if_rum.c revision 1.48.6.2 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.48.6.2 2014/12/03 22:33:56 skrll Exp $ */
3
4 /*-
5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com.tw/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.48.6.2 2014/12/03 22:33:56 skrll Exp $");
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/module.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39
40 #include <sys/bus.h>
41 #include <machine/endian.h>
42 #include <sys/intr.h>
43
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_arp.h>
47 #include <net/if_dl.h>
48 #include <net/if_ether.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip.h>
56
57 #include <net80211/ieee80211_netbsd.h>
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_amrr.h>
60 #include <net80211/ieee80211_radiotap.h>
61
62 #include <dev/firmload.h>
63
64 #include <dev/usb/usb.h>
65 #include <dev/usb/usbdi.h>
66 #include <dev/usb/usbdi_util.h>
67 #include <dev/usb/usbdevs.h>
68
69 #include <dev/usb/if_rumreg.h>
70 #include <dev/usb/if_rumvar.h>
71
72 #ifdef RUM_DEBUG
73 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0)
74 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0)
75 int rum_debug = 1;
76 #else
77 #define DPRINTF(x)
78 #define DPRINTFN(n, x)
79 #endif
80
81 /* various supported device vendors/products */
82 static const struct usb_devno rum_devs[] = {
83 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
84 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
85 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
86 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
87 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
88 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
89 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
90 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
91 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
92 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
93 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C },
94 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 },
95 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
96 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
97 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
98 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_RT2573 },
99 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL },
100 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX },
101 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
102 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
103 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
104 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
105 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 },
106 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 },
107 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 },
108 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 },
109 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
110 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
111 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
112 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
113 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
114 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
115 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
116 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
117 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
118 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG },
119 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG },
120 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
121 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
122 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
123 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
124 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
125 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
126 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
127 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
128 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
129 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
130 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 },
131 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
132 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
133 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
134 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
135 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 },
136 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 },
137 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 }
138 };
139
140 static int rum_attachhook(void *);
141 static int rum_alloc_tx_list(struct rum_softc *);
142 static void rum_free_tx_list(struct rum_softc *);
143 static int rum_alloc_rx_list(struct rum_softc *);
144 static void rum_free_rx_list(struct rum_softc *);
145 static int rum_media_change(struct ifnet *);
146 static void rum_next_scan(void *);
147 static void rum_task(void *);
148 static int rum_newstate(struct ieee80211com *,
149 enum ieee80211_state, int);
150 static void rum_txeof(usbd_xfer_handle, usbd_private_handle,
151 usbd_status);
152 static void rum_rxeof(usbd_xfer_handle, usbd_private_handle,
153 usbd_status);
