if_rum.c revision 1.3.2.4 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.3.2.4 2007/09/29 08:53:17 xtraeme Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.3.2.4 2007/09/29 08:53:17 xtraeme Exp $");
28
29 #include "bpfilter.h"
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41
42 #include <machine/bus.h>
43 #include <machine/endian.h>
44 #include <machine/intr.h>
45
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/firmload.h>
67
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72
73 #include <dev/usb/if_rumreg.h>
74 #include <dev/usb/if_rumvar.h>
75
76 #ifdef USB_DEBUG
77 #define RUM_DEBUG
78 #endif
79
80 #ifdef RUM_DEBUG
81 #define DPRINTF(x) do { if (rum_debug) logprintf x; } while (0)
82 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) logprintf x; } while (0)
83 int rum_debug = 0;
84 #else
85 #define DPRINTF(x)
86 #define DPRINTFN(n, x)
87 #endif
88
89 /* various supported device vendors/products */
90 static const struct usb_devno rum_devs[] = {
91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
92 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
93 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
94 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
95 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
96 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
97 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
98 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
99 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
100 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
101 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
102 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
103 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
104 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
105 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
106 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
107 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
108 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
109 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
110 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
111 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
112 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
113 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
114 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
115 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
116 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
117 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
118 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
119 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
120 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
121 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
122 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
123 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
124 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
125 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
126 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
127 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2573 },
128 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
129 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
130 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
131 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }
132 };
133
134 Static int rum_attachhook(void *);
135 Static int rum_alloc_tx_list(struct rum_softc *);
136 Static void rum_free_tx_list(struct rum_softc *);
137 Static int rum_alloc_rx_list(struct rum_softc *);
138 Static void rum_free_rx_list(struct rum_softc *);
139 Static int rum_media_change(struct ifnet *);
140 Static void rum_next_scan(void *);
141 Static void rum_task(void *);
142 Static int rum_newstate(struct ieee80211com *,
143 enum ieee80211_state, int);
144 Static void rum_txeof(usbd_xfer_handle, usbd_private_handle,
145 usbd_status);
146 Static void rum_rxeof(usbd_xfer_handle, usbd_private_handle,
147 usbd_status);
148 #if NBPFILTER > 0
149 Static uint8_t rum_rxrate(struct rum_rx_desc *);
150 #endif
151 Static int rum_ack_rate(struct ieee80211com *, int);
152 Static uint16_t rum_txtime(int, int, uint32_t);
153 Static uint8_t rum_plcp_signal(int);
154 Static void rum_setup_tx_desc(struct rum_softc *,
155 struct rum_tx_desc *, uint32_t, uint16_t, int,
156 int);
157 Static int rum_tx_mgt(struct rum_softc *, struct mbuf *,
158 struct ieee80211_node *);
159 Static int rum_tx_data(struct rum_softc *, struct mbuf *,
160 struct ieee80211_node *);
161 Static void rum_start(struct ifnet *);
162 Static void rum_watchdog(struct ifnet *);
163 Static int rum_ioctl(struct ifnet *, u_long, caddr_t);
164 Static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
165 int);
166 Static uint32_t rum_read(struct rum_softc *, uint16_t);
167 Static void rum_read_multi(struct rum_softc *, uint16_t, void *,
168 int);
169 Static void rum_write(struct rum_softc *, uint16_t, uint32_t);
170 Static void rum_write_multi(struct rum_softc *, uint16_t, void *,
171 size_t);
172 Static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
173 Static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
174 Static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
175 Static void rum_select_antenna(struct rum_softc *);
176 Static void rum_enable_mrr(struct rum_softc *);
177 Static void rum_set_txpreamble(struct rum_softc *);
178 Static void rum_set_basicrates(struct rum_softc *);
179 Static void rum_select_band(struct rum_softc *,
180 struct ieee80211_channel *);
181 Static void rum_set_chan(struct rum_softc *,
182 struct ieee80211_channel *);
183 Static void rum_enable_tsf_sync(struct rum_softc *);
184 Static void rum_update_slot(struct rum_softc *);
185 Static void rum_set_bssid(struct rum_softc *, const uint8_t *);
186 Static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
187 Static void rum_update_promisc(struct rum_softc *);
188 Static const char *rum_get_rf(int);
189 Static void rum_read_eeprom(struct rum_softc *);
190 Static int rum_bbp_init(struct rum_softc *);
191 Static int rum_init(struct ifnet *);
192 Static void rum_stop(struct ifnet *, int);
193 Static int rum_load_microcode(struct rum_softc *, const u_char *,
194 size_t);
195 Static int rum_prepare_beacon(struct rum_softc *);
196 Static void rum_amrr_start(struct rum_softc *,
197 struct ieee80211_node *);
198 Static void rum_amrr_timeout(void *);
199 Static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
200 usbd_status status);
201
202 /*
203 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
204 */
205 static const struct ieee80211_rateset rum_rateset_11a =
206 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
207
208 static const struct ieee80211_rateset rum_rateset_11b =
209 { 4, { 2, 4, 11, 22 } };
210
211 static const struct ieee80211_rateset rum_rateset_11g =
212 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
213
214 static const struct {
215 uint32_t reg;
216 uint32_t val;
217 } rum_def_mac[] = {
218 RT2573_DEF_MAC
219 };
220
221 static const struct {
222 uint8_t reg;
223 uint8_t val;
224 } rum_def_bbp[] = {
225 RT2573_DEF_BBP
226 };
227
228 static const struct rfprog {
229 uint8_t chan;
230 uint32_t r1, r2, r3, r4;
231 } rum_rf5226[] = {
232 RT2573_RF5226
233 }, rum_rf5225[] = {
234 RT2573_RF5225
235 };
236
237 USB_DECLARE_DRIVER(rum);
238
239 USB_MATCH(rum)
240 {
241 USB_MATCH_START(rum, uaa);
242
243 if (uaa->iface != NULL)
244 return UMATCH_NONE;
245
246 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
247 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
248 }
249
250 Static int
251 rum_attachhook(void *xsc)
252 {
253 struct rum_softc *sc = xsc;
254 firmware_handle_t fwh;
255 const char *name = "rum-rt2573";
256 u_char *ucode;
257 size_t size;
258 int error;
259
260 if ((error = firmware_open("rum", name, &fwh)) != 0) {
261 printf("%s: failed loadfirmware of file %s (error %d)\n",
262 USBDEVNAME(sc->sc_dev), name, error);
263 return error;
264 }
265 size = firmware_get_size(fwh);
266 ucode = firmware_malloc(size);
267 if (ucode == NULL) {
268 printf("%s: failed to allocate firmware memory\n",
269 USBDEVNAME(sc->sc_dev));
270 firmware_close(fwh);
271 return ENOMEM;;
272 }
273 error = firmware_read(fwh, 0, ucode, size);
274 firmware_close(fwh);
275 if (error != 0) {
276 printf("%s: failed to read firmware (error %d)\n",
277 USBDEVNAME(sc->sc_dev), error);
278 firmware_free(ucode, 0);
279 return error;
280 }
281
282 if (rum_load_microcode(sc, ucode, size) != 0) {
283 printf("%s: could not load 8051 microcode\n",
284 USBDEVNAME(sc->sc_dev));
285 firmware_free(ucode, 0);
286 return ENXIO;
287 }
288
289 firmware_free(ucode, 0);
290 sc->sc_flags |= RT2573_FWLOADED;
291
292 return 0;
293 }
294
295 USB_ATTACH(rum)
296 {
297 USB_ATTACH_START(rum, sc, uaa);
298 struct ieee80211com *ic = &sc->sc_ic;
299 struct ifnet *ifp = &sc->sc_if;
300 usb_interface_descriptor_t *id;
301 usb_endpoint_descriptor_t *ed;
302 usbd_status error;
303 char *devinfop;
304 int i, ntries;
305 uint32_t tmp;
306
307 sc->sc_udev = uaa->device;
308 sc->sc_flags = 0;
309
310 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
311 USB_ATTACH_SETUP;
312 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
313 usbd_devinfo_free(devinfop);
314
315 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
316 printf("%s: could not set configuration no\n",
317 USBDEVNAME(sc->sc_dev));
318 USB_ATTACH_ERROR_RETURN;
319 }
320
321 /* get the first interface handle */
322 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
323 &sc->sc_iface);
324 if (error != 0) {
325 printf("%s: could not get interface handle\n",
326 USBDEVNAME(sc->sc_dev));
327 USB_ATTACH_ERROR_RETURN;
328 }
329
330 /*
331 * Find endpoints.
