if_rum.c revision 1.3.2.3 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.3.2.3 2007/05/12 17:08:13 snj Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.3.2.3 2007/05/12 17:08:13 snj Exp $");
28
29 #include "bpfilter.h"
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41
42 #include <machine/bus.h>
43 #include <machine/endian.h>
44 #include <machine/intr.h>
45
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/firmload.h>
67
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72
73 #include <dev/usb/if_rumreg.h>
74 #include <dev/usb/if_rumvar.h>
75
76 #ifdef USB_DEBUG
77 #define RUM_DEBUG
78 #endif
79
80 #ifdef RUM_DEBUG
81 #define DPRINTF(x) do { if (rum_debug) logprintf x; } while (0)
82 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) logprintf x; } while (0)
83 int rum_debug = 0;
84 #else
85 #define DPRINTF(x)
86 #define DPRINTFN(n, x)
87 #endif
88
89 /* various supported device vendors/products */
90 static const struct usb_devno rum_devs[] = {
91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573 },
92 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
93 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
94 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
95 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
96 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
97 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
98 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
99 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
100 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
101 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
102 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
103 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
104 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
105 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
106 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
107 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
108 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
109 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
110 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
111 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
112 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2573 },
113 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
114 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
115 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
116 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }
117 };
118
119 Static int rum_attachhook(void *);
120 Static int rum_alloc_tx_list(struct rum_softc *);
121 Static void rum_free_tx_list(struct rum_softc *);
122 Static int rum_alloc_rx_list(struct rum_softc *);
123 Static void rum_free_rx_list(struct rum_softc *);
124 Static int rum_media_change(struct ifnet *);
125 Static void rum_next_scan(void *);
126 Static void rum_task(void *);
127 Static int rum_newstate(struct ieee80211com *,
128 enum ieee80211_state, int);
129 Static void rum_txeof(usbd_xfer_handle, usbd_private_handle,
130 usbd_status);
131 Static void rum_rxeof(usbd_xfer_handle, usbd_private_handle,
132 usbd_status);
133 #if NBPFILTER > 0
134 Static uint8_t rum_rxrate(struct rum_rx_desc *);
135 #endif
136 Static int rum_ack_rate(struct ieee80211com *, int);
137 Static uint16_t rum_txtime(int, int, uint32_t);
138 Static uint8_t rum_plcp_signal(int);
139 Static void rum_setup_tx_desc(struct rum_softc *,
140 struct rum_tx_desc *, uint32_t, uint16_t, int,
141 int);
142 Static int rum_tx_mgt(struct rum_softc *, struct mbuf *,
143 struct ieee80211_node *);
144 Static int rum_tx_data(struct rum_softc *, struct mbuf *,
145 struct ieee80211_node *);
146 Static void rum_start(struct ifnet *);
147 Static void rum_watchdog(struct ifnet *);
148 Static int rum_ioctl(struct ifnet *, u_long, caddr_t);
149 Static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
150 int);
151 Static uint32_t rum_read(struct rum_softc *, uint16_t);
152 Static void rum_read_multi(struct rum_softc *, uint16_t, void *,
153 int);
154 Static void rum_write(struct rum_softc *, uint16_t, uint32_t);
155 Static void rum_write_multi(struct rum_softc *, uint16_t, void *,
156 size_t);
157 Static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
158 Static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
159 Static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
160 Static void rum_select_antenna(struct rum_softc *);
161 Static void rum_enable_mrr(struct rum_softc *);
162 Static void rum_set_txpreamble(struct rum_softc *);
163 Static void rum_set_basicrates(struct rum_softc *);
164 Static void rum_select_band(struct rum_softc *,
165 struct ieee80211_channel *);
166 Static void rum_set_chan(struct rum_softc *,
167 struct ieee80211_channel *);
168 Static void rum_enable_tsf_sync(struct rum_softc *);
169 Static void rum_update_slot(struct rum_softc *);
170 Static void rum_set_bssid(struct rum_softc *, const uint8_t *);
171 Static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
172 Static void rum_update_promisc(struct rum_softc *);
173 Static const char *rum_get_rf(int);
174 Static void rum_read_eeprom(struct rum_softc *);
175 Static int rum_bbp_init(struct rum_softc *);
176 Static int rum_init(struct ifnet *);
177 Static void rum_stop(struct ifnet *, int);
178 Static int rum_load_microcode(struct rum_softc *, const u_char *,
179 size_t);
180 Static int rum_prepare_beacon(struct rum_softc *);
181 Static void rum_amrr_start(struct rum_softc *,
182 struct ieee80211_node *);
183 Static void rum_amrr_timeout(void *);
184 Static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
185 usbd_status status);
186
187 /*
188 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
189 */
190 static const struct ieee80211_rateset rum_rateset_11a =
191 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
192
193 static const struct ieee80211_rateset rum_rateset_11b =
194 { 4, { 2, 4, 11, 22 } };
195
196 static const struct ieee80211_rateset rum_rateset_11g =
197 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
198
199 static const struct {
200 uint32_t reg;
201 uint32_t val;
202 } rum_def_mac[] = {
203 RT2573_DEF_MAC
204 };
205
206 static const struct {
207 uint8_t reg;
208 uint8_t val;
209 } rum_def_bbp[] = {
210 RT2573_DEF_BBP
211 };
212
213 static const struct rfprog {
214 uint8_t chan;
215 uint32_t r1, r2, r3, r4;
216 } rum_rf5226[] = {
217 RT2573_RF5226
218 }, rum_rf5225[] = {
219 RT2573_RF5225
220 };
221
222 USB_DECLARE_DRIVER(rum);
223
224 USB_MATCH(rum)
225 {
226 USB_MATCH_START(rum, uaa);
227
228 if (uaa->iface != NULL)
229 return UMATCH_NONE;
230
231 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
232 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
233 }
234
235 Static int
236 rum_attachhook(void *xsc)
237 {
238 struct rum_softc *sc = xsc;
239 firmware_handle_t fwh;
240 const char *name = "rum-rt2573";
241 u_char *ucode;
242 size_t size;
243 int error;
244
245 if ((error = firmware_open("rum", name, &fwh)) != 0) {
246 printf("%s: failed loadfirmware of file %s (error %d)\n",
247 USBDEVNAME(sc->sc_dev), name, error);
248 return error;
249 }
250 size = firmware_get_size(fwh);
251 ucode = firmware_malloc(size);
252 if (ucode == NULL) {
253 printf("%s: failed to allocate firmware memory\n",
254 USBDEVNAME(sc->sc_dev));
255 firmware_close(fwh);
256 return ENOMEM;;
257 }
258 error = firmware_read(fwh, 0, ucode, size);
259 firmware_close(fwh);
260 if (error != 0) {
261 printf("%s: failed to read firmware (error %d)\n",
262 USBDEVNAME(sc->sc_dev), error);
263 firmware_free(ucode, 0);
264 return error;
265 }
266
267 if (rum_load_microcode(sc, ucode, size) != 0) {
268 printf("%s: could not load 8051 microcode\n",
269 USBDEVNAME(sc->sc_dev));
270 firmware_free(ucode, 0);
271 return ENXIO;
272 }
273
274 firmware_free(ucode, 0);
275 sc->sc_flags |= RT2573_FWLOADED;
276
277 return 0;
278 }
279
280 USB_ATTACH(rum)
281 {
282 USB_ATTACH_START(rum, sc, uaa);
283 struct ieee80211com *ic = &sc->sc_ic;
284 struct ifnet *ifp = &sc->sc_if;
285 usb_interface_descriptor_t *id;
286 usb_endpoint_descriptor_t *ed;
287 usbd_status error;
288 char *devinfop;
289 int i, ntries;
290 uint32_t tmp;
291
292 sc->sc_udev = uaa->device;
293 sc->sc_flags = 0;
294
295 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
296 USB_ATTACH_SETUP;
297 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
298 usbd_devinfo_free(devinfop);
299
300 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
301 printf("%s: could not set configuration no\n",
302 USBDEVNAME(sc->sc_dev));
303 USB_ATTACH_ERROR_RETURN;
304 }
305
306 /* get the first interface handle */
307 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
308 &sc->sc_iface);
309 if (error != 0) {
310 printf("%s: could not get interface handle\n",
311 USBDEVNAME(sc->sc_dev));
312 USB_ATTACH_ERROR_RETURN;
313 }
314
315 /*
316 * Find endpoints.
