if_rum.c revision 1.45 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.45 2013/01/05 01:30:16 christos Exp $ */
3
4 /*-
5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com.tw/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.45 2013/01/05 01:30:16 christos Exp $");
28
29 #ifdef _KERNEL_OPT
30 #include "opt_usb.h"
31 #endif
32
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/module.h>
42 #include <sys/conf.h>
43 #include <sys/device.h>
44
45 #include <sys/bus.h>
46 #include <machine/endian.h>
47 #include <sys/intr.h>
48
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61
62 #include <net80211/ieee80211_netbsd.h>
63 #include <net80211/ieee80211_var.h>
64 #include <net80211/ieee80211_amrr.h>
65 #include <net80211/ieee80211_radiotap.h>
66
67 #include <dev/firmload.h>
68
69 #include <dev/usb/usb.h>
70 #include <dev/usb/usbdi.h>
71 #include <dev/usb/usbdi_util.h>
72 #include <dev/usb/usbdevs.h>
73
74 #include <dev/usb/if_rumreg.h>
75 #include <dev/usb/if_rumvar.h>
76
77 #ifdef USB_DEBUG
78 #define RUM_DEBUG
79 #endif
80
81 #ifdef RUM_DEBUG
82 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0)
83 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0)
84 int rum_debug = 1;
85 #else
86 #define DPRINTF(x)
87 #define DPRINTFN(n, x)
88 #endif
89
90 /* various supported device vendors/products */
91 static const struct usb_devno rum_devs[] = {
92 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
93 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
94 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
95 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
96 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
97 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
98 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
99 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
100 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
101 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
102 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C },
103 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 },
104 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
105 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
106 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
107 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_RT2573 },
108 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL },
109 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX },
110 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
111 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
112 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
113 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
114 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 },
115 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 },
116 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 },
117 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 },
118 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
119 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
120 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
121 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
122 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
123 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
124 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
125 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
126 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
127 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG },
128 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG },
129 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
130 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
131 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
132 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
133 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
134 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
135 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
136 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
137 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
138 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
139 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 },
140 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
141 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
142 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
143 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
144 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 },
145 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 },
146 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 }
147 };
148
149 static int rum_attachhook(void *);
150 static int rum_alloc_tx_list(struct rum_softc *);
151 static void rum_free_tx_list(struct rum_softc *);
152 static int rum_alloc_rx_list(struct rum_softc *);
153 static void rum_free_rx_list(struct rum_softc *);
154 static int rum_media_change(struct ifnet *);
155 static void rum_next_scan(void *);
156 static void rum_task(void *);
157 static int rum_newstate(struct ieee80211com *,
158 enum ieee80211_state, int);
159 static void rum_txeof(usbd_xfer_handle, usbd_private_handle,
160 usbd_status);
161 static void rum_rxeof(usbd_xfer_handle, usbd_private_handle,
162 usbd_status);
163 static uint8_t rum_rxrate(const struct rum_rx_desc *);
164 static int rum_ack_rate(struct ieee80211com *, int);
165 static uint16_t rum_txtime(int, int, uint32_t);
166 static uint8_t rum_plcp_signal(int);
167 static void rum_setup_tx_desc(struct rum_softc *,
168 struct rum_tx_desc *, uint32_t, uint16_t, int,
169 int);
170 static int rum_tx_data(struct rum_softc *, struct mbuf *,
171 struct ieee80211_node *);
172 static void rum_start(struct ifnet *);
173 static void rum_watchdog(struct ifnet *);
174 static int rum_ioctl(struct ifnet *, u_long, void *);
175 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
176 int);
177 static uint32_t rum_read(struct rum_softc *, uint16_t);
178 static void rum_read_multi(struct rum_softc *, uint16_t, void *,
179 int);
180 static void rum_write(struct rum_softc *, uint16_t, uint32_t);
181 static void rum_write_multi(struct rum_softc *, uint16_t, void *,
182 size_t);
183 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
184 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
185 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
186 static void rum_select_antenna(struct rum_softc *);
187 static void rum_enable_mrr(struct rum_softc *);
188 static void rum_set_txpreamble(struct rum_softc *);
189 static void rum_set_basicrates(struct rum_softc *);
190 static void rum_select_band(struct rum_softc *,
191 struct ieee80211_channel *);
192 static void rum_set_chan(struct rum_softc *,
193 struct ieee80211_channel *);
194 static void rum_enable_tsf_sync(struct rum_softc *);
195 static void rum_update_slot(struct rum_softc *);
196 static void rum_set_bssid(struct rum_softc *, const uint8_t *);
197 static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
198 static void rum_update_promisc(struct rum_softc *);
199 static const char *rum_get_rf(int);
200 static void rum_read_eeprom(struct rum_softc *);
201 static int rum_bbp_init(struct rum_softc *);
202 static int rum_init(struct ifnet *);
203 static void rum_stop(struct ifnet *, int);
204 static int rum_load_microcode(struct rum_softc *, const u_char *,
205 size_t);
206 static int rum_prepare_beacon(struct rum_softc *);
207 static void rum_newassoc(struct ieee80211_node *, int);
208 static void rum_amrr_start(struct rum_softc *,
209 struct ieee80211_node *);
210 static void rum_amrr_timeout(void *);
211 static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
212 usbd_status status);
213
214 /*
215 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
216 */
217 static const struct ieee80211_rateset rum_rateset_11a =
218 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
219
220 static const struct ieee80211_rateset rum_rateset_11b =
221 { 4, { 2, 4, 11, 22 } };
222
223 static const struct ieee80211_rateset rum_rateset_11g =
224 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
225
226 static const struct {
227 uint32_t reg;
228 uint32_t val;
229 } rum_def_mac[] = {
230 RT2573_DEF_MAC
231 };
232
233 static const struct {
234 uint8_t reg;
235 uint8_t val;
236 } rum_def_bbp[] = {
237 RT2573_DEF_BBP
238 };
239
240 static const struct rfprog {
241 uint8_t chan;
242 uint32_t r1, r2, r3, r4;
243 } rum_rf5226[] = {
244 RT2573_RF5226
245 }, rum_rf5225[] = {
246 RT2573_RF5225
247 };
248
249 static int rum_match(device_t, cfdata_t, void *);
250 static void rum_attach(device_t, device_t, void *);
251 static int rum_detach(device_t, int);
252 static int rum_activate(device_t, enum devact);
253 extern struct cfdriver rum_cd;
254 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
255 rum_detach, rum_activate);
256
257 static int
258 rum_match(device_t parent, cfdata_t match, void *aux)
259 {
260 struct usb_attach_arg *uaa = aux;
261
262 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
263 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
264 }
265
266 static int
267 rum_attachhook(void *xsc)
268 {
269 struct rum_softc *sc = xsc;
270 firmware_handle_t fwh;
271 const char *name = "rum-rt2573";
272 u_char *ucode;
273 size_t size;
274 int error;
275
276 if ((error = firmware_open("rum", name, &fwh)) != 0) {
277 printf("%s: failed loadfirmware of file %s (error %d)\n",
278 device_xname(sc->sc_dev), name, error);
279 return error;
280 }
281 size = firmware_get_size(fwh);
282 ucode = firmware_malloc(size);
283 if (ucode == NULL) {
284 printf("%s: failed to allocate firmware memory\n",
285 device_xname(sc->sc_dev));
286 firmware_close(fwh);
287 return ENOMEM;
288 }
289 error = firmware_read(fwh, 0, ucode, size);
290 firmware_close(fwh);
291 if (error != 0) {
292 printf("%s: failed to read firmware (error %d)\n",
293 device_xname(sc->sc_dev), error);
294 firmware_free(ucode, 0);
295 return error;
296 }
297
298 if (rum_load_microcode(sc, ucode, size) != 0) {
299 printf("%s: could not load 8051 microcode\n",
300 device_xname(sc->sc_dev));
301 firmware_free(ucode, 0);
302 return ENXIO;
303 }
304
305 firmware_free(ucode, 0);
306 sc->sc_flags |= RT2573_FWLOADED;
307
308 return 0;
309 }
310
311 static void
312 rum_attach(device_t parent, device_t self, void *aux)
313 {
314 struct rum_softc *sc = device_private(self);
315 struct usb_attach_arg *uaa = aux;
316 struct ieee80211com *ic = &sc->sc_ic;
317 struct ifnet *ifp = &sc->sc_if;
318 usb_interface_descriptor_t *id;
319 usb_endpoint_descriptor_t *ed;
320 usbd_status error;
321 char *devinfop;
322 int i, ntries;
323 uint32_t tmp;
324
325 sc->sc_dev = self;
326 sc->sc_udev = uaa->device;
327 sc->sc_flags = 0;
328
329 aprint_naive("\n");
330 aprint_normal("\n");
331
332 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
333 aprint_normal_dev(self, "%s\n", devinfop);
334 usbd_devinfo_free(devinfop);
335
336 error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
337 if (error != 0) {
338 aprint_error_dev(self, "failed to set configuration"
339 ", err=%s\n", usbd_errstr(error));
340 return;
341 }
342
343 /* get the first interface handle */
344 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
345 &sc->sc_iface);
346 if (error != 0) {
347 aprint_error_dev(self, "could not get interface handle\n");
348 return;
349 }
350
351 /*
352 * Find endpoints.