332 */
333 id = usbd_get_interface_descriptor(sc->sc_iface);
334
335 sc->sc_rx_no = sc->sc_tx_no = -1;
336 for (i = 0; i < id->bNumEndpoints; i++) {
337 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
338 if (ed == NULL) {
339 printf("%s: no endpoint descriptor for iface %d\n",
340 USBDEVNAME(sc->sc_dev), i);
341 USB_ATTACH_ERROR_RETURN;
342 }
343
344 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
345 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
346 sc->sc_rx_no = ed->bEndpointAddress;
347 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
348 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
349 sc->sc_tx_no = ed->bEndpointAddress;
350 }
351 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
352 printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
353 USB_ATTACH_ERROR_RETURN;
354 }
355
356 usb_init_task(&sc->sc_task, rum_task, sc);
357 callout_init(&sc->scan_ch);
358
359 sc->amrr.amrr_min_success_threshold = 1;
360 sc->amrr.amrr_max_success_threshold = 10;
361 callout_init(&sc->amrr_ch);
362
363 /* retrieve RT2573 rev. no */
364 for (ntries = 0; ntries < 1000; ntries++) {
365 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
366 break;
367 DELAY(1000);
368 }
369 if (ntries == 1000) {
370 printf("%s: timeout waiting for chip to settle\n",
371 USBDEVNAME(sc->sc_dev));
372 USB_ATTACH_ERROR_RETURN;
373 }
374
375 /* retrieve MAC address and various other things from EEPROM */
376 rum_read_eeprom(sc);
377
378 printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
379 USBDEVNAME(sc->sc_dev), sc->macbbp_rev, tmp,
380 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
381
382 ic->ic_ifp = ifp;
383 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
384 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
385 ic->ic_state = IEEE80211_S_INIT;
386
387 /* set device capabilities */
388 ic->ic_caps =
389 IEEE80211_C_IBSS | /* IBSS mode supported */
390 IEEE80211_C_MONITOR | /* monitor mode supported */
391 IEEE80211_C_HOSTAP | /* HostAp mode supported */
392 IEEE80211_C_TXPMGT | /* tx power management */
393 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
394 IEEE80211_C_SHSLOT | /* short slot time supported */
395 IEEE80211_C_WPA; /* 802.11i */
396
397 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
398 /* set supported .11a rates */
399 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
400
401 /* set supported .11a channels */
402 for (i = 34; i <= 46; i += 4) {
403 ic->ic_channels[i].ic_freq =
404 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
405 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
406 }
407 for (i = 36; i <= 64; i += 4) {
408 ic->ic_channels[i].ic_freq =
409 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
410 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
411 }
412 for (i = 100; i <= 140; i += 4) {
413 ic->ic_channels[i].ic_freq =
414 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
415 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
416 }
417 for (i = 149; i <= 165; i += 4) {
418 ic->ic_channels[i].ic_freq =
419 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
420 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
421 }
422 }
423
424 /* set supported .11b and .11g rates */
425 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
426 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
427
428 /* set supported .11b and .11g channels (1 through 14) */
429 for (i = 1; i <= 14; i++) {
430 ic->ic_channels[i].ic_freq =
431 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
432 ic->ic_channels[i].ic_flags =
433 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
434 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
435 }
436
437 ifp->if_softc = sc;
438 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
439 ifp->if_init = rum_init;
440 ifp->if_ioctl = rum_ioctl;
441 ifp->if_start = rum_start;
442 ifp->if_watchdog = rum_watchdog;
443 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
444 IFQ_SET_READY(&ifp->if_snd);
445 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
446
447 if_attach(ifp);
448 ieee80211_ifattach(ic);
449
450 /* override state transition machine */
451 sc->sc_newstate = ic->ic_newstate;
452 ic->ic_newstate = rum_newstate;
453 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
454
455 #if NBPFILTER > 0
456 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
457 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf);
458
459 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
460 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
461 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
462
463 sc->sc_txtap_len = sizeof sc->sc_txtapu;
464 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
465 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
466 #endif
467
468 ieee80211_announce(ic);
469
470 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
471 USBDEV(sc->sc_dev));
472
473 USB_ATTACH_SUCCESS_RETURN;
474 }
475
476 USB_DETACH(rum)
477 {
478 USB_DETACH_START(rum, sc);
479 struct ieee80211com *ic = &sc->sc_ic;
480 struct ifnet *ifp = &sc->sc_if;
481 int s;
482
483 s = splusb();
484
485 rum_stop(ifp, 1);
486 usb_rem_task(sc->sc_udev, &sc->sc_task);
487 callout_stop(&sc->scan_ch);
488 callout_stop(&sc->amrr_ch);
489
490 if (sc->amrr_xfer != NULL) {
491 usbd_free_xfer(sc->amrr_xfer);
492 sc->amrr_xfer = NULL;
493 }
494
495 if (sc->sc_rx_pipeh != NULL) {
496 usbd_abort_pipe(sc->sc_rx_pipeh);
497 usbd_close_pipe(sc->sc_rx_pipeh);
498 }
499
500 if (sc->sc_tx_pipeh != NULL) {
501 usbd_abort_pipe(sc->sc_tx_pipeh);
502 usbd_close_pipe(sc->sc_tx_pipeh);
503 }
504
505 rum_free_rx_list(sc);
506 rum_free_tx_list(sc);
507
508 #if NBPFILTER > 0
509 bpfdetach(ifp);
510 #endif
511 ieee80211_ifdetach(ic); /* free all nodes */
512 if_detach(ifp);
513
514 splx(s);
515
516 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
517 USBDEV(sc->sc_dev));
518
519 return 0;
520 }
521
522 Static int
523 rum_alloc_tx_list(struct rum_softc *sc)
524 {
525 struct rum_tx_data *data;
526 int i, error;
527
528 sc->tx_queued = 0;
529
530 for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
531 data = &sc->tx_data[i];
532
533 data->sc = sc;
534
535 data->xfer = usbd_alloc_xfer(sc->sc_udev);
536 if (data->xfer == NULL) {
537 printf("%s: could not allocate tx xfer\n",
538 USBDEVNAME(sc->sc_dev));
539 error = ENOMEM;
540 goto fail;
541 }
542
543 data->buf = usbd_alloc_buffer(data->xfer,
544 RT2573_TX_DESC_SIZE + MCLBYTES);
545 if (data->buf == NULL) {
546 printf("%s: could not allocate tx buffer\n",
547 USBDEVNAME(sc->sc_dev));
548 error = ENOMEM;
549 goto fail;
550 }
551
552 /* clean Tx descriptor */
553 bzero(data->buf, RT2573_TX_DESC_SIZE);
554 }
555
556 return 0;
557
558 fail: rum_free_tx_list(sc);
