if_rum.c revision 1.32 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.32 2010/04/05 07:21:48 joerg Exp $ */
3
4 /*-
5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com.tw/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.32 2010/04/05 07:21:48 joerg Exp $");
28
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/sysctl.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <dev/firmload.h>
64
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69
70 #include <dev/usb/if_rumreg.h>
71 #include <dev/usb/if_rumvar.h>
72
73 #ifdef USB_DEBUG
74 #define RUM_DEBUG
75 #endif
76
77 #ifdef RUM_DEBUG
78 #define DPRINTF(x) do { if (rum_debug) logprintf x; } while (0)
79 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) logprintf x; } while (0)
80 int rum_debug = 1;
81 #else
82 #define DPRINTF(x)
83 #define DPRINTFN(n, x)
84 #endif
85
86 /* various supported device vendors/products */
87 static const struct usb_devno rum_devs[] = {
88 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
89 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
90 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
92 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
93 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
94 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
95 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
96 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
97 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
98 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
99 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
100 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
101 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL },
102 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX },
103 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
104 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
105 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
106 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
107 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 },
108 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
109 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
110 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
111 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
112 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
113 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
114 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
115 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
116 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
117 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG },
118 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
119 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
120 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
121 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
122 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
123 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
124 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
125 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
126 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
127 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
128 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 },
129 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
130 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2573 },
131 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
132 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
133 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
134 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }
135 };
136
137 Static int rum_attachhook(void *);
138 Static int rum_alloc_tx_list(struct rum_softc *);
139 Static void rum_free_tx_list(struct rum_softc *);
140 Static int rum_alloc_rx_list(struct rum_softc *);
141 Static void rum_free_rx_list(struct rum_softc *);
142 Static int rum_media_change(struct ifnet *);
143 Static void rum_next_scan(void *);
144 Static void rum_task(void *);
145 Static int rum_newstate(struct ieee80211com *,
146 enum ieee80211_state, int);
147 Static void rum_txeof(usbd_xfer_handle, usbd_private_handle,
148 usbd_status);
149 Static void rum_rxeof(usbd_xfer_handle, usbd_private_handle,
150 usbd_status);
151 Static uint8_t rum_rxrate(const struct rum_rx_desc *);
152 Static int rum_ack_rate(struct ieee80211com *, int);
153 Static uint16_t rum_txtime(int, int, uint32_t);
154 Static uint8_t rum_plcp_signal(int);
155 Static void rum_setup_tx_desc(struct rum_softc *,
156 struct rum_tx_desc *, uint32_t, uint16_t, int,
157 int);
158 Static int rum_tx_mgt(struct rum_softc *, struct mbuf *,
159 struct ieee80211_node *);
160 Static int rum_tx_data(struct rum_softc *, struct mbuf *,
161 struct ieee80211_node *);
162 Static void rum_start(struct ifnet *);
163 Static void rum_watchdog(struct ifnet *);
164 Static int rum_ioctl(struct ifnet *, u_long, void *);
165 Static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
166 int);
167 Static uint32_t rum_read(struct rum_softc *, uint16_t);
168 Static void rum_read_multi(struct rum_softc *, uint16_t, void *,
169 int);
170 Static void rum_write(struct rum_softc *, uint16_t, uint32_t);
171 Static void rum_write_multi(struct rum_softc *, uint16_t, void *,
172 size_t);
173 Static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
174 Static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
175 Static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
176 Static void rum_select_antenna(struct rum_softc *);
177 Static void rum_enable_mrr(struct rum_softc *);
178 Static void rum_set_txpreamble(struct rum_softc *);
179 Static void rum_set_basicrates(struct rum_softc *);
180 Static void rum_select_band(struct rum_softc *,
181 struct ieee80211_channel *);
182 Static void rum_set_chan(struct rum_softc *,
183 struct ieee80211_channel *);
184 Static void rum_enable_tsf_sync(struct rum_softc *);
185 Static void rum_update_slot(struct rum_softc *);
186 Static void rum_set_bssid(struct rum_softc *, const uint8_t *);
187 Static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
188 Static void rum_update_promisc(struct rum_softc *);
189 Static const char *rum_get_rf(int);
190 Static void rum_read_eeprom(struct rum_softc *);
191 Static int rum_bbp_init(struct rum_softc *);
192 Static int rum_init(struct ifnet *);
193 Static void rum_stop(struct ifnet *, int);
194 Static int rum_load_microcode(struct rum_softc *, const u_char *,
195 size_t);
196 Static int rum_prepare_beacon(struct rum_softc *);
197 Static void rum_newassoc(struct ieee80211_node *, int);
198 Static void rum_amrr_start(struct rum_softc *,
199 struct ieee80211_node *);
200 Static void rum_amrr_timeout(void *);
201 Static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
202 usbd_status status);
203
204 /*
205 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
206 */
207 static const struct ieee80211_rateset rum_rateset_11a =
208 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
209
210 static const struct ieee80211_rateset rum_rateset_11b =
211 { 4, { 2, 4, 11, 22 } };
212
213 static const struct ieee80211_rateset rum_rateset_11g =
214 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
215
216 static const struct {
217 uint32_t reg;
218 uint32_t val;
219 } rum_def_mac[] = {
220 RT2573_DEF_MAC
221 };
222
223 static const struct {
224 uint8_t reg;
225 uint8_t val;
226 } rum_def_bbp[] = {
227 RT2573_DEF_BBP
228 };
229
230 static const struct rfprog {
231 uint8_t chan;
232 uint32_t r1, r2, r3, r4;
233 } rum_rf5226[] = {
234 RT2573_RF5226
235 }, rum_rf5225[] = {
236 RT2573_RF5225
237 };
238
239 USB_DECLARE_DRIVER(rum);
240
241 USB_MATCH(rum)
242 {
243 USB_MATCH_START(rum, uaa);
244
245 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
246 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
247 }
248
249 Static int
250 rum_attachhook(void *xsc)
251 {
252 struct rum_softc *sc = xsc;
253 firmware_handle_t fwh;
254 const char *name = "rum-rt2573";
255 u_char *ucode;
256 size_t size;
257 int error;
258
259 if ((error = firmware_open("rum", name, &fwh)) != 0) {
260 printf("%s: failed loadfirmware of file %s (error %d)\n",
261 USBDEVNAME(sc->sc_dev), name, error);
262 return error;
263 }
264 size = firmware_get_size(fwh);
265 ucode = firmware_malloc(size);
266 if (ucode == NULL) {
267 printf("%s: failed to allocate firmware memory\n",
268 USBDEVNAME(sc->sc_dev));
269 firmware_close(fwh);
270 return ENOMEM;
271 }
272 error = firmware_read(fwh, 0, ucode, size);
273 firmware_close(fwh);
274 if (error != 0) {
275 printf("%s: failed to read firmware (error %d)\n",
276 USBDEVNAME(sc->sc_dev), error);
277 firmware_free(ucode, 0);
278 return error;
279 }
280
281 if (rum_load_microcode(sc, ucode, size) != 0) {
282 printf("%s: could not load 8051 microcode\n",
283 USBDEVNAME(sc->sc_dev));
284 firmware_free(ucode, 0);
285 return ENXIO;
286 }
287
288 firmware_free(ucode, 0);
289 sc->sc_flags |= RT2573_FWLOADED;
290
291 return 0;
292 }
293
294 USB_ATTACH(rum)
295 {
296 USB_ATTACH_START(rum, sc, uaa);
297 struct ieee80211com *ic = &sc->sc_ic;
298 struct ifnet *ifp = &sc->sc_if;
299 usb_interface_descriptor_t *id;
300 usb_endpoint_descriptor_t *ed;
301 usbd_status error;
302 char *devinfop;
303 int i, ntries;
304 uint32_t tmp;
305
306 sc->sc_dev = self;
307 sc->sc_udev = uaa->device;
308 sc->sc_flags = 0;
309
310 aprint_naive("\n");
311 aprint_normal("\n");
312
313 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
314 aprint_normal_dev(self, "%s\n", devinfop);
315 usbd_devinfo_free(devinfop);
316
317 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
318 aprint_error_dev(self, "could not set configuration no\n");
319 USB_ATTACH_ERROR_RETURN;
320 }
321
322 /* get the first interface handle */
323 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
324 &sc->sc_iface);
325 if (error != 0) {
326 aprint_error_dev(self, "could not get interface handle\n");
327 USB_ATTACH_ERROR_RETURN;
328 }
329
330 /*
331 * Find endpoints.