353 */
354 id = usbd_get_interface_descriptor(sc->sc_iface);
355
356 sc->sc_rx_no = sc->sc_tx_no = -1;
357 for (i = 0; i < id->bNumEndpoints; i++) {
358 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
359 if (ed == NULL) {
360 aprint_error_dev(self,
361 "no endpoint descriptor for iface %d\n", i);
362 return;
363 }
364
365 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
366 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
367 sc->sc_rx_no = ed->bEndpointAddress;
368 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
369 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
370 sc->sc_tx_no = ed->bEndpointAddress;
371 }
372 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
373 aprint_error_dev(self, "missing endpoint\n");
374 return;
375 }
376
377 usb_init_task(&sc->sc_task, rum_task, sc);
378 callout_init(&sc->sc_scan_ch, 0);
379
380 sc->amrr.amrr_min_success_threshold = 1;
381 sc->amrr.amrr_max_success_threshold = 10;
382 callout_init(&sc->sc_amrr_ch, 0);
383
384 /* retrieve RT2573 rev. no */
385 for (ntries = 0; ntries < 1000; ntries++) {
386 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
387 break;
388 DELAY(1000);
389 }
390 if (ntries == 1000) {
391 aprint_error_dev(self, "timeout waiting for chip to settle\n");
392 return;
393 }
394
395 /* retrieve MAC address and various other things from EEPROM */
396 rum_read_eeprom(sc);
397
398 aprint_normal_dev(self,
399 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
400 sc->macbbp_rev, tmp,
401 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
402
403 ic->ic_ifp = ifp;
404 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
405 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
406 ic->ic_state = IEEE80211_S_INIT;
407
408 /* set device capabilities */
409 ic->ic_caps =
410 IEEE80211_C_IBSS | /* IBSS mode supported */
411 IEEE80211_C_MONITOR | /* monitor mode supported */
412 IEEE80211_C_HOSTAP | /* HostAp mode supported */
413 IEEE80211_C_TXPMGT | /* tx power management */
414 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
415 IEEE80211_C_SHSLOT | /* short slot time supported */
416 IEEE80211_C_WPA; /* 802.11i */
417
418 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
419 /* set supported .11a rates */
420 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
421
422 /* set supported .11a channels */
423 for (i = 34; i <= 46; i += 4) {
424 ic->ic_channels[i].ic_freq =
425 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
426 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
427 }
428 for (i = 36; i <= 64; i += 4) {
429 ic->ic_channels[i].ic_freq =
430 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
431 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
432 }
433 for (i = 100; i <= 140; i += 4) {
434 ic->ic_channels[i].ic_freq =
435 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
436 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
437 }
438 for (i = 149; i <= 165; i += 4) {
439 ic->ic_channels[i].ic_freq =
440 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
441 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
442 }
443 }
444
445 /* set supported .11b and .11g rates */
446 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
447 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
448
449 /* set supported .11b and .11g channels (1 through 14) */
450 for (i = 1; i <= 14; i++) {
451 ic->ic_channels[i].ic_freq =
452 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
453 ic->ic_channels[i].ic_flags =
454 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
455 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
456 }
457
458 ifp->if_softc = sc;
459 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
460 ifp->if_init = rum_init;
461 ifp->if_ioctl = rum_ioctl;
462 ifp->if_start = rum_start;
463 ifp->if_watchdog = rum_watchdog;
464 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
465 IFQ_SET_READY(&ifp->if_snd);
466 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
467
468 if_attach(ifp);
469 ieee80211_ifattach(ic);
470 ic->ic_newassoc = rum_newassoc;
471
472 /* override state transition machine */
473 sc->sc_newstate = ic->ic_newstate;
474 ic->ic_newstate = rum_newstate;
475 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
476
477 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
478 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
479 &sc->sc_drvbpf);
480
481 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
482 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
483 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
484
485 sc->sc_txtap_len = sizeof sc->sc_txtapu;
486 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
487 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
488
489 ieee80211_announce(ic);
490
491 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
492 sc->sc_dev);
493
494 return;
495 }
496
497 static int
498 rum_detach(device_t self, int flags)
499 {
500 struct rum_softc *sc = device_private(self);
501 struct ieee80211com *ic = &sc->sc_ic;
502 struct ifnet *ifp = &sc->sc_if;
503 int s;
504
505 if (!ifp->if_softc)
506 return 0;
507
508 s = splusb();
509
510 rum_stop(ifp, 1);
511 usb_rem_task(sc->sc_udev, &sc->sc_task);
512 callout_stop(&sc->sc_scan_ch);
513 callout_stop(&sc->sc_amrr_ch);
514
515 if (sc->amrr_xfer != NULL) {
516 usbd_free_xfer(sc->amrr_xfer);
517 sc->amrr_xfer = NULL;
518 }
519
520 if (sc->sc_rx_pipeh != NULL) {
521 usbd_abort_pipe(sc->sc_rx_pipeh);
522 usbd_close_pipe(sc->sc_rx_pipeh);
523 }
524
525 if (sc->sc_tx_pipeh != NULL) {
526 usbd_abort_pipe(sc->sc_tx_pipeh);
527 usbd_close_pipe(sc->sc_tx_pipeh);
528 }
529
530 bpf_detach(ifp);
531 ieee80211_ifdetach(ic); /* free all nodes */
532 if_detach(ifp);
533
534 splx(s);
535
536 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
537
538 return 0;
539 }
540
541 static int
542 rum_alloc_tx_list(struct rum_softc *sc)
543 {
544 struct rum_tx_data *data;
545 int i, error;
546
547 sc->tx_cur = sc->tx_queued = 0;
548
549 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
550 data = &sc->tx_data[i];
551
552 data->sc = sc;
553
554 data->xfer = usbd_alloc_xfer(sc->sc_udev);
555 if (data->xfer == NULL) {
556 printf("%s: could not allocate tx xfer\n",
557 device_xname(sc->sc_dev));
558 error = ENOMEM;
559 goto fail;
560 }
561
562 data->buf = usbd_alloc_buffer(data->xfer,
563 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
564 if (data->buf == NULL) {
565 printf("%s: could not allocate tx buffer\n",
566 device_xname(sc->sc_dev));
567 error = ENOMEM;
568 goto fail;
569 }
570
571 /* clean Tx descriptor */
572 memset(data->buf, 0, RT2573_TX_DESC_SIZE);
573 }
574
575 return 0;
576
577 fail: rum_free_tx_list(sc);
578 return error;
579 }
580
581 static void
582 rum_free_tx_list(struct rum_softc *sc)
583 {