559 return error;
560 }
561
562 Static void
563 rum_free_tx_list(struct rum_softc *sc)
564 {
565 struct rum_tx_data *data;
566 int i;
567
568 for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
569 data = &sc->tx_data[i];
570
571 if (data->xfer != NULL) {
572 usbd_free_xfer(data->xfer);
573 data->xfer = NULL;
574 }
575
576 if (data->ni != NULL) {
577 ieee80211_free_node(data->ni);
578 data->ni = NULL;
579 }
580 }
581 }
582
583 Static int
584 rum_alloc_rx_list(struct rum_softc *sc)
585 {
586 struct rum_rx_data *data;
587 int i, error;
588
589 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
590 data = &sc->rx_data[i];
591
592 data->sc = sc;
593
594 data->xfer = usbd_alloc_xfer(sc->sc_udev);
595 if (data->xfer == NULL) {
596 printf("%s: could not allocate rx xfer\n",
597 USBDEVNAME(sc->sc_dev));
598 error = ENOMEM;
599 goto fail;
600 }
601
602 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
603 printf("%s: could not allocate rx buffer\n",
604 USBDEVNAME(sc->sc_dev));
605 error = ENOMEM;
606 goto fail;
607 }
608
609 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
610 if (data->m == NULL) {
611 printf("%s: could not allocate rx mbuf\n",
612 USBDEVNAME(sc->sc_dev));
613 error = ENOMEM;
614 goto fail;
615 }
616
617 MCLGET(data->m, M_DONTWAIT);
618 if (!(data->m->m_flags & M_EXT)) {
619 printf("%s: could not allocate rx mbuf cluster\n",
620 USBDEVNAME(sc->sc_dev));
621 error = ENOMEM;
622 goto fail;
623 }
624
625 data->buf = mtod(data->m, uint8_t *);
626 }
627
628 return 0;
629
630 fail: rum_free_tx_list(sc);
631 return error;
632 }
633
634 Static void
635 rum_free_rx_list(struct rum_softc *sc)
636 {
637 struct rum_rx_data *data;
638 int i;
639
640 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
641 data = &sc->rx_data[i];
642
643 if (data->xfer != NULL) {
644 usbd_free_xfer(data->xfer);
645 data->xfer = NULL;
646 }
647
648 if (data->m != NULL) {
649 m_freem(data->m);
650 data->m = NULL;
651 }
652 }
653 }
654
655 Static int
656 rum_media_change(struct ifnet *ifp)
657 {
658 int error;
659
660 error = ieee80211_media_change(ifp);
661 if (error != ENETRESET)
662 return error;
663
664 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
665 rum_init(ifp);
666
667 return 0;
668 }
669
670 /*
671 * This function is called periodically (every 200ms) during scanning to
672 * switch from one channel to another.
673 */
674 Static void
675 rum_next_scan(void *arg)
676 {
677 struct rum_softc *sc = arg;
678 struct ieee80211com *ic = &sc->sc_ic;
679
680 if (ic->ic_state == IEEE80211_S_SCAN)
681 ieee80211_next_scan(ic);
682 }
683
684 Static void
685 rum_task(void *arg)
686 {
687 struct rum_softc *sc = arg;
688 struct ieee80211com *ic = &sc->sc_ic;
689 enum ieee80211_state ostate;
690 struct ieee80211_node *ni;
691 uint32_t tmp;
692
693 ostate = ic->ic_state;
694
695 switch (sc->sc_state) {
696 case IEEE80211_S_INIT:
697 if (ostate == IEEE80211_S_RUN) {
698 /* abort TSF synchronization */
699 tmp = rum_read(sc, RT2573_TXRX_CSR9);
700 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
701 }
702 break;
703
704 case IEEE80211_S_SCAN:
705 rum_set_chan(sc, ic->ic_curchan);
706 callout_reset(&sc->scan_ch, hz / 5, rum_next_scan, sc);
707 break;
708
709 case IEEE80211_S_AUTH:
710 rum_set_chan(sc, ic->ic_curchan);
711 break;
712
713 case IEEE80211_S_ASSOC:
714 rum_set_chan(sc, ic->ic_curchan);
715 break;
716
717 case IEEE80211_S_RUN:
718 rum_set_chan(sc, ic->ic_curchan);
719
720 ni = ic->ic_bss;
721
722 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
723 rum_update_slot(sc);
724 rum_enable_mrr(sc);
725 rum_set_txpreamble(sc);
726 rum_set_basicrates(sc);
727 rum_set_bssid(sc, ni->ni_bssid);
728 }
729
730 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
731 ic->ic_opmode == IEEE80211_M_IBSS)
732 rum_prepare_beacon(sc);
733
734 if (ic->ic_opmode != IEEE80211_M_MONITOR)
735 rum_enable_tsf_sync(sc);
736
737 /* enable automatic rate adaptation in STA mode */
738 if (ic->ic_opmode == IEEE80211_M_STA &&
739 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
740 rum_amrr_start(sc, ni);
741
742 break;
743 }
744
745 sc->sc_newstate(ic, sc->sc_state, -1);
746 }
747
748 Static int
749 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
750 {
751 struct rum_softc *sc = ic->ic_ifp->if_softc;
752
753 usb_rem_task(sc->sc_udev, &sc->sc_task);
754 callout_stop(&sc->scan_ch);
755 callout_stop(&sc->amrr_ch);
756
757 /* do it in a process context */
758 sc->sc_state = nstate;
759 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
760
761 return 0;
762 }
763
764 /* quickly determine if a given rate is CCK or OFDM */
765 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
766
767 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
768 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
769
770 Static void
771 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
772 {
773 struct rum_tx_data *data = priv;
774 struct rum_softc *sc = data->sc;
775 struct ifnet *ifp = &sc->sc_if;
776 int s;
777
778 if (status != USBD_NORMAL_COMPLETION) {
779 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
780 return;
781
782 printf("%s: could not transmit buffer: %s\n",
783 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
784
785 if (status == USBD_STALLED)
786 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
787
788 ifp->if_oerrors++;
789 return;
790 }
791
792 s = splnet();
793
794 m_freem(data->m);
795 data->m = NULL;
796 ieee80211_free_node(data->ni);
797 data->ni = NULL;
798
799 sc->tx_queued--;
800 ifp->if_opackets++;
801
802 DPRINTFN(10, ("tx done\n"));
803
804 sc->sc_tx_timer = 0;
805 ifp->if_flags &= ~IFF_OACTIVE;
806 rum_start(ifp);
807
808 splx(s);
809 }
810
811 Static void
812 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
813 {
814 struct rum_rx_data *data = priv;
815 struct rum_softc *sc = data->sc;
816 struct ieee80211com *ic = &sc->sc_ic;
817 struct ifnet *ifp = &sc->sc_if;
818 struct rum_rx_desc *desc;
819 struct ieee80211_frame *wh;
820 struct ieee80211_node *ni;
821 struct mbuf *mnew, *m;
822 int s, len;
823
824 if (status != USBD_NORMAL_COMPLETION) {
825 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
826 return;
827
828 if (status == USBD_STALLED)
829 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
830 goto skip;
831 }
832
833 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
834
835 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
836 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
837 len));
838 ifp->if_ierrors++;
839 goto skip;
840 }
841
842 desc = (struct rum_rx_desc *)data->buf;
843
844 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
845 /*
846 * This should not happen since we did not request to receive
847 * those frames when we filled RT2573_TXRX_CSR0.