332 */
333 id = usbd_get_interface_descriptor(sc->sc_iface);
334
335 sc->sc_rx_no = sc->sc_tx_no = -1;
336 for (i = 0; i < id->bNumEndpoints; i++) {
337 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
338 if (ed == NULL) {
339 aprint_error_dev(self,
340 "no endpoint descriptor for iface %d\n", i);
341 USB_ATTACH_ERROR_RETURN;
342 }
343
344 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
345 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
346 sc->sc_rx_no = ed->bEndpointAddress;
347 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
348 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
349 sc->sc_tx_no = ed->bEndpointAddress;
350 }
351 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
352 aprint_error_dev(self, "missing endpoint\n");
353 USB_ATTACH_ERROR_RETURN;
354 }
355
356 usb_init_task(&sc->sc_task, rum_task, sc);
357 usb_callout_init(sc->sc_scan_ch);
358
359 sc->amrr.amrr_min_success_threshold = 1;
360 sc->amrr.amrr_max_success_threshold = 10;
361 usb_callout_init(sc->sc_amrr_ch);
362
363 /* retrieve RT2573 rev. no */
364 for (ntries = 0; ntries < 1000; ntries++) {
365 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
366 break;
367 DELAY(1000);
368 }
369 if (ntries == 1000) {
370 aprint_error_dev(self, "timeout waiting for chip to settle\n");
371 USB_ATTACH_ERROR_RETURN;
372 }
373
374 /* retrieve MAC address and various other things from EEPROM */
375 rum_read_eeprom(sc);
376
377 aprint_normal_dev(self,
378 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
379 sc->macbbp_rev, tmp,
380 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
381
382 ic->ic_ifp = ifp;
383 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
384 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
385 ic->ic_state = IEEE80211_S_INIT;
386
387 /* set device capabilities */
388 ic->ic_caps =
389 IEEE80211_C_IBSS | /* IBSS mode supported */
390 IEEE80211_C_MONITOR | /* monitor mode supported */
391 IEEE80211_C_HOSTAP | /* HostAp mode supported */
392 IEEE80211_C_TXPMGT | /* tx power management */
393 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
394 IEEE80211_C_SHSLOT | /* short slot time supported */
395 IEEE80211_C_WPA; /* 802.11i */
396
397 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
398 /* set supported .11a rates */
399 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
400
401 /* set supported .11a channels */
402 for (i = 34; i <= 46; i += 4) {
403 ic->ic_channels[i].ic_freq =
404 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
405 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
406 }
407 for (i = 36; i <= 64; i += 4) {
408 ic->ic_channels[i].ic_freq =
409 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
410 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
411 }
412 for (i = 100; i <= 140; i += 4) {
413 ic->ic_channels[i].ic_freq =
414 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
415 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
416 }
417 for (i = 149; i <= 165; i += 4) {
418 ic->ic_channels[i].ic_freq =
419 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
420 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
421 }
422 }
423
424 /* set supported .11b and .11g rates */
425 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
426 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
427
428 /* set supported .11b and .11g channels (1 through 14) */
429 for (i = 1; i <= 14; i++) {
430 ic->ic_channels[i].ic_freq =
431 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
432 ic->ic_channels[i].ic_flags =
433 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
434 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
435 }
436
437 ifp->if_softc = sc;
438 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
439 ifp->if_init = rum_init;
440 ifp->if_ioctl = rum_ioctl;
441 ifp->if_start = rum_start;
442 ifp->if_watchdog = rum_watchdog;
443 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
444 IFQ_SET_READY(&ifp->if_snd);
445 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
446
447 if_attach(ifp);
448 ieee80211_ifattach(ic);
449 ic->ic_newassoc = rum_newassoc;
450
451 /* override state transition machine */
452 sc->sc_newstate = ic->ic_newstate;
453 ic->ic_newstate = rum_newstate;
454 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
455
456 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
457 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
458 &sc->sc_drvbpf);
459
460 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
461 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
462 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
463
464 sc->sc_txtap_len = sizeof sc->sc_txtapu;
465 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
466 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
467
468 ieee80211_announce(ic);
469
470 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
471 USBDEV(sc->sc_dev));
472
473 USB_ATTACH_SUCCESS_RETURN;
474 }
475
476 USB_DETACH(rum)
477 {
478 USB_DETACH_START(rum, sc);
479 struct ieee80211com *ic = &sc->sc_ic;
480 struct ifnet *ifp = &sc->sc_if;
481 int s;
482
483 if (!ifp->if_softc)
484 return 0;
485
486 s = splusb();
487
488 rum_stop(ifp, 1);
489 usb_rem_task(sc->sc_udev, &sc->sc_task);
490 usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
491 usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
492
493 if (sc->amrr_xfer != NULL) {
494 usbd_free_xfer(sc->amrr_xfer);
495 sc->amrr_xfer = NULL;
496 }
497
498 if (sc->sc_rx_pipeh != NULL) {
499 usbd_abort_pipe(sc->sc_rx_pipeh);
500 usbd_close_pipe(sc->sc_rx_pipeh);
501 }
502
503 if (sc->sc_tx_pipeh != NULL) {
504 usbd_abort_pipe(sc->sc_tx_pipeh);
505 usbd_close_pipe(sc->sc_tx_pipeh);
506 }
507
508 bpf_detach(ifp);
509 ieee80211_ifdetach(ic); /* free all nodes */
510 if_detach(ifp);
511
512 splx(s);
513
514 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
515 USBDEV(sc->sc_dev));
516
517 return 0;
518 }
519
520 Static int
521 rum_alloc_tx_list(struct rum_softc *sc)
522 {
523 struct rum_tx_data *data;
524 int i, error;
525
526 sc->tx_queued = 0;
527
528 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
529 data = &sc->tx_data[i];
530
531 data->sc = sc;
532
533 data->xfer = usbd_alloc_xfer(sc->sc_udev);
534 if (data->xfer == NULL) {
535 printf("%s: could not allocate tx xfer\n",
536 USBDEVNAME(sc->sc_dev));
537 error = ENOMEM;
538 goto fail;
539 }
540
541 data->buf = usbd_alloc_buffer(data->xfer,
542 RT2573_TX_DESC_SIZE + MCLBYTES);
543 if (data->buf == NULL) {
544 printf("%s: could not allocate tx buffer\n",
545 USBDEVNAME(sc->sc_dev));
546 error = ENOMEM;
547 goto fail;
548 }
549
550 /* clean Tx descriptor */
551 memset(data->buf, 0, RT2573_TX_DESC_SIZE);
552 }
553
554 return 0;
555
556 fail: rum_free_tx_list(sc);
557 return error;
558 }
559
560 Static void
