674 Static void
675 rum_next_scan(void *arg)
676 {
677 struct rum_softc *sc = arg;
678 struct ieee80211com *ic = &sc->sc_ic;
679
680 if (ic->ic_state == IEEE80211_S_SCAN)
681 ieee80211_next_scan(ic);
682 }
683
684 Static void
685 rum_task(void *arg)
686 {
687 struct rum_softc *sc = arg;
688 struct ieee80211com *ic = &sc->sc_ic;
689 enum ieee80211_state ostate;
690 struct ieee80211_node *ni;
691 uint32_t tmp;
692
693 ostate = ic->ic_state;
694
695 switch (sc->sc_state) {
696 case IEEE80211_S_INIT:
697 if (ostate == IEEE80211_S_RUN) {
698 /* abort TSF synchronization */
699 tmp = rum_read(sc, RT2573_TXRX_CSR9);
700 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
701 }
702 break;
703
704 case IEEE80211_S_SCAN:
705 rum_set_chan(sc, ic->ic_curchan);
706 usb_callout(sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
707 break;
708
709 case IEEE80211_S_AUTH:
710 rum_set_chan(sc, ic->ic_curchan);
711 break;
712
713 case IEEE80211_S_ASSOC:
714 rum_set_chan(sc, ic->ic_curchan);
715 break;
716
717 case IEEE80211_S_RUN:
718 rum_set_chan(sc, ic->ic_curchan);
719
720 ni = ic->ic_bss;
721
722 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
723 rum_update_slot(sc);
724 rum_enable_mrr(sc);
725 rum_set_txpreamble(sc);
726 rum_set_basicrates(sc);
727 rum_set_bssid(sc, ni->ni_bssid);
728 }
729
730 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
731 ic->ic_opmode == IEEE80211_M_IBSS)
732 rum_prepare_beacon(sc);
733
734 if (ic->ic_opmode != IEEE80211_M_MONITOR)
735 rum_enable_tsf_sync(sc);
736
737 if (ic->ic_opmode == IEEE80211_M_STA) {
738 /* fake a join to init the tx rate */
739 rum_newassoc(ic->ic_bss, 1);
740
741 /* enable automatic rate adaptation in STA mode */
742 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
743 rum_amrr_start(sc, ni);
744 }
745
746 break;
747 }
748
749 sc->sc_newstate(ic, sc->sc_state, -1);
750 }
751
752 Static int
753 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
754 {
755 struct rum_softc *sc = ic->ic_ifp->if_softc;
756
757 usb_rem_task(sc->sc_udev, &sc->sc_task);
758 usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
759 usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
760
761 /* do it in a process context */
762 sc->sc_state = nstate;
763 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
764
765 return 0;
766 }
767
768 /* quickly determine if a given rate is CCK or OFDM */
769 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
770
771 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
772 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
773
774 Static void
775 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
776 {
777 struct rum_tx_data *data = priv;
778 struct rum_softc *sc = data->sc;
779 struct ifnet *ifp = &sc->sc_if;
780 int s;
781
782 if (status != USBD_NORMAL_COMPLETION) {
783 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
784 return;
785
786 printf("%s: could not transmit buffer: %s\n",
787 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
788
789 if (status == USBD_STALLED)
790 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
791
792 ifp->if_oerrors++;
793 return;
794 }
795
796 s = splnet();
797
798 ieee80211_free_node(data->ni);
799 data->ni = NULL;
800
801 sc->tx_queued--;
802 ifp->if_opackets++;
803
804 DPRINTFN(10, ("tx done\n"));
805
806 sc->sc_tx_timer = 0;
807 ifp->if_flags &= ~IFF_OACTIVE;
808 rum_start(ifp);
809
810 splx(s);
811 }
812
813 Static void
814 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
815 {
816 struct rum_rx_data *data = priv;
817 struct rum_softc *sc = data->sc;
818 struct ieee80211com *ic = &sc->sc_ic;
819 struct ifnet *ifp = &sc->sc_if;
820 struct rum_rx_desc *desc;
821 struct ieee80211_frame *wh;
822 struct ieee80211_node *ni;
823 struct mbuf *mnew, *m;
824 int s, len;
825
826 if (status != USBD_NORMAL_COMPLETION) {
827 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
828 return;
829
830 if (status == USBD_STALLED)
831 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
832 goto skip;
833 }
834
835 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
836
837 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
838 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
839 len));
840 ifp->if_ierrors++;
841 goto skip;
842 }
843
844 desc = (struct rum_rx_desc *)data->buf;
845
846 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
847 /*
848 * This should not happen since we did not request to receive
849 * those frames when we filled RT2573_TXRX_CSR0.
