if_rum.c revision 1.48.4.3 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.48.4.3 2018/08/08 10:17:11 martin Exp $ */
3
4 /*-
5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com.tw/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.48.4.3 2018/08/08 10:17:11 martin Exp $");
28
29 #ifdef _KERNEL_OPT
30 #include "opt_usb.h"
31 #endif
32
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/module.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/firmload.h>
67
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72
73 #include <dev/usb/if_rumreg.h>
74 #include <dev/usb/if_rumvar.h>
75
76 #ifdef RUM_DEBUG
77 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0)
78 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0)
79 int rum_debug = 1;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84
85 /* various supported device vendors/products */
86 static const struct usb_devno rum_devs[] = {
87 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
88 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
89 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
90 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
92 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
93 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
94 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
95 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
96 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
97 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C },
98 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 },
99 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
100 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
101 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
102 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_RT2573 },
103 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL },
104 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX },
105 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
106 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
107 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
108 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
109 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 },
110 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 },
111 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 },
112 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 },
113 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
114 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
115 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
116 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
117 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
118 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
119 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
120 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
121 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
122 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG },
123 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG },
124 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
125 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
126 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
127 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
128 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
129 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
130 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
131 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
132 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
133 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
134 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 },
135 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
136 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
137 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
138 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
139 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 },
140 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 },
141 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 }
142 };
143
144 static int rum_attachhook(void *);
145 static int rum_alloc_tx_list(struct rum_softc *);
146 static void rum_free_tx_list(struct rum_softc *);
147 static int rum_alloc_rx_list(struct rum_softc *);
148 static void rum_free_rx_list(struct rum_softc *);
149 static int rum_media_change(struct ifnet *);
150 static void rum_next_scan(void *);
151 static void rum_task(void *);
152 static int rum_newstate(struct ieee80211com *,
153 enum ieee80211_state, int);
154 static void rum_txeof(struct usbd_xfer *, void *,
155 usbd_status);
156 static void rum_rxeof(struct usbd_xfer *, void *,
157 usbd_status);
158 static uint8_t rum_rxrate(const struct rum_rx_desc *);
159 static int rum_ack_rate(struct ieee80211com *, int);
160 static uint16_t rum_txtime(int, int, uint32_t);
161 static uint8_t rum_plcp_signal(int);
162 static void rum_setup_tx_desc(struct rum_softc *,
163 struct rum_tx_desc *, uint32_t, uint16_t, int,
164 int);
165 static int rum_tx_data(struct rum_softc *, struct mbuf *,
166 struct ieee80211_node *);
167 static void rum_start(struct ifnet *);
168 static void rum_watchdog(struct ifnet *);
169 static int rum_ioctl(struct ifnet *, u_long, void *);
170 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
171 int);
172 static uint32_t rum_read(struct rum_softc *, uint16_t);
173 static void rum_read_multi(struct rum_softc *, uint16_t, void *,
174 int);
175 static void rum_write(struct rum_softc *, uint16_t, uint32_t);
176 static void rum_write_multi(struct rum_softc *, uint16_t, void *,
177 size_t);
178 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
179 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
180 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
181 static void rum_select_antenna(struct rum_softc *);
182 static void rum_enable_mrr(struct rum_softc *);
183 static void rum_set_txpreamble(struct rum_softc *);
184 static void rum_set_basicrates(struct rum_softc *);
185 static void rum_select_band(struct rum_softc *,
186 struct ieee80211_channel *);
187 static void rum_set_chan(struct rum_softc *,
188 struct ieee80211_channel *);
189 static void rum_enable_tsf_sync(struct rum_softc *);
190 static void rum_update_slot(struct rum_softc *);
191 static void rum_set_bssid(struct rum_softc *, const uint8_t *);
192 static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
193 static void rum_update_promisc(struct rum_softc *);
194 static const char *rum_get_rf(int);
195 static void rum_read_eeprom(struct rum_softc *);
196 static int rum_bbp_init(struct rum_softc *);
197 static int rum_init(struct ifnet *);
198 static void rum_stop(struct ifnet *, int);
199 static int rum_load_microcode(struct rum_softc *, const u_char *,
200 size_t);
201 static int rum_prepare_beacon(struct rum_softc *);
202 static void rum_newassoc(struct ieee80211_node *, int);
203 static void rum_amrr_start(struct rum_softc *,
204 struct ieee80211_node *);
205 static void rum_amrr_timeout(void *);
206 static void rum_amrr_update(struct usbd_xfer *, void *,
207 usbd_status);
208
209 /*
210 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
211 */
212 static const struct ieee80211_rateset rum_rateset_11a =
213 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
214
215 static const struct ieee80211_rateset rum_rateset_11b =
216 { 4, { 2, 4, 11, 22 } };
217
218 static const struct ieee80211_rateset rum_rateset_11g =
219 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
220
221 static const struct {
222 uint32_t reg;
223 uint32_t val;
224 } rum_def_mac[] = {
225 RT2573_DEF_MAC
226 };
227
228 static const struct {
229 uint8_t reg;
230 uint8_t val;
231 } rum_def_bbp[] = {
232 RT2573_DEF_BBP
233 };
234
235 static const struct rfprog {
236 uint8_t chan;
237 uint32_t r1, r2, r3, r4;
238 } rum_rf5226[] = {
239 RT2573_RF5226
240 }, rum_rf5225[] = {
241 RT2573_RF5225
242 };
243
244 static int rum_match(device_t, cfdata_t, void *);
245 static void rum_attach(device_t, device_t, void *);
246 static int rum_detach(device_t, int);
247 static int rum_activate(device_t, enum devact);
248 extern struct cfdriver rum_cd;
249 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
250 rum_detach, rum_activate);
251
252 static int
253 rum_match(device_t parent, cfdata_t match, void *aux)
254 {
255 struct usb_attach_arg *uaa = aux;
256
257 return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
258 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
259 }
260
261 static int
262 rum_attachhook(void *xsc)
263 {
264 struct rum_softc *sc = xsc;
265 firmware_handle_t fwh;
266 const char *name = "rum-rt2573";
267 u_char *ucode;
268 size_t size;
269 int error;
270
271 if ((error = firmware_open("rum", name, &fwh)) != 0) {
272 printf("%s: failed firmware_open of file %s (error %d)\n",
273 device_xname(sc->sc_dev), name, error);
274 return error;
275 }
276 size = firmware_get_size(fwh);
277 ucode = firmware_malloc(size);
278 if (ucode == NULL) {
279 printf("%s: failed to allocate firmware memory\n",
280 device_xname(sc->sc_dev));
281 firmware_close(fwh);
282 return ENOMEM;
283 }
284 error = firmware_read(fwh, 0, ucode, size);
285 firmware_close(fwh);
286 if (error != 0) {
287 printf("%s: failed to read firmware (error %d)\n",
288 device_xname(sc->sc_dev), error);
289 firmware_free(ucode, size);
290 return error;
291 }
292
293 if (rum_load_microcode(sc, ucode, size) != 0) {
294 printf("%s: could not load 8051 microcode\n",
295 device_xname(sc->sc_dev));
296 firmware_free(ucode, size);
297 return ENXIO;
298 }
299
300 firmware_free(ucode, size);
301 sc->sc_flags |= RT2573_FWLOADED;
302
303 return 0;
304 }
305
306 static void
307 rum_attach(device_t parent, device_t self, void *aux)
308 {
309 struct rum_softc *sc = device_private(self);
310 struct usb_attach_arg *uaa = aux;
311 struct ieee80211com *ic = &sc->sc_ic;
312 struct ifnet *ifp = &sc->sc_if;
313 usb_interface_descriptor_t *id;
314 usb_endpoint_descriptor_t *ed;
315 usbd_status error;
316 char *devinfop;
317 int i, ntries;
318 uint32_t tmp;
319
320 sc->sc_dev = self;
321 sc->sc_udev = uaa->uaa_device;
322 sc->sc_flags = 0;
323
324 aprint_naive("\n");
325 aprint_normal("\n");
326
327 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
328 aprint_normal_dev(self, "%s\n", devinfop);
329 usbd_devinfo_free(devinfop);
330
331 error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
332 if (error != 0) {
333 aprint_error_dev(self, "failed to set configuration"
334 ", err=%s\n", usbd_errstr(error));
335 return;
336 }
337
338 /* get the first interface handle */
339 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
340 &sc->sc_iface);
341 if (error != 0) {
342 aprint_error_dev(self, "could not get interface handle\n");
343 return;
344 }
345
346 /*
347 * Find endpoints.