561 rum_free_tx_list(struct rum_softc *sc)
562 {
563 struct rum_tx_data *data;
564 int i;
565
566 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
567 data = &sc->tx_data[i];
568
569 if (data->xfer != NULL) {
570 usbd_free_xfer(data->xfer);
571 data->xfer = NULL;
572 }
573
574 if (data->ni != NULL) {
575 ieee80211_free_node(data->ni);
576 data->ni = NULL;
577 }
578 }
579 }
580
581 Static int
582 rum_alloc_rx_list(struct rum_softc *sc)
583 {
584 struct rum_rx_data *data;
585 int i, error;
586
587 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
588 data = &sc->rx_data[i];
589
590 data->sc = sc;
591
592 data->xfer = usbd_alloc_xfer(sc->sc_udev);
593 if (data->xfer == NULL) {
594 printf("%s: could not allocate rx xfer\n",
595 USBDEVNAME(sc->sc_dev));
596 error = ENOMEM;
597 goto fail;
598 }
599
600 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
601 printf("%s: could not allocate rx buffer\n",
602 USBDEVNAME(sc->sc_dev));
603 error = ENOMEM;
604 goto fail;
605 }
606
607 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
608 if (data->m == NULL) {
609 printf("%s: could not allocate rx mbuf\n",
610 USBDEVNAME(sc->sc_dev));
611 error = ENOMEM;
612 goto fail;
613 }
614
615 MCLGET(data->m, M_DONTWAIT);
616 if (!(data->m->m_flags & M_EXT)) {
617 printf("%s: could not allocate rx mbuf cluster\n",
618 USBDEVNAME(sc->sc_dev));
619 error = ENOMEM;
620 goto fail;
621 }
622
623 data->buf = mtod(data->m, uint8_t *);
624 }
625
626 return 0;
627
628 fail: rum_free_tx_list(sc);
629 return error;
630 }
631
632 Static void
633 rum_free_rx_list(struct rum_softc *sc)
634 {
635 struct rum_rx_data *data;
636 int i;
637
638 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
639 data = &sc->rx_data[i];
640
641 if (data->xfer != NULL) {
642 usbd_free_xfer(data->xfer);
643 data->xfer = NULL;
644 }
645
646 if (data->m != NULL) {
647 m_freem(data->m);
648 data->m = NULL;
649 }
650 }
651 }
652
653 Static int
654 rum_media_change(struct ifnet *ifp)
655 {
656 int error;
657
658 error = ieee80211_media_change(ifp);
659 if (error != ENETRESET)
660 return error;
661
662 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
663 rum_init(ifp);
664
665 return 0;
666 }
667
668 /*
669 * This function is called periodically (every 200ms) during scanning to
670 * switch from one channel to another.
671 */
672 Static void
673 rum_next_scan(void *arg)
674 {
675 struct rum_softc *sc = arg;
676 struct ieee80211com *ic = &sc->sc_ic;
677
678 if (ic->ic_state == IEEE80211_S_SCAN)
679 ieee80211_next_scan(ic);
680 }
681
682 Static void
683 rum_task(void *arg)
684 {
685 struct rum_softc *sc = arg;
686 struct ieee80211com *ic = &sc->sc_ic;
687 enum ieee80211_state ostate;
688 struct ieee80211_node *ni;
689 uint32_t tmp;
690
691 ostate = ic->ic_state;
692
693 switch (sc->sc_state) {
694 case IEEE80211_S_INIT:
695 if (ostate == IEEE80211_S_RUN) {
696 /* abort TSF synchronization */
697 tmp = rum_read(sc, RT2573_TXRX_CSR9);
698 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
699 }
700 break;
701
702 case IEEE80211_S_SCAN:
703 rum_set_chan(sc, ic->ic_curchan);
704 usb_callout(sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
705 break;
706
707 case IEEE80211_S_AUTH:
708 rum_set_chan(sc, ic->ic_curchan);
709 break;
710
711 case IEEE80211_S_ASSOC:
712 rum_set_chan(sc, ic->ic_curchan);
713 break;
714
715 case IEEE80211_S_RUN:
716 rum_set_chan(sc, ic->ic_curchan);
717
718 ni = ic->ic_bss;
719
720 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
721 rum_update_slot(sc);
722 rum_enable_mrr(sc);
723 rum_set_txpreamble(sc);
724 rum_set_basicrates(sc);
725 rum_set_bssid(sc, ni->ni_bssid);
726 }
727
728 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
729 ic->ic_opmode == IEEE80211_M_IBSS)
730 rum_prepare_beacon(sc);
731
732 if (ic->ic_opmode != IEEE80211_M_MONITOR)
733 rum_enable_tsf_sync(sc);
734
735 if (ic->ic_opmode == IEEE80211_M_STA) {
736 /* fake a join to init the tx rate */
737 rum_newassoc(ic->ic_bss, 1);
738
739 /* enable automatic rate adaptation in STA mode */
740 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
741 rum_amrr_start(sc, ni);
742 }
743
744 break;
745 }
746
747 sc->sc_newstate(ic, sc->sc_state, -1);
748 }
749
750 Static int
751 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
752 {
753 struct rum_softc *sc = ic->ic_ifp->if_softc;
754
755 usb_rem_task(sc->sc_udev, &sc->sc_task);
756 usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
757 usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
758
759 /* do it in a process context */
760 sc->sc_state = nstate;
761 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
762
763 return 0;
764 }
765
766 /* quickly determine if a given rate is CCK or OFDM */
767 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
768
769 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
770 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
771
772 Static void
773 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
774 {
775 struct rum_tx_data *data = priv;
776 struct rum_softc *sc = data->sc;
777 struct ifnet *ifp = &sc->sc_if;
778 int s;
779
780 if (status != USBD_NORMAL_COMPLETION) {
781 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
782 return;
783
784 printf("%s: could not transmit buffer: %s\n",
785 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
786
787 if (status == USBD_STALLED)
788 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
789
790 ifp->if_oerrors++;
791 return;
792 }
793
794 s = splnet();
795
796 ieee80211_free_node(data->ni);
797 data->ni = NULL;
798
799 sc->tx_queued--;
800 ifp->if_opackets++;
801
802 DPRINTFN(10, ("tx done\n"));
803
804 sc->sc_tx_timer = 0;
805 ifp->if_flags &= ~IFF_OACTIVE;
806 rum_start(ifp);
807
808 splx(s);
809 }
810
811 Static void
812 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
813 {
814 struct rum_rx_data *data = priv;
815 struct rum_softc *sc = data->sc;
816 struct ieee80211com *ic = &sc->sc_ic;
817 struct ifnet *ifp = &sc->sc_if;
818 struct rum_rx_desc *desc;
819 struct ieee80211_frame *wh;
820 struct ieee80211_node *ni;
821 struct mbuf *mnew, *m;
822 int s, len;
823
824 if (status != USBD_NORMAL_COMPLETION) {
825 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
826 return;
827
828 if (status == USBD_STALLED)
829 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
830 goto skip;
831 }
832
833 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
834
835 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
836 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
837 len));
838 ifp->if_ierrors++;
839 goto skip;
840 }
841
842 desc = (struct rum_rx_desc *)data->buf;
843
844 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
845 /*
846 * This should not happen since we did not request to receive
847 * those frames when we filled RT2573_TXRX_CSR0.