317 */
318 id = usbd_get_interface_descriptor(sc->sc_iface);
319
320 sc->sc_rx_no = sc->sc_tx_no = -1;
321 for (i = 0; i < id->bNumEndpoints; i++) {
322 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
323 if (ed == NULL) {
324 printf("%s: no endpoint descriptor for iface %d\n",
325 USBDEVNAME(sc->sc_dev), i);
326 USB_ATTACH_ERROR_RETURN;
327 }
328
329 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
330 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
331 sc->sc_rx_no = ed->bEndpointAddress;
332 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
333 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
334 sc->sc_tx_no = ed->bEndpointAddress;
335 }
336 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
337 printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
338 USB_ATTACH_ERROR_RETURN;
339 }
340
341 usb_init_task(&sc->sc_task, rum_task, sc);
342 callout_init(&sc->scan_ch);
343
344 sc->amrr.amrr_min_success_threshold = 1;
345 sc->amrr.amrr_max_success_threshold = 10;
346 callout_init(&sc->amrr_ch);
347
348 /* retrieve RT2573 rev. no */
349 for (ntries = 0; ntries < 1000; ntries++) {
350 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
351 break;
352 DELAY(1000);
353 }
354 if (ntries == 1000) {
355 printf("%s: timeout waiting for chip to settle\n",
356 USBDEVNAME(sc->sc_dev));
357 USB_ATTACH_ERROR_RETURN;
358 }
359
360 /* retrieve MAC address and various other things from EEPROM */
361 rum_read_eeprom(sc);
362
363 printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
364 USBDEVNAME(sc->sc_dev), sc->macbbp_rev, tmp,
365 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
366
367 ic->ic_ifp = ifp;
368 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
369 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
370 ic->ic_state = IEEE80211_S_INIT;
371
372 /* set device capabilities */
373 ic->ic_caps =
374 IEEE80211_C_IBSS | /* IBSS mode supported */
375 IEEE80211_C_MONITOR | /* monitor mode supported */
376 IEEE80211_C_HOSTAP | /* HostAp mode supported */
377 IEEE80211_C_TXPMGT | /* tx power management */
378 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
379 IEEE80211_C_SHSLOT | /* short slot time supported */
380 IEEE80211_C_WPA; /* 802.11i */
381
382 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
383 /* set supported .11a rates */
384 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
385
386 /* set supported .11a channels */
387 for (i = 34; i <= 46; i += 4) {
388 ic->ic_channels[i].ic_freq =
389 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
390 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
391 }
392 for (i = 36; i <= 64; i += 4) {
393 ic->ic_channels[i].ic_freq =
394 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
395 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
396 }
397 for (i = 100; i <= 140; i += 4) {
398 ic->ic_channels[i].ic_freq =
399 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
400 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
401 }
402 for (i = 149; i <= 165; i += 4) {
403 ic->ic_channels[i].ic_freq =
404 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
405 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
406 }
407 }
408
409 /* set supported .11b and .11g rates */
410 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
411 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
412
413 /* set supported .11b and .11g channels (1 through 14) */
414 for (i = 1; i <= 14; i++) {
415 ic->ic_channels[i].ic_freq =
416 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
417 ic->ic_channels[i].ic_flags =
418 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
419 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
420 }
421
422 ifp->if_softc = sc;
423 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
424 ifp->if_init = rum_init;
425 ifp->if_ioctl = rum_ioctl;
426 ifp->if_start = rum_start;
427 ifp->if_watchdog = rum_watchdog;
428 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
429 IFQ_SET_READY(&ifp->if_snd);
430 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
431
432 if_attach(ifp);
433 ieee80211_ifattach(ic);
434
435 /* override state transition machine */
436 sc->sc_newstate = ic->ic_newstate;
437 ic->ic_newstate = rum_newstate;
438 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
439
440 #if NBPFILTER > 0
441 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
442 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf);
443
444 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
445 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
446 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
447
448 sc->sc_txtap_len = sizeof sc->sc_txtapu;
449 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
450 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
451 #endif
452
453 ieee80211_announce(ic);
454
455 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
456 USBDEV(sc->sc_dev));
457
458 USB_ATTACH_SUCCESS_RETURN;
459 }
460
461 USB_DETACH(rum)
462 {
463 USB_DETACH_START(rum, sc);
464 struct ieee80211com *ic = &sc->sc_ic;
465 struct ifnet *ifp = &sc->sc_if;
466 int s;
467
468 s = splusb();
469
470 rum_stop(ifp, 1);
471 usb_rem_task(sc->sc_udev, &sc->sc_task);
472 callout_stop(&sc->scan_ch);
473 callout_stop(&sc->amrr_ch);
474
475 if (sc->amrr_xfer != NULL) {
476 usbd_free_xfer(sc->amrr_xfer);
477 sc->amrr_xfer = NULL;
478 }
479
480 if (sc->sc_rx_pipeh != NULL) {
481 usbd_abort_pipe(sc->sc_rx_pipeh);
482 usbd_close_pipe(sc->sc_rx_pipeh);
483 }
484
485 if (sc->sc_tx_pipeh != NULL) {
486 usbd_abort_pipe(sc->sc_tx_pipeh);
487 usbd_close_pipe(sc->sc_tx_pipeh);
488 }
489
490 rum_free_rx_list(sc);
491 rum_free_tx_list(sc);
492
493 #if NBPFILTER > 0
494 bpfdetach(ifp);
495 #endif
496 ieee80211_ifdetach(ic); /* free all nodes */
497 if_detach(ifp);
498
499 splx(s);
500
501 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
502 USBDEV(sc->sc_dev));
503
504 return 0;
505 }
506
507 Static int
508 rum_alloc_tx_list(struct rum_softc *sc)
509 {
510 struct rum_tx_data *data;
511 int i, error;
512
513 sc->tx_queued = 0;
514
515 for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
516 data = &sc->tx_data[i];
517
518 data->sc = sc;
519
520 data->xfer = usbd_alloc_xfer(sc->sc_udev);
521 if (data->xfer == NULL) {
522 printf("%s: could not allocate tx xfer\n",
523 USBDEVNAME(sc->sc_dev));
524 error = ENOMEM;
525 goto fail;
526 }
527
528 data->buf = usbd_alloc_buffer(data->xfer,
529 RT2573_TX_DESC_SIZE + MCLBYTES);
530 if (data->buf == NULL) {
531 printf("%s: could not allocate tx buffer\n",
532 USBDEVNAME(sc->sc_dev));
533 error = ENOMEM;
534 goto fail;
535 }
536
537 /* clean Tx descriptor */
538 bzero(data->buf, RT2573_TX_DESC_SIZE);
539 }
540
541 return 0;
542
543 fail: rum_free_tx_list(sc);