848 */
849 DPRINTFN(5, ("CRC error\n"));
850 ifp->if_ierrors++;
851 goto skip;
852 }
853
854 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
855 if (mnew == NULL) {
856 printf("%s: could not allocate rx mbuf\n",
857 USBDEVNAME(sc->sc_dev));
858 ifp->if_ierrors++;
859 goto skip;
860 }
861
862 MCLGET(mnew, M_DONTWAIT);
863 if (!(mnew->m_flags & M_EXT)) {
864 printf("%s: could not allocate rx mbuf cluster\n",
865 USBDEVNAME(sc->sc_dev));
866 m_freem(mnew);
867 ifp->if_ierrors++;
868 goto skip;
869 }
870
871 m = data->m;
872 data->m = mnew;
873 data->buf = mtod(data->m, uint8_t *);
874
875 /* finalize mbuf */
876 m->m_pkthdr.rcvif = ifp;
877 m->m_data = (caddr_t)(desc + 1);
878 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
879
880 s = splnet();
881
882 #if NBPFILTER > 0
883 if (sc->sc_drvbpf != NULL) {
884 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
885
886 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
887 tap->wr_rate = rum_rxrate(desc);
888 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
889 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
890 tap->wr_antenna = sc->rx_ant;
891 tap->wr_antsignal = desc->rssi;
892
893 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
894 }
895 #endif
896
897 wh = mtod(m, struct ieee80211_frame *);
898 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
899
900 /* send the frame to the 802.11 layer */
901 ieee80211_input(ic, m, ni, desc->rssi, 0);
902
903 /* node is no longer needed */
904 ieee80211_free_node(ni);
905
906 splx(s);
907
908 DPRINTFN(15, ("rx done\n"));
909
910 skip: /* setup a new transfer */
911 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
912 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
913 usbd_transfer(xfer);
914 }
915
916 /*
917 * This function is only used by the Rx radiotap code. It returns the rate at
918 * which a given frame was received.
919 */
920 #if NBPFILTER > 0
921 Static uint8_t
922 rum_rxrate(struct rum_rx_desc *desc)
923 {
924 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
925 /* reverse function of rum_plcp_signal */
926 switch (desc->rate) {
927 case 0xb: return 12;
928 case 0xf: return 18;
929 case 0xa: return 24;
930 case 0xe: return 36;
931 case 0x9: return 48;
932 case 0xd: return 72;
933 case 0x8: return 96;
934 case 0xc: return 108;
935 }
936 } else {
937 if (desc->rate == 10)
938 return 2;
939 if (desc->rate == 20)
940 return 4;
941 if (desc->rate == 55)
942 return 11;
943 if (desc->rate == 110)
944 return 22;
945 }
946 return 2; /* should not get there */
947 }
948 #endif
949
950 /*
951 * Return the expected ack rate for a frame transmitted at rate `rate'.
952 * XXX: this should depend on the destination node basic rate set.
953 */
954 Static int
955 rum_ack_rate(struct ieee80211com *ic, int rate)
956 {
957 switch (rate) {
958 /* CCK rates */
959 case 2:
960 return 2;
961 case 4:
962 case 11:
963 case 22:
964 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
965
966 /* OFDM rates */
967 case 12:
968 case 18:
969 return 12;
970 case 24:
971 case 36:
972 return 24;
973 case 48:
974 case 72:
975 case 96:
976 case 108:
977 return 48;
978 }
979
980 /* default to 1Mbps */
981 return 2;
982 }
983
984 /*
985 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
986 * The function automatically determines the operating mode depending on the
987 * given rate. `flags' indicates whether short preamble is in use or not.
988 */
989 Static uint16_t
990 rum_txtime(int len, int rate, uint32_t flags)
991 {
992 uint16_t txtime;
993
994 if (RUM_RATE_IS_OFDM(rate)) {
995 /* IEEE Std 802.11a-1999, pp. 37 */
996 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
997 txtime = 16 + 4 + 4 * txtime + 6;
998 } else {
999 /* IEEE Std 802.11b-1999, pp. 28 */
1000 txtime = (16 * len + rate - 1) / rate;
1001 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1002 txtime += 72 + 24;
1003 else
1004 txtime += 144 + 48;
1005 }
1006 return txtime;
1007 }
1008
1009 Static uint8_t
1010 rum_plcp_signal(int rate)
1011 {
1012 switch (rate) {
1013 /* CCK rates (returned values are device-dependent) */
1014 case 2: return 0x0;
1015 case 4: return 0x1;
1016 case 11: return 0x2;
1017 case 22: return 0x3;
1018
1019 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1020 case 12: return 0xb;
1021 case 18: return 0xf;
1022 case 24: return 0xa;
1023 case 36: return 0xe;
1024 case 48: return 0x9;
1025 case 72: return 0xd;
1026 case 96: return 0x8;
1027 case 108: return 0xc;
1028
1029 /* unsupported rates (should not get there) */
1030 default: return 0xff;
1031 }
1032 }
1033
1034 Static void
1035 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1036 uint32_t flags, uint16_t xflags, int len, int rate)
1037 {
1038 struct ieee80211com *ic = &sc->sc_ic;
1039 uint16_t plcp_length;
1040 int remainder;
1041
1042 desc->flags = htole32(flags);
1043 desc->flags |= htole32(RT2573_TX_VALID);
1044 desc->flags |= htole32(len << 16);
1045
1046 desc->xflags = htole16(xflags);
1047
1048 desc->wme = htole16(
1049 RT2573_QID(0) |
1050 RT2573_AIFSN(2) |
1051 RT2573_LOGCWMIN(4) |
1052 RT2573_LOGCWMAX(10));
1053
1054 /* setup PLCP fields */
1055 desc->plcp_signal = rum_plcp_signal(rate);
1056 desc->plcp_service = 4;
1057
1058 len += IEEE80211_CRC_LEN;
1059 if (RUM_RATE_IS_OFDM(rate)) {
1060 desc->flags |= htole32(RT2573_TX_OFDM);
1061
1062 plcp_length = len & 0xfff;
1063 desc->plcp_length_hi = plcp_length >> 6;
1064 desc->plcp_length_lo = plcp_length & 0x3f;
1065 } else {
1066 plcp_length = (16 * len + rate - 1) / rate;
1067 if (rate == 22) {
1068 remainder = (16 * len) % 22;
1069 if (remainder != 0 && remainder < 7)
1070 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1071 }
1072 desc->plcp_length_hi = plcp_length >> 8;
1073 desc->plcp_length_lo = plcp_length & 0xff;
1074
1075 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1076 desc->plcp_signal |= 0x08;
1077 }
1078 }
1079
1080 #define RUM_TX_TIMEOUT 5000
1081
1082 Static int
1083 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1084 {
1085 struct ieee80211com *ic = &sc->sc_ic;
1086 struct rum_tx_desc *desc;
1087 struct rum_tx_data *data;
1088 struct ieee80211_frame *wh;
1089 uint32_t flags = 0;
1090 uint16_t dur;
1091 usbd_status error;
1092 int xferlen, rate;
1093
1094 data = &sc->tx_data[0];
1095 desc = (struct rum_tx_desc *)data->buf;
1096
1097 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1098
1099 data->m = m0;
1100 data->ni = ni;
1101
1102 wh = mtod(m0, struct ieee80211_frame *);
1103
1104 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1105 flags |= RT2573_TX_ACK;
1106
1107 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1108 ic->ic_flags) + sc->sifs;
1109 *(uint16_t *)wh->i_dur = htole16(dur);
1110
1111 /* tell hardware to set timestamp in probe responses */
1112 if ((wh->i_fc[0] &
1113 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1114 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1115 flags |= RT2573_TX_TIMESTAMP;
1116 }
1117
1118 #if NBPFILTER > 0
1119 if (sc->sc_drvbpf != NULL) {
1120 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1121
1122 tap->wt_flags = 0;
1123 tap->wt_rate = rate;
1124 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1125 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1126 tap->wt_antenna = sc->tx_ant;
1127
1128 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1129 }
1130 #endif
1131
1132 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1133 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1134
1135 /* align end on a 4-bytes boundary */
1136 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1137
1138 /*
1139 * No space left in the last URB to store the extra 4 bytes, force
1140 * sending of another URB.