848 */
849 DPRINTFN(5, ("CRC error\n"));
850 ifp->if_ierrors++;
851 goto skip;
852 }
853
854 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
855 if (mnew == NULL) {
856 printf("%s: could not allocate rx mbuf\n",
857 USBDEVNAME(sc->sc_dev));
858 ifp->if_ierrors++;
859 goto skip;
860 }
861
862 MCLGET(mnew, M_DONTWAIT);
863 if (!(mnew->m_flags & M_EXT)) {
864 printf("%s: could not allocate rx mbuf cluster\n",
865 USBDEVNAME(sc->sc_dev));
866 m_freem(mnew);
867 ifp->if_ierrors++;
868 goto skip;
869 }
870
871 m = data->m;
872 data->m = mnew;
873 data->buf = mtod(data->m, uint8_t *);
874
875 /* finalize mbuf */
876 m->m_pkthdr.rcvif = ifp;
877 m->m_data = (void *)(desc + 1);
878 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
879
880 s = splnet();
881
882 if (sc->sc_drvbpf != NULL) {
883 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
884
885 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
886 tap->wr_rate = rum_rxrate(desc);
887 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
888 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
889 tap->wr_antenna = sc->rx_ant;
890 tap->wr_antsignal = desc->rssi;
891
892 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
893 }
894
895 wh = mtod(m, struct ieee80211_frame *);
896 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
897
898 /* send the frame to the 802.11 layer */
899 ieee80211_input(ic, m, ni, desc->rssi, 0);
900
901 /* node is no longer needed */
902 ieee80211_free_node(ni);
903
904 splx(s);
905
906 DPRINTFN(15, ("rx done\n"));
907
908 skip: /* setup a new transfer */
909 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
910 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
911 usbd_transfer(xfer);
912 }
913
914 /*
915 * This function is only used by the Rx radiotap code. It returns the rate at
916 * which a given frame was received.
917 */
918 Static uint8_t
919 rum_rxrate(const struct rum_rx_desc *desc)
920 {
921 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
922 /* reverse function of rum_plcp_signal */
923 switch (desc->rate) {
924 case 0xb: return 12;
925 case 0xf: return 18;
926 case 0xa: return 24;
927 case 0xe: return 36;
928 case 0x9: return 48;
929 case 0xd: return 72;
930 case 0x8: return 96;
931 case 0xc: return 108;
932 }
933 } else {
934 if (desc->rate == 10)
935 return 2;
936 if (desc->rate == 20)
937 return 4;
938 if (desc->rate == 55)
939 return 11;
940 if (desc->rate == 110)
941 return 22;
942 }
943 return 2; /* should not get there */
944 }
945
946 /*
947 * Return the expected ack rate for a frame transmitted at rate `rate'.
948 * XXX: this should depend on the destination node basic rate set.
949 */
950 Static int
951 rum_ack_rate(struct ieee80211com *ic, int rate)
952 {
953 switch (rate) {
954 /* CCK rates */
955 case 2:
956 return 2;
957 case 4:
958 case 11:
959 case 22:
960 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
961
962 /* OFDM rates */
963 case 12:
964 case 18:
965 return 12;
966 case 24:
967 case 36:
968 return 24;
969 case 48:
970 case 72:
971 case 96:
972 case 108:
973 return 48;
974 }
975
976 /* default to 1Mbps */
977 return 2;
978 }
979
980 /*
981 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
982 * The function automatically determines the operating mode depending on the
983 * given rate. `flags' indicates whether short preamble is in use or not.
984 */
985 Static uint16_t
986 rum_txtime(int len, int rate, uint32_t flags)
987 {
988 uint16_t txtime;
989
990 if (RUM_RATE_IS_OFDM(rate)) {
991 /* IEEE Std 802.11a-1999, pp. 37 */
992 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
993 txtime = 16 + 4 + 4 * txtime + 6;
994 } else {
995 /* IEEE Std 802.11b-1999, pp. 28 */
996 txtime = (16 * len + rate - 1) / rate;
997 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
998 txtime += 72 + 24;
999 else
1000 txtime += 144 + 48;
1001 }
1002 return txtime;
1003 }
1004
1005 Static uint8_t
1006 rum_plcp_signal(int rate)
1007 {
1008 switch (rate) {
1009 /* CCK rates (returned values are device-dependent) */
1010 case 2: return 0x0;
1011 case 4: return 0x1;
1012 case 11: return 0x2;
1013 case 22: return 0x3;
1014
1015 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1016 case 12: return 0xb;
1017 case 18: return 0xf;
1018 case 24: return 0xa;
1019 case 36: return 0xe;
1020 case 48: return 0x9;
1021 case 72: return 0xd;
1022 case 96: return 0x8;
1023 case 108: return 0xc;
1024
1025 /* unsupported rates (should not get there) */
1026 default: return 0xff;
1027 }
1028 }
1029
1030 Static void
1031 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1032 uint32_t flags, uint16_t xflags, int len, int rate)
1033 {
1034 struct ieee80211com *ic = &sc->sc_ic;
1035 uint16_t plcp_length;
1036 int remainder;
1037
1038 desc->flags = htole32(flags);
1039 desc->flags |= htole32(RT2573_TX_VALID);
1040 desc->flags |= htole32(len << 16);
1041
1042 desc->xflags = htole16(xflags);
1043
1044 desc->wme = htole16(
1045 RT2573_QID(0) |
1046 RT2573_AIFSN(2) |
1047 RT2573_LOGCWMIN(4) |
1048 RT2573_LOGCWMAX(10));
1049
1050 /* setup PLCP fields */
1051 desc->plcp_signal = rum_plcp_signal(rate);
1052 desc->plcp_service = 4;
1053
1054 len += IEEE80211_CRC_LEN;
1055 if (RUM_RATE_IS_OFDM(rate)) {
1056 desc->flags |= htole32(RT2573_TX_OFDM);
1057
1058 plcp_length = len & 0xfff;
1059 desc->plcp_length_hi = plcp_length >> 6;
1060 desc->plcp_length_lo = plcp_length & 0x3f;
1061 } else {
1062 plcp_length = (16 * len + rate - 1) / rate;
1063 if (rate == 22) {
1064 remainder = (16 * len) % 22;
1065 if (remainder != 0 && remainder < 7)
1066 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1067 }
1068 desc->plcp_length_hi = plcp_length >> 8;
1069 desc->plcp_length_lo = plcp_length & 0xff;
1070
1071 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1072 desc->plcp_signal |= 0x08;
1073 }
1074 }
1075
1076 #define RUM_TX_TIMEOUT 5000
1077
1078 Static int
1079 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1080 {
1081 struct ieee80211com *ic = &sc->sc_ic;
1082 struct rum_tx_desc *desc;
1083 struct rum_tx_data *data;
1084 struct ieee80211_frame *wh;
1085 struct ieee80211_key *k;
1086 uint32_t flags = 0;
1087 uint16_t dur;
1088 usbd_status error;
1089 int xferlen, rate;
1090
1091 data = &sc->tx_data[0];
1092 desc = (struct rum_tx_desc *)data->buf;
1093
1094 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1095
1096 data->m = m0;
1097 data->ni = ni;
1098
1099 wh = mtod(m0, struct ieee80211_frame *);
1100
1101 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1102 k = ieee80211_crypto_encap(ic, ni, m0);
1103 if (k == NULL) {
1104 m_freem(m0);
1105 return ENOBUFS;
1106 }
1107 }
1108
1109 wh = mtod(m0, struct ieee80211_frame *);
1110
1111 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1112 flags |= RT2573_TX_NEED_ACK;
1113
1114 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1115 ic->ic_flags) + sc->sifs;
1116 *(uint16_t *)wh->i_dur = htole16(dur);
1117
1118 /* tell hardware to set timestamp in probe responses */
1119 if ((wh->i_fc[0] &
1120 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1121 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1122 flags |= RT2573_TX_TIMESTAMP;
1123 }
1124
1125 if (sc->sc_drvbpf != NULL) {
1126 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1127
1128 tap->wt_flags = 0;
1129 tap->wt_rate = rate;
1130 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1131 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1132 tap->wt_antenna = sc->tx_ant;
1133
1134 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1135 }
1136
1137 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1138 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1139
1140 /* align end on a 4-bytes boundary */
1141 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1142
1143 /*
1144 * No space left in the last URB to store the extra 4 bytes, force
1145 * sending of another URB.