348 */
349 id = usbd_get_interface_descriptor(sc->sc_iface);
350
351 sc->sc_rx_no = sc->sc_tx_no = -1;
352 for (i = 0; i < id->bNumEndpoints; i++) {
353 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
354 if (ed == NULL) {
355 aprint_error_dev(self,
356 "no endpoint descriptor for iface %d\n", i);
357 return;
358 }
359
360 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
361 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
362 sc->sc_rx_no = ed->bEndpointAddress;
363 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
364 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
365 sc->sc_tx_no = ed->bEndpointAddress;
366 }
367 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
368 aprint_error_dev(self, "missing endpoint\n");
369 return;
370 }
371
372 usb_init_task(&sc->sc_task, rum_task, sc, 0);
373 callout_init(&sc->sc_scan_ch, 0);
374
375 sc->amrr.amrr_min_success_threshold = 1;
376 sc->amrr.amrr_max_success_threshold = 10;
377 callout_init(&sc->sc_amrr_ch, 0);
378
379 /* retrieve RT2573 rev. no */
380 for (ntries = 0; ntries < 1000; ntries++) {
381 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
382 break;
383 DELAY(1000);
384 }
385 if (ntries == 1000) {
386 aprint_error_dev(self, "timeout waiting for chip to settle\n");
387 return;
388 }
389
390 /* retrieve MAC address and various other things from EEPROM */
391 rum_read_eeprom(sc);
392
393 aprint_normal_dev(self,
394 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
395 sc->macbbp_rev, tmp,
396 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
397
398 ic->ic_ifp = ifp;
399 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
400 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
401 ic->ic_state = IEEE80211_S_INIT;
402
403 /* set device capabilities */
404 ic->ic_caps =
405 IEEE80211_C_IBSS | /* IBSS mode supported */
406 IEEE80211_C_MONITOR | /* monitor mode supported */
407 IEEE80211_C_HOSTAP | /* HostAp mode supported */
408 IEEE80211_C_TXPMGT | /* tx power management */
409 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
410 IEEE80211_C_SHSLOT | /* short slot time supported */
411 IEEE80211_C_WPA; /* 802.11i */
412
413 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
414 /* set supported .11a rates */
415 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
416
417 /* set supported .11a channels */
418 for (i = 34; i <= 46; i += 4) {
419 ic->ic_channels[i].ic_freq =
420 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
421 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
422 }
423 for (i = 36; i <= 64; i += 4) {
424 ic->ic_channels[i].ic_freq =
425 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
426 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
427 }
428 for (i = 100; i <= 140; i += 4) {
429 ic->ic_channels[i].ic_freq =
430 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
431 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
432 }
433 for (i = 149; i <= 165; i += 4) {
434 ic->ic_channels[i].ic_freq =
435 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
436 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
437 }
438 }
439
440 /* set supported .11b and .11g rates */
441 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
442 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
443
444 /* set supported .11b and .11g channels (1 through 14) */
445 for (i = 1; i <= 14; i++) {
446 ic->ic_channels[i].ic_freq =
447 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
448 ic->ic_channels[i].ic_flags =
449 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
450 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
451 }
452
453 ifp->if_softc = sc;
454 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
455 ifp->if_init = rum_init;
456 ifp->if_ioctl = rum_ioctl;
457 ifp->if_start = rum_start;
458 ifp->if_watchdog = rum_watchdog;
459 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
460 IFQ_SET_READY(&ifp->if_snd);
461 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
462
463 if_attach(ifp);
464 ieee80211_ifattach(ic);
465 ic->ic_newassoc = rum_newassoc;
466
467 /* override state transition machine */
468 sc->sc_newstate = ic->ic_newstate;
469 ic->ic_newstate = rum_newstate;
470 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
471
472 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
473 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
474 &sc->sc_drvbpf);
475
476 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
477 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
478 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
479
480 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
481 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
482 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
483
484 ieee80211_announce(ic);
485
486 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
487
488 if (!pmf_device_register(self, NULL, NULL))
489 aprint_error_dev(self, "couldn't establish power handler\n");
490
491 return;
492 }
493
494 static int
495 rum_detach(device_t self, int flags)
496 {
497 struct rum_softc *sc = device_private(self);
498 struct ieee80211com *ic = &sc->sc_ic;
499 struct ifnet *ifp = &sc->sc_if;
500 int s;
501
502 if (!ifp->if_softc)
503 return 0;
504
505 pmf_device_deregister(self);
506
507 s = splusb();
508
509 rum_stop(ifp, 1);
510 callout_halt(&sc->sc_scan_ch, NULL);
511 callout_halt(&sc->sc_amrr_ch, NULL);
512 usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
513
514 bpf_detach(ifp);
515 ieee80211_ifdetach(ic); /* free all nodes */
516 if_detach(ifp);
517
518 splx(s);
519
520 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
521
522 return 0;
523 }
524
525 static int
526 rum_alloc_tx_list(struct rum_softc *sc)
527 {
528 struct rum_tx_data *data;
529 int i, error;
530
531 sc->tx_cur = sc->tx_queued = 0;
532
533 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
534 data = &sc->tx_data[i];
535
536 data->sc = sc;
537
538 error = usbd_create_xfer(sc->sc_tx_pipeh,
539 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN,
540 USBD_FORCE_SHORT_XFER, 0, &data->xfer);
541 if (error) {
542 printf("%s: could not allocate tx xfer\n",
543 device_xname(sc->sc_dev));
544 goto fail;
545 }
546 data->buf = usbd_get_buffer(data->xfer);
547
548 /* clean Tx descriptor */
549 memset(data->buf, 0, RT2573_TX_DESC_SIZE);
550 }
551
552 return 0;
553
554 fail: rum_free_tx_list(sc);
555 return error;
556 }
557
558 static void
559 rum_free_tx_list(struct rum_softc *sc)
560 {
561 struct rum_tx_data *data;
562 int i;
563
564 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
565 data = &sc->tx_data[i];
566
567 if (data->xfer != NULL) {
568 usbd_destroy_xfer(data->xfer);
569 data->xfer = NULL;
570 }
571
572 if (data->ni != NULL) {
573 ieee80211_free_node(data->ni);
574 data->ni = NULL;
575 }
576 }
577 }
578
579 static int
580 rum_alloc_rx_list(struct rum_softc *sc)
581 {
582 struct rum_rx_data *data;
583 int i, error;
584
585 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
586 data = &sc->rx_data[i];
587
588 data->sc = sc;
589
590 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
591 0, 0, &data->xfer);
592 if (error) {
593 printf("%s: could not allocate rx xfer\n",
594 device_xname(sc->sc_dev));
595 goto fail;
596 }
597
598 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
599 if (data->m == NULL) {
600 printf("%s: could not allocate rx mbuf\n",
601 device_xname(sc->sc_dev));
602 error = ENOMEM;
603 goto fail;
604 }
605
606 MCLGET(data->m, M_DONTWAIT);
607 if (!(data->m->m_flags & M_EXT)) {
608 printf("%s: could not allocate rx mbuf cluster\n",
609 device_xname(sc->sc_dev));
610 error = ENOMEM;
611 goto fail;
612 }
613
614 data->buf = mtod(data->m, uint8_t *);
615 }
616
617 return 0;
618
619 fail: rum_free_rx_list(sc);
620 return error;
621 }
622
623 static void
624 rum_free_rx_list(struct rum_softc *sc)
625 {
626 struct rum_rx_data *data;
627 int i;
628
629 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
630 data = &sc->rx_data[i];
631
632 if (data->xfer != NULL) {
633 usbd_destroy_xfer(data->xfer);
634 data->xfer = NULL;
635 }
636
637 if (data->m != NULL) {
638 m_freem(data->m);
639 data->m = NULL;
640 }
641 }
642 }
643
644 static int
645 rum_media_change(struct ifnet *ifp)
646 {
647 int error;
648
649 error = ieee80211_media_change(ifp);
650 if (error != ENETRESET)
651 return error;
652
653 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
654 rum_init(ifp);
655
656 return 0;
657 }
658
659 /*
660 * This function is called periodically (every 200ms) during scanning to
661 * switch from one channel to another.