1141 */
1142 if ((xferlen % 64) == 0)
1143 xferlen += 4;
1144
1145 DPRINTFN(10, ("sending msg frame len=%zu rate=%u xfer len=%u\n",
1146 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
1147
1148 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1149 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1150
1151 error = usbd_transfer(data->xfer);
1152 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1153 m_freem(m0);
1154 return error;
1155 }
1156
1157 sc->tx_queued++;
1158
1159 return 0;
1160 }
1161
1162 Static int
1163 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1164 {
1165 struct ieee80211com *ic = &sc->sc_ic;
1166 struct rum_tx_desc *desc;
1167 struct rum_tx_data *data;
1168 struct ieee80211_frame *wh;
1169 struct ieee80211_key *k;
1170 uint32_t flags = 0;
1171 uint16_t dur;
1172 usbd_status error;
1173 int xferlen, rate;
1174
1175 wh = mtod(m0, struct ieee80211_frame *);
1176
1177 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1178 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1179 else
1180 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1181 rate &= IEEE80211_RATE_VAL;
1182
1183 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1184 k = ieee80211_crypto_encap(ic, ni, m0);
1185 if (k == NULL) {
1186 m_freem(m0);
1187 return ENOBUFS;
1188 }
1189
1190 /* packet header may have moved, reset our local pointer */
1191 wh = mtod(m0, struct ieee80211_frame *);
1192 }
1193
1194 data = &sc->tx_data[0];
1195 desc = (struct rum_tx_desc *)data->buf;
1196
1197 data->m = m0;
1198 data->ni = ni;
1199
1200 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1201 flags |= RT2573_TX_ACK;
1202
1203 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1204 ic->ic_flags) + sc->sifs;
1205 *(uint16_t *)wh->i_dur = htole16(dur);
1206 }
1207
1208 #if NBPFILTER > 0
1209 if (sc->sc_drvbpf != NULL) {
1210 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1211
1212 tap->wt_flags = 0;
1213 tap->wt_rate = rate;
1214 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1215 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1216 tap->wt_antenna = sc->tx_ant;
1217
1218 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1219 }
1220 #endif
1221
1222 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1223 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1224
1225 /* align end on a 4-bytes boundary */
1226 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1227
1228 /*
1229 * No space left in the last URB to store the extra 4 bytes, force
1230 * sending of another URB.
1231 */
1232 if ((xferlen % 64) == 0)
1233 xferlen += 4;
1234
1235 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1236 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
1237
1238 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1239 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1240
1241 error = usbd_transfer(data->xfer);
1242 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1243 m_freem(m0);
1244 return error;
1245 }
1246
1247 sc->tx_queued++;
1248
1249 return 0;
1250 }
1251
1252 Static void
1253 rum_start(struct ifnet *ifp)
1254 {
1255 struct rum_softc *sc = ifp->if_softc;
1256 struct ieee80211com *ic = &sc->sc_ic;
1257 struct ether_header *eh;
1258 struct ieee80211_node *ni;
1259 struct mbuf *m0;
1260
1261 for (;;) {
1262 IF_POLL(&ic->ic_mgtq, m0);
1263 if (m0 != NULL) {
1264 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1265 ifp->if_flags |= IFF_OACTIVE;
1266 break;
1267 }
1268 IF_DEQUEUE(&ic->ic_mgtq, m0);
1269
1270 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1271 m0->m_pkthdr.rcvif = NULL;
1272 #if NBPFILTER > 0
1273 if (ic->ic_rawbpf != NULL)
1274 bpf_mtap(ic->ic_rawbpf, m0);
1275 #endif
1276 if (rum_tx_mgt(sc, m0, ni) != 0)
1277 break;
1278
1279 } else {
1280 if (ic->ic_state != IEEE80211_S_RUN)
1281 break;
1282 IFQ_POLL(&ifp->if_snd, m0);
1283 if (m0 == NULL)
1284 break;
1285 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1286 ifp->if_flags |= IFF_OACTIVE;
1287 break;
1288 }
1289 IFQ_DEQUEUE(&ifp->if_snd, m0);
1290 if (m0->m_len < sizeof(struct ether_header) &&
1291 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1292 continue;
1293
1294 eh = mtod(m0, struct ether_header *);
1295 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1296 if (ni == NULL) {
1297 m_freem(m0);
1298 continue;
1299 }
1300 #if NBPFILTER > 0
1301 if (ifp->if_bpf != NULL)
1302 bpf_mtap(ifp->if_bpf, m0);
1303 #endif
1304 m0 = ieee80211_encap(ic, m0, ni);
1305 if (m0 == NULL) {
1306 ieee80211_free_node(ni);
1307 continue;
1308 }
1309 #if NBPFILTER > 0
1310 if (ic->ic_rawbpf != NULL)
1311 bpf_mtap(ic->ic_rawbpf, m0);
1312 #endif
1313 if (rum_tx_data(sc, m0, ni) != 0) {
1314 ieee80211_free_node(ni);
1315 ifp->if_oerrors++;
1316 break;
1317 }
1318 }
1319
1320 sc->sc_tx_timer = 5;
1321 ifp->if_timer = 1;
1322 }
1323 }
1324
1325 Static void
1326 rum_watchdog(struct ifnet *ifp)
1327 {
1328 struct rum_softc *sc = ifp->if_softc;
1329 struct ieee80211com *ic = &sc->sc_ic;
1330
1331 ifp->if_timer = 0;
1332
1333 if (sc->sc_tx_timer > 0) {
1334 if (--sc->sc_tx_timer == 0) {
1335 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1336 /*rum_init(ifp); XXX needs a process context! */
1337 ifp->if_oerrors++;
1338 return;
1339 }
1340 ifp->if_timer = 1;
1341 }
1342
1343 ieee80211_watchdog(ic);
1344 }
1345
1346 Static int
1347 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1348 {
1349 struct rum_softc *sc = ifp->if_softc;
1350 struct ieee80211com *ic = &sc->sc_ic;
1351 int s, error = 0;
1352
1353 s = splnet();
1354
1355 switch (cmd) {
1356 case SIOCSIFFLAGS:
1357 if (ifp->if_flags & IFF_UP) {
1358 if (ifp->if_flags & IFF_RUNNING)
1359 rum_update_promisc(sc);
1360 else
1361 rum_init(ifp);
1362 } else {
1363 if (ifp->if_flags & IFF_RUNNING)
1364 rum_stop(ifp, 1);
1365 }
1366 break;
1367
1368 default:
1369 error = ieee80211_ioctl(ic, cmd, data);
1370 }
1371
1372 if (error == ENETRESET) {
1373 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1374 (IFF_UP | IFF_RUNNING))
1375 rum_init(ifp);
1376 error = 0;
1377 }
1378
1379 splx(s);
1380
1381 return error;
1382 }
1383
1384 Static void
1385 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1386 {
1387 usb_device_request_t req;
1388 usbd_status error;
1389
1390 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1391 req.bRequest = RT2573_READ_EEPROM;
1392 USETW(req.wValue, 0);
1393 USETW(req.wIndex, addr);
1394 USETW(req.wLength, len);
1395
1396 error = usbd_do_request(sc->sc_udev, &req, buf);
1397 if (error != 0) {
1398 printf("%s: could not read EEPROM: %s\n",
1399 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1400 }
1401 }
1402
1403 Static uint32_t
1404 rum_read(struct rum_softc *sc, uint16_t reg)
1405 {
1406 uint32_t val;
1407
1408 rum_read_multi(sc, reg, &val, sizeof val);
1409
1410 return le32toh(val);
1411 }
1412
1413 Static void
1414 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1415 {
1416 usb_device_request_t req;
1417 usbd_status error;
1418
1419 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1420 req.bRequest = RT2573_READ_MULTI_MAC;
1421 USETW(req.wValue, 0);
1422 USETW(req.wIndex, reg);
1423 USETW(req.wLength, len);
1424
1425 error = usbd_do_request(sc->sc_udev, &req, buf);
1426 if (error != 0) {
1427 printf("%s: could not multi read MAC register: %s\n",
1428 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1429 }