1146 */
1147 if ((xferlen % 64) == 0)
1148 xferlen += 4;
1149
1150 DPRINTFN(10, ("sending msg frame len=%zu rate=%u xfer len=%u\n",
1151 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1152 rate, xferlen));
1153
1154 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1155 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1156
1157 error = usbd_transfer(data->xfer);
1158 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1159 m_freem(m0);
1160 return error;
1161 }
1162
1163 sc->tx_queued++;
1164
1165 return 0;
1166 }
1167
1168 Static int
1169 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1170 {
1171 struct ieee80211com *ic = &sc->sc_ic;
1172 struct rum_tx_desc *desc;
1173 struct rum_tx_data *data;
1174 struct ieee80211_frame *wh;
1175 struct ieee80211_key *k;
1176 uint32_t flags = 0;
1177 uint16_t dur;
1178 usbd_status error;
1179 int xferlen, rate;
1180
1181 wh = mtod(m0, struct ieee80211_frame *);
1182
1183 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1184 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1185 else
1186 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1187 if (rate == 0)
1188 rate = 2; /* XXX should not happen */
1189 rate &= IEEE80211_RATE_VAL;
1190
1191 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1192 k = ieee80211_crypto_encap(ic, ni, m0);
1193 if (k == NULL) {
1194 m_freem(m0);
1195 return ENOBUFS;
1196 }
1197
1198 /* packet header may have moved, reset our local pointer */
1199 wh = mtod(m0, struct ieee80211_frame *);
1200 }
1201
1202 data = &sc->tx_data[0];
1203 desc = (struct rum_tx_desc *)data->buf;
1204
1205 data->ni = ni;
1206
1207 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1208 flags |= RT2573_TX_NEED_ACK;
1209
1210 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1211 ic->ic_flags) + sc->sifs;
1212 *(uint16_t *)wh->i_dur = htole16(dur);
1213 }
1214
1215 if (sc->sc_drvbpf != NULL) {
1216 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1217
1218 tap->wt_flags = 0;
1219 tap->wt_rate = rate;
1220 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1221 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1222 tap->wt_antenna = sc->tx_ant;
1223
1224 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1225 }
1226
1227 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1228 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1229
1230 /* align end on a 4-bytes boundary */
1231 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1232
1233 /*
1234 * No space left in the last URB to store the extra 4 bytes, force
1235 * sending of another URB.
1236 */
1237 if ((xferlen % 64) == 0)
1238 xferlen += 4;
1239
1240 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1241 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1242 rate, xferlen));
1243
1244 /* mbuf is no longer needed */
1245 m_freem(m0);
1246
1247 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1248 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1249
1250 error = usbd_transfer(data->xfer);
1251 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1252 return error;
1253
1254 sc->tx_queued++;
1255
1256 return 0;
1257 }
1258
1259 Static void
1260 rum_start(struct ifnet *ifp)
1261 {
1262 struct rum_softc *sc = ifp->if_softc;
1263 struct ieee80211com *ic = &sc->sc_ic;
1264 struct ether_header *eh;
1265 struct ieee80211_node *ni;
1266 struct mbuf *m0;
1267
1268 for (;;) {
1269 IF_POLL(&ic->ic_mgtq, m0);
1270 if (m0 != NULL) {
1271 if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
1272 ifp->if_flags |= IFF_OACTIVE;
1273 break;
1274 }
1275 IF_DEQUEUE(&ic->ic_mgtq, m0);
1276
1277 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1278 m0->m_pkthdr.rcvif = NULL;
1279 bpf_mtap3(ic->ic_rawbpf, m0);
1280 if (rum_tx_mgt(sc, m0, ni) != 0)
1281 break;
1282
1283 } else {
1284 if (ic->ic_state != IEEE80211_S_RUN)
1285 break;
1286 IFQ_POLL(&ifp->if_snd, m0);
1287 if (m0 == NULL)
1288 break;
1289 if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
1290 ifp->if_flags |= IFF_OACTIVE;
1291 break;
1292 }
1293 IFQ_DEQUEUE(&ifp->if_snd, m0);
1294 if (m0->m_len < sizeof(struct ether_header) &&
1295 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1296 continue;
1297
1298 eh = mtod(m0, struct ether_header *);
1299 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1300 if (ni == NULL) {
1301 m_freem(m0);
1302 continue;
1303 }
1304 bpf_mtap(ifp, m0);
1305 m0 = ieee80211_encap(ic, m0, ni);
1306 if (m0 == NULL) {
1307 ieee80211_free_node(ni);
1308 continue;
1309 }
1310 bpf_mtap3(ic->ic_rawbpf, m0);
1311 if (rum_tx_data(sc, m0, ni) != 0) {
1312 ieee80211_free_node(ni);
1313 ifp->if_oerrors++;
1314 break;
1315 }
1316 }
1317
1318 sc->sc_tx_timer = 5;
1319 ifp->if_timer = 1;
1320 }
1321 }
1322
1323 Static void
1324 rum_watchdog(struct ifnet *ifp)
1325 {
1326 struct rum_softc *sc = ifp->if_softc;
1327 struct ieee80211com *ic = &sc->sc_ic;
1328
1329 ifp->if_timer = 0;
1330
1331 if (sc->sc_tx_timer > 0) {
1332 if (--sc->sc_tx_timer == 0) {
1333 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1334 /*rum_init(ifp); XXX needs a process context! */
1335 ifp->if_oerrors++;
1336 return;
1337 }
1338 ifp->if_timer = 1;
1339 }
1340
1341 ieee80211_watchdog(ic);
1342 }
1343
1344 Static int
1345 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1346 {
1347 struct rum_softc *sc = ifp->if_softc;
1348 struct ieee80211com *ic = &sc->sc_ic;
1349 int s, error = 0;
1350
1351 s = splnet();
1352
1353 switch (cmd) {
1354 case SIOCSIFFLAGS:
1355 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1356 break;
1357 /* XXX re-use ether_ioctl() */
1358 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1359 case IFF_UP|IFF_RUNNING:
1360 rum_update_promisc(sc);
1361 break;
1362 case IFF_UP:
1363 rum_init(ifp);
1364 break;
1365 case IFF_RUNNING:
1366 rum_stop(ifp, 1);
1367 break;
1368 case 0:
1369 break;
1370 }
1371 break;
1372
1373 default:
1374 error = ieee80211_ioctl(ic, cmd, data);
1375 }
1376
1377 if (error == ENETRESET) {
1378 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1379 (IFF_UP | IFF_RUNNING))
1380 rum_init(ifp);
1381 error = 0;
1382 }
1383
1384 splx(s);
1385
1386 return error;
1387 }
1388
1389 Static void
1390 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1391 {
1392 usb_device_request_t req;
1393 usbd_status error;
1394
1395 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1396 req.bRequest = RT2573_READ_EEPROM;
1397 USETW(req.wValue, 0);
1398 USETW(req.wIndex, addr);
1399 USETW(req.wLength, len);
1400
1401 error = usbd_do_request(sc->sc_udev, &req, buf);
1402 if (error != 0) {
1403 printf("%s: could not read EEPROM: %s\n",
1404 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1405 }
1406 }
1407
1408 Static uint32_t
1409 rum_read(struct rum_softc *sc, uint16_t reg)
1410 {
1411 uint32_t val;
1412
1413 rum_read_multi(sc, reg, &val, sizeof val);
1414
1415 return le32toh(val);
1416 }
1417
1418 Static void
1419 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1420 {
1421 usb_device_request_t req;
1422 usbd_status error;
1423
1424 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1425 req.bRequest = RT2573_READ_MULTI_MAC;
1426 USETW(req.wValue, 0);
1427 USETW(req.wIndex, reg);
1428 USETW(req.wLength, len);
1429
1430 error = usbd_do_request(sc->sc_udev, &req, buf);
1431 if (error != 0) {
1432 printf("%s: could not multi read MAC register: %s\n",