850 */
851 DPRINTFN(5, ("CRC error\n"));
852 ifp->if_ierrors++;
853 goto skip;
854 }
855
856 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
857 if (mnew == NULL) {
858 printf("%s: could not allocate rx mbuf\n",
859 USBDEVNAME(sc->sc_dev));
860 ifp->if_ierrors++;
861 goto skip;
862 }
863
864 MCLGET(mnew, M_DONTWAIT);
865 if (!(mnew->m_flags & M_EXT)) {
866 printf("%s: could not allocate rx mbuf cluster\n",
867 USBDEVNAME(sc->sc_dev));
868 m_freem(mnew);
869 ifp->if_ierrors++;
870 goto skip;
871 }
872
873 m = data->m;
874 data->m = mnew;
875 data->buf = mtod(data->m, uint8_t *);
876
877 /* finalize mbuf */
878 m->m_pkthdr.rcvif = ifp;
879 m->m_data = (void *)(desc + 1);
880 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
881
882 s = splnet();
883
884 #if NBPFILTER > 0
885 if (sc->sc_drvbpf != NULL) {
886 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
887
888 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
889 tap->wr_rate = rum_rxrate(desc);
890 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
891 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
892 tap->wr_antenna = sc->rx_ant;
893 tap->wr_antsignal = desc->rssi;
894
895 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
896 }
897 #endif
898
899 wh = mtod(m, struct ieee80211_frame *);
900 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
901
902 /* send the frame to the 802.11 layer */
903 ieee80211_input(ic, m, ni, desc->rssi, 0);
904
905 /* node is no longer needed */
906 ieee80211_free_node(ni);
907
908 splx(s);
909
910 DPRINTFN(15, ("rx done\n"));
911
912 skip: /* setup a new transfer */
913 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
914 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
915 usbd_transfer(xfer);
916 }
917
918 /*
919 * This function is only used by the Rx radiotap code. It returns the rate at
920 * which a given frame was received.
921 */
922 #if NBPFILTER > 0
923 Static uint8_t
924 rum_rxrate(const struct rum_rx_desc *desc)
925 {
926 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
927 /* reverse function of rum_plcp_signal */
928 switch (desc->rate) {
929 case 0xb: return 12;
930 case 0xf: return 18;
931 case 0xa: return 24;
932 case 0xe: return 36;
933 case 0x9: return 48;
934 case 0xd: return 72;
935 case 0x8: return 96;
936 case 0xc: return 108;
937 }
938 } else {
939 if (desc->rate == 10)
940 return 2;
941 if (desc->rate == 20)
942 return 4;
943 if (desc->rate == 55)
944 return 11;
945 if (desc->rate == 110)
946 return 22;
947 }
948 return 2; /* should not get there */
949 }
950 #endif
951
952 /*
953 * Return the expected ack rate for a frame transmitted at rate `rate'.
954 * XXX: this should depend on the destination node basic rate set.
955 */
956 Static int
957 rum_ack_rate(struct ieee80211com *ic, int rate)
958 {
959 switch (rate) {
960 /* CCK rates */
961 case 2:
962 return 2;
963 case 4:
964 case 11:
965 case 22:
966 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
967
968 /* OFDM rates */
969 case 12:
970 case 18:
971 return 12;
972 case 24:
973 case 36:
974 return 24;
975 case 48:
976 case 72:
977 case 96:
978 case 108:
979 return 48;
980 }
981
982 /* default to 1Mbps */
983 return 2;
984 }
985
986 /*
987 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
988 * The function automatically determines the operating mode depending on the
989 * given rate. `flags' indicates whether short preamble is in use or not.
990 */
991 Static uint16_t
992 rum_txtime(int len, int rate, uint32_t flags)
993 {
994 uint16_t txtime;
995
996 if (RUM_RATE_IS_OFDM(rate)) {
997 /* IEEE Std 802.11a-1999, pp. 37 */
998 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
999 txtime = 16 + 4 + 4 * txtime + 6;
1000 } else {
1001 /* IEEE Std 802.11b-1999, pp. 28 */
1002 txtime = (16 * len + rate - 1) / rate;
1003 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1004 txtime += 72 + 24;
1005 else
1006 txtime += 144 + 48;
1007 }
1008 return txtime;
1009 }
1010
1011 Static uint8_t
1012 rum_plcp_signal(int rate)
1013 {
1014 switch (rate) {
1015 /* CCK rates (returned values are device-dependent) */
1016 case 2: return 0x0;
1017 case 4: return 0x1;
1018 case 11: return 0x2;
1019 case 22: return 0x3;
1020
1021 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1022 case 12: return 0xb;
1023 case 18: return 0xf;
1024 case 24: return 0xa;
1025 case 36: return 0xe;
1026 case 48: return 0x9;
1027 case 72: return 0xd;
1028 case 96: return 0x8;
1029 case 108: return 0xc;
1030
1031 /* unsupported rates (should not get there) */
1032 default: return 0xff;
1033 }
1034 }
1035
1036 Static void
1037 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1038 uint32_t flags, uint16_t xflags, int len, int rate)
1039 {
1040 struct ieee80211com *ic = &sc->sc_ic;
1041 uint16_t plcp_length;
1042 int remainder;
1043
1044 desc->flags = htole32(flags);
1045 desc->flags |= htole32(RT2573_TX_VALID);
1046 desc->flags |= htole32(len << 16);
1047
1048 desc->xflags = htole16(xflags);
1049
1050 desc->wme = htole16(
1051 RT2573_QID(0) |
1052 RT2573_AIFSN(2) |
1053 RT2573_LOGCWMIN(4) |
1054 RT2573_LOGCWMAX(10));
1055
1056 /* setup PLCP fields */
1057 desc->plcp_signal = rum_plcp_signal(rate);
1058 desc->plcp_service = 4;
1059
1060 len += IEEE80211_CRC_LEN;
1061 if (RUM_RATE_IS_OFDM(rate)) {