662 */
663 static void
664 rum_next_scan(void *arg)
665 {
666 struct rum_softc *sc = arg;
667 struct ieee80211com *ic = &sc->sc_ic;
668 int s;
669
670 s = splnet();
671 if (ic->ic_state == IEEE80211_S_SCAN)
672 ieee80211_next_scan(ic);
673 splx(s);
674 }
675
676 static void
677 rum_task(void *arg)
678 {
679 struct rum_softc *sc = arg;
680 struct ieee80211com *ic = &sc->sc_ic;
681 enum ieee80211_state ostate;
682 struct ieee80211_node *ni;
683 uint32_t tmp;
684
685 ostate = ic->ic_state;
686
687 switch (sc->sc_state) {
688 case IEEE80211_S_INIT:
689 if (ostate == IEEE80211_S_RUN) {
690 /* abort TSF synchronization */
691 tmp = rum_read(sc, RT2573_TXRX_CSR9);
692 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
693 }
694 break;
695
696 case IEEE80211_S_SCAN:
697 rum_set_chan(sc, ic->ic_curchan);
698 callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
699 break;
700
701 case IEEE80211_S_AUTH:
702 rum_set_chan(sc, ic->ic_curchan);
703 break;
704
705 case IEEE80211_S_ASSOC:
706 rum_set_chan(sc, ic->ic_curchan);
707 break;
708
709 case IEEE80211_S_RUN:
710 rum_set_chan(sc, ic->ic_curchan);
711
712 ni = ic->ic_bss;
713
714 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
715 rum_update_slot(sc);
716 rum_enable_mrr(sc);
717 rum_set_txpreamble(sc);
718 rum_set_basicrates(sc);
719 rum_set_bssid(sc, ni->ni_bssid);
720 }
721
722 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
723 ic->ic_opmode == IEEE80211_M_IBSS)
724 rum_prepare_beacon(sc);
725
726 if (ic->ic_opmode != IEEE80211_M_MONITOR)
727 rum_enable_tsf_sync(sc);
728
729 if (ic->ic_opmode == IEEE80211_M_STA) {
730 /* fake a join to init the tx rate */
731 rum_newassoc(ic->ic_bss, 1);
732
733 /* enable automatic rate adaptation in STA mode */
734 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
735 rum_amrr_start(sc, ni);
736 }
737
738 break;
739 }
740
741 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
742 }
743
744 static int
745 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
746 {
747 struct rum_softc *sc = ic->ic_ifp->if_softc;
748
749 /*
750 * XXXSMP: This does not wait for the task, if it is in flight,
751 * to complete. If this code works at all, it must rely on the
752 * kernel lock to serialize with the USB task thread.
753 */
754 usb_rem_task(sc->sc_udev, &sc->sc_task);
755 callout_stop(&sc->sc_scan_ch);
756 callout_stop(&sc->sc_amrr_ch);
757
758 /* do it in a process context */
759 sc->sc_state = nstate;
760 sc->sc_arg = arg;
761 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
762
763 return 0;
764 }
765
766 /* quickly determine if a given rate is CCK or OFDM */
767 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
768
769 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
770 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
771
772 static void
773 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
774 {
775 struct rum_tx_data *data = priv;
776 struct rum_softc *sc = data->sc;
777 struct ifnet *ifp = &sc->sc_if;
778 int s;
779
780 if (status != USBD_NORMAL_COMPLETION) {
781 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
782 return;
783
784 printf("%s: could not transmit buffer: %s\n",
785 device_xname(sc->sc_dev), usbd_errstr(status));
786
787 if (status == USBD_STALLED)
788 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
789
790 ifp->if_oerrors++;
791 return;
792 }
793
794 s = splnet();
795
796 ieee80211_free_node(data->ni);
797 data->ni = NULL;
798
799 sc->tx_queued--;
800 ifp->if_opackets++;
801
802 DPRINTFN(10, ("tx done\n"));
803
804 sc->sc_tx_timer = 0;
805 ifp->if_flags &= ~IFF_OACTIVE;
806 rum_start(ifp);
807
808 splx(s);
809 }
810
811 static void
812 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
813 {
814 struct rum_rx_data *data = priv;
815 struct rum_softc *sc = data->sc;
816 struct ieee80211com *ic = &sc->sc_ic;
817 struct ifnet *ifp = &sc->sc_if;
818 struct rum_rx_desc *desc;
819 struct ieee80211_frame *wh;
820 struct ieee80211_node *ni;
821 struct mbuf *mnew, *m;
822 int s, len;
823
824 if (status != USBD_NORMAL_COMPLETION) {
825 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
826 return;
827
828 if (status == USBD_STALLED)
829 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
830 goto skip;
831 }
832
833 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
834
835 if (len < (int)(RT2573_RX_DESC_SIZE +
836 sizeof(struct ieee80211_frame_min))) {
837 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
838 len));
839 ifp->if_ierrors++;
840 goto skip;
841 }
842
843 desc = (struct rum_rx_desc *)data->buf;
844
845 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
846 /*
847 * This should not happen since we did not request to receive
848 * those frames when we filled RT2573_TXRX_CSR0.
849 */
850 DPRINTFN(5, ("CRC error\n"));
851 ifp->if_ierrors++;
852 goto skip;
853 }
854
855 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
856 if (mnew == NULL) {
857 printf("%s: could not allocate rx mbuf\n",
858 device_xname(sc->sc_dev));
859 ifp->if_ierrors++;
860 goto skip;
861 }
862
863 MCLGET(mnew, M_DONTWAIT);
864 if (!(mnew->m_flags & M_EXT)) {
865 printf("%s: could not allocate rx mbuf cluster\n",
866 device_xname(sc->sc_dev));
867 m_freem(mnew);
868 ifp->if_ierrors++;
869 goto skip;
870 }
871
872 m = data->m;
873 data->m = mnew;
874 data->buf = mtod(data->m, uint8_t *);
875
876 /* finalize mbuf */
877 m->m_pkthdr.rcvif = ifp;
878 m->m_data = (void *)(desc + 1);
879 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
880
881 s = splnet();
882
883 if (sc->sc_drvbpf != NULL) {
884 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
885
886 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
887 tap->wr_rate = rum_rxrate(desc);
888 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
889 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
890 tap->wr_antenna = sc->rx_ant;
891 tap->wr_antsignal = desc->rssi;
892
893 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
894 }
895
896 wh = mtod(m, struct ieee80211_frame *);
897 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
898
899 /* send the frame to the 802.11 layer */
900 ieee80211_input(ic, m, ni, desc->rssi, 0);
901
902 /* node is no longer needed */
903 ieee80211_free_node(ni);
904
905 splx(s);
906
907 DPRINTFN(15, ("rx done\n"));
908
909 skip: /* setup a new transfer */
910 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK,
911 USBD_NO_TIMEOUT, rum_rxeof);
912 usbd_transfer(xfer);
913 }
914
915 /*
916 * This function is only used by the Rx radiotap code. It returns the rate at
917 * which a given frame was received.