1433 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1434 }
1435 }
1436
1437 Static void
1438 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1439 {
1440 uint32_t tmp = htole32(val);
1441
1442 rum_write_multi(sc, reg, &tmp, sizeof tmp);
1443 }
1444
1445 Static void
1446 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1447 {
1448 usb_device_request_t req;
1449 usbd_status error;
1450
1451 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1452 req.bRequest = RT2573_WRITE_MULTI_MAC;
1453 USETW(req.wValue, 0);
1454 USETW(req.wIndex, reg);
1455 USETW(req.wLength, len);
1456
1457 error = usbd_do_request(sc->sc_udev, &req, buf);
1458 if (error != 0) {
1459 printf("%s: could not multi write MAC register: %s\n",
1460 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1461 }
1462 }
1463
1464 Static void
1465 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1466 {
1467 uint32_t tmp;
1468 int ntries;
1469
1470 for (ntries = 0; ntries < 5; ntries++) {
1471 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1472 break;
1473 }
1474 if (ntries == 5) {
1475 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1476 return;
1477 }
1478
1479 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1480 rum_write(sc, RT2573_PHY_CSR3, tmp);
1481 }
1482
1483 Static uint8_t
1484 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1485 {
1486 uint32_t val;
1487 int ntries;
1488
1489 for (ntries = 0; ntries < 5; ntries++) {
1490 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1491 break;
1492 }
1493 if (ntries == 5) {
1494 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1495 return 0;
1496 }
1497
1498 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1499 rum_write(sc, RT2573_PHY_CSR3, val);
1500
1501 for (ntries = 0; ntries < 100; ntries++) {
1502 val = rum_read(sc, RT2573_PHY_CSR3);
1503 if (!(val & RT2573_BBP_BUSY))
1504 return val & 0xff;
1505 DELAY(1);
1506 }
1507
1508 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1509 return 0;
1510 }
1511
1512 Static void
1513 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1514 {
1515 uint32_t tmp;
1516 int ntries;
1517
1518 for (ntries = 0; ntries < 5; ntries++) {
1519 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1520 break;
1521 }
1522 if (ntries == 5) {
1523 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1524 return;
1525 }
1526
1527 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1528 (reg & 3);
1529 rum_write(sc, RT2573_PHY_CSR4, tmp);
1530
1531 /* remember last written value in sc */
1532 sc->rf_regs[reg] = val;
1533
1534 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1535 }
1536
1537 Static void
1538 rum_select_antenna(struct rum_softc *sc)
1539 {
1540 uint8_t bbp4, bbp77;
1541 uint32_t tmp;
1542
1543 bbp4 = rum_bbp_read(sc, 4);
1544 bbp77 = rum_bbp_read(sc, 77);
1545
1546 /* TBD */
1547
1548 /* make sure Rx is disabled before switching antenna */
1549 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1550 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1551
1552 rum_bbp_write(sc, 4, bbp4);
1553 rum_bbp_write(sc, 77, bbp77);
1554
1555 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1556 }
1557
1558 /*
1559 * Enable multi-rate retries for frames sent at OFDM rates.
1560 * In 802.11b/g mode, allow fallback to CCK rates.
1561 */
1562 Static void
1563 rum_enable_mrr(struct rum_softc *sc)
1564 {
1565 struct ieee80211com *ic = &sc->sc_ic;
1566 uint32_t tmp;
1567
1568 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1569
1570 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1571 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1572 tmp |= RT2573_MRR_CCK_FALLBACK;
1573 tmp |= RT2573_MRR_ENABLED;
1574
1575 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1576 }
1577
1578 Static void
1579 rum_set_txpreamble(struct rum_softc *sc)
1580 {
1581 uint32_t tmp;
1582
1583 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1584
1585 tmp &= ~RT2573_SHORT_PREAMBLE;
1586 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1587 tmp |= RT2573_SHORT_PREAMBLE;
1588
1589 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1590 }
1591
1592 Static void
1593 rum_set_basicrates(struct rum_softc *sc)
1594 {
1595 struct ieee80211com *ic = &sc->sc_ic;
1596
1597 /* update basic rate set */
1598 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1599 /* 11b basic rates: 1, 2Mbps */
1600 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1601 } else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1602 /* 11a basic rates: 6, 12, 24Mbps */
1603 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1604 } else {
1605 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1606 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1607 }
1608 }
1609
1610 /*
1611 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1612 * driver.
1613 */
1614 Static void
1615 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1616 {
1617 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1618 uint32_t tmp;
1619
1620 /* update all BBP registers that depend on the band */
1621 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1622 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1623 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1624 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1625 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1626 }
1627 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1628 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1629 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1630 }
1631
1632 sc->bbp17 = bbp17;
1633 rum_bbp_write(sc, 17, bbp17);
1634 rum_bbp_write(sc, 96, bbp96);
1635 rum_bbp_write(sc, 104, bbp104);
1636
1637 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1638 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1639 rum_bbp_write(sc, 75, 0x80);
1640 rum_bbp_write(sc, 86, 0x80);
1641 rum_bbp_write(sc, 88, 0x80);
1642 }
1643
1644 rum_bbp_write(sc, 35, bbp35);
1645 rum_bbp_write(sc, 97, bbp97);
1646 rum_bbp_write(sc, 98, bbp98);
1647
1648 tmp = rum_read(sc, RT2573_PHY_CSR0);
1649 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1650 if (IEEE80211_IS_CHAN_2GHZ(c))
1651 tmp |= RT2573_PA_PE_2GHZ;
1652 else
1653 tmp |= RT2573_PA_PE_5GHZ;
1654 rum_write(sc, RT2573_PHY_CSR0, tmp);
1655
1656 /* 802.11a uses a 16 microseconds short interframe space */
1657 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1658 }
1659
1660 Static void
1661 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1662 {
1663 struct ieee80211com *ic = &sc->sc_ic;
1664 const struct rfprog *rfprog;
1665 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1666 int8_t power;
1667 u_int i, chan;
1668
1669 chan = ieee80211_chan2ieee(ic, c);
1670 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1671 return;
1672
1673 /* select the appropriate RF settings based on what EEPROM says */
1674 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1675 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1676
1677 /* find the settings for this channel (we know it exists) */
1678 for (i = 0; rfprog[i].chan != chan; i++);
1679
1680 power = sc->txpow[i];
1681 if (power < 0) {
1682 bbp94 += power;
1683 power = 0;
1684 } else if (power > 31) {
1685 bbp94 += power - 31;
1686 power = 31;
1687 }
1688
1689 /*
1690 * If we are switching from the 2GHz band to the 5GHz band or
1691 * vice-versa, BBP registers need to be reprogrammed.