544 return error;
545 }
546
547 Static void
548 rum_free_tx_list(struct rum_softc *sc)
549 {
550 struct rum_tx_data *data;
551 int i;
552
553 for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
554 data = &sc->tx_data[i];
555
556 if (data->xfer != NULL) {
557 usbd_free_xfer(data->xfer);
558 data->xfer = NULL;
559 }
560
561 if (data->ni != NULL) {
562 ieee80211_free_node(data->ni);
563 data->ni = NULL;
564 }
565 }
566 }
567
568 Static int
569 rum_alloc_rx_list(struct rum_softc *sc)
570 {
571 struct rum_rx_data *data;
572 int i, error;
573
574 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
575 data = &sc->rx_data[i];
576
577 data->sc = sc;
578
579 data->xfer = usbd_alloc_xfer(sc->sc_udev);
580 if (data->xfer == NULL) {
581 printf("%s: could not allocate rx xfer\n",
582 USBDEVNAME(sc->sc_dev));
583 error = ENOMEM;
584 goto fail;
585 }
586
587 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
588 printf("%s: could not allocate rx buffer\n",
589 USBDEVNAME(sc->sc_dev));
590 error = ENOMEM;
591 goto fail;
592 }
593
594 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
595 if (data->m == NULL) {
596 printf("%s: could not allocate rx mbuf\n",
597 USBDEVNAME(sc->sc_dev));
598 error = ENOMEM;
599 goto fail;
600 }
601
602 MCLGET(data->m, M_DONTWAIT);
603 if (!(data->m->m_flags & M_EXT)) {
604 printf("%s: could not allocate rx mbuf cluster\n",
605 USBDEVNAME(sc->sc_dev));
606 error = ENOMEM;
607 goto fail;
608 }
609
610 data->buf = mtod(data->m, uint8_t *);
611 }
612
613 return 0;
614
615 fail: rum_free_tx_list(sc);
616 return error;
617 }
618
619 Static void
620 rum_free_rx_list(struct rum_softc *sc)
621 {
622 struct rum_rx_data *data;
623 int i;
624
625 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
626 data = &sc->rx_data[i];
627
628 if (data->xfer != NULL) {
629 usbd_free_xfer(data->xfer);
630 data->xfer = NULL;
631 }
632
633 if (data->m != NULL) {
634 m_freem(data->m);
635 data->m = NULL;
636 }
637 }
638 }
639
640 Static int
641 rum_media_change(struct ifnet *ifp)
642 {
643 int error;
644
645 error = ieee80211_media_change(ifp);
646 if (error != ENETRESET)
647 return error;
648
649 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
650 rum_init(ifp);
651
652 return 0;
653 }
654
655 /*
656 * This function is called periodically (every 200ms) during scanning to
657 * switch from one channel to another.
658 */
659 Static void
660 rum_next_scan(void *arg)
661 {
662 struct rum_softc *sc = arg;
663 struct ieee80211com *ic = &sc->sc_ic;
664
665 if (ic->ic_state == IEEE80211_S_SCAN)
666 ieee80211_next_scan(ic);
667 }
668
669 Static void
670 rum_task(void *arg)
671 {
672 struct rum_softc *sc = arg;
673 struct ieee80211com *ic = &sc->sc_ic;
674 enum ieee80211_state ostate;
675 struct ieee80211_node *ni;
676 uint32_t tmp;
677
678 ostate = ic->ic_state;
679
680 switch (sc->sc_state) {
681 case IEEE80211_S_INIT:
682 if (ostate == IEEE80211_S_RUN) {
683 /* abort TSF synchronization */
684 tmp = rum_read(sc, RT2573_TXRX_CSR9);
685 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
686 }
687 break;
688
689 case IEEE80211_S_SCAN:
690 rum_set_chan(sc, ic->ic_curchan);
691 callout_reset(&sc->scan_ch, hz / 5, rum_next_scan, sc);
692 break;
693
694 case IEEE80211_S_AUTH:
695 rum_set_chan(sc, ic->ic_curchan);
696 break;
697
698 case IEEE80211_S_ASSOC:
699 rum_set_chan(sc, ic->ic_curchan);
700 break;
701
702 case IEEE80211_S_RUN:
703 rum_set_chan(sc, ic->ic_curchan);
704
705 ni = ic->ic_bss;
706
707 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
708 rum_update_slot(sc);
709 rum_enable_mrr(sc);
710 rum_set_txpreamble(sc);
711 rum_set_basicrates(sc);
712 rum_set_bssid(sc, ni->ni_bssid);
713 }
714
715 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
716 ic->ic_opmode == IEEE80211_M_IBSS)
717 rum_prepare_beacon(sc);
718
719 if (ic->ic_opmode != IEEE80211_M_MONITOR)
720 rum_enable_tsf_sync(sc);
721
722 /* enable automatic rate adaptation in STA mode */
723 if (ic->ic_opmode == IEEE80211_M_STA &&
724 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
725 rum_amrr_start(sc, ni);
726
727 break;
728 }
729
730 sc->sc_newstate(ic, sc->sc_state, -1);
731 }
732
733 Static int
734 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
735 {
736 struct rum_softc *sc = ic->ic_ifp->if_softc;
737
738 usb_rem_task(sc->sc_udev, &sc->sc_task);
739 callout_stop(&sc->scan_ch);
740 callout_stop(&sc->amrr_ch);
741
742 /* do it in a process context */
743 sc->sc_state = nstate;
744 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
745
746 return 0;
747 }
748
749 /* quickly determine if a given rate is CCK or OFDM */
750 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
751
752 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
753 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
754
755 Static void
756 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
757 {
758 struct rum_tx_data *data = priv;
759 struct rum_softc *sc = data->sc;
760 struct ifnet *ifp = &sc->sc_if;
761 int s;
762
763 if (status != USBD_NORMAL_COMPLETION) {
764 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
765 return;
766
767 printf("%s: could not transmit buffer: %s\n",
768 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
769
770 if (status == USBD_STALLED)
771 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
772
773 ifp->if_oerrors++;
774 return;
775 }
776
777 s = splnet();
778
779 m_freem(data->m);
780 data->m = NULL;
781 ieee80211_free_node(data->ni);
782 data->ni = NULL;
783
784 sc->tx_queued--;
785 ifp->if_opackets++;
786
787 DPRINTFN(10, ("tx done\n"));
788
789 sc->sc_tx_timer = 0;
790 ifp->if_flags &= ~IFF_OACTIVE;
791 rum_start(ifp);
792
793 splx(s);
794 }
795
796 Static void
797 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
798 {
799 struct rum_rx_data *data = priv;
800 struct rum_softc *sc = data->sc;
801 struct ieee80211com *ic = &sc->sc_ic;
802 struct ifnet *ifp = &sc->sc_if;
803 struct rum_rx_desc *desc;
804 struct ieee80211_frame *wh;
805 struct ieee80211_node *ni;
806 struct mbuf *mnew, *m;
807 int s, len;
808
809 if (status != USBD_NORMAL_COMPLETION) {
810 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
811 return;
812
813 if (status == USBD_STALLED)
814 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
815 goto skip;
816 }
817
818 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
819
820 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
821 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
822 len));
823 ifp->if_ierrors++;
824 goto skip;
825 }
826
827 desc = (struct rum_rx_desc *)data->buf;
828
829 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
830 /*
831 * This should not happen since we did not request to receive
832 * those frames when we filled RT2573_TXRX_CSR0.