918 */
919 static uint8_t
920 rum_rxrate(const struct rum_rx_desc *desc)
921 {
922 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
923 /* reverse function of rum_plcp_signal */
924 switch (desc->rate) {
925 case 0xb: return 12;
926 case 0xf: return 18;
927 case 0xa: return 24;
928 case 0xe: return 36;
929 case 0x9: return 48;
930 case 0xd: return 72;
931 case 0x8: return 96;
932 case 0xc: return 108;
933 }
934 } else {
935 if (desc->rate == 10)
936 return 2;
937 if (desc->rate == 20)
938 return 4;
939 if (desc->rate == 55)
940 return 11;
941 if (desc->rate == 110)
942 return 22;
943 }
944 return 2; /* should not get there */
945 }
946
947 /*
948 * Return the expected ack rate for a frame transmitted at rate `rate'.
949 * XXX: this should depend on the destination node basic rate set.
950 */
951 static int
952 rum_ack_rate(struct ieee80211com *ic, int rate)
953 {
954 switch (rate) {
955 /* CCK rates */
956 case 2:
957 return 2;
958 case 4:
959 case 11:
960 case 22:
961 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
962
963 /* OFDM rates */
964 case 12:
965 case 18:
966 return 12;
967 case 24:
968 case 36:
969 return 24;
970 case 48:
971 case 72:
972 case 96:
973 case 108:
974 return 48;
975 }
976
977 /* default to 1Mbps */
978 return 2;
979 }
980
981 /*
982 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
983 * The function automatically determines the operating mode depending on the
984 * given rate. `flags' indicates whether short preamble is in use or not.
985 */
986 static uint16_t
987 rum_txtime(int len, int rate, uint32_t flags)
988 {
989 uint16_t txtime;
990
991 if (RUM_RATE_IS_OFDM(rate)) {
992 /* IEEE Std 802.11a-1999, pp. 37 */
993 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
994 txtime = 16 + 4 + 4 * txtime + 6;
995 } else {
996 /* IEEE Std 802.11b-1999, pp. 28 */
997 txtime = (16 * len + rate - 1) / rate;
998 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
999 txtime += 72 + 24;
1000 else
1001 txtime += 144 + 48;
1002 }
1003 return txtime;
1004 }
1005
1006 static uint8_t
1007 rum_plcp_signal(int rate)
1008 {
1009 switch (rate) {
1010 /* CCK rates (returned values are device-dependent) */
1011 case 2: return 0x0;
1012 case 4: return 0x1;
1013 case 11: return 0x2;
1014 case 22: return 0x3;
1015
1016 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1017 case 12: return 0xb;
1018 case 18: return 0xf;
1019 case 24: return 0xa;
1020 case 36: return 0xe;
1021 case 48: return 0x9;
1022 case 72: return 0xd;
1023 case 96: return 0x8;
1024 case 108: return 0xc;
1025
1026 /* unsupported rates (should not get there) */
1027 default: return 0xff;
1028 }
1029 }
1030
1031 static void
1032 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1033 uint32_t flags, uint16_t xflags, int len, int rate)
1034 {
1035 struct ieee80211com *ic = &sc->sc_ic;
1036 uint16_t plcp_length;
1037 int remainder;
1038
1039 desc->flags = htole32(flags);
1040 desc->flags |= htole32(RT2573_TX_VALID);
1041 desc->flags |= htole32(len << 16);
1042
1043 desc->xflags = htole16(xflags);
1044
1045 desc->wme = htole16(
1046 RT2573_QID(0) |
1047 RT2573_AIFSN(2) |
1048 RT2573_LOGCWMIN(4) |
1049 RT2573_LOGCWMAX(10));
1050
1051 /* setup PLCP fields */
1052 desc->plcp_signal = rum_plcp_signal(rate);
1053 desc->plcp_service = 4;
1054
1055 len += IEEE80211_CRC_LEN;
1056 if (RUM_RATE_IS_OFDM(rate)) {
1057 desc->flags |= htole32(RT2573_TX_OFDM);
1058
1059 plcp_length = len & 0xfff;
1060 desc->plcp_length_hi = plcp_length >> 6;
1061 desc->plcp_length_lo = plcp_length & 0x3f;
1062 } else {
1063 plcp_length = (16 * len + rate - 1) / rate;
1064 if (rate == 22) {
1065 remainder = (16 * len) % 22;
1066 if (remainder != 0 && remainder < 7)
1067 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1068 }
1069 desc->plcp_length_hi = plcp_length >> 8;
1070 desc->plcp_length_lo = plcp_length & 0xff;
1071
1072 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1073 desc->plcp_signal |= 0x08;
1074 }
1075 }
1076
1077 #define RUM_TX_TIMEOUT 5000
1078
1079 static int
1080 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1081 {
1082 struct ieee80211com *ic = &sc->sc_ic;
1083 struct rum_tx_desc *desc;
1084 struct rum_tx_data *data;
1085 struct ieee80211_frame *wh;
1086 struct ieee80211_key *k;
1087 uint32_t flags = 0;
1088 uint16_t dur;
1089 usbd_status error;
1090 int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1091
1092 wh = mtod(m0, struct ieee80211_frame *);
1093
1094 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1095 k = ieee80211_crypto_encap(ic, ni, m0);
1096 if (k == NULL) {
1097 m_freem(m0);
1098 return ENOBUFS;
1099 }
1100
1101 /* packet header may have moved, reset our local pointer */
1102 wh = mtod(m0, struct ieee80211_frame *);
1103 }
1104
1105 /* compute actual packet length (including CRC and crypto overhead) */
1106 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1107
1108 /* pickup a rate */
1109 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1110 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1111 IEEE80211_FC0_TYPE_MGT)) {
1112 /* mgmt/multicast frames are sent at the lowest avail. rate */
1113 rate = ni->ni_rates.rs_rates[0];
1114 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1115 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1116 } else
1117 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1118 if (rate == 0)
1119 rate = 2; /* XXX should not happen */
1120 rate &= IEEE80211_RATE_VAL;
1121
1122 /* check if RTS/CTS or CTS-to-self protection must be used */
1123 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1124 /* multicast frames are not sent at OFDM rates in 802.11b/g */
1125 if (pktlen > ic->ic_rtsthreshold) {
1126 needrts = 1; /* RTS/CTS based on frame length */
1127 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1128 RUM_RATE_IS_OFDM(rate)) {
1129 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1130 needcts = 1; /* CTS-to-self */
1131 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1132 needrts = 1; /* RTS/CTS */
1133 }
1134 }
1135 if (needrts || needcts) {
1136 struct mbuf *mprot;
1137 int protrate, ackrate;
1138
1139 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1140 ackrate = rum_ack_rate(ic, rate);
1141
1142 dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1143 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1144 2 * sc->sifs;
1145 if (needrts) {
1146 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1147 protrate), ic->ic_flags) + sc->sifs;
1148 mprot = ieee80211_get_rts(ic, wh, dur);
1149 } else {
1150 mprot = ieee80211_get_cts_to_self(ic, dur);
1151 }
1152 if (mprot == NULL) {
1153 aprint_error_dev(sc->sc_dev,
1154 "couldn't allocate protection frame\n");
1155 m_freem(m0);
1156 return ENOBUFS;
1157 }
1158
1159 data = &sc->tx_data[sc->tx_cur];
1160 desc = (struct rum_tx_desc *)data->buf;
1161
1162 /* avoid multiple free() of the same node for each fragment */
1163 data->ni = ieee80211_ref_node(ni);
1164
1165 m_copydata(mprot, 0, mprot->m_pkthdr.len,
1166 data->buf + RT2573_TX_DESC_SIZE);
1167 rum_setup_tx_desc(sc, desc,
1168 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1169 0, mprot->m_pkthdr.len, protrate);
1170
1171 /* no roundup necessary here */
1172 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1173
1174 /* XXX may want to pass the protection frame to BPF */
1175
1176 /* mbuf is no longer needed */
1177 m_freem(mprot);
1178
1179 usbd_setup_xfer(data->xfer, data, data->buf,
1180 xferlen, USBD_FORCE_SHORT_XFER,
1181 RUM_TX_TIMEOUT, rum_txeof);
1182 error = usbd_transfer(data->xfer);
1183 if (error != USBD_NORMAL_COMPLETION &&
1184 error != USBD_IN_PROGRESS) {
1185 m_freem(m0);
1186 return error;
1187 }
1188
1189 sc->tx_queued++;
1190 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1191
1192 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1193 }
1194
1195 data = &sc->tx_data[sc->tx_cur];
1196 desc = (struct rum_tx_desc *)data->buf;
1197
1198 data->ni = ni;
1199
1200 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1201 flags |= RT2573_TX_NEED_ACK;
1202
1203 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1204 ic->ic_flags) + sc->sifs;
1205 *(uint16_t *)wh->i_dur = htole16(dur);
1206
1207 /* tell hardware to set timestamp in probe responses */
1208 if ((wh->i_fc[0] &
1209 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1210 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1211 flags |= RT2573_TX_TIMESTAMP;
1212 }
1213
1214 if (sc->sc_drvbpf != NULL) {
1215 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1216
1217 tap->wt_flags = 0;
1218 tap->wt_rate = rate;
1219 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1220 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1221 tap->wt_antenna = sc->tx_ant;
1222
1223 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1224 }
1225
1226 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1227 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1228
1229 /* align end on a 4-bytes boundary */
1230 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1231
1232 /*
1233 * No space left in the last URB to store the extra 4 bytes, force
1234 * sending of another URB.