1692 */
1693 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1694 rum_select_band(sc, c);
1695 rum_select_antenna(sc);
1696 }
1697 ic->ic_curchan = c;
1698
1699 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1700 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1701 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1702 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1703
1704 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1705 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1706 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1707 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1708
1709 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1710 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1711 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1712 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1713
1714 DELAY(10);
1715
1716 /* enable smart mode for MIMO-capable RFs */
1717 bbp3 = rum_bbp_read(sc, 3);
1718
1719 bbp3 &= ~RT2573_SMART_MODE;
1720 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1721 bbp3 |= RT2573_SMART_MODE;
1722
1723 rum_bbp_write(sc, 3, bbp3);
1724
1725 if (bbp94 != RT2573_BBPR94_DEFAULT)
1726 rum_bbp_write(sc, 94, bbp94);
1727 }
1728
1729 /*
1730 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1731 * and HostAP operating modes.
1732 */
1733 Static void
1734 rum_enable_tsf_sync(struct rum_softc *sc)
1735 {
1736 struct ieee80211com *ic = &sc->sc_ic;
1737 uint32_t tmp;
1738
1739 if (ic->ic_opmode != IEEE80211_M_STA) {
1740 /*
1741 * Change default 16ms TBTT adjustment to 8ms.
1742 * Must be done before enabling beacon generation.
1743 */
1744 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1745 }
1746
1747 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1748
1749 /* set beacon interval (in 1/16ms unit) */
1750 tmp |= ic->ic_bss->ni_intval * 16;
1751
1752 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1753 if (ic->ic_opmode == IEEE80211_M_STA)
1754 tmp |= RT2573_TSF_MODE(1);
1755 else
1756 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1757
1758 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1759 }
1760
1761 Static void
1762 rum_update_slot(struct rum_softc *sc)
1763 {
1764 struct ieee80211com *ic = &sc->sc_ic;
1765 uint8_t slottime;
1766 uint32_t tmp;
1767
1768 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1769
1770 tmp = rum_read(sc, RT2573_MAC_CSR9);
1771 tmp = (tmp & ~0xff) | slottime;
1772 rum_write(sc, RT2573_MAC_CSR9, tmp);
1773
1774 DPRINTF(("setting slot time to %uus\n", slottime));
1775 }
1776
1777 Static void
1778 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1779 {
1780 uint32_t tmp;
1781
1782 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1783 rum_write(sc, RT2573_MAC_CSR4, tmp);
1784
1785 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1786 rum_write(sc, RT2573_MAC_CSR5, tmp);
1787 }
1788
1789 Static void
1790 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1791 {
1792 uint32_t tmp;
1793
1794 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1795 rum_write(sc, RT2573_MAC_CSR2, tmp);
1796
1797 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1798 rum_write(sc, RT2573_MAC_CSR3, tmp);
1799 }
1800
1801 Static void
1802 rum_update_promisc(struct rum_softc *sc)
1803 {
1804 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1805 uint32_t tmp;
1806
1807 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1808
1809 tmp &= ~RT2573_DROP_NOT_TO_ME;
1810 if (!(ifp->if_flags & IFF_PROMISC))
1811 tmp |= RT2573_DROP_NOT_TO_ME;
1812
1813 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1814
1815 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1816 "entering" : "leaving"));
1817 }
1818
1819 Static const char *
1820 rum_get_rf(int rev)
1821 {
1822 switch (rev) {
1823 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1824 case RT2573_RF_2528: return "RT2528";
1825 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1826 case RT2573_RF_5226: return "RT5226";
1827 default: return "unknown";
1828 }
1829 }
1830
1831 Static void
1832 rum_read_eeprom(struct rum_softc *sc)
1833 {
1834 struct ieee80211com *ic = &sc->sc_ic;
1835 uint16_t val;
1836 #ifdef RUM_DEBUG
1837 int i;
1838 #endif
1839
1840 /* read MAC/BBP type */
1841 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1842 sc->macbbp_rev = le16toh(val);
1843
1844 /* read MAC address */
1845 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1846
1847 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1848 val = le16toh(val);
1849 sc->rf_rev = (val >> 11) & 0x1f;
1850 sc->hw_radio = (val >> 10) & 0x1;
1851 sc->rx_ant = (val >> 4) & 0x3;
1852 sc->tx_ant = (val >> 2) & 0x3;
1853 sc->nb_ant = val & 0x3;
1854
1855 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1856
1857 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1858 val = le16toh(val);
1859 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1860 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1861
1862 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1863 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1864
1865 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1866 val = le16toh(val);
1867 if ((val & 0xff) != 0xff)
1868 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1869
1870 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1871 val = le16toh(val);
1872 if ((val & 0xff) != 0xff)
1873 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1874
1875 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1876 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1877
1878 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1879 val = le16toh(val);
1880 if ((val & 0xff) != 0xff)
1881 sc->rffreq = val & 0xff;
1882
1883 DPRINTF(("RF freq=%d\n", sc->rffreq));
1884
1885 /* read Tx power for all a/b/g channels */
1886 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1887 /* XXX default Tx power for 802.11a channels */
1888 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1889 #ifdef RUM_DEBUG
1890 for (i = 0; i < 14; i++)
1891 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1892 #endif
1893
1894 /* read default values for BBP registers */
1895 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1896 #ifdef RUM_DEBUG
1897 for (i = 0; i < 14; i++) {
1898 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1899 continue;
1900 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1901 sc->bbp_prom[i].val));
1902 }
1903 #endif
1904 }
1905
1906 Static int
1907 rum_bbp_init(struct rum_softc *sc)
1908 {
1909 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1910 int i, ntries;
1911 uint8_t val;
1912
1913 /* wait for BBP to be ready */
1914 for (ntries = 0; ntries < 100; ntries++) {
1915 val = rum_bbp_read(sc, 0);
1916 if (val != 0 && val != 0xff)
1917 break;
1918 DELAY(1000);
1919 }
1920 if (ntries == 100) {
1921 printf("%s: timeout waiting for BBP\n",
1922 USBDEVNAME(sc->sc_dev));
1923 return EIO;
1924 }
1925
1926 /* initialize BBP registers to default values */
1927 for (i = 0; i < N(rum_def_bbp); i++)
1928 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1929
1930 /* write vendor-specific BBP values (from EEPROM) */
1931 for (i = 0; i < 16; i++) {
1932 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1933 continue;
1934 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1935 }
1936
1937 return 0;
1938 #undef N
1939 }
1940
1941 Static int
1942 rum_init(struct ifnet *ifp)
1943 {
1944 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1945 struct rum_softc *sc = ifp->if_softc;
1946 struct ieee80211com *ic = &sc->sc_ic;
1947 struct rum_rx_data *data;
1948 uint32_t tmp;
1949 usbd_status error = 0;
1950 int i, ntries;
1951
1952 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1953 if (rum_attachhook(sc))
1954 goto fail;
1955 }
1956
1957 rum_stop(ifp, 0);
1958
1959 /* initialize MAC registers to default values */
1960 for (i = 0; i < N(rum_def_mac); i++)
1961 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1962
1963 /* set host ready */
1964 rum_write(sc, RT2573_MAC_CSR1, 3);
1965 rum_write(sc, RT2573_MAC_CSR1, 0);
1966
1967 /* wait for BBP/RF to wakeup */
1968 for (ntries = 0; ntries < 1000; ntries++) {
1969 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1970 break;
1971 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1972 DELAY(1000);
1973 }
1974 if (ntries == 1000) {
1975 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1976 USBDEVNAME(sc->sc_dev));
1977 goto fail;
1978 }
1979
1980 if ((error = rum_bbp_init(sc)) != 0)
1981 goto fail;
1982
1983 /* select default channel */
1984 rum_select_band(sc, ic->ic_curchan);
1985 rum_select_antenna(sc);
1986 rum_set_chan(sc, ic->ic_curchan);
1987
1988 /* clear STA registers */
1989 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1990
1991 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1992 rum_set_macaddr(sc, ic->ic_myaddr);
1993
1994 /* initialize ASIC */
1995 rum_write(sc, RT2573_MAC_CSR1, 4);
1996
1997 /*
1998 * Allocate xfer for AMRR statistics requests.
