if_rum.c revision 1.34 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.34 2011/02/13 05:51:24 dholland Exp $ */
3
4 /*-
5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com.tw/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.34 2011/02/13 05:51:24 dholland Exp $");
28
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/sysctl.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <dev/firmload.h>
64
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69
70 #include <dev/usb/if_rumreg.h>
71 #include <dev/usb/if_rumvar.h>
72
73 #ifdef USB_DEBUG
74 #define RUM_DEBUG
75 #endif
76
77 #ifdef RUM_DEBUG
78 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0)
79 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0)
80 int rum_debug = 1;
81 #else
82 #define DPRINTF(x)
83 #define DPRINTFN(n, x)
84 #endif
85
86 /* various supported device vendors/products */
87 static const struct usb_devno rum_devs[] = {
88 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
89 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
90 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
92 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
93 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
94 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
95 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
96 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
97 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
98 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
99 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
100 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
101 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL },
102 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX },
103 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
104 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
105 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
106 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
107 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 },
108 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
109 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
110 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
111 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
112 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
113 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
114 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
115 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
116 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
117 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG },
118 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
119 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
120 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
121 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
122 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
123 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
124 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
125 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
126 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
127 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
128 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 },
129 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
130 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2573 },
131 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
132 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
133 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
134 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }
135 };
136
137 Static int rum_attachhook(void *);
138 Static int rum_alloc_tx_list(struct rum_softc *);
139 Static void rum_free_tx_list(struct rum_softc *);
140 Static int rum_alloc_rx_list(struct rum_softc *);
141 Static void rum_free_rx_list(struct rum_softc *);
142 Static int rum_media_change(struct ifnet *);
143 Static void rum_next_scan(void *);
144 Static void rum_task(void *);
145 Static int rum_newstate(struct ieee80211com *,
146 enum ieee80211_state, int);
147 Static void rum_txeof(usbd_xfer_handle, usbd_private_handle,
148 usbd_status);
149 Static void rum_rxeof(usbd_xfer_handle, usbd_private_handle,
150 usbd_status);
151 Static uint8_t rum_rxrate(const struct rum_rx_desc *);
152 Static int rum_ack_rate(struct ieee80211com *, int);
153 Static uint16_t rum_txtime(int, int, uint32_t);
154 Static uint8_t rum_plcp_signal(int);
155 Static void rum_setup_tx_desc(struct rum_softc *,
156 struct rum_tx_desc *, uint32_t, uint16_t, int,
157 int);
158 Static int rum_tx_mgt(struct rum_softc *, struct mbuf *,
159 struct ieee80211_node *);
160 Static int rum_tx_data(struct rum_softc *, struct mbuf *,
161 struct ieee80211_node *);
162 Static void rum_start(struct ifnet *);
163 Static void rum_watchdog(struct ifnet *);
164 Static int rum_ioctl(struct ifnet *, u_long, void *);
165 Static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
166 int);
167 Static uint32_t rum_read(struct rum_softc *, uint16_t);
168 Static void rum_read_multi(struct rum_softc *, uint16_t, void *,
169 int);
170 Static void rum_write(struct rum_softc *, uint16_t, uint32_t);
171 Static void rum_write_multi(struct rum_softc *, uint16_t, void *,
172 size_t);
173 Static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
174 Static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
175 Static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
176 Static void rum_select_antenna(struct rum_softc *);
177 Static void rum_enable_mrr(struct rum_softc *);
178 Static void rum_set_txpreamble(struct rum_softc *);
179 Static void rum_set_basicrates(struct rum_softc *);
180 Static void rum_select_band(struct rum_softc *,
181 struct ieee80211_channel *);
182 Static void rum_set_chan(struct rum_softc *,
183 struct ieee80211_channel *);
184 Static void rum_enable_tsf_sync(struct rum_softc *);
185 Static void rum_update_slot(struct rum_softc *);
186 Static void rum_set_bssid(struct rum_softc *, const uint8_t *);
187 Static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
188 Static void rum_update_promisc(struct rum_softc *);
189 Static const char *rum_get_rf(int);
190 Static void rum_read_eeprom(struct rum_softc *);
191 Static int rum_bbp_init(struct rum_softc *);
192 Static int rum_init(struct ifnet *);
193 Static void rum_stop(struct ifnet *, int);
194 Static int rum_load_microcode(struct rum_softc *, const u_char *,
195 size_t);
196 Static int rum_prepare_beacon(struct rum_softc *);
197 Static void rum_newassoc(struct ieee80211_node *, int);
198 Static void rum_amrr_start(struct rum_softc *,
199 struct ieee80211_node *);
200 Static void rum_amrr_timeout(void *);
201 Static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
202 usbd_status status);
203
204 /*
205 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
206 */
207 static const struct ieee80211_rateset rum_rateset_11a =
208 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
209
210 static const struct ieee80211_rateset rum_rateset_11b =
211 { 4, { 2, 4, 11, 22 } };
212
213 static const struct ieee80211_rateset rum_rateset_11g =
214 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
215
216 static const struct {
217 uint32_t reg;
218 uint32_t val;
219 } rum_def_mac[] = {
220 RT2573_DEF_MAC
221 };
222
223 static const struct {
224 uint8_t reg;
225 uint8_t val;
226 } rum_def_bbp[] = {
227 RT2573_DEF_BBP
228 };
229
230 static const struct rfprog {
231 uint8_t chan;
232 uint32_t r1, r2, r3, r4;
233 } rum_rf5226[] = {
234 RT2573_RF5226
235 }, rum_rf5225[] = {
236 RT2573_RF5225
237 };
238
239 int rum_match(device_t, cfdata_t, void *);
240 void rum_attach(device_t, device_t, void *);
241 int rum_detach(device_t, int);
242 int rum_activate(device_t, enum devact);
243 extern struct cfdriver rum_cd;
244 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
245 rum_detach, rum_activate);
246
247 int
248 rum_match(device_t parent, cfdata_t match, void *aux)
249 {
250 struct usb_attach_arg *uaa = aux;
251
252 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
253 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
254 }
255
256 Static int
257 rum_attachhook(void *xsc)
258 {
259 struct rum_softc *sc = xsc;
260 firmware_handle_t fwh;
261 const char *name = "rum-rt2573";
262 u_char *ucode;
263 size_t size;
264 int error;
265
266 if ((error = firmware_open("rum", name, &fwh)) != 0) {
267 printf("%s: failed loadfirmware of file %s (error %d)\n",
268 device_xname(sc->sc_dev), name, error);
269 return error;
270 }
271 size = firmware_get_size(fwh);
272 ucode = firmware_malloc(size);
273 if (ucode == NULL) {
274 printf("%s: failed to allocate firmware memory\n",
275 device_xname(sc->sc_dev));
276 firmware_close(fwh);
277 return ENOMEM;
278 }
279 error = firmware_read(fwh, 0, ucode, size);
280 firmware_close(fwh);
281 if (error != 0) {
282 printf("%s: failed to read firmware (error %d)\n",
283 device_xname(sc->sc_dev), error);
284 firmware_free(ucode, 0);
285 return error;
286 }
287
288 if (rum_load_microcode(sc, ucode, size) != 0) {
289 printf("%s: could not load 8051 microcode\n",
290 device_xname(sc->sc_dev));
291 firmware_free(ucode, 0);
292 return ENXIO;
293 }
294
295 firmware_free(ucode, 0);
296 sc->sc_flags |= RT2573_FWLOADED;
297
298 return 0;
299 }
300
301 void
302 rum_attach(device_t parent, device_t self, void *aux)
303 {
304 struct rum_softc *sc = device_private(self);
305 struct usb_attach_arg *uaa = aux;
306 struct ieee80211com *ic = &sc->sc_ic;
307 struct ifnet *ifp = &sc->sc_if;
308 usb_interface_descriptor_t *id;
309 usb_endpoint_descriptor_t *ed;
310 usbd_status error;
311 char *devinfop;
312 int i, ntries;
313 uint32_t tmp;
314
315 sc->sc_dev = self;
316 sc->sc_udev = uaa->device;
317 sc->sc_flags = 0;
318
319 aprint_naive("\n");
320 aprint_normal("\n");
321
322 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
323 aprint_normal_dev(self, "%s\n", devinfop);
324 usbd_devinfo_free(devinfop);
325
326 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
327 aprint_error_dev(self, "could not set configuration no\n");
328 return;
329 }
330
331 /* get the first interface handle */
332 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
333 &sc->sc_iface);
334 if (error != 0) {
335 aprint_error_dev(self, "could not get interface handle\n");
336 return;
337 }
338
339 /*
340 * Find endpoints.