1235 */
1236 if ((xferlen % 64) == 0)
1237 xferlen += 4;
1238
1239 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1240 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1241 rate, xferlen));
1242
1243 /* mbuf is no longer needed */
1244 m_freem(m0);
1245
1246 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1247 USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof);
1248 error = usbd_transfer(data->xfer);
1249 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1250 return error;
1251
1252 sc->tx_queued++;
1253 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1254
1255 return 0;
1256 }
1257
1258 static void
1259 rum_start(struct ifnet *ifp)
1260 {
1261 struct rum_softc *sc = ifp->if_softc;
1262 struct ieee80211com *ic = &sc->sc_ic;
1263 struct ether_header *eh;
1264 struct ieee80211_node *ni;
1265 struct mbuf *m0;
1266
1267 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1268 return;
1269
1270 for (;;) {
1271 IF_POLL(&ic->ic_mgtq, m0);
1272 if (m0 != NULL) {
1273 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1274 ifp->if_flags |= IFF_OACTIVE;
1275 break;
1276 }
1277 IF_DEQUEUE(&ic->ic_mgtq, m0);
1278
1279 ni = M_GETCTX(m0, struct ieee80211_node *);
1280 M_CLEARCTX(m0);
1281 bpf_mtap3(ic->ic_rawbpf, m0);
1282 if (rum_tx_data(sc, m0, ni) != 0)
1283 break;
1284
1285 } else {
1286 if (ic->ic_state != IEEE80211_S_RUN)
1287 break;
1288 IFQ_POLL(&ifp->if_snd, m0);
1289 if (m0 == NULL)
1290 break;
1291 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1292 ifp->if_flags |= IFF_OACTIVE;
1293 break;
1294 }
1295 IFQ_DEQUEUE(&ifp->if_snd, m0);
1296 if (m0->m_len < (int)sizeof(struct ether_header) &&
1297 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1298 continue;
1299
1300 eh = mtod(m0, struct ether_header *);
1301 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1302 if (ni == NULL) {
1303 m_freem(m0);
1304 continue;
1305 }
1306 bpf_mtap(ifp, m0);
1307 m0 = ieee80211_encap(ic, m0, ni);
1308 if (m0 == NULL) {
1309 ieee80211_free_node(ni);
1310 continue;
1311 }
1312 bpf_mtap3(ic->ic_rawbpf, m0);
1313 if (rum_tx_data(sc, m0, ni) != 0) {
1314 ieee80211_free_node(ni);
1315 ifp->if_oerrors++;
1316 break;
1317 }
1318 }
1319
1320 sc->sc_tx_timer = 5;
1321 ifp->if_timer = 1;
1322 }
1323 }
1324
1325 static void
1326 rum_watchdog(struct ifnet *ifp)
1327 {
1328 struct rum_softc *sc = ifp->if_softc;
1329 struct ieee80211com *ic = &sc->sc_ic;
1330
1331 ifp->if_timer = 0;
1332
1333 if (sc->sc_tx_timer > 0) {
1334 if (--sc->sc_tx_timer == 0) {
1335 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1336 /*rum_init(ifp); XXX needs a process context! */
1337 ifp->if_oerrors++;
1338 return;
1339 }
1340 ifp->if_timer = 1;
1341 }
1342
1343 ieee80211_watchdog(ic);
1344 }
1345
1346 static int
1347 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1348 {
1349 #define IS_RUNNING(ifp) \
1350 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1351
1352 struct rum_softc *sc = ifp->if_softc;
1353 struct ieee80211com *ic = &sc->sc_ic;
1354 int s, error = 0;
1355
1356 s = splnet();
1357
1358 switch (cmd) {
1359 case SIOCSIFFLAGS:
1360 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1361 break;
1362 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1363 case IFF_UP|IFF_RUNNING:
1364 rum_update_promisc(sc);
1365 break;
1366 case IFF_UP:
1367 rum_init(ifp);
1368 break;
1369 case IFF_RUNNING:
1370 rum_stop(ifp, 1);
1371 break;
1372 case 0:
1373 break;
1374 }
1375 break;
1376
1377 case SIOCADDMULTI:
1378 case SIOCDELMULTI:
1379 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1380 error = 0;
1381 }
1382 break;
1383
1384 default:
1385 error = ieee80211_ioctl(ic, cmd, data);
1386 }
1387
1388 if (error == ENETRESET) {
1389 if (IS_RUNNING(ifp) &&
1390 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1391 rum_init(ifp);
1392 error = 0;
1393 }
1394
1395 splx(s);
1396
1397 return error;
1398 #undef IS_RUNNING
1399 }
1400
1401 static void
1402 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1403 {
1404 usb_device_request_t req;
1405 usbd_status error;
1406
1407 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1408 req.bRequest = RT2573_READ_EEPROM;
1409 USETW(req.wValue, 0);
1410 USETW(req.wIndex, addr);
1411 USETW(req.wLength, len);
1412
1413 error = usbd_do_request(sc->sc_udev, &req, buf);
1414 if (error != 0) {
1415 printf("%s: could not read EEPROM: %s\n",
1416 device_xname(sc->sc_dev), usbd_errstr(error));
1417 }
1418 }
1419
1420 static uint32_t
1421 rum_read(struct rum_softc *sc, uint16_t reg)
1422 {
1423 uint32_t val;
1424
1425 rum_read_multi(sc, reg, &val, sizeof(val));
1426
1427 return le32toh(val);
1428 }
1429
1430 static void
1431 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1432 {
1433 usb_device_request_t req;
1434 usbd_status error;
1435
1436 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1437 req.bRequest = RT2573_READ_MULTI_MAC;
1438 USETW(req.wValue, 0);
1439 USETW(req.wIndex, reg);
1440 USETW(req.wLength, len);
1441
1442 error = usbd_do_request(sc->sc_udev, &req, buf);
1443 if (error != 0) {
1444 printf("%s: could not multi read MAC register: %s\n",
1445 device_xname(sc->sc_dev), usbd_errstr(error));
1446 }
1447 }
1448
1449 static void
1450 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1451 {
1452 uint32_t tmp = htole32(val);
1453
1454 rum_write_multi(sc, reg, &tmp, sizeof(tmp));
1455 }
1456
1457 static void
1458 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1459 {
1460 usb_device_request_t req;
1461 usbd_status error;
1462 int offset;
1463
1464 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1465 req.bRequest = RT2573_WRITE_MULTI_MAC;
1466 USETW(req.wValue, 0);
1467
1468 /* write at most 64 bytes at a time */
1469 for (offset = 0; offset < len; offset += 64) {
1470 USETW(req.wIndex, reg + offset);
1471 USETW(req.wLength, MIN(len - offset, 64));
1472
1473 error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
1474 if (error != 0) {
1475 printf("%s: could not multi write MAC register: %s\n",
1476 device_xname(sc->sc_dev), usbd_errstr(error));
1477 }
1478 }
1479 }
1480
1481 static void
1482 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1483 {
1484 uint32_t tmp;
1485 int ntries;
1486
1487 for (ntries = 0; ntries < 5; ntries++) {
1488 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1489 break;
1490 }
1491 if (ntries == 5) {
1492 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1493 return;
1494 }
1495
1496 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1497 rum_write(sc, RT2573_PHY_CSR3, tmp);
1498 }
1499
1500 static uint8_t
1501 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1502 {
1503 uint32_t val;
1504 int ntries;
1505
1506 for (ntries = 0; ntries < 5; ntries++) {
1507 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1508 break;
1509 }
1510 if (ntries == 5) {
1511 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1512 return 0;
1513 }
1514
1515 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1516 rum_write(sc, RT2573_PHY_CSR3, val);
1517
1518 for (ntries = 0; ntries < 100; ntries++) {
1519 val = rum_read(sc, RT2573_PHY_CSR3);
1520 if (!(val & RT2573_BBP_BUSY))
1521 return val & 0xff;