1999 */
2000 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2001 if (sc->amrr_xfer == NULL) {
2002 printf("%s: could not allocate AMRR xfer\n",
2003 USBDEVNAME(sc->sc_dev));
2004 goto fail;
2005 }
2006
2007 /*
2008 * Open Tx and Rx USB bulk pipes.
2009 */
2010 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2011 &sc->sc_tx_pipeh);
2012 if (error != 0) {
2013 printf("%s: could not open Tx pipe: %s\n",
2014 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2015 goto fail;
2016 }
2017
2018 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2019 &sc->sc_rx_pipeh);
2020 if (error != 0) {
2021 printf("%s: could not open Rx pipe: %s\n",
2022 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2023 goto fail;
2024 }
2025
2026 /*
2027 * Allocate Tx and Rx xfer queues.
2028 */
2029 error = rum_alloc_tx_list(sc);
2030 if (error != 0) {
2031 printf("%s: could not allocate Tx list\n",
2032 USBDEVNAME(sc->sc_dev));
2033 goto fail;
2034 }
2035
2036 error = rum_alloc_rx_list(sc);
2037 if (error != 0) {
2038 printf("%s: could not allocate Rx list\n",
2039 USBDEVNAME(sc->sc_dev));
2040 goto fail;
2041 }
2042
2043 /*
2044 * Start up the receive pipe.
2045 */
2046 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2047 data = &sc->rx_data[i];
2048
2049 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2050 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2051 error = usbd_transfer(data->xfer);
2052 if (error != USBD_NORMAL_COMPLETION &&
2053 error != USBD_IN_PROGRESS) {
2054 printf("%s: could not queue Rx transfer\n",
2055 USBDEVNAME(sc->sc_dev));
2056 goto fail;
2057 }
2058 }
2059
2060 /* update Rx filter */
2061 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2062
2063 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2064 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2065 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2066 RT2573_DROP_ACKCTS;
2067 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2068 tmp |= RT2573_DROP_TODS;
2069 if (!(ifp->if_flags & IFF_PROMISC))
2070 tmp |= RT2573_DROP_NOT_TO_ME;
2071 }
2072 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2073
2074 ifp->if_flags &= ~IFF_OACTIVE;
2075 ifp->if_flags |= IFF_RUNNING;
2076
2077 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2078 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2079 else
2080 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2081
2082 return 0;
2083
2084 fail: rum_stop(ifp, 1);
2085 return error;
2086 #undef N
2087 }
2088
2089 Static void
2090 rum_stop(struct ifnet *ifp, int disable)
2091 {
2092 struct rum_softc *sc = ifp->if_softc;
2093 struct ieee80211com *ic = &sc->sc_ic;
2094 uint32_t tmp;
2095
2096 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2097
2098 sc->sc_tx_timer = 0;
2099 ifp->if_timer = 0;
2100 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2101
2102 /* disable Rx */
2103 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2104 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2105
2106 /* reset ASIC */
2107 rum_write(sc, RT2573_MAC_CSR1, 3);
2108 rum_write(sc, RT2573_MAC_CSR1, 0);
2109
2110 if (sc->sc_rx_pipeh != NULL) {
2111 usbd_abort_pipe(sc->sc_rx_pipeh);
2112 usbd_close_pipe(sc->sc_rx_pipeh);
2113 sc->sc_rx_pipeh = NULL;
2114 }
2115
2116 if (sc->sc_tx_pipeh != NULL) {
2117 usbd_abort_pipe(sc->sc_tx_pipeh);
2118 usbd_close_pipe(sc->sc_tx_pipeh);
2119 sc->sc_tx_pipeh = NULL;
2120 }
2121
2122 rum_free_rx_list(sc);
2123 rum_free_tx_list(sc);
2124 }
2125
2126 Static int
2127 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2128 {
2129 usb_device_request_t req;
2130 uint16_t reg = RT2573_MCU_CODE_BASE;
2131 usbd_status error;
2132
2133 /* copy firmware image into NIC */
2134 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2135 rum_write(sc, reg, UGETDW(ucode));
2136
2137 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2138 req.bRequest = RT2573_MCU_CNTL;
2139 USETW(req.wValue, RT2573_MCU_RUN);
2140 USETW(req.wIndex, 0);
2141 USETW(req.wLength, 0);
2142
2143 error = usbd_do_request(sc->sc_udev, &req, NULL);
2144 if (error != 0) {
2145 printf("%s: could not run firmware: %s\n",
2146 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2147 }
2148 return error;
2149 }
2150
2151 Static int
2152 rum_prepare_beacon(struct rum_softc *sc)
2153 {
2154 struct ieee80211com *ic = &sc->sc_ic;
2155 struct rum_tx_desc desc;
2156 struct mbuf *m0;
2157 int rate;
2158
2159 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2160 if (m0 == NULL) {
2161 aprint_error_dev(sc->sc_dev,
2162 "could not allocate beacon frame\n");
2163 return ENOBUFS;
2164 }
2165
2166 /* send beacons at the lowest available rate */
2167 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2168
2169 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2170 m0->m_pkthdr.len, rate);
2171
2172 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2173 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2174
2175 /* copy beacon header and payload into NIC memory */
2176 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2177 m0->m_pkthdr.len);
2178
2179 m_freem(m0);
2180
2181 return 0;
2182 }
2183
2184 Static void
2185 rum_newassoc(struct ieee80211_node *ni, int isnew)
2186 {
2187 /* start with lowest Tx rate */
2188 ni->ni_txrate = 0;
2189 }
2190
2191 Static void
2192 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2193 {
2194 int i;
2195
2196 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2197 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2198
2199 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2200
2201 /* set rate to some reasonable initial value */
2202 for (i = ni->ni_rates.rs_nrates - 1;
2203 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2204 i--);
2205 ni->ni_txrate = i;
2206
2207 usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2208 }
2209
2210 Static void
2211 rum_amrr_timeout(void *arg)
2212 {
2213 struct rum_softc *sc = arg;
2214 usb_device_request_t req;
2215
2216 /*
2217 * Asynchronously read statistic registers (cleared by read).
2218 */
2219 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2220 req.bRequest = RT2573_READ_MULTI_MAC;
2221 USETW(req.wValue, 0);
2222 USETW(req.wIndex, RT2573_STA_CSR0);
2223 USETW(req.wLength, sizeof sc->sta);
2224
2225 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2226 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2227 rum_amrr_update);
2228 (void)usbd_transfer(sc->amrr_xfer);
2229 }
2230
2231 Static void
2232 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2233 usbd_status status)
2234 {
2235 struct rum_softc *sc = (struct rum_softc *)priv;
2236 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2237
2238 if (status != USBD_NORMAL_COMPLETION) {
2239 printf("%s: could not retrieve Tx statistics - cancelling "
2240 "automatic rate control\n", USBDEVNAME(sc->sc_dev));
2241 return;
2242 }
2243
2244 /* count TX retry-fail as Tx errors */
2245 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2246
2247 sc->amn.amn_retrycnt =
2248 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2249 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2250 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2251
2252 sc->amn.amn_txcnt =
2253 sc->amn.amn_retrycnt +
2254 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2255
2256 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2257
2258 usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2259 }
2260
2261 int
2262 rum_activate(device_ptr_t self, enum devact act)
2263 {
2264 switch (act) {
2265 case DVACT_DEACTIVATE:
2266 /*if_deactivate(&sc->sc_ic.ic_if);*/
2267 return 0;
2268 default:
2269 return EOPNOTSUPP;
2270 }
2271 }
2272