1062 desc->flags |= htole32(RT2573_TX_OFDM);
1063
1064 plcp_length = len & 0xfff;
1065 desc->plcp_length_hi = plcp_length >> 6;
1066 desc->plcp_length_lo = plcp_length & 0x3f;
1067 } else {
1068 plcp_length = (16 * len + rate - 1) / rate;
1069 if (rate == 22) {
1070 remainder = (16 * len) % 22;
1071 if (remainder != 0 && remainder < 7)
1072 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1073 }
1074 desc->plcp_length_hi = plcp_length >> 8;
1075 desc->plcp_length_lo = plcp_length & 0xff;
1076
1077 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1078 desc->plcp_signal |= 0x08;
1079 }
1080 }
1081
1082 #define RUM_TX_TIMEOUT 5000
1083
1084 Static int
1085 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1086 {
1087 struct ieee80211com *ic = &sc->sc_ic;
1088 struct rum_tx_desc *desc;
1089 struct rum_tx_data *data;
1090 struct ieee80211_frame *wh;
1091 struct ieee80211_key *k;
1092 uint32_t flags = 0;
1093 uint16_t dur;
1094 usbd_status error;
1095 int xferlen, rate;
1096
1097 data = &sc->tx_data[0];
1098 desc = (struct rum_tx_desc *)data->buf;
1099
1100 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1101
1102 data->m = m0;
1103 data->ni = ni;
1104
1105 wh = mtod(m0, struct ieee80211_frame *);
1106
1107 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1108 k = ieee80211_crypto_encap(ic, ni, m0);
1109 if (k == NULL) {
1110 m_freem(m0);
1111 return ENOBUFS;
1112 }
1113 }
1114
1115 wh = mtod(m0, struct ieee80211_frame *);
1116
1117 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1118 flags |= RT2573_TX_NEED_ACK;
1119
1120 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1121 ic->ic_flags) + sc->sifs;
1122 *(uint16_t *)wh->i_dur = htole16(dur);
1123
1124 /* tell hardware to set timestamp in probe responses */
1125 if ((wh->i_fc[0] &
1126 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1127 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1128 flags |= RT2573_TX_TIMESTAMP;
1129 }
1130
1131 #if NBPFILTER > 0
1132 if (sc->sc_drvbpf != NULL) {
1133 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1134
1135 tap->wt_flags = 0;
1136 tap->wt_rate = rate;
1137 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1138 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1139 tap->wt_antenna = sc->tx_ant;
1140
1141 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1142 }
1143 #endif
1144
1145 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1146 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1147
1148 /* align end on a 4-bytes boundary */
1149 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1150
1151 /*
1152 * No space left in the last URB to store the extra 4 bytes, force
1153 * sending of another URB.
1154 */
1155 if ((xferlen % 64) == 0)
1156 xferlen += 4;
1157
1158 DPRINTFN(10, ("sending msg frame len=%zu rate=%u xfer len=%u\n",
1159 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1160 rate, xferlen));
1161
1162 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1163 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1164
1165 error = usbd_transfer(data->xfer);
1166 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1167 m_freem(m0);
1168 return error;
1169 }
1170
1171 sc->tx_queued++;
1172
1173 return 0;
1174 }
1175
1176 Static int
1177 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1178 {
1179 struct ieee80211com *ic = &sc->sc_ic;
1180 struct rum_tx_desc *desc;
1181 struct rum_tx_data *data;
1182 struct ieee80211_frame *wh;
1183 struct ieee80211_key *k;
1184 uint32_t flags = 0;
1185 uint16_t dur;
1186 usbd_status error;
1187 int xferlen, rate;
1188
1189 wh = mtod(m0, struct ieee80211_frame *);
1190
1191 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1192 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1193 else
1194 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1195 if (rate == 0)
1196 rate = 2; /* XXX should not happen */
1197 rate &= IEEE80211_RATE_VAL;
1198
1199 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1200 k = ieee80211_crypto_encap(ic, ni, m0);
1201 if (k == NULL) {
1202 m_freem(m0);
1203 return ENOBUFS;
1204 }
1205
1206 /* packet header may have moved, reset our local pointer */
1207 wh = mtod(m0, struct ieee80211_frame *);
1208 }
1209
1210 data = &sc->tx_data[0];
1211 desc = (struct rum_tx_desc *)data->buf;
1212
1213 data->ni = ni;
1214
1215 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1216 flags |= RT2573_TX_NEED_ACK;
1217
1218 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1219 ic->ic_flags) + sc->sifs;
1220 *(uint16_t *)wh->i_dur = htole16(dur);
1221 }
1222
1223 #if NBPFILTER > 0
1224 if (sc->sc_drvbpf != NULL) {
1225 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1226
1227 tap->wt_flags = 0;
1228 tap->wt_rate = rate;
1229 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1230 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1231 tap->wt_antenna = sc->tx_ant;
1232
1233 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1234 }
1235 #endif
1236
1237 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1238 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1239
1240 /* align end on a 4-bytes boundary */
1241 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1242
1243 /*
1244 * No space left in the last URB to store the extra 4 bytes, force
1245 * sending of another URB.