341 */
342 id = usbd_get_interface_descriptor(sc->sc_iface);
343
344 sc->sc_rx_no = sc->sc_tx_no = -1;
345 for (i = 0; i < id->bNumEndpoints; i++) {
346 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
347 if (ed == NULL) {
348 aprint_error_dev(self,
349 "no endpoint descriptor for iface %d\n", i);
350 return;
351 }
352
353 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
354 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
355 sc->sc_rx_no = ed->bEndpointAddress;
356 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
357 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
358 sc->sc_tx_no = ed->bEndpointAddress;
359 }
360 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
361 aprint_error_dev(self, "missing endpoint\n");
362 return;
363 }
364
365 usb_init_task(&sc->sc_task, rum_task, sc);
366 callout_init(&sc->sc_scan_ch, 0);
367
368 sc->amrr.amrr_min_success_threshold = 1;
369 sc->amrr.amrr_max_success_threshold = 10;
370 callout_init(&sc->sc_amrr_ch, 0);
371
372 /* retrieve RT2573 rev. no */
373 for (ntries = 0; ntries < 1000; ntries++) {
374 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
375 break;
376 DELAY(1000);
377 }
378 if (ntries == 1000) {
379 aprint_error_dev(self, "timeout waiting for chip to settle\n");
380 return;
381 }
382
383 /* retrieve MAC address and various other things from EEPROM */
384 rum_read_eeprom(sc);
385
386 aprint_normal_dev(self,
387 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
388 sc->macbbp_rev, tmp,
389 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
390
391 ic->ic_ifp = ifp;
392 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
393 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
394 ic->ic_state = IEEE80211_S_INIT;
395
396 /* set device capabilities */
397 ic->ic_caps =
398 IEEE80211_C_IBSS | /* IBSS mode supported */
399 IEEE80211_C_MONITOR | /* monitor mode supported */
400 IEEE80211_C_HOSTAP | /* HostAp mode supported */
401 IEEE80211_C_TXPMGT | /* tx power management */
402 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
403 IEEE80211_C_SHSLOT | /* short slot time supported */
404 IEEE80211_C_WPA; /* 802.11i */
405
406 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
407 /* set supported .11a rates */
408 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
409
410 /* set supported .11a channels */
411 for (i = 34; i <= 46; i += 4) {
412 ic->ic_channels[i].ic_freq =
413 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
414 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
415 }
416 for (i = 36; i <= 64; i += 4) {
417 ic->ic_channels[i].ic_freq =
418 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
419 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
420 }
421 for (i = 100; i <= 140; i += 4) {
422 ic->ic_channels[i].ic_freq =
423 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
424 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
425 }
426 for (i = 149; i <= 165; i += 4) {
427 ic->ic_channels[i].ic_freq =
428 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
429 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
430 }
431 }
432
433 /* set supported .11b and .11g rates */
434 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
435 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
436
437 /* set supported .11b and .11g channels (1 through 14) */
438 for (i = 1; i <= 14; i++) {
439 ic->ic_channels[i].ic_freq =
440 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
441 ic->ic_channels[i].ic_flags =
442 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
443 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
444 }
445
446 ifp->if_softc = sc;
447 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
448 ifp->if_init = rum_init;
449 ifp->if_ioctl = rum_ioctl;
450 ifp->if_start = rum_start;
451 ifp->if_watchdog = rum_watchdog;
452 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
453 IFQ_SET_READY(&ifp->if_snd);
454 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
455
456 if_attach(ifp);
457 ieee80211_ifattach(ic);
458 ic->ic_newassoc = rum_newassoc;
459
460 /* override state transition machine */
461 sc->sc_newstate = ic->ic_newstate;
462 ic->ic_newstate = rum_newstate;
463 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
464
465 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
466 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
467 &sc->sc_drvbpf);
468
469 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
470 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
471 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
472
473 sc->sc_txtap_len = sizeof sc->sc_txtapu;
474 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
475 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
476
477 ieee80211_announce(ic);
478
479 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
480 sc->sc_dev);
481
482 return;
483 }
484
485 int
486 rum_detach(device_t self, int flags)
487 {
488 struct rum_softc *sc = device_private(self);
489 struct ieee80211com *ic = &sc->sc_ic;
490 struct ifnet *ifp = &sc->sc_if;
491 int s;
492
493 if (!ifp->if_softc)
494 return 0;
495
496 s = splusb();
497
498 rum_stop(ifp, 1);
499 usb_rem_task(sc->sc_udev, &sc->sc_task);
500 callout_stop(&sc->sc_scan_ch);
501 callout_stop(&sc->sc_amrr_ch);
502
503 if (sc->amrr_xfer != NULL) {
504 usbd_free_xfer(sc->amrr_xfer);
505 sc->amrr_xfer = NULL;
506 }
507
508 if (sc->sc_rx_pipeh != NULL) {
509 usbd_abort_pipe(sc->sc_rx_pipeh);
510 usbd_close_pipe(sc->sc_rx_pipeh);
511 }
512
513 if (sc->sc_tx_pipeh != NULL) {
514 usbd_abort_pipe(sc->sc_tx_pipeh);
515 usbd_close_pipe(sc->sc_tx_pipeh);
516 }
517
518 bpf_detach(ifp);
519 ieee80211_ifdetach(ic); /* free all nodes */
520 if_detach(ifp);
521
522 splx(s);
523
524 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
525
526 return 0;
527 }
528
529 Static int
530 rum_alloc_tx_list(struct rum_softc *sc)
531 {
532 struct rum_tx_data *data;
533 int i, error;
534
535 sc->tx_queued = 0;
536
537 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
538 data = &sc->tx_data[i];
539
540 data->sc = sc;
541
542 data->xfer = usbd_alloc_xfer(sc->sc_udev);
543 if (data->xfer == NULL) {
544 printf("%s: could not allocate tx xfer\n",
545 device_xname(sc->sc_dev));
546 error = ENOMEM;
547 goto fail;
548 }
549
550 data->buf = usbd_alloc_buffer(data->xfer,
551 RT2573_TX_DESC_SIZE + MCLBYTES);
552 if (data->buf == NULL) {
553 printf("%s: could not allocate tx buffer\n",
554 device_xname(sc->sc_dev));
555 error = ENOMEM;
556 goto fail;
557 }
558
559 /* clean Tx descriptor */
560 memset(data->buf, 0, RT2573_TX_DESC_SIZE);
561 }
562
563 return 0;
564
565 fail: rum_free_tx_list(sc);
566 return error;
567 }
568
569 Static void
570 rum_free_tx_list(struct rum_softc *sc)