584 struct rum_tx_data *data;
585 int i;
586
587 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
588 data = &sc->tx_data[i];
589
590 if (data->xfer != NULL) {
591 usbd_free_xfer(data->xfer);
592 data->xfer = NULL;
593 }
594
595 if (data->ni != NULL) {
596 ieee80211_free_node(data->ni);
597 data->ni = NULL;
598 }
599 }
600 }
601
602 static int
603 rum_alloc_rx_list(struct rum_softc *sc)
604 {
605 struct rum_rx_data *data;
606 int i, error;
607
608 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
609 data = &sc->rx_data[i];
610
611 data->sc = sc;
612
613 data->xfer = usbd_alloc_xfer(sc->sc_udev);
614 if (data->xfer == NULL) {
615 printf("%s: could not allocate rx xfer\n",
616 device_xname(sc->sc_dev));
617 error = ENOMEM;
618 goto fail;
619 }
620
621 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
622 printf("%s: could not allocate rx buffer\n",
623 device_xname(sc->sc_dev));
624 error = ENOMEM;
625 goto fail;
626 }
627
628 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
629 if (data->m == NULL) {
630 printf("%s: could not allocate rx mbuf\n",
631 device_xname(sc->sc_dev));
632 error = ENOMEM;
633 goto fail;
634 }
635
636 MCLGET(data->m, M_DONTWAIT);
637 if (!(data->m->m_flags & M_EXT)) {
638 printf("%s: could not allocate rx mbuf cluster\n",
639 device_xname(sc->sc_dev));
640 error = ENOMEM;
641 goto fail;
642 }
643
644 data->buf = mtod(data->m, uint8_t *);
645 }
646
647 return 0;
648
649 fail: rum_free_rx_list(sc);
650 return error;
651 }
652
653 static void
654 rum_free_rx_list(struct rum_softc *sc)
655 {
656 struct rum_rx_data *data;
657 int i;
658
659 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
660 data = &sc->rx_data[i];
661
662 if (data->xfer != NULL) {
663 usbd_free_xfer(data->xfer);
664 data->xfer = NULL;
665 }
666
667 if (data->m != NULL) {
668 m_freem(data->m);
669 data->m = NULL;
670 }
671 }
672 }
673
674 static int
675 rum_media_change(struct ifnet *ifp)
676 {
677 int error;
678
679 error = ieee80211_media_change(ifp);
680 if (error != ENETRESET)
681 return error;
682
683 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
684 rum_init(ifp);
685
686 return 0;
687 }
688
689 /*
690 * This function is called periodically (every 200ms) during scanning to
691 * switch from one channel to another.
692 */
693 static void
694 rum_next_scan(void *arg)
695 {
696 struct rum_softc *sc = arg;
697 struct ieee80211com *ic = &sc->sc_ic;
698 int s;
699
700 s = splnet();
701 if (ic->ic_state == IEEE80211_S_SCAN)
702 ieee80211_next_scan(ic);
703 splx(s);
704 }
705
706 static void
707 rum_task(void *arg)
708 {
709 struct rum_softc *sc = arg;
710 struct ieee80211com *ic = &sc->sc_ic;
711 enum ieee80211_state ostate;
712 struct ieee80211_node *ni;
713 uint32_t tmp;
714
715 ostate = ic->ic_state;
716
717 switch (sc->sc_state) {
718 case IEEE80211_S_INIT:
719 if (ostate == IEEE80211_S_RUN) {
720 /* abort TSF synchronization */
721 tmp = rum_read(sc, RT2573_TXRX_CSR9);
722 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
723 }
724 break;
725
726 case IEEE80211_S_SCAN:
727 rum_set_chan(sc, ic->ic_curchan);
728 callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
729 break;
730
731 case IEEE80211_S_AUTH:
732 rum_set_chan(sc, ic->ic_curchan);
733 break;
734
735 case IEEE80211_S_ASSOC:
736 rum_set_chan(sc, ic->ic_curchan);
737 break;
738
739 case IEEE80211_S_RUN:
740 rum_set_chan(sc, ic->ic_curchan);
741
742 ni = ic->ic_bss;
743
744 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
745 rum_update_slot(sc);
746 rum_enable_mrr(sc);
747 rum_set_txpreamble(sc);
748 rum_set_basicrates(sc);
749 rum_set_bssid(sc, ni->ni_bssid);
750 }
751
752 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
753 ic->ic_opmode == IEEE80211_M_IBSS)
754 rum_prepare_beacon(sc);
755
756 if (ic->ic_opmode != IEEE80211_M_MONITOR)
757 rum_enable_tsf_sync(sc);
758
759 if (ic->ic_opmode == IEEE80211_M_STA) {
760 /* fake a join to init the tx rate */
761 rum_newassoc(ic->ic_bss, 1);
762
763 /* enable automatic rate adaptation in STA mode */
764 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
765 rum_amrr_start(sc, ni);
766 }
767
768 break;
769 }
770
771 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
772 }
773
774 static int
775 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
776 {
777 struct rum_softc *sc = ic->ic_ifp->if_softc;
778
779 usb_rem_task(sc->sc_udev, &sc->sc_task);
780 callout_stop(&sc->sc_scan_ch);
781 callout_stop(&sc->sc_amrr_ch);
782
783 /* do it in a process context */
784 sc->sc_state = nstate;
785 sc->sc_arg = arg;
786 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
787
788 return 0;
789 }
790
791 /* quickly determine if a given rate is CCK or OFDM */
792 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
793
794 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
795 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
796
797 static void
798 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
799 {
800 struct rum_tx_data *data = priv;
801 struct rum_softc *sc = data->sc;
802 struct ifnet *ifp = &sc->sc_if;
803 int s;
804
805 if (status != USBD_NORMAL_COMPLETION) {
806 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
807 return;
808
809 printf("%s: could not transmit buffer: %s\n",
810 device_xname(sc->sc_dev), usbd_errstr(status));
811
812 if (status == USBD_STALLED)
813 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
814
815 ifp->if_oerrors++;
816 return;
817 }
818
819 s = splnet();
820
821 ieee80211_free_node(data->ni);
822 data->ni = NULL;
823
824 sc->tx_queued--;
825 ifp->if_opackets++;
826
827 DPRINTFN(10, ("tx done\n"));
828
829 sc->sc_tx_timer = 0;
830 ifp->if_flags &= ~IFF_OACTIVE;
831 rum_start(ifp);
832
833 splx(s);
834 }
835
836 static void
837 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
838 {
839 struct rum_rx_data *data = priv;
840 struct rum_softc *sc = data->sc;
841 struct ieee80211com *ic = &sc->sc_ic;
842 struct ifnet *ifp = &sc->sc_if;
843 struct rum_rx_desc *desc;
844 struct ieee80211_frame *wh;
845 struct ieee80211_node *ni;
846 struct mbuf *mnew, *m;
847 int s, len;
848
849 if (status != USBD_NORMAL_COMPLETION) {
850 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
851 return;
852
853 if (status == USBD_STALLED)
854 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
855 goto skip;
856 }
857
858 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
859
860 if (len < (int)(RT2573_RX_DESC_SIZE +
861 sizeof(struct ieee80211_frame_min))) {
862 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
863 len));
864 ifp->if_ierrors++;
865 goto skip;
866 }
867
868 desc = (struct rum_rx_desc *)data->buf;
869
870 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
871 /*
872 * This should not happen since we did not request to receive
873 * those frames when we filled RT2573_TXRX_CSR0.