833 */
834 DPRINTFN(5, ("CRC error\n"));
835 ifp->if_ierrors++;
836 goto skip;
837 }
838
839 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
840 if (mnew == NULL) {
841 printf("%s: could not allocate rx mbuf\n",
842 USBDEVNAME(sc->sc_dev));
843 ifp->if_ierrors++;
844 goto skip;
845 }
846
847 MCLGET(mnew, M_DONTWAIT);
848 if (!(mnew->m_flags & M_EXT)) {
849 printf("%s: could not allocate rx mbuf cluster\n",
850 USBDEVNAME(sc->sc_dev));
851 m_freem(mnew);
852 ifp->if_ierrors++;
853 goto skip;
854 }
855
856 m = data->m;
857 data->m = mnew;
858 data->buf = mtod(data->m, uint8_t *);
859
860 /* finalize mbuf */
861 m->m_pkthdr.rcvif = ifp;
862 m->m_data = (caddr_t)(desc + 1);
863 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
864
865 s = splnet();
866
867 #if NBPFILTER > 0
868 if (sc->sc_drvbpf != NULL) {
869 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
870
871 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
872 tap->wr_rate = rum_rxrate(desc);
873 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
874 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
875 tap->wr_antenna = sc->rx_ant;
876 tap->wr_antsignal = desc->rssi;
877
878 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
879 }
880 #endif
881
882 wh = mtod(m, struct ieee80211_frame *);
883 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
884
885 /* send the frame to the 802.11 layer */
886 ieee80211_input(ic, m, ni, desc->rssi, 0);
887
888 /* node is no longer needed */
889 ieee80211_free_node(ni);
890
891 splx(s);
892
893 DPRINTFN(15, ("rx done\n"));
894
895 skip: /* setup a new transfer */
896 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
897 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
898 usbd_transfer(xfer);
899 }
900
901 /*
902 * This function is only used by the Rx radiotap code. It returns the rate at
903 * which a given frame was received.
904 */
905 #if NBPFILTER > 0
906 Static uint8_t
907 rum_rxrate(struct rum_rx_desc *desc)
908 {
909 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
910 /* reverse function of rum_plcp_signal */
911 switch (desc->rate) {
912 case 0xb: return 12;
913 case 0xf: return 18;
914 case 0xa: return 24;
915 case 0xe: return 36;
916 case 0x9: return 48;
917 case 0xd: return 72;
918 case 0x8: return 96;
919 case 0xc: return 108;
920 }
921 } else {
922 if (desc->rate == 10)
923 return 2;
924 if (desc->rate == 20)
925 return 4;
926 if (desc->rate == 55)
927 return 11;
928 if (desc->rate == 110)
929 return 22;
930 }
931 return 2; /* should not get there */
932 }
933 #endif
934
935 /*
936 * Return the expected ack rate for a frame transmitted at rate `rate'.
937 * XXX: this should depend on the destination node basic rate set.
938 */
939 Static int
940 rum_ack_rate(struct ieee80211com *ic, int rate)
941 {
942 switch (rate) {
943 /* CCK rates */
944 case 2:
945 return 2;
946 case 4:
947 case 11:
948 case 22:
949 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
950
951 /* OFDM rates */
952 case 12:
953 case 18:
954 return 12;
955 case 24:
956 case 36:
957 return 24;
958 case 48:
959 case 72:
960 case 96:
961 case 108:
962 return 48;
963 }
964
965 /* default to 1Mbps */
966 return 2;
967 }
968
969 /*
970 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
971 * The function automatically determines the operating mode depending on the
972 * given rate. `flags' indicates whether short preamble is in use or not.
973 */
974 Static uint16_t
975 rum_txtime(int len, int rate, uint32_t flags)
976 {
977 uint16_t txtime;
978
979 if (RUM_RATE_IS_OFDM(rate)) {
980 /* IEEE Std 802.11a-1999, pp. 37 */
981 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
982 txtime = 16 + 4 + 4 * txtime + 6;
983 } else {
984 /* IEEE Std 802.11b-1999, pp. 28 */
985 txtime = (16 * len + rate - 1) / rate;
986 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
987 txtime += 72 + 24;
988 else
989 txtime += 144 + 48;
990 }
991 return txtime;
992 }
993
994 Static uint8_t
995 rum_plcp_signal(int rate)
996 {
997 switch (rate) {
998 /* CCK rates (returned values are device-dependent) */
999 case 2: return 0x0;
1000 case 4: return 0x1;
1001 case 11: return 0x2;
1002 case 22: return 0x3;
1003
1004 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1005 case 12: return 0xb;
1006 case 18: return 0xf;
1007 case 24: return 0xa;
1008 case 36: return 0xe;
1009 case 48: return 0x9;
1010 case 72: return 0xd;
1011 case 96: return 0x8;
1012 case 108: return 0xc;
1013
1014 /* unsupported rates (should not get there) */
1015 default: return 0xff;
1016 }
1017 }
1018
1019 Static void
1020 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1021 uint32_t flags, uint16_t xflags, int len, int rate)
1022 {
1023 struct ieee80211com *ic = &sc->sc_ic;
1024 uint16_t plcp_length;
1025 int remainder;
1026
1027 desc->flags = htole32(flags);
1028 desc->flags |= htole32(RT2573_TX_VALID);
1029 desc->flags |= htole32(len << 16);
1030
1031 desc->xflags = htole16(xflags);
1032
1033 desc->wme = htole16(
1034 RT2573_QID(0) |
1035 RT2573_AIFSN(2) |
1036 RT2573_LOGCWMIN(4) |
1037 RT2573_LOGCWMAX(10));
1038
1039 /* setup PLCP fields */
1040 desc->plcp_signal = rum_plcp_signal(rate);
1041 desc->plcp_service = 4;
1042
1043 len += IEEE80211_CRC_LEN;
1044 if (RUM_RATE_IS_OFDM(rate)) {
1045 desc->flags |= htole32(RT2573_TX_OFDM);
1046
1047 plcp_length = len & 0xfff;
1048 desc->plcp_length_hi = plcp_length >> 6;
1049 desc->plcp_length_lo = plcp_length & 0x3f;
1050 } else {
1051 plcp_length = (16 * len + rate - 1) / rate;
1052 if (rate == 22) {
1053 remainder = (16 * len) % 22;
1054 if (remainder != 0 && remainder < 7)
1055 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1056 }
1057 desc->plcp_length_hi = plcp_length >> 8;
1058 desc->plcp_length_lo = plcp_length & 0xff;
1059
1060 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1061 desc->plcp_signal |= 0x08;
1062 }
1063 }
1064
1065 #define RUM_TX_TIMEOUT 5000
1066
1067 Static int
1068 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1069 {
1070 struct ieee80211com *ic = &sc->sc_ic;
1071 struct rum_tx_desc *desc;
1072 struct rum_tx_data *data;
1073 struct ieee80211_frame *wh;
1074 uint32_t flags = 0;
1075 uint16_t dur;
1076 usbd_status error;
1077 int xferlen, rate;
1078
1079 data = &sc->tx_data[0];
1080 desc = (struct rum_tx_desc *)data->buf;
1081
1082 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1083
1084 data->m = m0;
1085 data->ni = ni;
1086
1087 wh = mtod(m0, struct ieee80211_frame *);
1088
1089 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1090 flags |= RT2573_TX_ACK;
1091
1092 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1093 ic->ic_flags) + sc->sifs;
1094 *(uint16_t *)wh->i_dur = htole16(dur);
1095
1096 /* tell hardware to set timestamp in probe responses */
1097 if ((wh->i_fc[0] &
1098 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1099 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1100 flags |= RT2573_TX_TIMESTAMP;
1101 }
1102
1103 #if NBPFILTER > 0
1104 if (sc->sc_drvbpf != NULL) {
1105 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1106
1107 tap->wt_flags = 0;
1108 tap->wt_rate = rate;
1109 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1110 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1111 tap->wt_antenna = sc->tx_ant;
1112
1113 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1114 }
1115 #endif
1116
1117 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1118 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1119
1120 /* align end on a 4-bytes boundary */
1121 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1122
1123 /*
1124 * No space left in the last URB to store the extra 4 bytes, force
1125 * sending of another URB.