571 {
572 struct rum_tx_data *data;
573 int i;
574
575 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
576 data = &sc->tx_data[i];
577
578 if (data->xfer != NULL) {
579 usbd_free_xfer(data->xfer);
580 data->xfer = NULL;
581 }
582
583 if (data->ni != NULL) {
584 ieee80211_free_node(data->ni);
585 data->ni = NULL;
586 }
587 }
588 }
589
590 Static int
591 rum_alloc_rx_list(struct rum_softc *sc)
592 {
593 struct rum_rx_data *data;
594 int i, error;
595
596 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
597 data = &sc->rx_data[i];
598
599 data->sc = sc;
600
601 data->xfer = usbd_alloc_xfer(sc->sc_udev);
602 if (data->xfer == NULL) {
603 printf("%s: could not allocate rx xfer\n",
604 device_xname(sc->sc_dev));
605 error = ENOMEM;
606 goto fail;
607 }
608
609 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
610 printf("%s: could not allocate rx buffer\n",
611 device_xname(sc->sc_dev));
612 error = ENOMEM;
613 goto fail;
614 }
615
616 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
617 if (data->m == NULL) {
618 printf("%s: could not allocate rx mbuf\n",
619 device_xname(sc->sc_dev));
620 error = ENOMEM;
621 goto fail;
622 }
623
624 MCLGET(data->m, M_DONTWAIT);
625 if (!(data->m->m_flags & M_EXT)) {
626 printf("%s: could not allocate rx mbuf cluster\n",
627 device_xname(sc->sc_dev));
628 error = ENOMEM;
629 goto fail;
630 }
631
632 data->buf = mtod(data->m, uint8_t *);
633 }
634
635 return 0;
636
637 fail: rum_free_rx_list(sc);
638 return error;
639 }
640
641 Static void
642 rum_free_rx_list(struct rum_softc *sc)
643 {
644 struct rum_rx_data *data;
645 int i;
646
647 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
648 data = &sc->rx_data[i];
649
650 if (data->xfer != NULL) {
651 usbd_free_xfer(data->xfer);
652 data->xfer = NULL;
653 }
654
655 if (data->m != NULL) {
656 m_freem(data->m);
657 data->m = NULL;
658 }
659 }
660 }
661
662 Static int
663 rum_media_change(struct ifnet *ifp)
664 {
665 int error;
666
667 error = ieee80211_media_change(ifp);
668 if (error != ENETRESET)
669 return error;
670
671 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
672 rum_init(ifp);
673
674 return 0;
675 }
676
677 /*
678 * This function is called periodically (every 200ms) during scanning to
679 * switch from one channel to another.
680 */
681 Static void
682 rum_next_scan(void *arg)
683 {
684 struct rum_softc *sc = arg;
685 struct ieee80211com *ic = &sc->sc_ic;
686
687 if (ic->ic_state == IEEE80211_S_SCAN)
688 ieee80211_next_scan(ic);
689 }
690
691 Static void
692 rum_task(void *arg)
693 {
694 struct rum_softc *sc = arg;
695 struct ieee80211com *ic = &sc->sc_ic;
696 enum ieee80211_state ostate;
697 struct ieee80211_node *ni;
698 uint32_t tmp;
699
700 ostate = ic->ic_state;
701
702 switch (sc->sc_state) {
703 case IEEE80211_S_INIT:
704 if (ostate == IEEE80211_S_RUN) {
705 /* abort TSF synchronization */
706 tmp = rum_read(sc, RT2573_TXRX_CSR9);
707 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
708 }
709 break;
710
711 case IEEE80211_S_SCAN:
712 rum_set_chan(sc, ic->ic_curchan);
713 callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
714 break;
715
716 case IEEE80211_S_AUTH:
717 rum_set_chan(sc, ic->ic_curchan);
718 break;
719
720 case IEEE80211_S_ASSOC:
721 rum_set_chan(sc, ic->ic_curchan);
722 break;
723
724 case IEEE80211_S_RUN:
725 rum_set_chan(sc, ic->ic_curchan);
726
727 ni = ic->ic_bss;
728
729 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
730 rum_update_slot(sc);
731 rum_enable_mrr(sc);
732 rum_set_txpreamble(sc);
733 rum_set_basicrates(sc);
734 rum_set_bssid(sc, ni->ni_bssid);
735 }
736
737 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
738 ic->ic_opmode == IEEE80211_M_IBSS)
739 rum_prepare_beacon(sc);
740
741 if (ic->ic_opmode != IEEE80211_M_MONITOR)
742 rum_enable_tsf_sync(sc);
743
744 if (ic->ic_opmode == IEEE80211_M_STA) {
745 /* fake a join to init the tx rate */
746 rum_newassoc(ic->ic_bss, 1);
747
748 /* enable automatic rate adaptation in STA mode */
749 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
750 rum_amrr_start(sc, ni);
751 }
752
753 break;
754 }
755
756 sc->sc_newstate(ic, sc->sc_state, -1);
757 }
758
759 Static int
760 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
761 {
762 struct rum_softc *sc = ic->ic_ifp->if_softc;
763
764 usb_rem_task(sc->sc_udev, &sc->sc_task);
765 callout_stop(&sc->sc_scan_ch);
766 callout_stop(&sc->sc_amrr_ch);
767
768 /* do it in a process context */
769 sc->sc_state = nstate;
770 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
771
772 return 0;
773 }
774
775 /* quickly determine if a given rate is CCK or OFDM */
776 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
777
778 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
779 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
780
781 Static void
782 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
783 {
784 struct rum_tx_data *data = priv;
785 struct rum_softc *sc = data->sc;
786 struct ifnet *ifp = &sc->sc_if;
787 int s;
788
789 if (status != USBD_NORMAL_COMPLETION) {
790 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
791 return;
792
793 printf("%s: could not transmit buffer: %s\n",
794 device_xname(sc->sc_dev), usbd_errstr(status));
795
796 if (status == USBD_STALLED)
797 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
798
799 ifp->if_oerrors++;
800 return;
801 }
802
803 s = splnet();
804
805 ieee80211_free_node(data->ni);
806 data->ni = NULL;
807
808 sc->tx_queued--;
809 ifp->if_opackets++;
810
811 DPRINTFN(10, ("tx done\n"));
812
813 sc->sc_tx_timer = 0;
814 ifp->if_flags &= ~IFF_OACTIVE;
815 rum_start(ifp);
816
817 splx(s);
818 }
819
820 Static void
821 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
822 {
823 struct rum_rx_data *data = priv;
824 struct rum_softc *sc = data->sc;
825 struct ieee80211com *ic = &sc->sc_ic;
826 struct ifnet *ifp = &sc->sc_if;
827 struct rum_rx_desc *desc;
828 struct ieee80211_frame *wh;
829 struct ieee80211_node *ni;
830 struct mbuf *mnew, *m;
831 int s, len;
832
833 if (status != USBD_NORMAL_COMPLETION) {
834 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
835 return;
836
837 if (status == USBD_STALLED)
838 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
839 goto skip;
840 }
841
842 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
843
844 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
845 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
846 len));
847 ifp->if_ierrors++;
848 goto skip;
849 }
850
851 desc = (struct rum_rx_desc *)data->buf;
852
853 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
854 /*
855 * This should not happen since we did not request to receive
856 * those frames when we filled RT2573_TXRX_CSR0.