874 */
875 DPRINTFN(5, ("CRC error\n"));
876 ifp->if_ierrors++;
877 goto skip;
878 }
879
880 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
881 if (mnew == NULL) {
882 printf("%s: could not allocate rx mbuf\n",
883 device_xname(sc->sc_dev));
884 ifp->if_ierrors++;
885 goto skip;
886 }
887
888 MCLGET(mnew, M_DONTWAIT);
889 if (!(mnew->m_flags & M_EXT)) {
890 printf("%s: could not allocate rx mbuf cluster\n",
891 device_xname(sc->sc_dev));
892 m_freem(mnew);
893 ifp->if_ierrors++;
894 goto skip;
895 }
896
897 m = data->m;
898 data->m = mnew;
899 data->buf = mtod(data->m, uint8_t *);
900
901 /* finalize mbuf */
902 m->m_pkthdr.rcvif = ifp;
903 m->m_data = (void *)(desc + 1);
904 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
905
906 s = splnet();
907
908 if (sc->sc_drvbpf != NULL) {
909 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
910
911 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
912 tap->wr_rate = rum_rxrate(desc);
913 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
914 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
915 tap->wr_antenna = sc->rx_ant;
916 tap->wr_antsignal = desc->rssi;
917
918 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
919 }
920
921 wh = mtod(m, struct ieee80211_frame *);
922 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
923
924 /* send the frame to the 802.11 layer */
925 ieee80211_input(ic, m, ni, desc->rssi, 0);
926
927 /* node is no longer needed */
928 ieee80211_free_node(ni);
929
930 splx(s);
931
932 DPRINTFN(15, ("rx done\n"));
933
934 skip: /* setup a new transfer */
935 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
936 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
937 usbd_transfer(xfer);
938 }
939
940 /*
941 * This function is only used by the Rx radiotap code. It returns the rate at
942 * which a given frame was received.
943 */
944 static uint8_t
945 rum_rxrate(const struct rum_rx_desc *desc)
946 {
947 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
948 /* reverse function of rum_plcp_signal */
949 switch (desc->rate) {
950 case 0xb: return 12;
951 case 0xf: return 18;
952 case 0xa: return 24;
953 case 0xe: return 36;
954 case 0x9: return 48;
955 case 0xd: return 72;
956 case 0x8: return 96;
957 case 0xc: return 108;
958 }
959 } else {
960 if (desc->rate == 10)
961 return 2;
962 if (desc->rate == 20)
963 return 4;
964 if (desc->rate == 55)
965 return 11;
966 if (desc->rate == 110)
967 return 22;
968 }
969 return 2; /* should not get there */
970 }
971
972 /*
973 * Return the expected ack rate for a frame transmitted at rate `rate'.
974 * XXX: this should depend on the destination node basic rate set.
975 */
976 static int
977 rum_ack_rate(struct ieee80211com *ic, int rate)
978 {
979 switch (rate) {
980 /* CCK rates */
981 case 2:
982 return 2;
983 case 4:
984 case 11:
985 case 22:
986 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
987
988 /* OFDM rates */
989 case 12:
990 case 18:
991 return 12;
992 case 24:
993 case 36:
994 return 24;
995 case 48:
996 case 72:
997 case 96:
998 case 108:
999 return 48;
1000 }
1001
1002 /* default to 1Mbps */
1003 return 2;
1004 }
1005
1006 /*
1007 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1008 * The function automatically determines the operating mode depending on the
1009 * given rate. `flags' indicates whether short preamble is in use or not.
1010 */
1011 static uint16_t
1012 rum_txtime(int len, int rate, uint32_t flags)
1013 {
1014 uint16_t txtime;
1015
1016 if (RUM_RATE_IS_OFDM(rate)) {
1017 /* IEEE Std 802.11a-1999, pp. 37 */
1018 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1019 txtime = 16 + 4 + 4 * txtime + 6;
1020 } else {
1021 /* IEEE Std 802.11b-1999, pp. 28 */
1022 txtime = (16 * len + rate - 1) / rate;
1023 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1024 txtime += 72 + 24;
1025 else
1026 txtime += 144 + 48;
1027 }
1028 return txtime;
1029 }
1030
1031 static uint8_t
1032 rum_plcp_signal(int rate)
1033 {
1034 switch (rate) {
1035 /* CCK rates (returned values are device-dependent) */
1036 case 2: return 0x0;
1037 case 4: return 0x1;
1038 case 11: return 0x2;
1039 case 22: return 0x3;
1040
1041 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1042 case 12: return 0xb;
1043 case 18: return 0xf;
1044 case 24: return 0xa;
1045 case 36: return 0xe;
1046 case 48: return 0x9;
1047 case 72: return 0xd;
1048 case 96: return 0x8;
1049 case 108: return 0xc;
1050
1051 /* unsupported rates (should not get there) */
1052 default: return 0xff;
1053 }
1054 }
1055
1056 static void
1057 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1058 uint32_t flags, uint16_t xflags, int len, int rate)
1059 {
1060 struct ieee80211com *ic = &sc->sc_ic;
1061 uint16_t plcp_length;
1062 int remainder;
1063
1064 desc->flags = htole32(flags);
1065 desc->flags |= htole32(RT2573_TX_VALID);
1066 desc->flags |= htole32(len << 16);
1067
1068 desc->xflags = htole16(xflags);
1069
1070 desc->wme = htole16(
1071 RT2573_QID(0) |
1072 RT2573_AIFSN(2) |
1073 RT2573_LOGCWMIN(4) |
1074 RT2573_LOGCWMAX(10));
1075
1076 /* setup PLCP fields */
1077 desc->plcp_signal = rum_plcp_signal(rate);
1078 desc->plcp_service = 4;
1079
1080 len += IEEE80211_CRC_LEN;
1081 if (RUM_RATE_IS_OFDM(rate)) {
1082 desc->flags |= htole32(RT2573_TX_OFDM);
1083
1084 plcp_length = len & 0xfff;
1085 desc->plcp_length_hi = plcp_length >> 6;
1086 desc->plcp_length_lo = plcp_length & 0x3f;
1087 } else {
1088 plcp_length = (16 * len + rate - 1) / rate;
1089 if (rate == 22) {
1090 remainder = (16 * len) % 22;
1091 if (remainder != 0 && remainder < 7)
1092 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1093 }
1094 desc->plcp_length_hi = plcp_length >> 8;
1095 desc->plcp_length_lo = plcp_length & 0xff;
1096
1097 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1098 desc->plcp_signal |= 0x08;
1099 }
1100 }
1101
1102 #define RUM_TX_TIMEOUT 5000
1103
1104 static int
1105 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1106 {
1107 struct ieee80211com *ic = &sc->sc_ic;
1108 struct rum_tx_desc *desc;
1109 struct rum_tx_data *data;
1110 struct ieee80211_frame *wh;
1111 struct ieee80211_key *k;
1112 uint32_t flags = 0;
1113 uint16_t dur;
1114 usbd_status error;
1115 int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1116
1117 wh = mtod(m0, struct ieee80211_frame *);
1118
1119 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1120 k = ieee80211_crypto_encap(ic, ni, m0);
1121 if (k == NULL) {
1122 m_freem(m0);
1123 return ENOBUFS;
1124 }
1125
1126 /* packet header may have moved, reset our local pointer */
1127 wh = mtod(m0, struct ieee80211_frame *);
1128 }
1129
1130 /* compute actual packet length (including CRC and crypto overhead) */
1131 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1132
1133 /* pickup a rate */
1134 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1135 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1136 IEEE80211_FC0_TYPE_MGT)) {
1137 /* mgmt/multicast frames are sent at the lowest avail. rate */
1138 rate = ni->ni_rates.rs_rates[0];
1139 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1140 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1141 } else
1142 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1143 if (rate == 0)
1144 rate = 2; /* XXX should not happen */
1145 rate &= IEEE80211_RATE_VAL;
1146
1147 /* check if RTS/CTS or CTS-to-self protection must be used */
1148 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1149 /* multicast frames are not sent at OFDM rates in 802.11b/g */
1150 if (pktlen > ic->ic_rtsthreshold) {
1151 needrts = 1; /* RTS/CTS based on frame length */
1152 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1153 RUM_RATE_IS_OFDM(rate)) {
1154 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1155 needcts = 1; /* CTS-to-self */
1156 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1157 needrts = 1; /* RTS/CTS */
1158 }
1159 }
1160 if (needrts || needcts) {
1161 struct mbuf *mprot;
1162 int protrate, ackrate;
1163
1164 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1165 ackrate = rum_ack_rate(ic, rate);
1166
1167 dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1168 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1169 2 * sc->sifs;
1170 if (needrts) {