1430 }
1431
1432 Static void
1433 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1434 {
1435 uint32_t tmp = htole32(val);
1436
1437 rum_write_multi(sc, reg, &tmp, sizeof tmp);
1438 }
1439
1440 Static void
1441 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1442 {
1443 usb_device_request_t req;
1444 usbd_status error;
1445
1446 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1447 req.bRequest = RT2573_WRITE_MULTI_MAC;
1448 USETW(req.wValue, 0);
1449 USETW(req.wIndex, reg);
1450 USETW(req.wLength, len);
1451
1452 error = usbd_do_request(sc->sc_udev, &req, buf);
1453 if (error != 0) {
1454 printf("%s: could not multi write MAC register: %s\n",
1455 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1456 }
1457 }
1458
1459 Static void
1460 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1461 {
1462 uint32_t tmp;
1463 int ntries;
1464
1465 for (ntries = 0; ntries < 5; ntries++) {
1466 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1467 break;
1468 }
1469 if (ntries == 5) {
1470 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1471 return;
1472 }
1473
1474 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1475 rum_write(sc, RT2573_PHY_CSR3, tmp);
1476 }
1477
1478 Static uint8_t
1479 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1480 {
1481 uint32_t val;
1482 int ntries;
1483
1484 for (ntries = 0; ntries < 5; ntries++) {
1485 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1486 break;
1487 }
1488 if (ntries == 5) {
1489 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1490 return 0;
1491 }
1492
1493 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1494 rum_write(sc, RT2573_PHY_CSR3, val);
1495
1496 for (ntries = 0; ntries < 100; ntries++) {
1497 val = rum_read(sc, RT2573_PHY_CSR3);
1498 if (!(val & RT2573_BBP_BUSY))
1499 return val & 0xff;
1500 DELAY(1);
1501 }
1502
1503 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1504 return 0;
1505 }
1506
1507 Static void
1508 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1509 {
1510 uint32_t tmp;
1511 int ntries;
1512
1513 for (ntries = 0; ntries < 5; ntries++) {
1514 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1515 break;
1516 }
1517 if (ntries == 5) {
1518 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1519 return;
1520 }
1521
1522 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1523 (reg & 3);
1524 rum_write(sc, RT2573_PHY_CSR4, tmp);
1525
1526 /* remember last written value in sc */
1527 sc->rf_regs[reg] = val;
1528
1529 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1530 }
1531
1532 Static void
1533 rum_select_antenna(struct rum_softc *sc)
1534 {
1535 uint8_t bbp4, bbp77;
1536 uint32_t tmp;
1537
1538 bbp4 = rum_bbp_read(sc, 4);
1539 bbp77 = rum_bbp_read(sc, 77);
1540
1541 /* TBD */
1542
1543 /* make sure Rx is disabled before switching antenna */
1544 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1545 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1546
1547 rum_bbp_write(sc, 4, bbp4);
1548 rum_bbp_write(sc, 77, bbp77);
1549
1550 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1551 }
1552
1553 /*
1554 * Enable multi-rate retries for frames sent at OFDM rates.
1555 * In 802.11b/g mode, allow fallback to CCK rates.
1556 */
1557 Static void
1558 rum_enable_mrr(struct rum_softc *sc)
1559 {
1560 struct ieee80211com *ic = &sc->sc_ic;
1561 uint32_t tmp;
1562
1563 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1564
1565 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1566 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1567 tmp |= RT2573_MRR_CCK_FALLBACK;
1568 tmp |= RT2573_MRR_ENABLED;
1569
1570 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1571 }
1572
1573 Static void
1574 rum_set_txpreamble(struct rum_softc *sc)
1575 {
1576 uint32_t tmp;
1577
1578 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1579
1580 tmp &= ~RT2573_SHORT_PREAMBLE;
1581 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1582 tmp |= RT2573_SHORT_PREAMBLE;
1583
1584 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1585 }
1586
1587 Static void
1588 rum_set_basicrates(struct rum_softc *sc)
1589 {
1590 struct ieee80211com *ic = &sc->sc_ic;
1591
1592 /* update basic rate set */
1593 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1594 /* 11b basic rates: 1, 2Mbps */
1595 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1596 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1597 /* 11a basic rates: 6, 12, 24Mbps */
1598 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1599 } else {
1600 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1601 rum_write(sc, RT2573_TXRX_CSR5, 0x15f);
1602 }
1603 }
1604
1605 /*
1606 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1607 * driver.
1608 */
1609 Static void
1610 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1611 {
1612 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1613 uint32_t tmp;
1614
1615 /* update all BBP registers that depend on the band */
1616 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1617 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1618 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1619 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1620 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1621 }
1622 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1623 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1624 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1625 }
1626
1627 sc->bbp17 = bbp17;
1628 rum_bbp_write(sc, 17, bbp17);
1629 rum_bbp_write(sc, 96, bbp96);
1630 rum_bbp_write(sc, 104, bbp104);
1631
1632 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1633 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1634 rum_bbp_write(sc, 75, 0x80);
1635 rum_bbp_write(sc, 86, 0x80);
1636 rum_bbp_write(sc, 88, 0x80);
1637 }
1638
1639 rum_bbp_write(sc, 35, bbp35);
1640 rum_bbp_write(sc, 97, bbp97);
1641 rum_bbp_write(sc, 98, bbp98);
1642
1643 tmp = rum_read(sc, RT2573_PHY_CSR0);
1644 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1645 if (IEEE80211_IS_CHAN_2GHZ(c))
1646 tmp |= RT2573_PA_PE_2GHZ;
1647 else
1648 tmp |= RT2573_PA_PE_5GHZ;
1649 rum_write(sc, RT2573_PHY_CSR0, tmp);
1650
1651 /* 802.11a uses a 16 microseconds short interframe space */
1652 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1653 }
1654
1655 Static void
1656 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1657 {
1658 struct ieee80211com *ic = &sc->sc_ic;
1659 const struct rfprog *rfprog;
1660 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1661 int8_t power;
1662 u_int i, chan;
1663
1664 chan = ieee80211_chan2ieee(ic, c);
1665 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1666 return;
1667
1668 /* select the appropriate RF settings based on what EEPROM says */
1669 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1670 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1671
1672 /* find the settings for this channel (we know it exists) */
1673 for (i = 0; rfprog[i].chan != chan; i++);
1674
1675 power = sc->txpow[i];
1676 if (power < 0) {
1677 bbp94 += power;
1678 power = 0;
1679 } else if (power > 31) {
1680 bbp94 += power - 31;
1681 power = 31;
1682 }
1683
1684 /*
1685 * If we are switching from the 2GHz band to the 5GHz band or
1686 * vice-versa, BBP registers need to be reprogrammed.