857 */
858 DPRINTFN(5, ("CRC error\n"));
859 ifp->if_ierrors++;
860 goto skip;
861 }
862
863 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
864 if (mnew == NULL) {
865 printf("%s: could not allocate rx mbuf\n",
866 device_xname(sc->sc_dev));
867 ifp->if_ierrors++;
868 goto skip;
869 }
870
871 MCLGET(mnew, M_DONTWAIT);
872 if (!(mnew->m_flags & M_EXT)) {
873 printf("%s: could not allocate rx mbuf cluster\n",
874 device_xname(sc->sc_dev));
875 m_freem(mnew);
876 ifp->if_ierrors++;
877 goto skip;
878 }
879
880 m = data->m;
881 data->m = mnew;
882 data->buf = mtod(data->m, uint8_t *);
883
884 /* finalize mbuf */
885 m->m_pkthdr.rcvif = ifp;
886 m->m_data = (void *)(desc + 1);
887 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
888
889 s = splnet();
890
891 if (sc->sc_drvbpf != NULL) {
892 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
893
894 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
895 tap->wr_rate = rum_rxrate(desc);
896 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
897 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
898 tap->wr_antenna = sc->rx_ant;
899 tap->wr_antsignal = desc->rssi;
900
901 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
902 }
903
904 wh = mtod(m, struct ieee80211_frame *);
905 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
906
907 /* send the frame to the 802.11 layer */
908 ieee80211_input(ic, m, ni, desc->rssi, 0);
909
910 /* node is no longer needed */
911 ieee80211_free_node(ni);
912
913 splx(s);
914
915 DPRINTFN(15, ("rx done\n"));
916
917 skip: /* setup a new transfer */
918 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
919 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
920 usbd_transfer(xfer);
921 }
922
923 /*
924 * This function is only used by the Rx radiotap code. It returns the rate at
925 * which a given frame was received.
926 */
927 Static uint8_t
928 rum_rxrate(const struct rum_rx_desc *desc)
929 {
930 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
931 /* reverse function of rum_plcp_signal */
932 switch (desc->rate) {
933 case 0xb: return 12;
934 case 0xf: return 18;
935 case 0xa: return 24;
936 case 0xe: return 36;
937 case 0x9: return 48;
938 case 0xd: return 72;
939 case 0x8: return 96;
940 case 0xc: return 108;
941 }
942 } else {
943 if (desc->rate == 10)
944 return 2;
945 if (desc->rate == 20)
946 return 4;
947 if (desc->rate == 55)
948 return 11;
949 if (desc->rate == 110)
950 return 22;
951 }
952 return 2; /* should not get there */
953 }
954
955 /*
956 * Return the expected ack rate for a frame transmitted at rate `rate'.
957 * XXX: this should depend on the destination node basic rate set.
958 */
959 Static int
960 rum_ack_rate(struct ieee80211com *ic, int rate)
961 {
962 switch (rate) {
963 /* CCK rates */
964 case 2:
965 return 2;
966 case 4:
967 case 11:
968 case 22:
969 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
970
971 /* OFDM rates */
972 case 12:
973 case 18:
974 return 12;
975 case 24:
976 case 36:
977 return 24;
978 case 48:
979 case 72:
980 case 96:
981 case 108:
982 return 48;
983 }
984
985 /* default to 1Mbps */
986 return 2;
987 }
988
989 /*
990 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
991 * The function automatically determines the operating mode depending on the
992 * given rate. `flags' indicates whether short preamble is in use or not.
993 */
994 Static uint16_t
995 rum_txtime(int len, int rate, uint32_t flags)
996 {
997 uint16_t txtime;
998
999 if (RUM_RATE_IS_OFDM(rate)) {
1000 /* IEEE Std 802.11a-1999, pp. 37 */
1001 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1002 txtime = 16 + 4 + 4 * txtime + 6;
1003 } else {
1004 /* IEEE Std 802.11b-1999, pp. 28 */
1005 txtime = (16 * len + rate - 1) / rate;
1006 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1007 txtime += 72 + 24;
1008 else
1009 txtime += 144 + 48;
1010 }
1011 return txtime;
1012 }
1013
1014 Static uint8_t
1015 rum_plcp_signal(int rate)
1016 {
1017 switch (rate) {
1018 /* CCK rates (returned values are device-dependent) */
1019 case 2: return 0x0;
1020 case 4: return 0x1;
1021 case 11: return 0x2;
1022 case 22: return 0x3;
1023
1024 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1025 case 12: return 0xb;
1026 case 18: return 0xf;
1027 case 24: return 0xa;
1028 case 36: return 0xe;
1029 case 48: return 0x9;
1030 case 72: return 0xd;
1031 case 96: return 0x8;
1032 case 108: return 0xc;
1033
1034 /* unsupported rates (should not get there) */
1035 default: return 0xff;
1036 }
1037 }
1038
1039 Static void
1040 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1041 uint32_t flags, uint16_t xflags, int len, int rate)
1042 {
1043 struct ieee80211com *ic = &sc->sc_ic;
1044 uint16_t plcp_length;
1045 int remainder;
1046
1047 desc->flags = htole32(flags);
1048 desc->flags |= htole32(RT2573_TX_VALID);
1049 desc->flags |= htole32(len << 16);
1050
1051 desc->xflags = htole16(xflags);
1052
1053 desc->wme = htole16(
1054 RT2573_QID(0) |
1055 RT2573_AIFSN(2) |
1056 RT2573_LOGCWMIN(4) |
1057 RT2573_LOGCWMAX(10));
1058
1059 /* setup PLCP fields */
1060 desc->plcp_signal = rum_plcp_signal(rate);
1061 desc->plcp_service = 4;
1062
1063 len += IEEE80211_CRC_LEN;
1064 if (RUM_RATE_IS_OFDM(rate)) {
1065 desc->flags |= htole32(RT2573_TX_OFDM);
1066
1067 plcp_length = len & 0xfff;
1068 desc->plcp_length_hi = plcp_length >> 6;
1069 desc->plcp_length_lo = plcp_length & 0x3f;
1070 } else {
1071 plcp_length = (16 * len + rate - 1) / rate;
1072 if (rate == 22) {
1073 remainder = (16 * len) % 22;
1074 if (remainder != 0 && remainder < 7)
1075 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1076 }
1077 desc->plcp_length_hi = plcp_length >> 8;
1078 desc->plcp_length_lo = plcp_length & 0xff;
1079
1080 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1081 desc->plcp_signal |= 0x08;
1082 }
1083 }
1084
1085 #define RUM_TX_TIMEOUT 5000
1086
1087 Static int
1088 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1089 {
1090 struct ieee80211com *ic = &sc->sc_ic;
1091 struct rum_tx_desc *desc;
1092 struct rum_tx_data *data;
1093 struct ieee80211_frame *wh;
1094 struct ieee80211_key *k;
1095 uint32_t flags = 0;
1096 uint16_t dur;
1097 usbd_status error;
1098 int xferlen, rate;
1099
1100 data = &sc->tx_data[0];
1101 desc = (struct rum_tx_desc *)data->buf;
1102
1103 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1104
1105 data->m = m0;
1106 data->ni = ni;
1107
1108 wh = mtod(m0, struct ieee80211_frame *);
1109
1110 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1111 k = ieee80211_crypto_encap(ic, ni, m0);
1112 if (k == NULL) {
1113 m_freem(m0);
1114 return ENOBUFS;
1115 }
1116 }
1117
1118 wh = mtod(m0, struct ieee80211_frame *);
1119
1120 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1121 flags |= RT2573_TX_NEED_ACK;
1122
1123 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1124 ic->ic_flags) + sc->sifs;
1125 *(uint16_t *)wh->i_dur = htole16(dur);
1126
1127 /* tell hardware to set timestamp in probe responses */
1128 if ((wh->i_fc[0] &
1129 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1130 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1131 flags |= RT2573_TX_TIMESTAMP;
1132 }
1133
1134 if (sc->sc_drvbpf != NULL) {
1135 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1136
1137 tap->wt_flags = 0;
1138 tap->wt_rate = rate;
1139 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1140 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1141 tap->wt_antenna = sc->tx_ant;
1142
1143 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1144 }
1145
1146 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1147 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1148
1149 /* align end on a 4-bytes boundary */
1150 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1151
1152 /*
1153 * No space left in the last URB to store the extra 4 bytes, force
1154 * sending of another URB.