1171 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1172 protrate), ic->ic_flags) + sc->sifs;
1173 mprot = ieee80211_get_rts(ic, wh, dur);
1174 } else {
1175 mprot = ieee80211_get_cts_to_self(ic, dur);
1176 }
1177 if (mprot == NULL) {
1178 aprint_error_dev(sc->sc_dev,
1179 "couldn't allocate protection frame\n");
1180 m_freem(m0);
1181 return ENOBUFS;
1182 }
1183
1184 data = &sc->tx_data[sc->tx_cur];
1185 desc = (struct rum_tx_desc *)data->buf;
1186
1187 /* avoid multiple free() of the same node for each fragment */
1188 data->ni = ieee80211_ref_node(ni);
1189
1190 m_copydata(mprot, 0, mprot->m_pkthdr.len,
1191 data->buf + RT2573_TX_DESC_SIZE);
1192 rum_setup_tx_desc(sc, desc,
1193 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1194 0, mprot->m_pkthdr.len, protrate);
1195
1196 /* no roundup necessary here */
1197 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1198
1199 /* XXX may want to pass the protection frame to BPF */
1200
1201 /* mbuf is no longer needed */
1202 m_freem(mprot);
1203
1204 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1205 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1206 RUM_TX_TIMEOUT, rum_txeof);
1207 error = usbd_transfer(data->xfer);
1208 if (error != USBD_NORMAL_COMPLETION &&
1209 error != USBD_IN_PROGRESS) {
1210 m_freem(m0);
1211 return error;
1212 }
1213
1214 sc->tx_queued++;
1215 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1216
1217 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1218 }
1219
1220 data = &sc->tx_data[sc->tx_cur];
1221 desc = (struct rum_tx_desc *)data->buf;
1222
1223 data->ni = ni;
1224
1225 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1226 flags |= RT2573_TX_NEED_ACK;
1227
1228 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1229 ic->ic_flags) + sc->sifs;
1230 *(uint16_t *)wh->i_dur = htole16(dur);
1231
1232 /* tell hardware to set timestamp in probe responses */
1233 if ((wh->i_fc[0] &
1234 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1235 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1236 flags |= RT2573_TX_TIMESTAMP;
1237 }
1238
1239 if (sc->sc_drvbpf != NULL) {
1240 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1241
1242 tap->wt_flags = 0;
1243 tap->wt_rate = rate;
1244 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1245 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1246 tap->wt_antenna = sc->tx_ant;
1247
1248 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1249 }
1250
1251 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1252 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1253
1254 /* align end on a 4-bytes boundary */
1255 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1256
1257 /*
1258 * No space left in the last URB to store the extra 4 bytes, force
1259 * sending of another URB.
1260 */
1261 if ((xferlen % 64) == 0)
1262 xferlen += 4;
1263
1264 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1265 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1266 rate, xferlen));
1267
1268 /* mbuf is no longer needed */
1269 m_freem(m0);
1270
1271 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1272 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1273 error = usbd_transfer(data->xfer);
1274 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1275 return error;
1276
1277 sc->tx_queued++;
1278 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1279
1280 return 0;
1281 }
1282
1283 static void
1284 rum_start(struct ifnet *ifp)
1285 {
1286 struct rum_softc *sc = ifp->if_softc;
1287 struct ieee80211com *ic = &sc->sc_ic;
1288 struct ether_header *eh;
1289 struct ieee80211_node *ni;
1290 struct mbuf *m0;
1291
1292 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1293 return;
1294
1295 for (;;) {
1296 IF_POLL(&ic->ic_mgtq, m0);
1297 if (m0 != NULL) {
1298 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1299 ifp->if_flags |= IFF_OACTIVE;
1300 break;
1301 }
1302 IF_DEQUEUE(&ic->ic_mgtq, m0);
1303
1304 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1305 m0->m_pkthdr.rcvif = NULL;
1306 bpf_mtap3(ic->ic_rawbpf, m0);
1307 if (rum_tx_data(sc, m0, ni) != 0)
1308 break;
1309
1310 } else {
1311 if (ic->ic_state != IEEE80211_S_RUN)
1312 break;
1313 IFQ_POLL(&ifp->if_snd, m0);
1314 if (m0 == NULL)
1315 break;
1316 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1317 ifp->if_flags |= IFF_OACTIVE;
1318 break;
1319 }
1320 IFQ_DEQUEUE(&ifp->if_snd, m0);
1321 if (m0->m_len < (int)sizeof(struct ether_header) &&
1322 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1323 continue;
1324
1325 eh = mtod(m0, struct ether_header *);
1326 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1327 if (ni == NULL) {
1328 m_freem(m0);
1329 continue;
1330 }
1331 bpf_mtap(ifp, m0);
1332 m0 = ieee80211_encap(ic, m0, ni);
1333 if (m0 == NULL) {
1334 ieee80211_free_node(ni);
1335 continue;
1336 }
1337 bpf_mtap3(ic->ic_rawbpf, m0);
1338 if (rum_tx_data(sc, m0, ni) != 0) {
1339 ieee80211_free_node(ni);
1340 ifp->if_oerrors++;
1341 break;
1342 }
1343 }
1344
1345 sc->sc_tx_timer = 5;
1346 ifp->if_timer = 1;
1347 }
1348 }
1349
1350 static void
1351 rum_watchdog(struct ifnet *ifp)
1352 {
1353 struct rum_softc *sc = ifp->if_softc;
1354 struct ieee80211com *ic = &sc->sc_ic;
1355
1356 ifp->if_timer = 0;
1357
1358 if (sc->sc_tx_timer > 0) {
1359 if (--sc->sc_tx_timer == 0) {
1360 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1361 /*rum_init(ifp); XXX needs a process context! */
1362 ifp->if_oerrors++;
1363 return;
1364 }
1365 ifp->if_timer = 1;
1366 }
1367
1368 ieee80211_watchdog(ic);
1369 }
1370
1371 static int
1372 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1373 {
1374 #define IS_RUNNING(ifp) \
1375 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1376
1377 struct rum_softc *sc = ifp->if_softc;
1378 struct ieee80211com *ic = &sc->sc_ic;
1379 int s, error = 0;
1380
1381 s = splnet();
1382
1383 switch (cmd) {
1384 case SIOCSIFFLAGS:
1385 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1386 break;
1387 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1388 case IFF_UP|IFF_RUNNING:
1389 rum_update_promisc(sc);
1390 break;
1391 case IFF_UP:
1392 rum_init(ifp);
1393 break;
1394 case IFF_RUNNING:
1395 rum_stop(ifp, 1);
1396 break;
1397 case 0:
1398 break;
1399 }
1400 break;
1401
1402 case SIOCADDMULTI:
1403 case SIOCDELMULTI:
1404 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1405 error = 0;
1406 }
1407 break;
1408
1409 default:
1410 error = ieee80211_ioctl(ic, cmd, data);
1411 }
1412
1413 if (error == ENETRESET) {
1414 if (IS_RUNNING(ifp) &&
1415 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1416 rum_init(ifp);
1417 error = 0;
1418 }
1419
1420 splx(s);
1421
1422 return error;
1423 #undef IS_RUNNING
1424 }
1425
1426 static void
1427 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1428 {
1429 usb_device_request_t req;
1430 usbd_status error;
1431
1432 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1433 req.bRequest = RT2573_READ_EEPROM;
1434 USETW(req.wValue, 0);
1435 USETW(req.wIndex, addr);
1436 USETW(req.wLength, len);
1437
1438 error = usbd_do_request(sc->sc_udev, &req, buf);
1439 if (error != 0) {
1440 printf("%s: could not read EEPROM: %s\n",
1441 device_xname(sc->sc_dev), usbd_errstr(error));
1442 }
1443 }
1444
1445 static uint32_t
1446 rum_read(struct rum_softc *sc, uint16_t reg)
1447 {
1448 uint32_t val;
1449
1450 rum_read_multi(sc, reg, &val, sizeof val);
1451
1452 return le32toh(val);
1453 }
1454
1455 static void
1456 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1457 {
1458 usb_device_request_t req;
1459 usbd_status error;
1460
1461 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1462 req.bRequest = RT2573_READ_MULTI_MAC;
1463 USETW(req.wValue, 0);
1464 USETW(req.wIndex, reg);
1465 USETW(req.wLength, len);
1466
1467 error = usbd_do_request(sc->sc_udev, &req, buf);
1468 if (error != 0) {
1469 printf("%s: could not multi read MAC register: %s\n",
1470 device_xname(sc->sc_dev), usbd_errstr(error));
1471 }
1472 }
1473
1474 static void
1475 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1476 {
1477 uint32_t tmp = htole32(val);
1478
1479 rum_write_multi(sc, reg, &tmp, sizeof tmp);
1480 }
1481
1482 static void
1483 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1484 {
1485 usb_device_request_t req;
1486 usbd_status error;
1487