1126 */
1127 if ((xferlen % 64) == 0)
1128 xferlen += 4;
1129
1130 DPRINTFN(10, ("sending msg frame len=%zu rate=%u xfer len=%u\n",
1131 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
1132
1133 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1134 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1135
1136 error = usbd_transfer(data->xfer);
1137 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1138 m_freem(m0);
1139 return error;
1140 }
1141
1142 sc->tx_queued++;
1143
1144 return 0;
1145 }
1146
1147 Static int
1148 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1149 {
1150 struct ieee80211com *ic = &sc->sc_ic;
1151 struct rum_tx_desc *desc;
1152 struct rum_tx_data *data;
1153 struct ieee80211_frame *wh;
1154 struct ieee80211_key *k;
1155 uint32_t flags = 0;
1156 uint16_t dur;
1157 usbd_status error;
1158 int xferlen, rate;
1159
1160 wh = mtod(m0, struct ieee80211_frame *);
1161
1162 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1163 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1164 else
1165 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1166 rate &= IEEE80211_RATE_VAL;
1167
1168 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1169 k = ieee80211_crypto_encap(ic, ni, m0);
1170 if (k == NULL) {
1171 m_freem(m0);
1172 return ENOBUFS;
1173 }
1174
1175 /* packet header may have moved, reset our local pointer */
1176 wh = mtod(m0, struct ieee80211_frame *);
1177 }
1178
1179 data = &sc->tx_data[0];
1180 desc = (struct rum_tx_desc *)data->buf;
1181
1182 data->m = m0;
1183 data->ni = ni;
1184
1185 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1186 flags |= RT2573_TX_ACK;
1187
1188 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1189 ic->ic_flags) + sc->sifs;
1190 *(uint16_t *)wh->i_dur = htole16(dur);
1191 }
1192
1193 #if NBPFILTER > 0
1194 if (sc->sc_drvbpf != NULL) {
1195 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1196
1197 tap->wt_flags = 0;
1198 tap->wt_rate = rate;
1199 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1200 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1201 tap->wt_antenna = sc->tx_ant;
1202
1203 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1204 }
1205 #endif
1206
1207 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1208 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1209
1210 /* align end on a 4-bytes boundary */
1211 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1212
1213 /*
1214 * No space left in the last URB to store the extra 4 bytes, force
1215 * sending of another URB.
1216 */
1217 if ((xferlen % 64) == 0)
1218 xferlen += 4;
1219
1220 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1221 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
1222
1223 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1224 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1225
1226 error = usbd_transfer(data->xfer);
1227 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1228 m_freem(m0);
1229 return error;
1230 }
1231
1232 sc->tx_queued++;
1233
1234 return 0;
1235 }
1236
1237 Static void
1238 rum_start(struct ifnet *ifp)
1239 {
1240 struct rum_softc *sc = ifp->if_softc;
1241 struct ieee80211com *ic = &sc->sc_ic;
1242 struct ether_header *eh;
1243 struct ieee80211_node *ni;
1244 struct mbuf *m0;
1245
1246 for (;;) {
1247 IF_POLL(&ic->ic_mgtq, m0);
1248 if (m0 != NULL) {
1249 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1250 ifp->if_flags |= IFF_OACTIVE;
1251 break;
1252 }
1253 IF_DEQUEUE(&ic->ic_mgtq, m0);
1254
1255 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1256 m0->m_pkthdr.rcvif = NULL;
1257 #if NBPFILTER > 0
1258 if (ic->ic_rawbpf != NULL)
1259 bpf_mtap(ic->ic_rawbpf, m0);
1260 #endif
1261 if (rum_tx_mgt(sc, m0, ni) != 0)
1262 break;
1263
1264 } else {
1265 if (ic->ic_state != IEEE80211_S_RUN)
1266 break;
1267 IFQ_POLL(&ifp->if_snd, m0);
1268 if (m0 == NULL)
1269 break;
1270 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1271 ifp->if_flags |= IFF_OACTIVE;
1272 break;
1273 }
1274 IFQ_DEQUEUE(&ifp->if_snd, m0);
1275 if (m0->m_len < sizeof(struct ether_header) &&
1276 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1277 continue;
1278
1279 eh = mtod(m0, struct ether_header *);
1280 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1281 if (ni == NULL) {
1282 m_freem(m0);
1283 continue;
1284 }
1285 #if NBPFILTER > 0
1286 if (ifp->if_bpf != NULL)
1287 bpf_mtap(ifp->if_bpf, m0);
1288 #endif
1289 m0 = ieee80211_encap(ic, m0, ni);
1290 if (m0 == NULL) {
1291 ieee80211_free_node(ni);
1292 continue;
1293 }
1294 #if NBPFILTER > 0
1295 if (ic->ic_rawbpf != NULL)
1296 bpf_mtap(ic->ic_rawbpf, m0);
1297 #endif
1298 if (rum_tx_data(sc, m0, ni) != 0) {
1299 ieee80211_free_node(ni);
1300 ifp->if_oerrors++;
1301 break;
1302 }
1303 }
1304
1305 sc->sc_tx_timer = 5;
1306 ifp->if_timer = 1;
1307 }
1308 }
1309
1310 Static void
1311 rum_watchdog(struct ifnet *ifp)
1312 {
1313 struct rum_softc *sc = ifp->if_softc;
1314 struct ieee80211com *ic = &sc->sc_ic;
1315
1316 ifp->if_timer = 0;
1317
1318 if (sc->sc_tx_timer > 0) {
1319 if (--sc->sc_tx_timer == 0) {
1320 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1321 /*rum_init(ifp); XXX needs a process context! */
1322 ifp->if_oerrors++;
1323 return;
1324 }
1325 ifp->if_timer = 1;
1326 }
1327
1328 ieee80211_watchdog(ic);
1329 }
1330
1331 Static int
1332 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1333 {
1334 struct rum_softc *sc = ifp->if_softc;
1335 struct ieee80211com *ic = &sc->sc_ic;
1336 int s, error = 0;
1337
1338 s = splnet();
1339
1340 switch (cmd) {
1341 case SIOCSIFFLAGS:
1342 if (ifp->if_flags & IFF_UP) {
1343 if (ifp->if_flags & IFF_RUNNING)
1344 rum_update_promisc(sc);
1345 else
1346 rum_init(ifp);
1347 } else {
1348 if (ifp->if_flags & IFF_RUNNING)
1349 rum_stop(ifp, 1);
1350 }
1351 break;
1352
1353 default:
1354 error = ieee80211_ioctl(ic, cmd, data);
1355 }
1356
1357 if (error == ENETRESET) {
1358 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1359 (IFF_UP | IFF_RUNNING))
1360 rum_init(ifp);
1361 error = 0;
1362 }
1363
1364 splx(s);
1365
1366 return error;
1367 }
1368
1369 Static void
1370 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1371 {
1372 usb_device_request_t req;
1373 usbd_status error;
1374
1375 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1376 req.bRequest = RT2573_READ_EEPROM;
1377 USETW(req.wValue, 0);
1378 USETW(req.wIndex, addr);
1379 USETW(req.wLength, len);
1380
1381 error = usbd_do_request(sc->sc_udev, &req, buf);
1382 if (error != 0) {
1383 printf("%s: could not read EEPROM: %s\n",
1384 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1385 }
1386 }
1387
1388 Static uint32_t
1389 rum_read(struct rum_softc *sc, uint16_t reg)
1390 {
1391 uint32_t val;
1392
1393 rum_read_multi(sc, reg, &val, sizeof val);
1394
1395 return le32toh(val);
1396 }
1397
1398 Static void
1399 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1400 {
1401 usb_device_request_t req;
1402 usbd_status error;
1403
1404 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1405 req.bRequest = RT2573_READ_MULTI_MAC;
1406 USETW(req.wValue, 0);
1407 USETW(req.wIndex, reg);
1408 USETW(req.wLength, len);
1409
1410 error = usbd_do_request(sc->sc_udev, &req, buf);
1411 if (error != 0) {
1412 printf("%s: could not multi read MAC register: %s\n",
1413 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1414 }