1155 */
1156 if ((xferlen % 64) == 0)
1157 xferlen += 4;
1158
1159 DPRINTFN(10, ("sending msg frame len=%zu rate=%u xfer len=%u\n",
1160 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1161 rate, xferlen));
1162
1163 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1164 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1165
1166 error = usbd_transfer(data->xfer);
1167 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1168 m_freem(m0);
1169 return error;
1170 }
1171
1172 sc->tx_queued++;
1173
1174 return 0;
1175 }
1176
1177 Static int
1178 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1179 {
1180 struct ieee80211com *ic = &sc->sc_ic;
1181 struct rum_tx_desc *desc;
1182 struct rum_tx_data *data;
1183 struct ieee80211_frame *wh;
1184 struct ieee80211_key *k;
1185 uint32_t flags = 0;
1186 uint16_t dur;
1187 usbd_status error;
1188 int xferlen, rate;
1189
1190 wh = mtod(m0, struct ieee80211_frame *);
1191
1192 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1193 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1194 else
1195 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1196 if (rate == 0)
1197 rate = 2; /* XXX should not happen */
1198 rate &= IEEE80211_RATE_VAL;
1199
1200 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1201 k = ieee80211_crypto_encap(ic, ni, m0);
1202 if (k == NULL) {
1203 m_freem(m0);
1204 return ENOBUFS;
1205 }
1206
1207 /* packet header may have moved, reset our local pointer */
1208 wh = mtod(m0, struct ieee80211_frame *);
1209 }
1210
1211 data = &sc->tx_data[0];
1212 desc = (struct rum_tx_desc *)data->buf;
1213
1214 data->ni = ni;
1215
1216 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1217 flags |= RT2573_TX_NEED_ACK;
1218
1219 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1220 ic->ic_flags) + sc->sifs;
1221 *(uint16_t *)wh->i_dur = htole16(dur);
1222 }
1223
1224 if (sc->sc_drvbpf != NULL) {
1225 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1226
1227 tap->wt_flags = 0;
1228 tap->wt_rate = rate;
1229 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1230 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1231 tap->wt_antenna = sc->tx_ant;
1232
1233 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1234 }
1235
1236 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1237 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1238
1239 /* align end on a 4-bytes boundary */
1240 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1241
1242 /*
1243 * No space left in the last URB to store the extra 4 bytes, force
1244 * sending of another URB.
1245 */
1246 if ((xferlen % 64) == 0)
1247 xferlen += 4;
1248
1249 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1250 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1251 rate, xferlen));
1252
1253 /* mbuf is no longer needed */
1254 m_freem(m0);
1255
1256 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1257 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1258
1259 error = usbd_transfer(data->xfer);
1260 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1261 return error;
1262
1263 sc->tx_queued++;
1264
1265 return 0;
1266 }
1267
1268 Static void
1269 rum_start(struct ifnet *ifp)
1270 {
1271 struct rum_softc *sc = ifp->if_softc;
1272 struct ieee80211com *ic = &sc->sc_ic;
1273 struct ether_header *eh;
1274 struct ieee80211_node *ni;
1275 struct mbuf *m0;
1276
1277 for (;;) {
1278 IF_POLL(&ic->ic_mgtq, m0);
1279 if (m0 != NULL) {
1280 if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
1281 ifp->if_flags |= IFF_OACTIVE;
1282 break;
1283 }
1284 IF_DEQUEUE(&ic->ic_mgtq, m0);
1285
1286 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1287 m0->m_pkthdr.rcvif = NULL;
1288 bpf_mtap3(ic->ic_rawbpf, m0);
1289 if (rum_tx_mgt(sc, m0, ni) != 0)
1290 break;
1291
1292 } else {
1293 if (ic->ic_state != IEEE80211_S_RUN)
1294 break;
1295 IFQ_POLL(&ifp->if_snd, m0);
1296 if (m0 == NULL)
1297 break;
1298 if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
1299 ifp->if_flags |= IFF_OACTIVE;
1300 break;
1301 }
1302 IFQ_DEQUEUE(&ifp->if_snd, m0);
1303 if (m0->m_len < sizeof(struct ether_header) &&
1304 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1305 continue;
1306
1307 eh = mtod(m0, struct ether_header *);
1308 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1309 if (ni == NULL) {
1310 m_freem(m0);
1311 continue;
1312 }
1313 bpf_mtap(ifp, m0);
1314 m0 = ieee80211_encap(ic, m0, ni);
1315 if (m0 == NULL) {
1316 ieee80211_free_node(ni);
1317 continue;
1318 }
1319 bpf_mtap3(ic->ic_rawbpf, m0);
1320 if (rum_tx_data(sc, m0, ni) != 0) {
1321 ieee80211_free_node(ni);
1322 ifp->if_oerrors++;
1323 break;
1324 }
1325 }
1326
1327 sc->sc_tx_timer = 5;
1328 ifp->if_timer = 1;
1329 }
1330 }
1331
1332 Static void
1333 rum_watchdog(struct ifnet *ifp)
1334 {
1335 struct rum_softc *sc = ifp->if_softc;
1336 struct ieee80211com *ic = &sc->sc_ic;
1337
1338 ifp->if_timer = 0;
1339
1340 if (sc->sc_tx_timer > 0) {
1341 if (--sc->sc_tx_timer == 0) {
1342 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1343 /*rum_init(ifp); XXX needs a process context! */
1344 ifp->if_oerrors++;
1345 return;
1346 }
1347 ifp->if_timer = 1;
1348 }
1349
1350 ieee80211_watchdog(ic);
1351 }
1352
1353 Static int
1354 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1355 {
1356 struct rum_softc *sc = ifp->if_softc;
1357 struct ieee80211com *ic = &sc->sc_ic;
1358 int s, error = 0;
1359
1360 s = splnet();
1361
1362 switch (cmd) {
1363 case SIOCSIFFLAGS:
1364 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1365 break;
1366 /* XXX re-use ether_ioctl() */
1367 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1368 case IFF_UP|IFF_RUNNING:
1369 rum_update_promisc(sc);
1370 break;
1371 case IFF_UP:
1372 rum_init(ifp);
1373 break;
1374 case IFF_RUNNING:
1375 rum_stop(ifp, 1);
1376 break;
1377 case 0:
1378 break;
1379 }
1380 break;
1381
1382 default:
1383 error = ieee80211_ioctl(ic, cmd, data);
1384 }
1385
1386 if (error == ENETRESET) {
1387 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1388 (IFF_UP | IFF_RUNNING))
1389 rum_init(ifp);
1390 error = 0;
1391 }
1392
1393 splx(s);
1394
1395 return error;
1396 }
1397
1398 Static void
1399 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1400 {
1401 usb_device_request_t req;
1402 usbd_status error;
1403
1404 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1405 req.bRequest = RT2573_READ_EEPROM;
1406 USETW(req.wValue, 0);
1407 USETW(req.wIndex, addr);
1408 USETW(req.wLength, len);
1409
1410 error = usbd_do_request(sc->sc_udev, &req, buf);
1411 if (error != 0) {
1412 printf("%s: could not read EEPROM: %s\n",
1413 device_xname(sc->sc_dev), usbd_errstr(error));
1414 }
1415 }
1416
1417 Static uint32_t
1418 rum_read(struct rum_softc *sc, uint16_t reg)
1419 {
1420 uint32_t val;
1421
1422 rum_read_multi(sc, reg, &val, sizeof val);
1423
1424 return le32toh(val);
1425 }
1426
1427 Static void
1428 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1429 {
1430 usb_device_request_t req;
1431 usbd_status error;
1432
1433 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1434 req.bRequest = RT2573_READ_MULTI_MAC;
1435 USETW(req.wValue, 0);
1436 USETW(req.wIndex, reg);
1437 USETW(req.wLength, len);
1438
1439 error = usbd_do_request(sc->sc_udev, &req, buf);
1440 if (error != 0) {
1441 printf("%s: could not multi read MAC register: %s\n",
1442 device_xname(sc->sc_dev), usbd_errstr(error));
1443 }
1444 }
1445
1446 Static void
1447 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1448 {
1449 uint32_t tmp = htole32(val);
1450
1451 rum_write_multi(sc, reg, &tmp, sizeof tmp);
1452 }
1453
1454 Static void
1455 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1456 {
1457 usb_device_request_t req;
1458 usbd_status error;
1459
1460 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1461 req.bRequest = RT2573_WRITE_MULTI_MAC;
1462 USETW(req.wValue, 0);
1463 USETW(req.wIndex, reg);
1464 USETW(req.wLength, len);
1465
1466 error = usbd_do_request(sc->sc_udev, &req, buf);
1467 if (error != 0) {