1246 */
1247 if ((xferlen % 64) == 0)
1248 xferlen += 4;
1249
1250 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1251 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1252 rate, xferlen));
1253
1254 /* mbuf is no longer needed */
1255 m_freem(m0);
1256
1257 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1258 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1259
1260 error = usbd_transfer(data->xfer);
1261 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1262 return error;
1263
1264 sc->tx_queued++;
1265
1266 return 0;
1267 }
1268
1269 Static void
1270 rum_start(struct ifnet *ifp)
1271 {
1272 struct rum_softc *sc = ifp->if_softc;
1273 struct ieee80211com *ic = &sc->sc_ic;
1274 struct ether_header *eh;
1275 struct ieee80211_node *ni;
1276 struct mbuf *m0;
1277
1278 for (;;) {
1279 IF_POLL(&ic->ic_mgtq, m0);
1280 if (m0 != NULL) {
1281 if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
1282 ifp->if_flags |= IFF_OACTIVE;
1283 break;
1284 }
1285 IF_DEQUEUE(&ic->ic_mgtq, m0);
1286
1287 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1288 m0->m_pkthdr.rcvif = NULL;
1289 #if NBPFILTER > 0
1290 if (ic->ic_rawbpf != NULL)
1291 bpf_mtap(ic->ic_rawbpf, m0);
1292 #endif
1293 if (rum_tx_mgt(sc, m0, ni) != 0)
1294 break;
1295
1296 } else {
1297 if (ic->ic_state != IEEE80211_S_RUN)
1298 break;
1299 IFQ_POLL(&ifp->if_snd, m0);
1300 if (m0 == NULL)
1301 break;
1302 if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
1303 ifp->if_flags |= IFF_OACTIVE;
1304 break;
1305 }
1306 IFQ_DEQUEUE(&ifp->if_snd, m0);
1307 if (m0->m_len < sizeof(struct ether_header) &&
1308 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1309 continue;
1310
1311 eh = mtod(m0, struct ether_header *);
1312 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1313 if (ni == NULL) {
1314 m_freem(m0);
1315 continue;
1316 }
1317 #if NBPFILTER > 0
1318 if (ifp->if_bpf != NULL)
1319 bpf_mtap(ifp->if_bpf, m0);
1320 #endif
1321 m0 = ieee80211_encap(ic, m0, ni);
1322 if (m0 == NULL) {
1323 ieee80211_free_node(ni);
1324 continue;
1325 }
1326 #if NBPFILTER > 0
1327 if (ic->ic_rawbpf != NULL)
1328 bpf_mtap(ic->ic_rawbpf, m0);
1329 #endif
1330 if (rum_tx_data(sc, m0, ni) != 0) {
1331 ieee80211_free_node(ni);
1332 ifp->if_oerrors++;
1333 break;
1334 }
1335 }
1336
1337 sc->sc_tx_timer = 5;
1338 ifp->if_timer = 1;
1339 }
1340 }
1341
1342 Static void
1343 rum_watchdog(struct ifnet *ifp)
1344 {
1345 struct rum_softc *sc = ifp->if_softc;
1346 struct ieee80211com *ic = &sc->sc_ic;
1347
1348 ifp->if_timer = 0;
1349
1350 if (sc->sc_tx_timer > 0) {
1351 if (--sc->sc_tx_timer == 0) {
1352 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1353 /*rum_init(ifp); XXX needs a process context! */
1354 ifp->if_oerrors++;
1355 return;
1356 }
1357 ifp->if_timer = 1;
1358 }
1359
1360 ieee80211_watchdog(ic);
1361 }
1362
1363 Static int
1364 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1365 {
1366 struct rum_softc *sc = ifp->if_softc;
1367 struct ieee80211com *ic = &sc->sc_ic;
1368 int s, error = 0;
1369
1370 s = splnet();
1371
1372 switch (cmd) {
1373 case SIOCSIFFLAGS:
1374 if (ifp->if_flags & IFF_UP) {
1375 if (ifp->if_flags & IFF_RUNNING)
1376 rum_update_promisc(sc);
1377 else
1378 rum_init(ifp);
1379 } else {
1380 if (ifp->if_flags & IFF_RUNNING)
1381 rum_stop(ifp, 1);
1382 }
1383 break;
1384
1385 default:
1386 error = ieee80211_ioctl(ic, cmd, data);
1387 }
1388
1389 if (error == ENETRESET) {
1390 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1391 (IFF_UP | IFF_RUNNING))
1392 rum_init(ifp);
1393 error = 0;
1394 }
1395
1396 splx(s);
1397
1398 return error;
1399 }
1400
1401 Static void
1402 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1403 {
1404 usb_device_request_t req;
1405 usbd_status error;
1406
1407 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1408 req.bRequest = RT2573_READ_EEPROM;
1409 USETW(req.wValue, 0);
1410 USETW(req.wIndex, addr);
1411 USETW(req.wLength, len);
1412
1413 error = usbd_do_request(sc->sc_udev, &req, buf);
1414 if (error != 0) {
1415 printf("%s: could not read EEPROM: %s\n",
1416 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1417 }
1418 }
1419
1420 Static uint32_t
1421 rum_read(struct rum_softc *sc, uint16_t reg)
1422 {
1423 uint32_t val;
1424
1425 rum_read_multi(sc, reg, &val, sizeof val);
1426
1427 return le32toh(val);
1428 }
1429
1430 Static void
1431 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1432 {
1433 usb_device_request_t req;
1434 usbd_status error;
1435
1436 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1437 req.bRequest = RT2573_READ_MULTI_MAC;
1438 USETW(req.wValue, 0);
1439 USETW(req.wIndex, reg);
1440 USETW(req.wLength, len);
1441
1442 error = usbd_do_request(sc->sc_udev, &req, buf);
1443 if (error != 0) {
1444 printf("%s: could not multi read MAC register: %s\n",
1445 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1446 }
1447 }
1448
1449 Static void
1450 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1451 {
1452 uint32_t tmp = htole32(val);
1453
1454 rum_write_multi(sc, reg, &tmp, sizeof tmp);
1455 }
1456
1457 Static void
1458 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1459 {
1460 usb_device_request_t req;
1461 usbd_status error;
1462
1463 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1464 req.bRequest = RT2573_WRITE_MULTI_MAC;
1465 USETW(req.wValue, 0);
1466 USETW(req.wIndex, reg);
1467 USETW(req.wLength, len);
1468
1469 error = usbd_do_request(sc->sc_udev, &req, buf);
1470 if (error != 0) {
1471 printf("%s: could not multi write MAC register: %s\n",
1472 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1473 }
1474 }
1475
1476 Static void
1477 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1478 {
1479 uint32_t tmp;
1480 int ntries;
1481
1482 for (ntries = 0; ntries < 5; ntries++) {
1483 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1484 break;
1485 }
1486 if (ntries == 5) {
1487 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1488 return;
1489 }
1490
1491 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1492 rum_write(sc, RT2573_PHY_CSR3, tmp);
1493 }
1494
1495 Static uint8_t