1522 DELAY(1);
1523 }
1524
1525 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1526 return 0;
1527 }
1528
1529 static void
1530 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1531 {
1532 uint32_t tmp;
1533 int ntries;
1534
1535 for (ntries = 0; ntries < 5; ntries++) {
1536 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1537 break;
1538 }
1539 if (ntries == 5) {
1540 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1541 return;
1542 }
1543
1544 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1545 (reg & 3);
1546 rum_write(sc, RT2573_PHY_CSR4, tmp);
1547
1548 /* remember last written value in sc */
1549 sc->rf_regs[reg] = val;
1550
1551 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1552 }
1553
1554 static void
1555 rum_select_antenna(struct rum_softc *sc)
1556 {
1557 uint8_t bbp4, bbp77;
1558 uint32_t tmp;
1559
1560 bbp4 = rum_bbp_read(sc, 4);
1561 bbp77 = rum_bbp_read(sc, 77);
1562
1563 /* TBD */
1564
1565 /* make sure Rx is disabled before switching antenna */
1566 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1567 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1568
1569 rum_bbp_write(sc, 4, bbp4);
1570 rum_bbp_write(sc, 77, bbp77);
1571
1572 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1573 }
1574
1575 /*
1576 * Enable multi-rate retries for frames sent at OFDM rates.
1577 * In 802.11b/g mode, allow fallback to CCK rates.
1578 */
1579 static void
1580 rum_enable_mrr(struct rum_softc *sc)
1581 {
1582 struct ieee80211com *ic = &sc->sc_ic;
1583 uint32_t tmp;
1584
1585 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1586
1587 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1588 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1589 tmp |= RT2573_MRR_CCK_FALLBACK;
1590 tmp |= RT2573_MRR_ENABLED;
1591
1592 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1593 }
1594
1595 static void
1596 rum_set_txpreamble(struct rum_softc *sc)
1597 {
1598 uint32_t tmp;
1599
1600 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1601
1602 tmp &= ~RT2573_SHORT_PREAMBLE;
1603 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1604 tmp |= RT2573_SHORT_PREAMBLE;
1605
1606 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1607 }
1608
1609 static void
1610 rum_set_basicrates(struct rum_softc *sc)
1611 {
1612 struct ieee80211com *ic = &sc->sc_ic;
1613
1614 /* update basic rate set */
1615 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1616 /* 11b basic rates: 1, 2Mbps */
1617 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1618 } else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1619 /* 11a basic rates: 6, 12, 24Mbps */
1620 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1621 } else {
1622 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1623 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1624 }
1625 }
1626
1627 /*
1628 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1629 * driver.
1630 */
1631 static void
1632 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1633 {
1634 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1635 uint32_t tmp;
1636
1637 /* update all BBP registers that depend on the band */
1638 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1639 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1640 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1641 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1642 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1643 }
1644 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1645 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1646 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1647 }
1648
1649 sc->bbp17 = bbp17;
1650 rum_bbp_write(sc, 17, bbp17);
1651 rum_bbp_write(sc, 96, bbp96);
1652 rum_bbp_write(sc, 104, bbp104);
1653
1654 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1655 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1656 rum_bbp_write(sc, 75, 0x80);
1657 rum_bbp_write(sc, 86, 0x80);
1658 rum_bbp_write(sc, 88, 0x80);
1659 }
1660
1661 rum_bbp_write(sc, 35, bbp35);
1662 rum_bbp_write(sc, 97, bbp97);
1663 rum_bbp_write(sc, 98, bbp98);
1664
1665 tmp = rum_read(sc, RT2573_PHY_CSR0);
1666 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1667 if (IEEE80211_IS_CHAN_2GHZ(c))
1668 tmp |= RT2573_PA_PE_2GHZ;
1669 else
1670 tmp |= RT2573_PA_PE_5GHZ;
1671 rum_write(sc, RT2573_PHY_CSR0, tmp);
1672
1673 /* 802.11a uses a 16 microseconds short interframe space */
1674 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1675 }
1676
1677 static void
1678 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1679 {
1680 struct ieee80211com *ic = &sc->sc_ic;
1681 const struct rfprog *rfprog;
1682 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1683 int8_t power;
1684 u_int i, chan;
1685
1686 chan = ieee80211_chan2ieee(ic, c);
1687 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1688 return;
1689
1690 /* select the appropriate RF settings based on what EEPROM says */
1691 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1692 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1693
1694 /* find the settings for this channel (we know it exists) */
1695 for (i = 0; rfprog[i].chan != chan; i++);
1696
1697 power = sc->txpow[i];
1698 if (power < 0) {
1699 bbp94 += power;
1700 power = 0;
1701 } else if (power > 31) {
1702 bbp94 += power - 31;
1703 power = 31;
1704 }
1705
1706 /*
1707 * If we are switching from the 2GHz band to the 5GHz band or
1708 * vice-versa, BBP registers need to be reprogrammed.
1709 */
1710 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1711 rum_select_band(sc, c);
1712 rum_select_antenna(sc);
1713 }
1714 ic->ic_curchan = c;
1715
1716 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1717 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1718 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1719 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1720
1721 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1722 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1723 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1724 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1725
1726 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1727 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1728 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1729 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1730
1731 DELAY(10);
1732
1733 /* enable smart mode for MIMO-capable RFs */
1734 bbp3 = rum_bbp_read(sc, 3);
1735
1736 bbp3 &= ~RT2573_SMART_MODE;
1737 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1738 bbp3 |= RT2573_SMART_MODE;
1739
1740 rum_bbp_write(sc, 3, bbp3);
1741
1742 if (bbp94 != RT2573_BBPR94_DEFAULT)
1743 rum_bbp_write(sc, 94, bbp94);
1744 }
1745
1746 /*
1747 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1748 * and HostAP operating modes.
1749 */
1750 static void
1751 rum_enable_tsf_sync(struct rum_softc *sc)
1752 {
1753 struct ieee80211com *ic = &sc->sc_ic;
1754 uint32_t tmp;
1755
1756 if (ic->ic_opmode != IEEE80211_M_STA) {
1757 /*
1758 * Change default 16ms TBTT adjustment to 8ms.
1759 * Must be done before enabling beacon generation.