1468 printf("%s: could not multi write MAC register: %s\n",
1469 device_xname(sc->sc_dev), usbd_errstr(error));
1470 }
1471 }
1472
1473 Static void
1474 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1475 {
1476 uint32_t tmp;
1477 int ntries;
1478
1479 for (ntries = 0; ntries < 5; ntries++) {
1480 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1481 break;
1482 }
1483 if (ntries == 5) {
1484 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1485 return;
1486 }
1487
1488 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1489 rum_write(sc, RT2573_PHY_CSR3, tmp);
1490 }
1491
1492 Static uint8_t
1493 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1494 {
1495 uint32_t val;
1496 int ntries;
1497
1498 for (ntries = 0; ntries < 5; ntries++) {
1499 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1500 break;
1501 }
1502 if (ntries == 5) {
1503 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1504 return 0;
1505 }
1506
1507 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1508 rum_write(sc, RT2573_PHY_CSR3, val);
1509
1510 for (ntries = 0; ntries < 100; ntries++) {
1511 val = rum_read(sc, RT2573_PHY_CSR3);
1512 if (!(val & RT2573_BBP_BUSY))
1513 return val & 0xff;
1514 DELAY(1);
1515 }
1516
1517 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1518 return 0;
1519 }
1520
1521 Static void
1522 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1523 {
1524 uint32_t tmp;
1525 int ntries;
1526
1527 for (ntries = 0; ntries < 5; ntries++) {
1528 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1529 break;
1530 }
1531 if (ntries == 5) {
1532 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1533 return;
1534 }
1535
1536 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1537 (reg & 3);
1538 rum_write(sc, RT2573_PHY_CSR4, tmp);
1539
1540 /* remember last written value in sc */
1541 sc->rf_regs[reg] = val;
1542
1543 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1544 }
1545
1546 Static void
1547 rum_select_antenna(struct rum_softc *sc)
1548 {
1549 uint8_t bbp4, bbp77;
1550 uint32_t tmp;
1551
1552 bbp4 = rum_bbp_read(sc, 4);
1553 bbp77 = rum_bbp_read(sc, 77);
1554
1555 /* TBD */
1556
1557 /* make sure Rx is disabled before switching antenna */
1558 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1559 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1560
1561 rum_bbp_write(sc, 4, bbp4);
1562 rum_bbp_write(sc, 77, bbp77);
1563
1564 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1565 }
1566
1567 /*
1568 * Enable multi-rate retries for frames sent at OFDM rates.
1569 * In 802.11b/g mode, allow fallback to CCK rates.
1570 */
1571 Static void
1572 rum_enable_mrr(struct rum_softc *sc)
1573 {
1574 struct ieee80211com *ic = &sc->sc_ic;
1575 uint32_t tmp;
1576
1577 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1578
1579 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1580 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1581 tmp |= RT2573_MRR_CCK_FALLBACK;
1582 tmp |= RT2573_MRR_ENABLED;
1583
1584 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1585 }
1586
1587 Static void
1588 rum_set_txpreamble(struct rum_softc *sc)
1589 {
1590 uint32_t tmp;
1591
1592 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1593
1594 tmp &= ~RT2573_SHORT_PREAMBLE;
1595 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1596 tmp |= RT2573_SHORT_PREAMBLE;
1597
1598 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1599 }
1600
1601 Static void
1602 rum_set_basicrates(struct rum_softc *sc)
1603 {
1604 struct ieee80211com *ic = &sc->sc_ic;
1605
1606 /* update basic rate set */
1607 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1608 /* 11b basic rates: 1, 2Mbps */
1609 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1610 } else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1611 /* 11a basic rates: 6, 12, 24Mbps */
1612 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1613 } else {
1614 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1615 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1616 }
1617 }
1618
1619 /*
1620 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1621 * driver.
1622 */
1623 Static void
1624 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1625 {
1626 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1627 uint32_t tmp;
1628
1629 /* update all BBP registers that depend on the band */
1630 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1631 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1632 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1633 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1634 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1635 }
1636 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1637 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1638 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1639 }
1640
1641 sc->bbp17 = bbp17;
1642 rum_bbp_write(sc, 17, bbp17);
1643 rum_bbp_write(sc, 96, bbp96);
1644 rum_bbp_write(sc, 104, bbp104);
1645
1646 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1647 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1648 rum_bbp_write(sc, 75, 0x80);
1649 rum_bbp_write(sc, 86, 0x80);
1650 rum_bbp_write(sc, 88, 0x80);
1651 }
1652
1653 rum_bbp_write(sc, 35, bbp35);
1654 rum_bbp_write(sc, 97, bbp97);
1655 rum_bbp_write(sc, 98, bbp98);
1656
1657 tmp = rum_read(sc, RT2573_PHY_CSR0);
1658 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1659 if (IEEE80211_IS_CHAN_2GHZ(c))
1660 tmp |= RT2573_PA_PE_2GHZ;
1661 else
1662 tmp |= RT2573_PA_PE_5GHZ;
1663 rum_write(sc, RT2573_PHY_CSR0, tmp);
1664
1665 /* 802.11a uses a 16 microseconds short interframe space */
1666 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1667 }
1668
1669 Static void
1670 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1671 {
1672 struct ieee80211com *ic = &sc->sc_ic;
1673 const struct rfprog *rfprog;
1674 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1675 int8_t power;
1676 u_int i, chan;
1677
1678 chan = ieee80211_chan2ieee(ic, c);
1679 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1680 return;
1681
1682 /* select the appropriate RF settings based on what EEPROM says */
1683 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1684 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1685
1686 /* find the settings for this channel (we know it exists) */
1687 for (i = 0; rfprog[i].chan != chan; i++);
1688
1689 power = sc->txpow[i];
1690 if (power < 0) {
1691 bbp94 += power;
1692 power = 0;
1693 } else if (power > 31) {
1694 bbp94 += power - 31;
1695 power = 31;
1696 }
1697
1698 /*
1699 * If we are switching from the 2GHz band to the 5GHz band or
1700 * vice-versa, BBP registers need to be reprogrammed.
1701 */
1702 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1703 rum_select_band(sc, c);
1704 rum_select_antenna(sc);
1705 }
1706 ic->ic_curchan = c;
1707
1708 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1709 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1710 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1711 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1712
1713 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1714 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1715 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1716 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1717
1718 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1719 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1720 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1721 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1722
1723 DELAY(10);
1724
1725 /* enable smart mode for MIMO-capable RFs */
1726 bbp3 = rum_bbp_read(sc, 3);
1727
1728 bbp3 &= ~RT2573_SMART_MODE;
1729 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1730 bbp3 |= RT2573_SMART_MODE;
1731
1732 rum_bbp_write(sc, 3, bbp3);
1733
1734 if (bbp94 != RT2573_BBPR94_DEFAULT)
1735 rum_bbp_write(sc, 94, bbp94);
1736 }
1737
1738 /*
1739 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1740 * and HostAP operating modes.