1496 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1497 {
1498 uint32_t val;
1499 int ntries;
1500
1501 for (ntries = 0; ntries < 5; ntries++) {
1502 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1503 break;
1504 }
1505 if (ntries == 5) {
1506 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1507 return 0;
1508 }
1509
1510 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1511 rum_write(sc, RT2573_PHY_CSR3, val);
1512
1513 for (ntries = 0; ntries < 100; ntries++) {
1514 val = rum_read(sc, RT2573_PHY_CSR3);
1515 if (!(val & RT2573_BBP_BUSY))
1516 return val & 0xff;
1517 DELAY(1);
1518 }
1519
1520 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1521 return 0;
1522 }
1523
1524 Static void
1525 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1526 {
1527 uint32_t tmp;
1528 int ntries;
1529
1530 for (ntries = 0; ntries < 5; ntries++) {
1531 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1532 break;
1533 }
1534 if (ntries == 5) {
1535 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1536 return;
1537 }
1538
1539 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1540 (reg & 3);
1541 rum_write(sc, RT2573_PHY_CSR4, tmp);
1542
1543 /* remember last written value in sc */
1544 sc->rf_regs[reg] = val;
1545
1546 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1547 }
1548
1549 Static void
1550 rum_select_antenna(struct rum_softc *sc)
1551 {
1552 uint8_t bbp4, bbp77;
1553 uint32_t tmp;
1554
1555 bbp4 = rum_bbp_read(sc, 4);
1556 bbp77 = rum_bbp_read(sc, 77);
1557
1558 /* TBD */
1559
1560 /* make sure Rx is disabled before switching antenna */
1561 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1562 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1563
1564 rum_bbp_write(sc, 4, bbp4);
1565 rum_bbp_write(sc, 77, bbp77);
1566
1567 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1568 }
1569
1570 /*
1571 * Enable multi-rate retries for frames sent at OFDM rates.
1572 * In 802.11b/g mode, allow fallback to CCK rates.
1573 */
1574 Static void
1575 rum_enable_mrr(struct rum_softc *sc)
1576 {
1577 struct ieee80211com *ic = &sc->sc_ic;
1578 uint32_t tmp;
1579
1580 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1581
1582 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1583 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1584 tmp |= RT2573_MRR_CCK_FALLBACK;
1585 tmp |= RT2573_MRR_ENABLED;
1586
1587 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1588 }
1589
1590 Static void
1591 rum_set_txpreamble(struct rum_softc *sc)
1592 {
1593 uint32_t tmp;
1594
1595 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1596
1597 tmp &= ~RT2573_SHORT_PREAMBLE;
1598 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1599 tmp |= RT2573_SHORT_PREAMBLE;
1600
1601 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1602 }
1603
1604 Static void
1605 rum_set_basicrates(struct rum_softc *sc)
1606 {
1607 struct ieee80211com *ic = &sc->sc_ic;
1608
1609 /* update basic rate set */
1610 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1611 /* 11b basic rates: 1, 2Mbps */
1612 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1613 } else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1614 /* 11a basic rates: 6, 12, 24Mbps */
1615 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1616 } else {
1617 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1618 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1619 }
1620 }
1621
1622 /*
1623 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1624 * driver.
1625 */
1626 Static void
1627 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1628 {
1629 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1630 uint32_t tmp;
1631
1632 /* update all BBP registers that depend on the band */
1633 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1634 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1635 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1636 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1637 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1638 }
1639 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1640 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1641 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1642 }
1643
1644 sc->bbp17 = bbp17;
1645 rum_bbp_write(sc, 17, bbp17);
1646 rum_bbp_write(sc, 96, bbp96);
1647 rum_bbp_write(sc, 104, bbp104);
1648
1649 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1650 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1651 rum_bbp_write(sc, 75, 0x80);
1652 rum_bbp_write(sc, 86, 0x80);
1653 rum_bbp_write(sc, 88, 0x80);
1654 }
1655
1656 rum_bbp_write(sc, 35, bbp35);
1657 rum_bbp_write(sc, 97, bbp97);
1658 rum_bbp_write(sc, 98, bbp98);
1659
1660 tmp = rum_read(sc, RT2573_PHY_CSR0);
1661 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1662 if (IEEE80211_IS_CHAN_2GHZ(c))
1663 tmp |= RT2573_PA_PE_2GHZ;
1664 else
1665 tmp |= RT2573_PA_PE_5GHZ;
1666 rum_write(sc, RT2573_PHY_CSR0, tmp);
1667
1668 /* 802.11a uses a 16 microseconds short interframe space */
1669 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1670 }
1671
1672 Static void
1673 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1674 {
1675 struct ieee80211com *ic = &sc->sc_ic;
1676 const struct rfprog *rfprog;
1677 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1678 int8_t power;
1679 u_int i, chan;
1680
1681 chan = ieee80211_chan2ieee(ic, c);
1682 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1683 return;
1684
1685 /* select the appropriate RF settings based on what EEPROM says */
1686 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1687 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1688
1689 /* find the settings for this channel (we know it exists) */
1690 for (i = 0; rfprog[i].chan != chan; i++);
1691
1692 power = sc->txpow[i];
1693 if (power < 0) {
1694 bbp94 += power;
1695 power = 0;
1696 } else if (power > 31) {
1697 bbp94 += power - 31;
1698 power = 31;
1699 }
1700
1701 /*
1702 * If we are switching from the 2GHz band to the 5GHz band or
1703 * vice-versa, BBP registers need to be reprogrammed.