1415 }
1416
1417 Static void
1418 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1419 {
1420 uint32_t tmp = htole32(val);
1421
1422 rum_write_multi(sc, reg, &tmp, sizeof tmp);
1423 }
1424
1425 Static void
1426 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1427 {
1428 usb_device_request_t req;
1429 usbd_status error;
1430
1431 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1432 req.bRequest = RT2573_WRITE_MULTI_MAC;
1433 USETW(req.wValue, 0);
1434 USETW(req.wIndex, reg);
1435 USETW(req.wLength, len);
1436
1437 error = usbd_do_request(sc->sc_udev, &req, buf);
1438 if (error != 0) {
1439 printf("%s: could not multi write MAC register: %s\n",
1440 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1441 }
1442 }
1443
1444 Static void
1445 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1446 {
1447 uint32_t tmp;
1448 int ntries;
1449
1450 for (ntries = 0; ntries < 5; ntries++) {
1451 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1452 break;
1453 }
1454 if (ntries == 5) {
1455 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1456 return;
1457 }
1458
1459 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1460 rum_write(sc, RT2573_PHY_CSR3, tmp);
1461 }
1462
1463 Static uint8_t
1464 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1465 {
1466 uint32_t val;
1467 int ntries;
1468
1469 for (ntries = 0; ntries < 5; ntries++) {
1470 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1471 break;
1472 }
1473 if (ntries == 5) {
1474 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1475 return 0;
1476 }
1477
1478 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1479 rum_write(sc, RT2573_PHY_CSR3, val);
1480
1481 for (ntries = 0; ntries < 100; ntries++) {
1482 val = rum_read(sc, RT2573_PHY_CSR3);
1483 if (!(val & RT2573_BBP_BUSY))
1484 return val & 0xff;
1485 DELAY(1);
1486 }
1487
1488 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1489 return 0;
1490 }
1491
1492 Static void
1493 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1494 {
1495 uint32_t tmp;
1496 int ntries;
1497
1498 for (ntries = 0; ntries < 5; ntries++) {
1499 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1500 break;
1501 }
1502 if (ntries == 5) {
1503 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1504 return;
1505 }
1506
1507 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1508 (reg & 3);
1509 rum_write(sc, RT2573_PHY_CSR4, tmp);
1510
1511 /* remember last written value in sc */
1512 sc->rf_regs[reg] = val;
1513
1514 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1515 }
1516
1517 Static void
1518 rum_select_antenna(struct rum_softc *sc)
1519 {
1520 uint8_t bbp4, bbp77;
1521 uint32_t tmp;
1522
1523 bbp4 = rum_bbp_read(sc, 4);
1524 bbp77 = rum_bbp_read(sc, 77);
1525
1526 /* TBD */
1527
1528 /* make sure Rx is disabled before switching antenna */
1529 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1530 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1531
1532 rum_bbp_write(sc, 4, bbp4);
1533 rum_bbp_write(sc, 77, bbp77);
1534
1535 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1536 }
1537
1538 /*
1539 * Enable multi-rate retries for frames sent at OFDM rates.
1540 * In 802.11b/g mode, allow fallback to CCK rates.
1541 */
1542 Static void
1543 rum_enable_mrr(struct rum_softc *sc)
1544 {
1545 struct ieee80211com *ic = &sc->sc_ic;
1546 uint32_t tmp;
1547
1548 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1549
1550 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1551 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1552 tmp |= RT2573_MRR_CCK_FALLBACK;
1553 tmp |= RT2573_MRR_ENABLED;
1554
1555 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1556 }
1557
1558 Static void
1559 rum_set_txpreamble(struct rum_softc *sc)
1560 {
1561 uint32_t tmp;
1562
1563 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1564
1565 tmp &= ~RT2573_SHORT_PREAMBLE;
1566 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1567 tmp |= RT2573_SHORT_PREAMBLE;
1568
1569 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1570 }
1571
1572 Static void
1573 rum_set_basicrates(struct rum_softc *sc)
1574 {
1575 struct ieee80211com *ic = &sc->sc_ic;
1576
1577 /* update basic rate set */
1578 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1579 /* 11b basic rates: 1, 2Mbps */
1580 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1581 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1582 /* 11a basic rates: 6, 12, 24Mbps */
1583 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1584 } else {
1585 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1586 rum_write(sc, RT2573_TXRX_CSR5, 0x15f);
1587 }
1588 }
1589
1590 /*
1591 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1592 * driver.
1593 */
1594 Static void
1595 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1596 {
1597 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1598 uint32_t tmp;
1599
1600 /* update all BBP registers that depend on the band */
1601 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1602 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1603 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1604 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1605 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1606 }
1607 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1608 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1609 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1610 }
1611
1612 sc->bbp17 = bbp17;
1613 rum_bbp_write(sc, 17, bbp17);
1614 rum_bbp_write(sc, 96, bbp96);
1615 rum_bbp_write(sc, 104, bbp104);
1616
1617 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1618 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1619 rum_bbp_write(sc, 75, 0x80);
1620 rum_bbp_write(sc, 86, 0x80);
1621 rum_bbp_write(sc, 88, 0x80);
1622 }
1623
1624 rum_bbp_write(sc, 35, bbp35);
1625 rum_bbp_write(sc, 97, bbp97);
1626 rum_bbp_write(sc, 98, bbp98);
1627
1628 tmp = rum_read(sc, RT2573_PHY_CSR0);
1629 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1630 if (IEEE80211_IS_CHAN_2GHZ(c))
1631 tmp |= RT2573_PA_PE_2GHZ;
1632 else
1633 tmp |= RT2573_PA_PE_5GHZ;
1634 rum_write(sc, RT2573_PHY_CSR0, tmp);
1635
1636 /* 802.11a uses a 16 microseconds short interframe space */
1637 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1638 }
1639
1640 Static void
1641 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1642 {
1643 struct ieee80211com *ic = &sc->sc_ic;
1644 const struct rfprog *rfprog;
1645 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1646 int8_t power;
1647 u_int i, chan;
1648
1649 chan = ieee80211_chan2ieee(ic, c);
1650 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1651 return;
1652
1653 /* select the appropriate RF settings based on what EEPROM says */
1654 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1655 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1656
1657 /* find the settings for this channel (we know it exists) */
1658 for (i = 0; rfprog[i].chan != chan; i++);
1659
1660 power = sc->txpow[i];
1661 if (power < 0) {
1662 bbp94 += power;
1663 power = 0;
1664 } else if (power > 31) {
1665 bbp94 += power - 31;
1666 power = 31;
1667 }
1668
1669 /*
1670 * If we are switching from the 2GHz band to the 5GHz band or
1671 * vice-versa, BBP registers need to be reprogrammed.