1741 */
1742 Static void
1743 rum_enable_tsf_sync(struct rum_softc *sc)
1744 {
1745 struct ieee80211com *ic = &sc->sc_ic;
1746 uint32_t tmp;
1747
1748 if (ic->ic_opmode != IEEE80211_M_STA) {
1749 /*
1750 * Change default 16ms TBTT adjustment to 8ms.
1751 * Must be done before enabling beacon generation.
1752 */
1753 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1754 }
1755
1756 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1757
1758 /* set beacon interval (in 1/16ms unit) */
1759 tmp |= ic->ic_bss->ni_intval * 16;
1760
1761 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1762 if (ic->ic_opmode == IEEE80211_M_STA)
1763 tmp |= RT2573_TSF_MODE(1);
1764 else
1765 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1766
1767 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1768 }
1769
1770 Static void
1771 rum_update_slot(struct rum_softc *sc)
1772 {
1773 struct ieee80211com *ic = &sc->sc_ic;
1774 uint8_t slottime;
1775 uint32_t tmp;
1776
1777 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1778
1779 tmp = rum_read(sc, RT2573_MAC_CSR9);
1780 tmp = (tmp & ~0xff) | slottime;
1781 rum_write(sc, RT2573_MAC_CSR9, tmp);
1782
1783 DPRINTF(("setting slot time to %uus\n", slottime));
1784 }
1785
1786 Static void
1787 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1788 {
1789 uint32_t tmp;
1790
1791 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1792 rum_write(sc, RT2573_MAC_CSR4, tmp);
1793
1794 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1795 rum_write(sc, RT2573_MAC_CSR5, tmp);
1796 }
1797
1798 Static void
1799 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1800 {
1801 uint32_t tmp;
1802
1803 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1804 rum_write(sc, RT2573_MAC_CSR2, tmp);
1805
1806 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1807 rum_write(sc, RT2573_MAC_CSR3, tmp);
1808 }
1809
1810 Static void
1811 rum_update_promisc(struct rum_softc *sc)
1812 {
1813 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1814 uint32_t tmp;
1815
1816 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1817
1818 tmp &= ~RT2573_DROP_NOT_TO_ME;
1819 if (!(ifp->if_flags & IFF_PROMISC))
1820 tmp |= RT2573_DROP_NOT_TO_ME;
1821
1822 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1823
1824 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1825 "entering" : "leaving"));
1826 }
1827
1828 Static const char *
1829 rum_get_rf(int rev)
1830 {
1831 switch (rev) {
1832 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1833 case RT2573_RF_2528: return "RT2528";
1834 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1835 case RT2573_RF_5226: return "RT5226";
1836 default: return "unknown";
1837 }
1838 }
1839
1840 Static void
1841 rum_read_eeprom(struct rum_softc *sc)
1842 {
1843 struct ieee80211com *ic = &sc->sc_ic;
1844 uint16_t val;
1845 #ifdef RUM_DEBUG
1846 int i;
1847 #endif
1848
1849 /* read MAC/BBP type */
1850 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1851 sc->macbbp_rev = le16toh(val);
1852
1853 /* read MAC address */
1854 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1855
1856 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1857 val = le16toh(val);
1858 sc->rf_rev = (val >> 11) & 0x1f;
1859 sc->hw_radio = (val >> 10) & 0x1;
1860 sc->rx_ant = (val >> 4) & 0x3;
1861 sc->tx_ant = (val >> 2) & 0x3;
1862 sc->nb_ant = val & 0x3;
1863
1864 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1865
1866 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1867 val = le16toh(val);
1868 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1869 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1870
1871 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1872 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1873
1874 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1875 val = le16toh(val);
1876 if ((val & 0xff) != 0xff)
1877 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1878
1879 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1880 val = le16toh(val);
1881 if ((val & 0xff) != 0xff)
1882 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1883
1884 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1885 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1886
1887 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1888 val = le16toh(val);
1889 if ((val & 0xff) != 0xff)
1890 sc->rffreq = val & 0xff;
1891
1892 DPRINTF(("RF freq=%d\n", sc->rffreq));
1893
1894 /* read Tx power for all a/b/g channels */
1895 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1896 /* XXX default Tx power for 802.11a channels */
1897 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1898 #ifdef RUM_DEBUG
1899 for (i = 0; i < 14; i++)
1900 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1901 #endif
1902
1903 /* read default values for BBP registers */
1904 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1905 #ifdef RUM_DEBUG
1906 for (i = 0; i < 14; i++) {
1907 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1908 continue;
1909 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1910 sc->bbp_prom[i].val));
1911 }
1912 #endif
1913 }
1914
1915 Static int
1916 rum_bbp_init(struct rum_softc *sc)
1917 {
1918 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1919 int i, ntries;
1920 uint8_t val;
1921
1922 /* wait for BBP to be ready */
1923 for (ntries = 0; ntries < 100; ntries++) {
1924 val = rum_bbp_read(sc, 0);
1925 if (val != 0 && val != 0xff)
1926 break;
1927 DELAY(1000);
1928 }
1929 if (ntries == 100) {
1930 printf("%s: timeout waiting for BBP\n",
1931 device_xname(sc->sc_dev));
1932 return EIO;
1933 }
1934
1935 /* initialize BBP registers to default values */
1936 for (i = 0; i < N(rum_def_bbp); i++)
1937 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1938
1939 /* write vendor-specific BBP values (from EEPROM) */
1940 for (i = 0; i < 16; i++) {
1941 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1942 continue;
1943 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1944 }
1945
1946 return 0;
1947 #undef N
1948 }
1949
1950 Static int
1951 rum_init(struct ifnet *ifp)
1952 {
1953 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1954 struct rum_softc *sc = ifp->if_softc;
1955 struct ieee80211com *ic = &sc->sc_ic;
1956 struct rum_rx_data *data;
1957 uint32_t tmp;
1958 usbd_status error = 0;
1959 int i, ntries;
1960
1961 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1962 if (rum_attachhook(sc))
1963 goto fail;
1964 }
1965
1966 rum_stop(ifp, 0);
1967
1968 /* initialize MAC registers to default values */
1969 for (i = 0; i < N(rum_def_mac); i++)
1970 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1971
1972 /* set host ready */
1973 rum_write(sc, RT2573_MAC_CSR1, 3);
1974 rum_write(sc, RT2573_MAC_CSR1, 0);
1975
1976 /* wait for BBP/RF to wakeup */
1977 for (ntries = 0; ntries < 1000; ntries++) {
1978 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1979 break;
1980 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1981 DELAY(1000);
1982 }
1983 if (ntries == 1000) {
1984 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1985 device_xname(sc->sc_dev));
1986 goto fail;
1987 }
1988
1989 if ((error = rum_bbp_init(sc)) != 0)
1990 goto fail;
1991
1992 /* select default channel */
1993 rum_select_band(sc, ic->ic_curchan);
1994 rum_select_antenna(sc);
1995 rum_set_chan(sc, ic->ic_curchan);
1996
1997 /* clear STA registers */
1998 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1999
2000 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2001 rum_set_macaddr(sc, ic->ic_myaddr);
2002
2003 /* initialize ASIC */
2004 rum_write(sc, RT2573_MAC_CSR1, 4);
2005
2006 /*
2007 * Allocate xfer for AMRR statistics requests.