1687 */
1688 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1689 rum_select_band(sc, c);
1690 rum_select_antenna(sc);
1691 }
1692 ic->ic_curchan = c;
1693
1694 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1695 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1696 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1697 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1698
1699 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1700 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1701 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1702 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1703
1704 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1705 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1706 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1707 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1708
1709 DELAY(10);
1710
1711 /* enable smart mode for MIMO-capable RFs */
1712 bbp3 = rum_bbp_read(sc, 3);
1713
1714 bbp3 &= ~RT2573_SMART_MODE;
1715 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1716 bbp3 |= RT2573_SMART_MODE;
1717
1718 rum_bbp_write(sc, 3, bbp3);
1719
1720 if (bbp94 != RT2573_BBPR94_DEFAULT)
1721 rum_bbp_write(sc, 94, bbp94);
1722 }
1723
1724 /*
1725 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1726 * and HostAP operating modes.
1727 */
1728 Static void
1729 rum_enable_tsf_sync(struct rum_softc *sc)
1730 {
1731 struct ieee80211com *ic = &sc->sc_ic;
1732 uint32_t tmp;
1733
1734 if (ic->ic_opmode != IEEE80211_M_STA) {
1735 /*
1736 * Change default 16ms TBTT adjustment to 8ms.
1737 * Must be done before enabling beacon generation.
1738 */
1739 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1740 }
1741
1742 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1743
1744 /* set beacon interval (in 1/16ms unit) */
1745 tmp |= ic->ic_bss->ni_intval * 16;
1746
1747 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1748 if (ic->ic_opmode == IEEE80211_M_STA)
1749 tmp |= RT2573_TSF_MODE(1);
1750 else
1751 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1752
1753 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1754 }
1755
1756 Static void
1757 rum_update_slot(struct rum_softc *sc)
1758 {
1759 struct ieee80211com *ic = &sc->sc_ic;
1760 uint8_t slottime;
1761 uint32_t tmp;
1762
1763 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1764
1765 tmp = rum_read(sc, RT2573_MAC_CSR9);
1766 tmp = (tmp & ~0xff) | slottime;
1767 rum_write(sc, RT2573_MAC_CSR9, tmp);
1768
1769 DPRINTF(("setting slot time to %uus\n", slottime));
1770 }
1771
1772 Static void
1773 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1774 {
1775 uint32_t tmp;
1776
1777 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1778 rum_write(sc, RT2573_MAC_CSR4, tmp);
1779
1780 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1781 rum_write(sc, RT2573_MAC_CSR5, tmp);
1782 }
1783
1784 Static void
1785 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1786 {
1787 uint32_t tmp;
1788
1789 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1790 rum_write(sc, RT2573_MAC_CSR2, tmp);
1791
1792 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1793 rum_write(sc, RT2573_MAC_CSR3, tmp);
1794 }
1795
1796 Static void
1797 rum_update_promisc(struct rum_softc *sc)
1798 {
1799 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1800 uint32_t tmp;
1801
1802 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1803
1804 tmp &= ~RT2573_DROP_NOT_TO_ME;
1805 if (!(ifp->if_flags & IFF_PROMISC))
1806 tmp |= RT2573_DROP_NOT_TO_ME;
1807
1808 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1809
1810 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1811 "entering" : "leaving"));
1812 }
1813
1814 Static const char *
1815 rum_get_rf(int rev)
1816 {
1817 switch (rev) {
1818 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1819 case RT2573_RF_2528: return "RT2528";
1820 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1821 case RT2573_RF_5226: return "RT5226";
1822 default: return "unknown";
1823 }
1824 }
1825
1826 Static void
1827 rum_read_eeprom(struct rum_softc *sc)
1828 {
1829 struct ieee80211com *ic = &sc->sc_ic;
1830 uint16_t val;
1831 #ifdef RUM_DEBUG
1832 int i;
1833 #endif
1834
1835 /* read MAC/BBP type */
1836 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1837 sc->macbbp_rev = le16toh(val);
1838
1839 /* read MAC address */
1840 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1841
1842 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1843 val = le16toh(val);
1844 sc->rf_rev = (val >> 11) & 0x1f;
1845 sc->hw_radio = (val >> 10) & 0x1;
1846 sc->rx_ant = (val >> 4) & 0x3;
1847 sc->tx_ant = (val >> 2) & 0x3;
1848 sc->nb_ant = val & 0x3;
1849
1850 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1851
1852 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1853 val = le16toh(val);
1854 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1855 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1856
1857 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1858 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1859
1860 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1861 val = le16toh(val);
1862 if ((val & 0xff) != 0xff)
1863 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1864
1865 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1866 val = le16toh(val);
1867 if ((val & 0xff) != 0xff)
1868 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1869
1870 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1871 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1872
1873 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1874 val = le16toh(val);
1875 if ((val & 0xff) != 0xff)
1876 sc->rffreq = val & 0xff;
1877
1878 DPRINTF(("RF freq=%d\n", sc->rffreq));
1879
1880 /* read Tx power for all a/b/g channels */
1881 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1882 /* XXX default Tx power for 802.11a channels */
1883 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1884 #ifdef RUM_DEBUG
1885 for (i = 0; i < 14; i++)
1886 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1887 #endif
1888
1889 /* read default values for BBP registers */
1890 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1891 #ifdef RUM_DEBUG
1892 for (i = 0; i < 14; i++) {
1893 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1894 continue;
1895 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1896 sc->bbp_prom[i].val));
1897 }
1898 #endif
1899 }
1900
1901 Static int
1902 rum_bbp_init(struct rum_softc *sc)
1903 {
1904 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1905 int i, ntries;
1906 uint8_t val;
1907
1908 /* wait for BBP to be ready */
1909 for (ntries = 0; ntries < 100; ntries++) {
1910 val = rum_bbp_read(sc, 0);
1911 if (val != 0 && val != 0xff)
1912 break;
1913 DELAY(1000);
1914 }
1915 if (ntries == 100) {
1916 printf("%s: timeout waiting for BBP\n",
1917 USBDEVNAME(sc->sc_dev));
1918 return EIO;
1919 }
1920
1921 /* initialize BBP registers to default values */
1922 for (i = 0; i < N(rum_def_bbp); i++)
1923 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1924
1925 /* write vendor-specific BBP values (from EEPROM) */
1926 for (i = 0; i < 16; i++) {
1927 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1928 continue;
1929 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1930 }
1931
1932 return 0;
1933 #undef N
1934 }
1935
1936 Static int
1937 rum_init(struct ifnet *ifp)
1938 {
1939 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1940 struct rum_softc *sc = ifp->if_softc;
1941 struct ieee80211com *ic = &sc->sc_ic;
1942 struct rum_rx_data *data;
1943 uint32_t tmp;
1944 usbd_status error = 0;
1945 int i, ntries;
1946
1947 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1948 if (rum_attachhook(sc))
1949 goto fail;
1950 }
1951
1952 rum_stop(ifp, 0);
1953
1954 /* initialize MAC registers to default values */
1955 for (i = 0; i < N(rum_def_mac); i++)
1956 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1957
1958 /* set host ready */
1959 rum_write(sc, RT2573_MAC_CSR1, 3);
1960 rum_write(sc, RT2573_MAC_CSR1, 0);
1961
1962 /* wait for BBP/RF to wakeup */
1963 for (ntries = 0; ntries < 1000; ntries++) {
1964 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1965 break;
1966 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1967 DELAY(1000);
1968 }
1969 if (ntries == 1000) {
1970 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1971 USBDEVNAME(sc->sc_dev));
1972 goto fail;
1973 }
1974
1975 if ((error = rum_bbp_init(sc)) != 0)
1976 goto fail;
1977
1978 /* select default channel */
1979 rum_select_band(sc, ic->ic_curchan);
1980 rum_select_antenna(sc);
1981 rum_set_chan(sc, ic->ic_curchan);
1982
1983 /* clear STA registers */
1984 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1985
1986 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1987 rum_set_macaddr(sc, ic->ic_myaddr);
1988
1989 /* initialize ASIC */
1990 rum_write(sc, RT2573_MAC_CSR1, 4);
1991
1992 /*
1993 * Allocate xfer for AMRR statistics requests.