1760 */
1761 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1762 }
1763
1764 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1765
1766 /* set beacon interval (in 1/16ms unit) */
1767 tmp |= ic->ic_bss->ni_intval * 16;
1768
1769 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1770 if (ic->ic_opmode == IEEE80211_M_STA)
1771 tmp |= RT2573_TSF_MODE(1);
1772 else
1773 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1774
1775 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1776 }
1777
1778 static void
1779 rum_update_slot(struct rum_softc *sc)
1780 {
1781 struct ieee80211com *ic = &sc->sc_ic;
1782 uint8_t slottime;
1783 uint32_t tmp;
1784
1785 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1786
1787 tmp = rum_read(sc, RT2573_MAC_CSR9);
1788 tmp = (tmp & ~0xff) | slottime;
1789 rum_write(sc, RT2573_MAC_CSR9, tmp);
1790
1791 DPRINTF(("setting slot time to %uus\n", slottime));
1792 }
1793
1794 static void
1795 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1796 {
1797 uint32_t tmp;
1798
1799 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1800 rum_write(sc, RT2573_MAC_CSR4, tmp);
1801
1802 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1803 rum_write(sc, RT2573_MAC_CSR5, tmp);
1804 }
1805
1806 static void
1807 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1808 {
1809 uint32_t tmp;
1810
1811 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1812 rum_write(sc, RT2573_MAC_CSR2, tmp);
1813
1814 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1815 rum_write(sc, RT2573_MAC_CSR3, tmp);
1816 }
1817
1818 static void
1819 rum_update_promisc(struct rum_softc *sc)
1820 {
1821 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1822 uint32_t tmp;
1823
1824 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1825
1826 tmp &= ~RT2573_DROP_NOT_TO_ME;
1827 if (!(ifp->if_flags & IFF_PROMISC))
1828 tmp |= RT2573_DROP_NOT_TO_ME;
1829
1830 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1831
1832 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1833 "entering" : "leaving"));
1834 }
1835
1836 static const char *
1837 rum_get_rf(int rev)
1838 {
1839 switch (rev) {
1840 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1841 case RT2573_RF_2528: return "RT2528";
1842 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1843 case RT2573_RF_5226: return "RT5226";
1844 default: return "unknown";
1845 }
1846 }
1847
1848 static void
1849 rum_read_eeprom(struct rum_softc *sc)
1850 {
1851 struct ieee80211com *ic = &sc->sc_ic;
1852 uint16_t val;
1853 #ifdef RUM_DEBUG
1854 int i;
1855 #endif
1856
1857 /* read MAC/BBP type */
1858 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1859 sc->macbbp_rev = le16toh(val);
1860
1861 /* read MAC address */
1862 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1863
1864 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1865 val = le16toh(val);
1866 sc->rf_rev = (val >> 11) & 0x1f;
1867 sc->hw_radio = (val >> 10) & 0x1;
1868 sc->rx_ant = (val >> 4) & 0x3;
1869 sc->tx_ant = (val >> 2) & 0x3;
1870 sc->nb_ant = val & 0x3;
1871
1872 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1873
1874 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1875 val = le16toh(val);
1876 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1877 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1878
1879 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1880 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1881
1882 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1883 val = le16toh(val);
1884 if ((val & 0xff) != 0xff)
1885 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1886
1887 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1888 val = le16toh(val);
1889 if ((val & 0xff) != 0xff)
1890 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1891
1892 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1893 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1894
1895 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1896 val = le16toh(val);
1897 if ((val & 0xff) != 0xff)
1898 sc->rffreq = val & 0xff;
1899
1900 DPRINTF(("RF freq=%d\n", sc->rffreq));
1901
1902 /* read Tx power for all a/b/g channels */
1903 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1904 /* XXX default Tx power for 802.11a channels */
1905 memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14);
1906 #ifdef RUM_DEBUG
1907 for (i = 0; i < 14; i++)
1908 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1909 #endif
1910
1911 /* read default values for BBP registers */
1912 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1913 #ifdef RUM_DEBUG
1914 for (i = 0; i < 14; i++) {
1915 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1916 continue;
1917 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1918 sc->bbp_prom[i].val));
1919 }
1920 #endif
1921 }
1922
1923 static int
1924 rum_bbp_init(struct rum_softc *sc)
1925 {
1926 unsigned int i, ntries;
1927 uint8_t val;
1928
1929 /* wait for BBP to be ready */
1930 for (ntries = 0; ntries < 100; ntries++) {
1931 val = rum_bbp_read(sc, 0);
1932 if (val != 0 && val != 0xff)
1933 break;
1934 DELAY(1000);
1935 }
1936 if (ntries == 100) {
1937 printf("%s: timeout waiting for BBP\n",
1938 device_xname(sc->sc_dev));
1939 return EIO;
1940 }
1941
1942 /* initialize BBP registers to default values */
1943 for (i = 0; i < __arraycount(rum_def_bbp); i++)
1944 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1945
1946 /* write vendor-specific BBP values (from EEPROM) */
1947 for (i = 0; i < 16; i++) {
1948 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1949 continue;
1950 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1951 }
1952
1953 return 0;
1954 }
1955
1956 static int
1957 rum_init(struct ifnet *ifp)
1958 {
1959 struct rum_softc *sc = ifp->if_softc;
1960 struct ieee80211com *ic = &sc->sc_ic;
1961 uint32_t tmp;
1962 usbd_status error = 0;
1963 unsigned int i, ntries;
1964
1965 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1966 if (rum_attachhook(sc))
1967 goto fail;
1968 }
1969
1970 rum_stop(ifp, 0);
1971
1972 /* initialize MAC registers to default values */
1973 for (i = 0; i < __arraycount(rum_def_mac); i++)
1974 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1975
1976 /* set host ready */
1977 rum_write(sc, RT2573_MAC_CSR1, 3);
1978 rum_write(sc, RT2573_MAC_CSR1, 0);
1979
1980 /* wait for BBP/RF to wakeup */
1981 for (ntries = 0; ntries < 1000; ntries++) {
1982 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1983 break;
1984 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1985 DELAY(1000);
1986 }
1987 if (ntries == 1000) {
1988 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1989 device_xname(sc->sc_dev));
1990 goto fail;
1991 }
1992
1993 if ((error = rum_bbp_init(sc)) != 0)
1994 goto fail;
1995
1996 /* select default channel */
1997 rum_select_band(sc, ic->ic_curchan);
1998 rum_select_antenna(sc);
1999 rum_set_chan(sc, ic->ic_curchan);
2000
2001 /* clear STA registers */
2002 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
2003
2004 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2005 rum_set_macaddr(sc, ic->ic_myaddr);
2006
2007 /* initialize ASIC */
2008 rum_write(sc, RT2573_MAC_CSR1, 4);
2009
2010 /*
2011 * Allocate xfer for AMRR statistics requests.
2012 */
2013 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2014 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0,
2015 &sc->amrr_xfer);
2016 if (error) {
2017 printf("%s: could not allocate AMRR xfer\n",
2018 device_xname(sc->sc_dev));
2019 goto fail;
2020 }
2021
2022 /*
2023 * Open Tx and Rx USB bulk pipes.
2024 */
2025 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2026 &sc->sc_tx_pipeh);
2027 if (error != 0) {
2028 printf("%s: could not open Tx pipe: %s\n",
2029 device_xname(sc->sc_dev), usbd_errstr(error));
2030 goto fail;
2031 }
2032
2033 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2034 &sc->sc_rx_pipeh);
2035 if (error != 0) {
2036 printf("%s: could not open Rx pipe: %s\n",
2037 device_xname(sc->sc_dev), usbd_errstr(error));
2038 goto fail;
2039 }
2040
2041 /*
2042 * Allocate Tx and Rx xfer queues.