2008 */
2009 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2010 if (sc->amrr_xfer == NULL) {
2011 printf("%s: could not allocate AMRR xfer\n",
2012 device_xname(sc->sc_dev));
2013 goto fail;
2014 }
2015
2016 /*
2017 * Open Tx and Rx USB bulk pipes.
2018 */
2019 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2020 &sc->sc_tx_pipeh);
2021 if (error != 0) {
2022 printf("%s: could not open Tx pipe: %s\n",
2023 device_xname(sc->sc_dev), usbd_errstr(error));
2024 goto fail;
2025 }
2026
2027 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2028 &sc->sc_rx_pipeh);
2029 if (error != 0) {
2030 printf("%s: could not open Rx pipe: %s\n",
2031 device_xname(sc->sc_dev), usbd_errstr(error));
2032 goto fail;
2033 }
2034
2035 /*
2036 * Allocate Tx and Rx xfer queues.
2037 */
2038 error = rum_alloc_tx_list(sc);
2039 if (error != 0) {
2040 printf("%s: could not allocate Tx list\n",
2041 device_xname(sc->sc_dev));
2042 goto fail;
2043 }
2044
2045 error = rum_alloc_rx_list(sc);
2046 if (error != 0) {
2047 printf("%s: could not allocate Rx list\n",
2048 device_xname(sc->sc_dev));
2049 goto fail;
2050 }
2051
2052 /*
2053 * Start up the receive pipe.
2054 */
2055 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2056 data = &sc->rx_data[i];
2057
2058 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2059 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2060 error = usbd_transfer(data->xfer);
2061 if (error != USBD_NORMAL_COMPLETION &&
2062 error != USBD_IN_PROGRESS) {
2063 printf("%s: could not queue Rx transfer\n",
2064 device_xname(sc->sc_dev));
2065 goto fail;
2066 }
2067 }
2068
2069 /* update Rx filter */
2070 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2071
2072 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2073 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2074 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2075 RT2573_DROP_ACKCTS;
2076 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2077 tmp |= RT2573_DROP_TODS;
2078 if (!(ifp->if_flags & IFF_PROMISC))
2079 tmp |= RT2573_DROP_NOT_TO_ME;
2080 }
2081 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2082
2083 ifp->if_flags &= ~IFF_OACTIVE;
2084 ifp->if_flags |= IFF_RUNNING;
2085
2086 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2087 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2088 else
2089 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2090
2091 return 0;
2092
2093 fail: rum_stop(ifp, 1);
2094 return error;
2095 #undef N
2096 }
2097
2098 Static void
2099 rum_stop(struct ifnet *ifp, int disable)
2100 {
2101 struct rum_softc *sc = ifp->if_softc;
2102 struct ieee80211com *ic = &sc->sc_ic;
2103 uint32_t tmp;
2104
2105 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2106
2107 sc->sc_tx_timer = 0;
2108 ifp->if_timer = 0;
2109 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2110
2111 /* disable Rx */
2112 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2113 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2114
2115 /* reset ASIC */
2116 rum_write(sc, RT2573_MAC_CSR1, 3);
2117 rum_write(sc, RT2573_MAC_CSR1, 0);
2118
2119 if (sc->sc_rx_pipeh != NULL) {
2120 usbd_abort_pipe(sc->sc_rx_pipeh);
2121 usbd_close_pipe(sc->sc_rx_pipeh);
2122 sc->sc_rx_pipeh = NULL;
2123 }
2124
2125 if (sc->sc_tx_pipeh != NULL) {
2126 usbd_abort_pipe(sc->sc_tx_pipeh);
2127 usbd_close_pipe(sc->sc_tx_pipeh);
2128 sc->sc_tx_pipeh = NULL;
2129 }
2130
2131 rum_free_rx_list(sc);
2132 rum_free_tx_list(sc);
2133 }
2134
2135 Static int
2136 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2137 {
2138 usb_device_request_t req;
2139 uint16_t reg = RT2573_MCU_CODE_BASE;
2140 usbd_status error;
2141
2142 /* copy firmware image into NIC */
2143 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2144 rum_write(sc, reg, UGETDW(ucode));
2145
2146 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2147 req.bRequest = RT2573_MCU_CNTL;
2148 USETW(req.wValue, RT2573_MCU_RUN);
2149 USETW(req.wIndex, 0);
2150 USETW(req.wLength, 0);
2151
2152 error = usbd_do_request(sc->sc_udev, &req, NULL);
2153 if (error != 0) {
2154 printf("%s: could not run firmware: %s\n",
2155 device_xname(sc->sc_dev), usbd_errstr(error));
2156 }
2157 return error;
2158 }
2159
2160 Static int
2161 rum_prepare_beacon(struct rum_softc *sc)
2162 {
2163 struct ieee80211com *ic = &sc->sc_ic;
2164 struct rum_tx_desc desc;
2165 struct mbuf *m0;
2166 int rate;
2167
2168 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2169 if (m0 == NULL) {
2170 aprint_error_dev(sc->sc_dev,
2171 "could not allocate beacon frame\n");
2172 return ENOBUFS;
2173 }
2174
2175 /* send beacons at the lowest available rate */
2176 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2177
2178 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2179 m0->m_pkthdr.len, rate);
2180
2181 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2182 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2183
2184 /* copy beacon header and payload into NIC memory */
2185 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2186 m0->m_pkthdr.len);
2187
2188 m_freem(m0);
2189
2190 return 0;
2191 }
2192
2193 Static void
2194 rum_newassoc(struct ieee80211_node *ni, int isnew)
2195 {
2196 /* start with lowest Tx rate */
2197 ni->ni_txrate = 0;
2198 }
2199
2200 Static void
2201 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2202 {
2203 int i;
2204
2205 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2206 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2207
2208 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2209
2210 /* set rate to some reasonable initial value */
2211 for (i = ni->ni_rates.rs_nrates - 1;
2212 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2213 i--);
2214 ni->ni_txrate = i;
2215
2216 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2217 }
2218
2219 Static void
2220 rum_amrr_timeout(void *arg)
2221 {
2222 struct rum_softc *sc = arg;
2223 usb_device_request_t req;
2224
2225 /*
2226 * Asynchronously read statistic registers (cleared by read).
2227 */
2228 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2229 req.bRequest = RT2573_READ_MULTI_MAC;
2230 USETW(req.wValue, 0);
2231 USETW(req.wIndex, RT2573_STA_CSR0);
2232 USETW(req.wLength, sizeof sc->sta);
2233
2234 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2235 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2236 rum_amrr_update);
2237 (void)usbd_transfer(sc->amrr_xfer);
2238 }
2239
2240 Static void
2241 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2242 usbd_status status)
2243 {
2244 struct rum_softc *sc = (struct rum_softc *)priv;
2245 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2246
2247 if (status != USBD_NORMAL_COMPLETION) {
2248 printf("%s: could not retrieve Tx statistics - cancelling "
2249 "automatic rate control\n", device_xname(sc->sc_dev));
2250 return;
2251 }
2252
2253 /* count TX retry-fail as Tx errors */
2254 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2255
2256 sc->amn.amn_retrycnt =
2257 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2258 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2259 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2260
2261 sc->amn.amn_txcnt =
2262 sc->amn.amn_retrycnt +
2263 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2264
2265 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2266
2267 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2268 }
2269
2270 int
2271 rum_activate(device_t self, enum devact act)
2272 {
2273 switch (act) {
2274 case DVACT_DEACTIVATE:
2275 /*if_deactivate(&sc->sc_ic.ic_if);*/
2276 return 0;
2277 default:
2278 return EOPNOTSUPP;
2279 }
2280 }
2281