1704 */
1705 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1706 rum_select_band(sc, c);
1707 rum_select_antenna(sc);
1708 }
1709 ic->ic_curchan = c;
1710
1711 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1712 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1713 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1714 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1715
1716 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1717 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1718 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1719 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1720
1721 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1722 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1723 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1724 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1725
1726 DELAY(10);
1727
1728 /* enable smart mode for MIMO-capable RFs */
1729 bbp3 = rum_bbp_read(sc, 3);
1730
1731 bbp3 &= ~RT2573_SMART_MODE;
1732 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1733 bbp3 |= RT2573_SMART_MODE;
1734
1735 rum_bbp_write(sc, 3, bbp3);
1736
1737 if (bbp94 != RT2573_BBPR94_DEFAULT)
1738 rum_bbp_write(sc, 94, bbp94);
1739 }
1740
1741 /*
1742 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1743 * and HostAP operating modes.
1744 */
1745 Static void
1746 rum_enable_tsf_sync(struct rum_softc *sc)
1747 {
1748 struct ieee80211com *ic = &sc->sc_ic;
1749 uint32_t tmp;
1750
1751 if (ic->ic_opmode != IEEE80211_M_STA) {
1752 /*
1753 * Change default 16ms TBTT adjustment to 8ms.
1754 * Must be done before enabling beacon generation.
1755 */
1756 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1757 }
1758
1759 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1760
1761 /* set beacon interval (in 1/16ms unit) */
1762 tmp |= ic->ic_bss->ni_intval * 16;
1763
1764 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1765 if (ic->ic_opmode == IEEE80211_M_STA)
1766 tmp |= RT2573_TSF_MODE(1);
1767 else
1768 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1769
1770 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1771 }
1772
1773 Static void
1774 rum_update_slot(struct rum_softc *sc)
1775 {
1776 struct ieee80211com *ic = &sc->sc_ic;
1777 uint8_t slottime;
1778 uint32_t tmp;
1779
1780 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1781
1782 tmp = rum_read(sc, RT2573_MAC_CSR9);
1783 tmp = (tmp & ~0xff) | slottime;
1784 rum_write(sc, RT2573_MAC_CSR9, tmp);
1785
1786 DPRINTF(("setting slot time to %uus\n", slottime));
1787 }
1788
1789 Static void
1790 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1791 {
1792 uint32_t tmp;
1793
1794 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1795 rum_write(sc, RT2573_MAC_CSR4, tmp);
1796
1797 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1798 rum_write(sc, RT2573_MAC_CSR5, tmp);
1799 }
1800
1801 Static void
1802 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1803 {
1804 uint32_t tmp;
1805
1806 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1807 rum_write(sc, RT2573_MAC_CSR2, tmp);
1808
1809 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1810 rum_write(sc, RT2573_MAC_CSR3, tmp);
1811 }
1812
1813 Static void
1814 rum_update_promisc(struct rum_softc *sc)
1815 {
1816 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1817 uint32_t tmp;
1818
1819 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1820
1821 tmp &= ~RT2573_DROP_NOT_TO_ME;
1822 if (!(ifp->if_flags & IFF_PROMISC))
1823 tmp |= RT2573_DROP_NOT_TO_ME;
1824
1825 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1826
1827 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1828 "entering" : "leaving"));
1829 }
1830
1831 Static const char *
1832 rum_get_rf(int rev)
1833 {
1834 switch (rev) {
1835 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1836 case RT2573_RF_2528: return "RT2528";
1837 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1838 case RT2573_RF_5226: return "RT5226";
1839 default: return "unknown";
1840 }
1841 }
1842
1843 Static void
1844 rum_read_eeprom(struct rum_softc *sc)
1845 {
1846 struct ieee80211com *ic = &sc->sc_ic;
1847 uint16_t val;
1848 #ifdef RUM_DEBUG
1849 int i;
1850 #endif
1851
1852 /* read MAC/BBP type */
1853 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1854 sc->macbbp_rev = le16toh(val);
1855
1856 /* read MAC address */
1857 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1858
1859 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1860 val = le16toh(val);
1861 sc->rf_rev = (val >> 11) & 0x1f;
1862 sc->hw_radio = (val >> 10) & 0x1;
1863 sc->rx_ant = (val >> 4) & 0x3;
1864 sc->tx_ant = (val >> 2) & 0x3;
1865 sc->nb_ant = val & 0x3;
1866
1867 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1868
1869 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1870 val = le16toh(val);
1871 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1872 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1873
1874 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1875 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1876