1488 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1489 req.bRequest = RT2573_WRITE_MULTI_MAC;
1490 USETW(req.wValue, 0);
1491 USETW(req.wIndex, reg);
1492 USETW(req.wLength, len);
1493
1494 error = usbd_do_request(sc->sc_udev, &req, buf);
1495 if (error != 0) {
1496 printf("%s: could not multi write MAC register: %s\n",
1497 device_xname(sc->sc_dev), usbd_errstr(error));
1498 }
1499 }
1500
1501 static void
1502 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1503 {
1504 uint32_t tmp;
1505 int ntries;
1506
1507 for (ntries = 0; ntries < 5; ntries++) {
1508 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1509 break;
1510 }
1511 if (ntries == 5) {
1512 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1513 return;
1514 }
1515
1516 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1517 rum_write(sc, RT2573_PHY_CSR3, tmp);
1518 }
1519
1520 static uint8_t
1521 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1522 {
1523 uint32_t val;
1524 int ntries;
1525
1526 for (ntries = 0; ntries < 5; ntries++) {
1527 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1528 break;
1529 }
1530 if (ntries == 5) {
1531 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1532 return 0;
1533 }
1534
1535 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1536 rum_write(sc, RT2573_PHY_CSR3, val);
1537
1538 for (ntries = 0; ntries < 100; ntries++) {
1539 val = rum_read(sc, RT2573_PHY_CSR3);
1540 if (!(val & RT2573_BBP_BUSY))
1541 return val & 0xff;
1542 DELAY(1);
1543 }
1544
1545 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1546 return 0;
1547 }
1548
1549 static void
1550 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1551 {
1552 uint32_t tmp;
1553 int ntries;
1554
1555 for (ntries = 0; ntries < 5; ntries++) {
1556 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1557 break;
1558 }
1559 if (ntries == 5) {
1560 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1561 return;
1562 }
1563
1564 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1565 (reg & 3);
1566 rum_write(sc, RT2573_PHY_CSR4, tmp);
1567
1568 /* remember last written value in sc */
1569 sc->rf_regs[reg] = val;
1570
1571 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1572 }
1573
1574 static void
1575 rum_select_antenna(struct rum_softc *sc)
1576 {
1577 uint8_t bbp4, bbp77;
1578 uint32_t tmp;
1579
1580 bbp4 = rum_bbp_read(sc, 4);
1581 bbp77 = rum_bbp_read(sc, 77);
1582
1583 /* TBD */
1584
1585 /* make sure Rx is disabled before switching antenna */
1586 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1587 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1588
1589 rum_bbp_write(sc, 4, bbp4);
1590 rum_bbp_write(sc, 77, bbp77);
1591
1592 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1593 }
1594
1595 /*
1596 * Enable multi-rate retries for frames sent at OFDM rates.
1597 * In 802.11b/g mode, allow fallback to CCK rates.
1598 */
1599 static void
1600 rum_enable_mrr(struct rum_softc *sc)
1601 {
1602 struct ieee80211com *ic = &sc->sc_ic;
1603 uint32_t tmp;
1604
1605 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1606
1607 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1608 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1609 tmp |= RT2573_MRR_CCK_FALLBACK;
1610 tmp |= RT2573_MRR_ENABLED;
1611
1612 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1613 }
1614
1615 static void
1616 rum_set_txpreamble(struct rum_softc *sc)
1617 {
1618 uint32_t tmp;
1619
1620 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1621
1622 tmp &= ~RT2573_SHORT_PREAMBLE;
1623 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1624 tmp |= RT2573_SHORT_PREAMBLE;
1625
1626 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1627 }
1628
1629 static void
1630 rum_set_basicrates(struct rum_softc *sc)
1631 {
1632 struct ieee80211com *ic = &sc->sc_ic;
1633
1634 /* update basic rate set */
1635 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1636 /* 11b basic rates: 1, 2Mbps */
1637 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1638 } else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1639 /* 11a basic rates: 6, 12, 24Mbps */
1640 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1641 } else {
1642 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1643 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1644 }
1645 }
1646
1647 /*
1648 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1649 * driver.
1650 */
1651 static void
1652 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1653 {
1654 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1655 uint32_t tmp;
1656
1657 /* update all BBP registers that depend on the band */
1658 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1659 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1660 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1661 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1662 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1663 }
1664 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1665 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1666 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1667 }
1668
1669 sc->bbp17 = bbp17;
1670 rum_bbp_write(sc, 17, bbp17);
1671 rum_bbp_write(sc, 96, bbp96);
1672 rum_bbp_write(sc, 104, bbp104);
1673
1674 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1675 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1676 rum_bbp_write(sc, 75, 0x80);
1677 rum_bbp_write(sc, 86, 0x80);
1678 rum_bbp_write(sc, 88, 0x80);
1679 }
1680
1681 rum_bbp_write(sc, 35, bbp35);
1682 rum_bbp_write(sc, 97, bbp97);
1683 rum_bbp_write(sc, 98, bbp98);
1684
1685 tmp = rum_read(sc, RT2573_PHY_CSR0);
1686 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1687 if (IEEE80211_IS_CHAN_2GHZ(c))
1688 tmp |= RT2573_PA_PE_2GHZ;
1689 else
1690 tmp |= RT2573_PA_PE_5GHZ;
1691 rum_write(sc, RT2573_PHY_CSR0, tmp);
1692
1693 /* 802.11a uses a 16 microseconds short interframe space */
1694 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1695 }
1696
1697 static void
1698 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1699 {
1700 struct ieee80211com *ic = &sc->sc_ic;
1701 const struct rfprog *rfprog;
1702 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1703 int8_t power;
1704 u_int i, chan;
1705
1706 chan = ieee80211_chan2ieee(ic, c);
1707 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1708 return;
1709
1710 /* select the appropriate RF settings based on what EEPROM says */
1711 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1712 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1713
1714 /* find the settings for this channel (we know it exists) */
1715 for (i = 0; rfprog[i].chan != chan; i++);
1716
1717 power = sc->txpow[i];
1718 if (power < 0) {
1719 bbp94 += power;
1720 power = 0;
1721 } else if (power > 31) {
1722 bbp94 += power - 31;
1723 power = 31;
1724 }
1725
1726 /*
1727 * If we are switching from the 2GHz band to the 5GHz band or
1728 * vice-versa, BBP registers need to be reprogrammed.
1729 */
1730 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1731 rum_select_band(sc, c);
1732 rum_select_antenna(sc);
1733 }
1734 ic->ic_curchan = c;
1735
1736 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1737 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1738 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1739 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1740
1741 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1742 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1743 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1744 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1745
1746 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1747 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1748 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1749 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1750
1751 DELAY(10);
1752
1753 /* enable smart mode for MIMO-capable RFs */
1754 bbp3 = rum_bbp_read(sc, 3);
1755
1756 bbp3 &= ~RT2573_SMART_MODE;
1757 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1758 bbp3 |= RT2573_SMART_MODE;
1759
1760 rum_bbp_write(sc, 3, bbp3);
1761
1762 if (bbp94 != RT2573_BBPR94_DEFAULT)
1763 rum_bbp_write(sc, 94, bbp94);
1764 }
1765
1766 /*
1767 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1768 * and HostAP operating modes.