2043 */
2044 error = rum_alloc_tx_list(sc);
2045 if (error != 0) {
2046 printf("%s: could not allocate Tx list\n",
2047 device_xname(sc->sc_dev));
2048 goto fail;
2049 }
2050
2051 error = rum_alloc_rx_list(sc);
2052 if (error != 0) {
2053 printf("%s: could not allocate Rx list\n",
2054 device_xname(sc->sc_dev));
2055 goto fail;
2056 }
2057
2058 /*
2059 * Start up the receive pipe.
2060 */
2061 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2062 struct rum_rx_data *data;
2063
2064 data = &sc->rx_data[i];
2065
2066 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2067 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2068 error = usbd_transfer(data->xfer);
2069 if (error != USBD_NORMAL_COMPLETION &&
2070 error != USBD_IN_PROGRESS) {
2071 printf("%s: could not queue Rx transfer\n",
2072 device_xname(sc->sc_dev));
2073 goto fail;
2074 }
2075 }
2076
2077 /* update Rx filter */
2078 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2079
2080 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2081 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2082 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2083 RT2573_DROP_ACKCTS;
2084 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2085 tmp |= RT2573_DROP_TODS;
2086 if (!(ifp->if_flags & IFF_PROMISC))
2087 tmp |= RT2573_DROP_NOT_TO_ME;
2088 }
2089 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2090
2091 ifp->if_flags &= ~IFF_OACTIVE;
2092 ifp->if_flags |= IFF_RUNNING;
2093
2094 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2095 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2096 else
2097 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2098
2099 return 0;
2100
2101 fail: rum_stop(ifp, 1);
2102 return error;
2103 }
2104
2105 static void
2106 rum_stop(struct ifnet *ifp, int disable)
2107 {
2108 struct rum_softc *sc = ifp->if_softc;
2109 struct ieee80211com *ic = &sc->sc_ic;
2110 uint32_t tmp;
2111
2112 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2113
2114 sc->sc_tx_timer = 0;
2115 ifp->if_timer = 0;
2116 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2117
2118 /* disable Rx */
2119 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2120 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2121
2122 /* reset ASIC */
2123 rum_write(sc, RT2573_MAC_CSR1, 3);
2124 rum_write(sc, RT2573_MAC_CSR1, 0);
2125
2126 if (sc->amrr_xfer != NULL) {
2127 usbd_destroy_xfer(sc->amrr_xfer);
2128 sc->amrr_xfer = NULL;
2129 }
2130
2131 if (sc->sc_rx_pipeh != NULL) {
2132 usbd_abort_pipe(sc->sc_rx_pipeh);
2133 }
2134
2135 if (sc->sc_tx_pipeh != NULL) {
2136 usbd_abort_pipe(sc->sc_tx_pipeh);
2137 }
2138
2139 rum_free_rx_list(sc);
2140 rum_free_tx_list(sc);
2141
2142 if (sc->sc_rx_pipeh != NULL) {
2143 usbd_close_pipe(sc->sc_rx_pipeh);
2144 sc->sc_rx_pipeh = NULL;
2145 }
2146
2147 if (sc->sc_tx_pipeh != NULL) {
2148 usbd_close_pipe(sc->sc_tx_pipeh);
2149 sc->sc_tx_pipeh = NULL;
2150 }
2151 }
2152
2153 static int
2154 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2155 {
2156 usb_device_request_t req;
2157 uint16_t reg = RT2573_MCU_CODE_BASE;
2158 usbd_status error;
2159
2160 /* copy firmware image into NIC */
2161 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2162 rum_write(sc, reg, UGETDW(ucode));
2163
2164 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2165 req.bRequest = RT2573_MCU_CNTL;
2166 USETW(req.wValue, RT2573_MCU_RUN);
2167 USETW(req.wIndex, 0);
2168 USETW(req.wLength, 0);
2169
2170 error = usbd_do_request(sc->sc_udev, &req, NULL);
2171 if (error != 0) {
2172 printf("%s: could not run firmware: %s\n",
2173 device_xname(sc->sc_dev), usbd_errstr(error));
2174 }
2175 return error;
2176 }
2177
2178 static int
2179 rum_prepare_beacon(struct rum_softc *sc)
2180 {
2181 struct ieee80211com *ic = &sc->sc_ic;
2182 struct rum_tx_desc desc;
2183 struct mbuf *m0;
2184 int rate;
2185
2186 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2187 if (m0 == NULL) {
2188 aprint_error_dev(sc->sc_dev,
2189 "could not allocate beacon frame\n");
2190 return ENOBUFS;
2191 }
2192
2193 /* send beacons at the lowest available rate */
2194 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2195
2196 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2197 m0->m_pkthdr.len, rate);
2198
2199 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2200 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2201
2202 /* copy beacon header and payload into NIC memory */
2203 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2204 m0->m_pkthdr.len);
2205
2206 m_freem(m0);
2207
2208 return 0;
2209 }
2210
2211 static void
2212 rum_newassoc(struct ieee80211_node *ni, int isnew)
2213 {
2214 /* start with lowest Tx rate */
2215 ni->ni_txrate = 0;
2216 }
2217
2218 static void
2219 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2220 {
2221 int i;
2222
2223 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2224 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
2225
2226 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2227
2228 /* set rate to some reasonable initial value */
2229 for (i = ni->ni_rates.rs_nrates - 1;
2230 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2231 i--);
2232 ni->ni_txrate = i;
2233
2234 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2235 }
2236
2237 static void
2238 rum_amrr_timeout(void *arg)
2239 {
2240 struct rum_softc *sc = arg;
2241 usb_device_request_t req;
2242
2243 /*
2244 * Asynchronously read statistic registers (cleared by read).
2245 */
2246 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2247 req.bRequest = RT2573_READ_MULTI_MAC;
2248 USETW(req.wValue, 0);
2249 USETW(req.wIndex, RT2573_STA_CSR0);
2250 USETW(req.wLength, sizeof(sc->sta));
2251
2252 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2253 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2254 rum_amrr_update);
2255 (void)usbd_transfer(sc->amrr_xfer);
2256 }
2257
2258 static void
2259 rum_amrr_update(struct usbd_xfer *xfer, void *priv,
2260 usbd_status status)
2261 {
2262 struct rum_softc *sc = (struct rum_softc *)priv;
2263 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2264
2265 if (status != USBD_NORMAL_COMPLETION) {
2266 printf("%s: could not retrieve Tx statistics - cancelling "
2267 "automatic rate control\n", device_xname(sc->sc_dev));
2268 return;
2269 }
2270
2271 /* count TX retry-fail as Tx errors */
2272 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2273
2274 sc->amn.amn_retrycnt =
2275 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2276 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2277 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2278
2279 sc->amn.amn_txcnt =
2280 sc->amn.amn_retrycnt +
2281 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2282
2283 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2284
2285 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2286 }
2287
2288 static int
2289 rum_activate(device_t self, enum devact act)
2290 {
2291 switch (act) {
2292 case DVACT_DEACTIVATE:
2293 /*if_deactivate(&sc->sc_ic.ic_if);*/
2294 return 0;
2295 default:
2296 return 0;
2297 }
2298 }
2299
2300 MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf");
2301
2302 #ifdef _MODULE
2303 #include "ioconf.c"
2304 #endif
2305
2306 static int
2307 if_rum_modcmd(modcmd_t cmd, void *aux)
2308 {
2309 int error = 0;
2310
2311 switch (cmd) {
2312 case MODULE_CMD_INIT:
2313 #ifdef _MODULE
2314 error = config_init_component(cfdriver_ioconf_rum,
2315 cfattach_ioconf_rum, cfdata_ioconf_rum);
2316 #endif
2317 return error;
2318 case MODULE_CMD_FINI:
2319 #ifdef _MODULE
2320 error = config_fini_component(cfdriver_ioconf_rum,
2321 cfattach_ioconf_rum, cfdata_ioconf_rum);
2322 #endif
2323 return error;
2324 default:
2325 return ENOTTY;
2326 }
2327 }
2328