1994 */
1995 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
1996 if (sc->amrr_xfer == NULL) {
1997 printf("%s: could not allocate AMRR xfer\n",
1998 USBDEVNAME(sc->sc_dev));
1999 goto fail;
2000 }
2001
2002 /*
2003 * Open Tx and Rx USB bulk pipes.
2004 */
2005 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2006 &sc->sc_tx_pipeh);
2007 if (error != 0) {
2008 printf("%s: could not open Tx pipe: %s\n",
2009 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2010 goto fail;
2011 }
2012
2013 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2014 &sc->sc_rx_pipeh);
2015 if (error != 0) {
2016 printf("%s: could not open Rx pipe: %s\n",
2017 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2018 goto fail;
2019 }
2020
2021 /*
2022 * Allocate Tx and Rx xfer queues.
2023 */
2024 error = rum_alloc_tx_list(sc);
2025 if (error != 0) {
2026 printf("%s: could not allocate Tx list\n",
2027 USBDEVNAME(sc->sc_dev));
2028 goto fail;
2029 }
2030
2031 error = rum_alloc_rx_list(sc);
2032 if (error != 0) {
2033 printf("%s: could not allocate Rx list\n",
2034 USBDEVNAME(sc->sc_dev));
2035 goto fail;
2036 }
2037
2038 /*
2039 * Start up the receive pipe.
2040 */
2041 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
2042 data = &sc->rx_data[i];
2043
2044 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2045 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2046 usbd_transfer(data->xfer);
2047 }
2048
2049 /* update Rx filter */
2050 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2051
2052 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2053 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2054 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2055 RT2573_DROP_ACKCTS;
2056 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2057 tmp |= RT2573_DROP_TODS;
2058 if (!(ifp->if_flags & IFF_PROMISC))
2059 tmp |= RT2573_DROP_NOT_TO_ME;
2060 }
2061 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2062
2063 ifp->if_flags &= ~IFF_OACTIVE;
2064 ifp->if_flags |= IFF_RUNNING;
2065
2066 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2067 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2068 else
2069 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2070
2071 return 0;
2072
2073 fail: rum_stop(ifp, 1);
2074 return error;
2075 #undef N
2076 }
2077
2078 Static void
2079 rum_stop(struct ifnet *ifp, int disable)
2080 {
2081 struct rum_softc *sc = ifp->if_softc;
2082 struct ieee80211com *ic = &sc->sc_ic;
2083 uint32_t tmp;
2084
2085 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2086
2087 sc->sc_tx_timer = 0;
2088 ifp->if_timer = 0;
2089 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2090
2091 /* disable Rx */
2092 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2093 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2094
2095 /* reset ASIC */
2096 rum_write(sc, RT2573_MAC_CSR1, 3);
2097 rum_write(sc, RT2573_MAC_CSR1, 0);
2098
2099 if (sc->sc_rx_pipeh != NULL) {
2100 usbd_abort_pipe(sc->sc_rx_pipeh);
2101 usbd_close_pipe(sc->sc_rx_pipeh);
2102 sc->sc_rx_pipeh = NULL;
2103 }
2104
2105 if (sc->sc_tx_pipeh != NULL) {
2106 usbd_abort_pipe(sc->sc_tx_pipeh);
2107 usbd_close_pipe(sc->sc_tx_pipeh);
2108 sc->sc_tx_pipeh = NULL;
2109 }
2110
2111 rum_free_rx_list(sc);
2112 rum_free_tx_list(sc);
2113 }
2114
2115 Static int
2116 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2117 {
2118 usb_device_request_t req;
2119 uint16_t reg = RT2573_MCU_CODE_BASE;
2120 usbd_status error;
2121
2122 /* copy firmware image into NIC */
2123 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2124 rum_write(sc, reg, UGETDW(ucode));
2125
2126 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2127 req.bRequest = RT2573_MCU_CNTL;
2128 USETW(req.wValue, RT2573_MCU_RUN);
2129 USETW(req.wIndex, 0);
2130 USETW(req.wLength, 0);
2131
2132 error = usbd_do_request(sc->sc_udev, &req, NULL);
2133 if (error != 0) {
2134 printf("%s: could not run firmware: %s\n",
2135 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2136 }
2137 return error;
2138 }
2139
2140 Static int
2141 rum_prepare_beacon(struct rum_softc *sc)
2142 {
2143 struct ieee80211com *ic = &sc->sc_ic;
2144 struct rum_tx_desc desc;
2145 struct mbuf *m0;
2146 int rate;
2147
2148 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2149 if (m0 == NULL) {
2150 printf("%s: could not allocate beacon frame\n",
2151 sc->sc_dev.dv_xname);
2152 return ENOBUFS;
2153 }
2154
2155 /* send beacons at the lowest available rate */
2156 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2157
2158 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2159 m0->m_pkthdr.len, rate);
2160
2161 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2162 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2163
2164 /* copy beacon header and payload into NIC memory */
2165 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2166 m0->m_pkthdr.len);
2167
2168 m_freem(m0);
2169
2170 return 0;
2171 }
2172
2173 Static void
2174 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2175 {
2176 int i;
2177
2178 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2179 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2180
2181 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2182
2183 /* set rate to some reasonable initial value */
2184 for (i = ni->ni_rates.rs_nrates - 1;
2185 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2186 i--);
2187 ni->ni_txrate = i;
2188
2189 callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
2190 }
2191
2192 Static void
2193 rum_amrr_timeout(void *arg)
2194 {
2195 struct rum_softc *sc = arg;
2196 usb_device_request_t req;
2197 int s;
2198
2199 s = splusb();
2200
2201 /*
2202 * Asynchronously read statistic registers (cleared by read).
2203 */
2204 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2205 req.bRequest = RT2573_READ_MULTI_MAC;
2206 USETW(req.wValue, 0);
2207 USETW(req.wIndex, RT2573_STA_CSR0);
2208 USETW(req.wLength, sizeof sc->sta);
2209
2210 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2211 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2212 rum_amrr_update);
2213 (void)usbd_transfer(sc->amrr_xfer);
2214
2215 splx(s);
2216 }
2217
2218 Static void
2219 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2220 usbd_status status)
2221 {
2222 struct rum_softc *sc = (struct rum_softc *)priv;
2223 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2224
2225 if (status != USBD_NORMAL_COMPLETION) {
2226 printf("%s: could not retrieve Tx statistics - cancelling "
2227 "automatic rate control\n", USBDEVNAME(sc->sc_dev));
2228 return;
2229 }
2230
2231 /* count TX retry-fail as Tx errors */
2232 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2233
2234 sc->amn.amn_retrycnt =
2235 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2236 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2237 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2238
2239 sc->amn.amn_txcnt =
2240 sc->amn.amn_retrycnt +
2241 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2242
2243 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2244
2245 callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
2246 }
2247
2248 int
2249 rum_activate(device_ptr_t self, enum devact act)
2250 {
2251 switch (act) {
2252 case DVACT_ACTIVATE:
2253 return EOPNOTSUPP;
2254
2255 case DVACT_DEACTIVATE:
2256 /*if_deactivate(&sc->sc_ic.ic_if);*/
2257 break;
2258 }
2259
2260 return 0;
2261 }
2262