1769 */
1770 static void
1771 rum_enable_tsf_sync(struct rum_softc *sc)
1772 {
1773 struct ieee80211com *ic = &sc->sc_ic;
1774 uint32_t tmp;
1775
1776 if (ic->ic_opmode != IEEE80211_M_STA) {
1777 /*
1778 * Change default 16ms TBTT adjustment to 8ms.
1779 * Must be done before enabling beacon generation.
1780 */
1781 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1782 }
1783
1784 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1785
1786 /* set beacon interval (in 1/16ms unit) */
1787 tmp |= ic->ic_bss->ni_intval * 16;
1788
1789 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1790 if (ic->ic_opmode == IEEE80211_M_STA)
1791 tmp |= RT2573_TSF_MODE(1);
1792 else
1793 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1794
1795 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1796 }
1797
1798 static void
1799 rum_update_slot(struct rum_softc *sc)
1800 {
1801 struct ieee80211com *ic = &sc->sc_ic;
1802 uint8_t slottime;
1803 uint32_t tmp;
1804
1805 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1806
1807 tmp = rum_read(sc, RT2573_MAC_CSR9);
1808 tmp = (tmp & ~0xff) | slottime;
1809 rum_write(sc, RT2573_MAC_CSR9, tmp);
1810
1811 DPRINTF(("setting slot time to %uus\n", slottime));
1812 }
1813
1814 static void
1815 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1816 {
1817 uint32_t tmp;
1818
1819 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1820 rum_write(sc, RT2573_MAC_CSR4, tmp);
1821
1822 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1823 rum_write(sc, RT2573_MAC_CSR5, tmp);
1824 }
1825
1826 static void
1827 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1828 {
1829 uint32_t tmp;
1830
1831 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1832 rum_write(sc, RT2573_MAC_CSR2, tmp);
1833
1834 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1835 rum_write(sc, RT2573_MAC_CSR3, tmp);
1836 }
1837
1838 static void
1839 rum_update_promisc(struct rum_softc *sc)
1840 {
1841 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1842 uint32_t tmp;
1843
1844 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1845
1846 tmp &= ~RT2573_DROP_NOT_TO_ME;
1847 if (!(ifp->if_flags & IFF_PROMISC))
1848 tmp |= RT2573_DROP_NOT_TO_ME;
1849
1850 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1851
1852 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1853 "entering" : "leaving"));
1854 }
1855
1856 static const char *
1857 rum_get_rf(int rev)
1858 {
1859 switch (rev) {
1860 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1861 case RT2573_RF_2528: return "RT2528";
1862 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1863 case RT2573_RF_5226: return "RT5226";
1864 default: return "unknown";
1865 }
1866 }
1867
1868 static void
1869 rum_read_eeprom(struct rum_softc *sc)
1870 {
1871 struct ieee80211com *ic = &sc->sc_ic;
1872 uint16_t val;
1873 #ifdef RUM_DEBUG
1874 int i;
1875 #endif
1876
1877 /* read MAC/BBP type */
1878 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1879 sc->macbbp_rev = le16toh(val);
1880
1881 /* read MAC address */
1882 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1883
1884 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1885 val = le16toh(val);
1886 sc->rf_rev = (val >> 11) & 0x1f;
1887 sc->hw_radio = (val >> 10) & 0x1;
1888 sc->rx_ant = (val >> 4) & 0x3;
1889 sc->tx_ant = (val >> 2) & 0x3;
1890 sc->nb_ant = val & 0x3;
1891
1892 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1893
1894 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1895 val = le16toh(val);
1896 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1897 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1898
1899 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1900 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1901
1902 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1903 val = le16toh(val);
1904 if ((val & 0xff) != 0xff)
1905 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1906
1907 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1908 val = le16toh(val);
1909 if ((val & 0xff) != 0xff)
1910 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1911
1912 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1913 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1914
1915 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1916 val = le16toh(val);
1917 if ((val & 0xff) != 0xff)
1918 sc->rffreq = val & 0xff;
1919
1920 DPRINTF(("RF freq=%d\n", sc->rffreq));
1921
1922 /* read Tx power for all a/b/g channels */
1923 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1924 /* XXX default Tx power for 802.11a channels */
1925 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1926 #ifdef RUM_DEBUG
1927 for (i = 0; i < 14; i++)
1928 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1929 #endif
1930
1931 /* read default values for BBP registers */
1932 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1933 #ifdef RUM_DEBUG
1934 for (i = 0; i < 14; i++) {
1935 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1936 continue;
1937 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1938 sc->bbp_prom[i].val));
1939 }
1940 #endif
1941 }
1942
1943 static int
1944 rum_bbp_init(struct rum_softc *sc)
1945 {
1946 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1947 unsigned int i, ntries;
1948 uint8_t val;
1949
1950 /* wait for BBP to be ready */
1951 for (ntries = 0; ntries < 100; ntries++) {
1952 val = rum_bbp_read(sc, 0);
1953 if (val != 0 && val != 0xff)
1954 break;
1955 DELAY(1000);
1956 }
1957 if (ntries == 100) {
1958 printf("%s: timeout waiting for BBP\n",
1959 device_xname(sc->sc_dev));
1960 return EIO;
1961 }
1962
1963 /* initialize BBP registers to default values */
1964 for (i = 0; i < N(rum_def_bbp); i++)
1965 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1966
1967 /* write vendor-specific BBP values (from EEPROM) */
1968 for (i = 0; i < 16; i++) {
1969 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1970 continue;
1971 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1972 }
1973
1974 return 0;
1975 #undef N
1976 }
1977
1978 static int
1979 rum_init(struct ifnet *ifp)
1980 {
1981 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1982 struct rum_softc *sc = ifp->if_softc;
1983 struct ieee80211com *ic = &sc->sc_ic;
1984 struct rum_rx_data *data;
1985 uint32_t tmp;
1986 usbd_status error = 0;
1987 unsigned int i, ntries;
1988
1989 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1990 if (rum_attachhook(sc))
1991 goto fail;
1992 }
1993
1994 rum_stop(ifp, 0);
1995
1996 /* initialize MAC registers to default values */
1997 for (i = 0; i < N(rum_def_mac); i++)
1998 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1999
2000 /* set host ready */
2001 rum_write(sc, RT2573_MAC_CSR1, 3);
2002 rum_write(sc, RT2573_MAC_CSR1, 0);
2003
2004 /* wait for BBP/RF to wakeup */
2005 for (ntries = 0; ntries < 1000; ntries++) {
2006 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
2007 break;
2008 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
2009 DELAY(1000);
2010 }
2011 if (ntries == 1000) {
2012 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2013 device_xname(sc->sc_dev));
2014 goto fail;
2015 }
2016
2017 if ((error = rum_bbp_init(sc)) != 0)
2018 goto fail;
2019
2020 /* select default channel */
2021 rum_select_band(sc, ic->ic_curchan);
2022 rum_select_antenna(sc);
2023 rum_set_chan(sc, ic->ic_curchan);
2024
2025 /* clear STA registers */
2026 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2027
2028 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2029 rum_set_macaddr(sc, ic->ic_myaddr);
2030
2031 /* initialize ASIC */
2032 rum_write(sc, RT2573_MAC_CSR1, 4);
2033
2034 /*
2035 * Allocate xfer for AMRR statistics requests.
2036 */
2037 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2038 if (sc->amrr_xfer == NULL) {
2039 printf("%s: could not allocate AMRR xfer\n",
2040 device_xname(sc->sc_dev));
2041 goto fail;
2042 }
2043
2044 /*
2045 * Open Tx and Rx USB bulk pipes.
2046 */
2047 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2048 &sc->sc_tx_pipeh);
2049 if (error != 0) {
2050 printf("%s: could not open Tx pipe: %s\n",
2051 device_xname(sc->sc_dev), usbd_errstr(error));
2052 goto fail;
2053 }
2054
2055 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2056 &sc->sc_rx_pipeh);
2057 if (error != 0) {
2058 printf("%s: could not open Rx pipe: %s\n",
2059 device_xname(sc->sc_dev), usbd_errstr(error));
2060 goto fail;
2061 }
2062
2063 /*
2064 * Allocate Tx and Rx xfer queues.