1877 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1878 val = le16toh(val);
1879 if ((val & 0xff) != 0xff)
1880 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1881
1882 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1883 val = le16toh(val);
1884 if ((val & 0xff) != 0xff)
1885 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1886
1887 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1888 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1889
1890 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1891 val = le16toh(val);
1892 if ((val & 0xff) != 0xff)
1893 sc->rffreq = val & 0xff;
1894
1895 DPRINTF(("RF freq=%d\n", sc->rffreq));
1896
1897 /* read Tx power for all a/b/g channels */
1898 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1899 /* XXX default Tx power for 802.11a channels */
1900 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1901 #ifdef RUM_DEBUG
1902 for (i = 0; i < 14; i++)
1903 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1904 #endif
1905
1906 /* read default values for BBP registers */
1907 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1908 #ifdef RUM_DEBUG
1909 for (i = 0; i < 14; i++) {
1910 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1911 continue;
1912 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1913 sc->bbp_prom[i].val));
1914 }
1915 #endif
1916 }
1917
1918 Static int
1919 rum_bbp_init(struct rum_softc *sc)
1920 {
1921 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1922 int i, ntries;
1923 uint8_t val;
1924
1925 /* wait for BBP to be ready */
1926 for (ntries = 0; ntries < 100; ntries++) {
1927 val = rum_bbp_read(sc, 0);
1928 if (val != 0 && val != 0xff)
1929 break;
1930 DELAY(1000);
1931 }
1932 if (ntries == 100) {
1933 printf("%s: timeout waiting for BBP\n",
1934 USBDEVNAME(sc->sc_dev));
1935 return EIO;
1936 }
1937
1938 /* initialize BBP registers to default values */
1939 for (i = 0; i < N(rum_def_bbp); i++)
1940 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1941
1942 /* write vendor-specific BBP values (from EEPROM) */
1943 for (i = 0; i < 16; i++) {
1944 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1945 continue;
1946 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1947 }
1948
1949 return 0;
1950 #undef N
1951 }
1952
1953 Static int
1954 rum_init(struct ifnet *ifp)
1955 {
1956 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1957 struct rum_softc *sc = ifp->if_softc;
1958 struct ieee80211com *ic = &sc->sc_ic;
1959 struct rum_rx_data *data;
1960 uint32_t tmp;
1961 usbd_status error = 0;
1962 int i, ntries;
1963
1964 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1965 if (rum_attachhook(sc))
1966 goto fail;
1967 }
1968
1969 rum_stop(ifp, 0);
1970
1971 /* initialize MAC registers to default values */
1972 for (i = 0; i < N(rum_def_mac); i++)
1973 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1974
1975 /* set host ready */
1976 rum_write(sc, RT2573_MAC_CSR1, 3);
1977 rum_write(sc, RT2573_MAC_CSR1, 0);
1978
1979 /* wait for BBP/RF to wakeup */
1980 for (ntries = 0; ntries < 1000; ntries++) {
1981 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1982 break;
1983 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1984 DELAY(1000);
1985 }
1986 if (ntries == 1000) {
1987 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1988 USBDEVNAME(sc->sc_dev));
1989 goto fail;
1990 }
1991
1992 if ((error = rum_bbp_init(sc)) != 0)
1993 goto fail;
1994
1995 /* select default channel */
1996 rum_select_band(sc, ic->ic_curchan);
1997 rum_select_antenna(sc);
1998 rum_set_chan(sc, ic->ic_curchan);
1999
2000 /* clear STA registers */
2001 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2002
2003 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2004 rum_set_macaddr(sc, ic->ic_myaddr);
2005
2006 /* initialize ASIC */
2007 rum_write(sc, RT2573_MAC_CSR1, 4);
2008
2009 /*
2010 * Allocate xfer for AMRR statistics requests.
2011 */
2012 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2013 if (sc->amrr_xfer == NULL) {
2014 printf("%s: could not allocate AMRR xfer\n",
2015 USBDEVNAME(sc->sc_dev));
2016 goto fail;
2017 }
2018
2019 /*
2020 * Open Tx and Rx USB bulk pipes.
2021 */
2022 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2023 &sc->sc_tx_pipeh);
2024 if (error != 0) {
2025 printf("%s: could not open Tx pipe: %s\n",
2026 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2027 goto fail;
2028 }
2029
2030 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2031 &sc->sc_rx_pipeh);
2032 if (error != 0) {
2033 printf("%s: could not open Rx pipe: %s\n",
2034 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2035 goto fail;
2036 }
2037
2038 /*
2039 * Allocate Tx and Rx xfer queues.
2040 */
2041 error = rum_alloc_tx_list(sc);
2042 if (error != 0) {
2043 printf("%s: could not allocate Tx list\n",
2044 USBDEVNAME(sc->sc_dev));
2045 goto fail;
2046 }
2047
2048 error = rum_alloc_rx_list(sc);
2049 if (error != 0) {
2050 printf("%s: could not allocate Rx list\n",
2051 USBDEVNAME(sc->sc_dev));
2052 goto fail;
2053 }
2054
2055 /*
2056 * Start up the receive pipe.