1672 */
1673 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1674 rum_select_band(sc, c);
1675 rum_select_antenna(sc);
1676 }
1677 ic->ic_curchan = c;
1678
1679 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1680 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1681 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1682 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1683
1684 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1685 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1686 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1687 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1688
1689 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1690 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1691 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1692 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1693
1694 DELAY(10);
1695
1696 /* enable smart mode for MIMO-capable RFs */
1697 bbp3 = rum_bbp_read(sc, 3);
1698
1699 bbp3 &= ~RT2573_SMART_MODE;
1700 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1701 bbp3 |= RT2573_SMART_MODE;
1702
1703 rum_bbp_write(sc, 3, bbp3);
1704
1705 if (bbp94 != RT2573_BBPR94_DEFAULT)
1706 rum_bbp_write(sc, 94, bbp94);
1707 }
1708
1709 /*
1710 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1711 * and HostAP operating modes.
1712 */
1713 Static void
1714 rum_enable_tsf_sync(struct rum_softc *sc)
1715 {
1716 struct ieee80211com *ic = &sc->sc_ic;
1717 uint32_t tmp;
1718
1719 if (ic->ic_opmode != IEEE80211_M_STA) {
1720 /*
1721 * Change default 16ms TBTT adjustment to 8ms.
1722 * Must be done before enabling beacon generation.
1723 */
1724 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1725 }
1726
1727 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1728
1729 /* set beacon interval (in 1/16ms unit) */
1730 tmp |= ic->ic_bss->ni_intval * 16;
1731
1732 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1733 if (ic->ic_opmode == IEEE80211_M_STA)
1734 tmp |= RT2573_TSF_MODE(1);
1735 else
1736 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1737
1738 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1739 }
1740
1741 Static void
1742 rum_update_slot(struct rum_softc *sc)
1743 {
1744 struct ieee80211com *ic = &sc->sc_ic;
1745 uint8_t slottime;
1746 uint32_t tmp;
1747
1748 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1749
1750 tmp = rum_read(sc, RT2573_MAC_CSR9);
1751 tmp = (tmp & ~0xff) | slottime;
1752 rum_write(sc, RT2573_MAC_CSR9, tmp);
1753
1754 DPRINTF(("setting slot time to %uus\n", slottime));
1755 }
1756
1757 Static void
1758 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1759 {
1760 uint32_t tmp;
1761
1762 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1763 rum_write(sc, RT2573_MAC_CSR4, tmp);
1764
1765 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1766 rum_write(sc, RT2573_MAC_CSR5, tmp);
1767 }
1768
1769 Static void
1770 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1771 {
1772 uint32_t tmp;
1773
1774 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1775 rum_write(sc, RT2573_MAC_CSR2, tmp);
1776
1777 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1778 rum_write(sc, RT2573_MAC_CSR3, tmp);
1779 }
1780
1781 Static void
1782 rum_update_promisc(struct rum_softc *sc)
1783 {
1784 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1785 uint32_t tmp;
1786
1787 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1788
1789 tmp &= ~RT2573_DROP_NOT_TO_ME;
1790 if (!(ifp->if_flags & IFF_PROMISC))
1791 tmp |= RT2573_DROP_NOT_TO_ME;
1792
1793 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1794
1795 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1796 "entering" : "leaving"));
1797 }
1798
1799 Static const char *
1800 rum_get_rf(int rev)
1801 {
1802 switch (rev) {
1803 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1804 case RT2573_RF_2528: return "RT2528";
1805 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1806 case RT2573_RF_5226: return "RT5226";
1807 default: return "unknown";
1808 }
1809 }
1810
1811 Static void
1812 rum_read_eeprom(struct rum_softc *sc)
1813 {
1814 struct ieee80211com *ic = &sc->sc_ic;
1815 uint16_t val;
1816 #ifdef RUM_DEBUG
1817 int i;
1818 #endif
1819
1820 /* read MAC/BBP type */
1821 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1822 sc->macbbp_rev = le16toh(val);
1823
1824 /* read MAC address */
1825 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1826
1827 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1828 val = le16toh(val);
1829 sc->rf_rev = (val >> 11) & 0x1f;
1830 sc->hw_radio = (val >> 10) & 0x1;
1831 sc->rx_ant = (val >> 4) & 0x3;
1832 sc->tx_ant = (val >> 2) & 0x3;
1833 sc->nb_ant = val & 0x3;
1834
1835 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1836
1837 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1838 val = le16toh(val);
1839 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1840 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1841
1842 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1843 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1844
1845 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1846 val = le16toh(val);
1847 if ((val & 0xff) != 0xff)
1848 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1849
1850 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1851 val = le16toh(val);
1852 if ((val & 0xff) != 0xff)
1853 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1854
1855 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1856 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1857
1858 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1859 val = le16toh(val);
1860 if ((val & 0xff) != 0xff)
1861 sc->rffreq = val & 0xff;
1862
1863 DPRINTF(("RF freq=%d\n", sc->rffreq));
1864
1865 /* read Tx power for all a/b/g channels */
1866 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1867 /* XXX default Tx power for 802.11a channels */
1868 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1869 #ifdef RUM_DEBUG
1870 for (i = 0; i < 14; i++)
1871 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1872 #endif
1873
1874 /* read default values for BBP registers */
1875 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1876 #ifdef RUM_DEBUG
1877 for (i = 0; i < 14; i++) {
1878 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1879 continue;
1880 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1881 sc->bbp_prom[i].val));
1882 }
1883 #endif
1884 }
1885
1886 Static int
1887 rum_bbp_init(struct rum_softc *sc)
1888 {
1889 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1890 int i, ntries;
1891 uint8_t val;
1892
1893 /* wait for BBP to be ready */
1894 for (ntries = 0; ntries < 100; ntries++) {
1895 val = rum_bbp_read(sc, 0);
1896 if (val != 0 && val != 0xff)
1897 break;
1898 DELAY(1000);
1899 }
1900 if (ntries == 100) {
1901 printf("%s: timeout waiting for BBP\n",
1902 USBDEVNAME(sc->sc_dev));
1903 return EIO;
1904 }
1905
1906 /* initialize BBP registers to default values */
1907 for (i = 0; i < N(rum_def_bbp); i++)
1908 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1909
1910 /* write vendor-specific BBP values (from EEPROM) */
1911 for (i = 0; i < 16; i++) {
1912 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1913 continue;
1914 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1915 }
1916
1917 return 0;
1918 #undef N
1919 }
1920
1921 Static int
1922 rum_init(struct ifnet *ifp)
1923 {
1924 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1925 struct rum_softc *sc = ifp->if_softc;
1926 struct ieee80211com *ic = &sc->sc_ic;
1927 struct rum_rx_data *data;
1928 uint32_t tmp;
1929 usbd_status error = 0;
1930 int i, ntries;
1931
1932 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1933 if (rum_attachhook(sc))
1934 goto fail;
1935 }
1936
1937 rum_stop(ifp, 0);
1938
1939 /* initialize MAC registers to default values */
1940 for (i = 0; i < N(rum_def_mac); i++)
1941 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1942
1943 /* set host ready */
1944 rum_write(sc, RT2573_MAC_CSR1, 3);
1945 rum_write(sc, RT2573_MAC_CSR1, 0);
1946
1947 /* wait for BBP/RF to wakeup */
1948 for (ntries = 0; ntries < 1000; ntries++) {
1949 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1950 break;
1951 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1952 DELAY(1000);
1953 }
1954 if (ntries == 1000) {
1955 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1956 USBDEVNAME(sc->sc_dev));
1957 goto fail;
1958 }
1959
1960 if ((error = rum_bbp_init(sc)) != 0)
1961 goto fail;
1962
1963 /* select default channel */
1964 rum_select_band(sc, ic->ic_curchan);
1965 rum_select_antenna(sc);
1966 rum_set_chan(sc, ic->ic_curchan);
1967
1968 /* clear STA registers */
1969 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1970
1971 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1972 rum_set_macaddr(sc, ic->ic_myaddr);
1973
1974 /* initialize ASIC */
1975 rum_write(sc, RT2573_MAC_CSR1, 4);
1976
1977 /*
1978 * Allocate xfer for AMRR statistics requests.