2065 */
2066 error = rum_alloc_tx_list(sc);
2067 if (error != 0) {
2068 printf("%s: could not allocate Tx list\n",
2069 device_xname(sc->sc_dev));
2070 goto fail;
2071 }
2072
2073 error = rum_alloc_rx_list(sc);
2074 if (error != 0) {
2075 printf("%s: could not allocate Rx list\n",
2076 device_xname(sc->sc_dev));
2077 goto fail;
2078 }
2079
2080 /*
2081 * Start up the receive pipe.
2082 */
2083 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2084 data = &sc->rx_data[i];
2085
2086 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2087 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2088 error = usbd_transfer(data->xfer);
2089 if (error != USBD_NORMAL_COMPLETION &&
2090 error != USBD_IN_PROGRESS) {
2091 printf("%s: could not queue Rx transfer\n",
2092 device_xname(sc->sc_dev));
2093 goto fail;
2094 }
2095 }
2096
2097 /* update Rx filter */
2098 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2099
2100 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2101 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2102 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2103 RT2573_DROP_ACKCTS;
2104 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2105 tmp |= RT2573_DROP_TODS;
2106 if (!(ifp->if_flags & IFF_PROMISC))
2107 tmp |= RT2573_DROP_NOT_TO_ME;
2108 }
2109 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2110
2111 ifp->if_flags &= ~IFF_OACTIVE;
2112 ifp->if_flags |= IFF_RUNNING;
2113
2114 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2115 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2116 else
2117 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2118
2119 return 0;
2120
2121 fail: rum_stop(ifp, 1);
2122 return error;
2123 #undef N
2124 }
2125
2126 static void
2127 rum_stop(struct ifnet *ifp, int disable)
2128 {
2129 struct rum_softc *sc = ifp->if_softc;
2130 struct ieee80211com *ic = &sc->sc_ic;
2131 uint32_t tmp;
2132
2133 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2134
2135 sc->sc_tx_timer = 0;
2136 ifp->if_timer = 0;
2137 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2138
2139 /* disable Rx */
2140 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2141 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2142
2143 /* reset ASIC */
2144 rum_write(sc, RT2573_MAC_CSR1, 3);
2145 rum_write(sc, RT2573_MAC_CSR1, 0);
2146
2147 if (sc->amrr_xfer != NULL) {
2148 usbd_free_xfer(sc->amrr_xfer);
2149 sc->amrr_xfer = NULL;
2150 }
2151
2152 if (sc->sc_rx_pipeh != NULL) {
2153 usbd_abort_pipe(sc->sc_rx_pipeh);
2154 usbd_close_pipe(sc->sc_rx_pipeh);
2155 sc->sc_rx_pipeh = NULL;
2156 }
2157
2158 if (sc->sc_tx_pipeh != NULL) {
2159 usbd_abort_pipe(sc->sc_tx_pipeh);
2160 usbd_close_pipe(sc->sc_tx_pipeh);
2161 sc->sc_tx_pipeh = NULL;
2162 }
2163
2164 rum_free_rx_list(sc);
2165 rum_free_tx_list(sc);
2166 }
2167
2168 static int
2169 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2170 {
2171 usb_device_request_t req;
2172 uint16_t reg = RT2573_MCU_CODE_BASE;
2173 usbd_status error;
2174
2175 /* copy firmware image into NIC */
2176 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2177 rum_write(sc, reg, UGETDW(ucode));
2178
2179 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2180 req.bRequest = RT2573_MCU_CNTL;
2181 USETW(req.wValue, RT2573_MCU_RUN);
2182 USETW(req.wIndex, 0);
2183 USETW(req.wLength, 0);
2184
2185 error = usbd_do_request(sc->sc_udev, &req, NULL);
2186 if (error != 0) {
2187 printf("%s: could not run firmware: %s\n",
2188 device_xname(sc->sc_dev), usbd_errstr(error));
2189 }
2190 return error;
2191 }
2192
2193 static int
2194 rum_prepare_beacon(struct rum_softc *sc)
2195 {
2196 struct ieee80211com *ic = &sc->sc_ic;
2197 struct rum_tx_desc desc;
2198 struct mbuf *m0;
2199 int rate;
2200
2201 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2202 if (m0 == NULL) {
2203 aprint_error_dev(sc->sc_dev,
2204 "could not allocate beacon frame\n");
2205 return ENOBUFS;
2206 }
2207
2208 /* send beacons at the lowest available rate */
2209 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2210
2211 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2212 m0->m_pkthdr.len, rate);
2213
2214 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2215 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2216
2217 /* copy beacon header and payload into NIC memory */
2218 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2219 m0->m_pkthdr.len);
2220
2221 m_freem(m0);
2222
2223 return 0;
2224 }
2225
2226 static void
2227 rum_newassoc(struct ieee80211_node *ni, int isnew)
2228 {
2229 /* start with lowest Tx rate */
2230 ni->ni_txrate = 0;
2231 }
2232
2233 static void
2234 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2235 {
2236 int i;
2237
2238 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2239 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2240
2241 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2242
2243 /* set rate to some reasonable initial value */
2244 for (i = ni->ni_rates.rs_nrates - 1;
2245 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2246 i--);
2247 ni->ni_txrate = i;
2248
2249 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2250 }
2251
2252 static void
2253 rum_amrr_timeout(void *arg)
2254 {
2255 struct rum_softc *sc = arg;
2256 usb_device_request_t req;
2257
2258 /*
2259 * Asynchronously read statistic registers (cleared by read).
2260 */
2261 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2262 req.bRequest = RT2573_READ_MULTI_MAC;
2263 USETW(req.wValue, 0);
2264 USETW(req.wIndex, RT2573_STA_CSR0);
2265 USETW(req.wLength, sizeof sc->sta);
2266
2267 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2268 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2269 rum_amrr_update);
2270 (void)usbd_transfer(sc->amrr_xfer);
2271 }
2272
2273 static void
2274 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2275 usbd_status status)
2276 {
2277 struct rum_softc *sc = (struct rum_softc *)priv;
2278 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2279
2280 if (status != USBD_NORMAL_COMPLETION) {
2281 printf("%s: could not retrieve Tx statistics - cancelling "
2282 "automatic rate control\n", device_xname(sc->sc_dev));
2283 return;
2284 }
2285
2286 /* count TX retry-fail as Tx errors */
2287 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2288
2289 sc->amn.amn_retrycnt =
2290 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2291 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2292 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2293
2294 sc->amn.amn_txcnt =
2295 sc->amn.amn_retrycnt +
2296 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2297
2298 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2299
2300 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2301 }
2302
2303 static int
2304 rum_activate(device_t self, enum devact act)
2305 {
2306 switch (act) {
2307 case DVACT_DEACTIVATE:
2308 /*if_deactivate(&sc->sc_ic.ic_if);*/
2309 return 0;
2310 default:
2311 return 0;
2312 }
2313 }
2314
2315 MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf");
2316
2317 #ifdef _MODULE
2318 #include "ioconf.c"
2319 #endif
2320
2321 static int
2322 if_rum_modcmd(modcmd_t cmd, void *aux)
2323 {
2324 int error = 0;
2325
2326 switch (cmd) {
2327 case MODULE_CMD_INIT:
2328 #ifdef _MODULE
2329 error = config_init_component(cfdriver_ioconf_rum,
2330 cfattach_ioconf_rum, cfdata_ioconf_rum);
2331 #endif
2332 return error;
2333 case MODULE_CMD_FINI:
2334 #ifdef _MODULE
2335 error = config_fini_component(cfdriver_ioconf_rum,
2336 cfattach_ioconf_rum, cfdata_ioconf_rum);
2337 #endif
2338 return error;
2339 default:
2340 return ENOTTY;
2341 }
2342 }
2343