2057 */
2058 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2059 data = &sc->rx_data[i];
2060
2061 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2062 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2063 error = usbd_transfer(data->xfer);
2064 if (error != USBD_NORMAL_COMPLETION &&
2065 error != USBD_IN_PROGRESS) {
2066 printf("%s: could not queue Rx transfer\n",
2067 USBDEVNAME(sc->sc_dev));
2068 goto fail;
2069 }
2070 }
2071
2072 /* update Rx filter */
2073 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2074
2075 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2076 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2077 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2078 RT2573_DROP_ACKCTS;
2079 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2080 tmp |= RT2573_DROP_TODS;
2081 if (!(ifp->if_flags & IFF_PROMISC))
2082 tmp |= RT2573_DROP_NOT_TO_ME;
2083 }
2084 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2085
2086 ifp->if_flags &= ~IFF_OACTIVE;
2087 ifp->if_flags |= IFF_RUNNING;
2088
2089 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2090 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2091 else
2092 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2093
2094 return 0;
2095
2096 fail: rum_stop(ifp, 1);
2097 return error;
2098 #undef N
2099 }
2100
2101 Static void
2102 rum_stop(struct ifnet *ifp, int disable)
2103 {
2104 struct rum_softc *sc = ifp->if_softc;
2105 struct ieee80211com *ic = &sc->sc_ic;
2106 uint32_t tmp;
2107
2108 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2109
2110 sc->sc_tx_timer = 0;
2111 ifp->if_timer = 0;
2112 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2113
2114 /* disable Rx */
2115 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2116 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2117
2118 /* reset ASIC */
2119 rum_write(sc, RT2573_MAC_CSR1, 3);
2120 rum_write(sc, RT2573_MAC_CSR1, 0);
2121
2122 if (sc->sc_rx_pipeh != NULL) {
2123 usbd_abort_pipe(sc->sc_rx_pipeh);
2124 usbd_close_pipe(sc->sc_rx_pipeh);
2125 sc->sc_rx_pipeh = NULL;
2126 }
2127
2128 if (sc->sc_tx_pipeh != NULL) {
2129 usbd_abort_pipe(sc->sc_tx_pipeh);
2130 usbd_close_pipe(sc->sc_tx_pipeh);
2131 sc->sc_tx_pipeh = NULL;
2132 }
2133
2134 rum_free_rx_list(sc);
2135 rum_free_tx_list(sc);
2136 }
2137
2138 Static int
2139 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2140 {
2141 usb_device_request_t req;
2142 uint16_t reg = RT2573_MCU_CODE_BASE;
2143 usbd_status error;
2144
2145 /* copy firmware image into NIC */
2146 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2147 rum_write(sc, reg, UGETDW(ucode));
2148
2149 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2150 req.bRequest = RT2573_MCU_CNTL;
2151 USETW(req.wValue, RT2573_MCU_RUN);
2152 USETW(req.wIndex, 0);
2153 USETW(req.wLength, 0);
2154
2155 error = usbd_do_request(sc->sc_udev, &req, NULL);
2156 if (error != 0) {
2157 printf("%s: could not run firmware: %s\n",
2158 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2159 }
2160 return error;
2161 }
2162
2163 Static int
2164 rum_prepare_beacon(struct rum_softc *sc)
2165 {
2166 struct ieee80211com *ic = &sc->sc_ic;
2167 struct rum_tx_desc desc;
2168 struct mbuf *m0;
2169 int rate;
2170
2171 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2172 if (m0 == NULL) {
2173 aprint_error_dev(sc->sc_dev,
2174 "could not allocate beacon frame\n");
2175 return ENOBUFS;
2176 }
2177
2178 /* send beacons at the lowest available rate */
2179 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2180
2181 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2182 m0->m_pkthdr.len, rate);
2183
2184 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2185 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2186
2187 /* copy beacon header and payload into NIC memory */
2188 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2189 m0->m_pkthdr.len);
2190
2191 m_freem(m0);
2192
2193 return 0;
2194 }
2195
2196 Static void
2197 rum_newassoc(struct ieee80211_node *ni, int isnew)
2198 {
2199 /* start with lowest Tx rate */
2200 ni->ni_txrate = 0;
2201 }
2202
2203 Static void
2204 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2205 {
2206 int i;
2207
2208 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2209 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2210
2211 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2212
2213 /* set rate to some reasonable initial value */
2214 for (i = ni->ni_rates.rs_nrates - 1;
2215 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2216 i--);
2217 ni->ni_txrate = i;
2218
2219 usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2220 }
2221
2222 Static void
2223 rum_amrr_timeout(void *arg)
2224 {
2225 struct rum_softc *sc = arg;
2226 usb_device_request_t req;
2227
2228 /*
2229 * Asynchronously read statistic registers (cleared by read).
2230 */
2231 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2232 req.bRequest = RT2573_READ_MULTI_MAC;
2233 USETW(req.wValue, 0);
2234 USETW(req.wIndex, RT2573_STA_CSR0);
2235 USETW(req.wLength, sizeof sc->sta);
2236
2237 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2238 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2239 rum_amrr_update);
2240 (void)usbd_transfer(sc->amrr_xfer);
2241 }
2242
2243 Static void
2244 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2245 usbd_status status)
2246 {
2247 struct rum_softc *sc = (struct rum_softc *)priv;
2248 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2249
2250 if (status != USBD_NORMAL_COMPLETION) {
2251 printf("%s: could not retrieve Tx statistics - cancelling "
2252 "automatic rate control\n", USBDEVNAME(sc->sc_dev));
2253 return;
2254 }
2255
2256 /* count TX retry-fail as Tx errors */
2257 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2258
2259 sc->amn.amn_retrycnt =
2260 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2261 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2262 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2263
2264 sc->amn.amn_txcnt =
2265 sc->amn.amn_retrycnt +
2266 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2267
2268 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2269
2270 usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2271 }
2272
2273 int
2274 rum_activate(device_ptr_t self, enum devact act)
2275 {
2276 switch (act) {
2277 case DVACT_ACTIVATE:
2278 return EOPNOTSUPP;
2279
2280 case DVACT_DEACTIVATE:
2281 /*if_deactivate(&sc->sc_ic.ic_if);*/
2282 break;
2283 }
2284
2285 return 0;
2286 }
2287