1979 */
1980 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
1981 if (sc->amrr_xfer == NULL) {
1982 printf("%s: could not allocate AMRR xfer\n",
1983 USBDEVNAME(sc->sc_dev));
1984 goto fail;
1985 }
1986
1987 /*
1988 * Open Tx and Rx USB bulk pipes.
1989 */
1990 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
1991 &sc->sc_tx_pipeh);
1992 if (error != 0) {
1993 printf("%s: could not open Tx pipe: %s\n",
1994 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1995 goto fail;
1996 }
1997
1998 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
1999 &sc->sc_rx_pipeh);
2000 if (error != 0) {
2001 printf("%s: could not open Rx pipe: %s\n",
2002 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2003 goto fail;
2004 }
2005
2006 /*
2007 * Allocate Tx and Rx xfer queues.
2008 */
2009 error = rum_alloc_tx_list(sc);
2010 if (error != 0) {
2011 printf("%s: could not allocate Tx list\n",
2012 USBDEVNAME(sc->sc_dev));
2013 goto fail;
2014 }
2015
2016 error = rum_alloc_rx_list(sc);
2017 if (error != 0) {
2018 printf("%s: could not allocate Rx list\n",
2019 USBDEVNAME(sc->sc_dev));
2020 goto fail;
2021 }
2022
2023 /*
2024 * Start up the receive pipe.
2025 */
2026 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
2027 data = &sc->rx_data[i];
2028
2029 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2030 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2031 usbd_transfer(data->xfer);
2032 }
2033
2034 /* update Rx filter */
2035 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2036
2037 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2038 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2039 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2040 RT2573_DROP_ACKCTS;
2041 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2042 tmp |= RT2573_DROP_TODS;
2043 if (!(ifp->if_flags & IFF_PROMISC))
2044 tmp |= RT2573_DROP_NOT_TO_ME;
2045 }
2046 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2047
2048 ifp->if_flags &= ~IFF_OACTIVE;
2049 ifp->if_flags |= IFF_RUNNING;
2050
2051 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2052 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2053 else
2054 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2055
2056 return 0;
2057
2058 fail: rum_stop(ifp, 1);
2059 return error;
2060 #undef N
2061 }
2062
2063 Static void
2064 rum_stop(struct ifnet *ifp, int disable)
2065 {
2066 struct rum_softc *sc = ifp->if_softc;
2067 struct ieee80211com *ic = &sc->sc_ic;
2068 uint32_t tmp;
2069
2070 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2071
2072 sc->sc_tx_timer = 0;
2073 ifp->if_timer = 0;
2074 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2075
2076 /* disable Rx */
2077 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2078 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2079
2080 /* reset ASIC */
2081 rum_write(sc, RT2573_MAC_CSR1, 3);
2082 rum_write(sc, RT2573_MAC_CSR1, 0);
2083
2084 if (sc->sc_rx_pipeh != NULL) {
2085 usbd_abort_pipe(sc->sc_rx_pipeh);
2086 usbd_close_pipe(sc->sc_rx_pipeh);
2087 sc->sc_rx_pipeh = NULL;
2088 }
2089
2090 if (sc->sc_tx_pipeh != NULL) {
2091 usbd_abort_pipe(sc->sc_tx_pipeh);
2092 usbd_close_pipe(sc->sc_tx_pipeh);
2093 sc->sc_tx_pipeh = NULL;
2094 }
2095
2096 rum_free_rx_list(sc);
2097 rum_free_tx_list(sc);
2098 }
2099
2100 Static int
2101 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2102 {
2103 usb_device_request_t req;
2104 uint16_t reg = RT2573_MCU_CODE_BASE;
2105 usbd_status error;
2106
2107 /* copy firmware image into NIC */
2108 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2109 rum_write(sc, reg, UGETDW(ucode));
2110
2111 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2112 req.bRequest = RT2573_MCU_CNTL;
2113 USETW(req.wValue, RT2573_MCU_RUN);
2114 USETW(req.wIndex, 0);
2115 USETW(req.wLength, 0);
2116
2117 error = usbd_do_request(sc->sc_udev, &req, NULL);
2118 if (error != 0) {
2119 printf("%s: could not run firmware: %s\n",
2120 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2121 }
2122 return error;
2123 }
2124
2125 Static int
2126 rum_prepare_beacon(struct rum_softc *sc)
2127 {
2128 struct ieee80211com *ic = &sc->sc_ic;
2129 struct rum_tx_desc desc;
2130 struct mbuf *m0;
2131 int rate;
2132
2133 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2134 if (m0 == NULL) {
2135 printf("%s: could not allocate beacon frame\n",
2136 sc->sc_dev.dv_xname);
2137 return ENOBUFS;
2138 }
2139
2140 /* send beacons at the lowest available rate */
2141 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2142
2143 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2144 m0->m_pkthdr.len, rate);
2145
2146 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2147 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2148
2149 /* copy beacon header and payload into NIC memory */
2150 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2151 m0->m_pkthdr.len);
2152
2153 m_freem(m0);
2154
2155 return 0;
2156 }
2157
2158 Static void
2159 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2160 {
2161 int i;
2162
2163 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2164 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2165
2166 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2167
2168 /* set rate to some reasonable initial value */
2169 for (i = ni->ni_rates.rs_nrates - 1;
2170 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2171 i--);
2172 ni->ni_txrate = i;
2173
2174 callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
2175 }
2176
2177 Static void
2178 rum_amrr_timeout(void *arg)
2179 {
2180 struct rum_softc *sc = arg;
2181 usb_device_request_t req;
2182 int s;
2183
2184 s = splusb();
2185
2186 /*
2187 * Asynchronously read statistic registers (cleared by read).
2188 */
2189 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2190 req.bRequest = RT2573_READ_MULTI_MAC;
2191 USETW(req.wValue, 0);
2192 USETW(req.wIndex, RT2573_STA_CSR0);
2193 USETW(req.wLength, sizeof sc->sta);
2194
2195 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2196 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2197 rum_amrr_update);
2198 (void)usbd_transfer(sc->amrr_xfer);
2199
2200 splx(s);
2201 }
2202
2203 Static void
2204 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2205 usbd_status status)
2206 {
2207 struct rum_softc *sc = (struct rum_softc *)priv;
2208 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2209
2210 if (status != USBD_NORMAL_COMPLETION) {
2211 printf("%s: could not retrieve Tx statistics - cancelling "
2212 "automatic rate control\n", USBDEVNAME(sc->sc_dev));
2213 return;
2214 }
2215
2216 /* count TX retry-fail as Tx errors */
2217 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2218
2219 sc->amn.amn_retrycnt =
2220 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2221 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2222 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2223
2224 sc->amn.amn_txcnt =
2225 sc->amn.amn_retrycnt +
2226 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2227
2228 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2229
2230 callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
2231 }
2232
2233 int
2234 rum_activate(device_ptr_t self, enum devact act)
2235 {
2236 switch (act) {
2237 case DVACT_ACTIVATE:
2238 return EOPNOTSUPP;
2239
2240 case DVACT_DEACTIVATE:
2241 /*if_deactivate(&sc->sc_ic.ic_if);*/
2242 break;
2243 }
2244
2245 return 0;
2246 }
2247