154 static uint8_t rum_rxrate(const struct rum_rx_desc *);
155 static int rum_ack_rate(struct ieee80211com *, int);
156 static uint16_t rum_txtime(int, int, uint32_t);
157 static uint8_t rum_plcp_signal(int);
158 static void rum_setup_tx_desc(struct rum_softc *,
159 struct rum_tx_desc *, uint32_t, uint16_t, int,
160 int);
161 static int rum_tx_data(struct rum_softc *, struct mbuf *,
162 struct ieee80211_node *);
163 static void rum_start(struct ifnet *);
164 static void rum_watchdog(struct ifnet *);
165 static int rum_ioctl(struct ifnet *, u_long, void *);
166 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
167 int);
168 static uint32_t rum_read(struct rum_softc *, uint16_t);
169 static void rum_read_multi(struct rum_softc *, uint16_t, void *,
170 int);
171 static void rum_write(struct rum_softc *, uint16_t, uint32_t);
172 static void rum_write_multi(struct rum_softc *, uint16_t, void *,
173 size_t);
174 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
175 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
176 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
177 static void rum_select_antenna(struct rum_softc *);
178 static void rum_enable_mrr(struct rum_softc *);
179 static void rum_set_txpreamble(struct rum_softc *);
180 static void rum_set_basicrates(struct rum_softc *);
181 static void rum_select_band(struct rum_softc *,
182 struct ieee80211_channel *);
183 static void rum_set_chan(struct rum_softc *,
184 struct ieee80211_channel *);
185 static void rum_enable_tsf_sync(struct rum_softc *);
186 static void rum_update_slot(struct rum_softc *);
187 static void rum_set_bssid(struct rum_softc *, const uint8_t *);
188 static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
189 static void rum_update_promisc(struct rum_softc *);
190 static const char *rum_get_rf(int);
191 static void rum_read_eeprom(struct rum_softc *);
192 static int rum_bbp_init(struct rum_softc *);
193 static int rum_init(struct ifnet *);
194 static void rum_stop(struct ifnet *, int);
195 static int rum_load_microcode(struct rum_softc *, const u_char *,
196 size_t);
197 static int rum_prepare_beacon(struct rum_softc *);
198 static void rum_newassoc(struct ieee80211_node *, int);
199 static void rum_amrr_start(struct rum_softc *,
200 struct ieee80211_node *);
201 static void rum_amrr_timeout(void *);
202 static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
203 usbd_status status);
204
205 /*
206 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
207 */
208 static const struct ieee80211_rateset rum_rateset_11a =
209 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
210
211 static const struct ieee80211_rateset rum_rateset_11b =
212 { 4, { 2, 4, 11, 22 } };
213
214 static const struct ieee80211_rateset rum_rateset_11g =
215 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
216
217 static const struct {
218 uint32_t reg;
219 uint32_t val;
220 } rum_def_mac[] = {
221 RT2573_DEF_MAC
222 };
223
224 static const struct {
225 uint8_t reg;
226 uint8_t val;
227 } rum_def_bbp[] = {
228 RT2573_DEF_BBP
229 };
230
231 static const struct rfprog {
232 uint8_t chan;
233 uint32_t r1, r2, r3, r4;
234 } rum_rf5226[] = {
235 RT2573_RF5226
236 }, rum_rf5225[] = {
237 RT2573_RF5225
238 };
239
240 static int rum_match(device_t, cfdata_t, void *);
241 static void rum_attach(device_t, device_t, void *);
242 static int rum_detach(device_t, int);
243 static int rum_activate(device_t, enum devact);
244 extern struct cfdriver rum_cd;
245 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
246 rum_detach, rum_activate);
247
248 static int
249 rum_match(device_t parent, cfdata_t match, void *aux)
250 {
251 struct usb_attach_arg *uaa = aux;
252
253 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
254 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
255 }
256
257 static int
258 rum_attachhook(void *xsc)
259 {
260 struct rum_softc *sc = xsc;
261 firmware_handle_t fwh;
262 const char *name = "rum-rt2573";
263 u_char *ucode;
264 size_t size;
265 int error;
266
267 if ((error = firmware_open("rum", name, &fwh)) != 0) {
268 printf("%s: failed loadfirmware of file %s (error %d)\n",
269 device_xname(sc->sc_dev), name, error);
270 return error;
271 }
272 size = firmware_get_size(fwh);
273 ucode = firmware_malloc(size);
274 if (ucode == NULL) {
275 printf("%s: failed to allocate firmware memory\n",
276 device_xname(sc->sc_dev));
277 firmware_close(fwh);
278 return ENOMEM;
279 }
280 error = firmware_read(fwh, 0, ucode, size);
281 firmware_close(fwh);
282 if (error != 0) {
283 printf("%s: failed to read firmware (error %d)\n",
284 device_xname(sc->sc_dev), error);
285 firmware_free(ucode, 0);
286 return error;
287 }
288
289 if (rum_load_microcode(sc, ucode, size) != 0) {
290 printf("%s: could not load 8051 microcode\n",
291 device_xname(sc->sc_dev));
292 firmware_free(ucode, 0);
293 return ENXIO;
294 }
295
296 firmware_free(ucode, 0);
297 sc->sc_flags |= RT2573_FWLOADED;
298
299 return 0;
300 }
301
302 static void
303 rum_attach(device_t parent, device_t self, void *aux)
304 {
305 struct rum_softc *sc = device_private(self);
306 struct usb_attach_arg *uaa = aux;
307 struct ieee80211com *ic = &sc->sc_ic;
308 struct ifnet *ifp = &sc->sc_if;
309 usb_interface_descriptor_t *id;
310 usb_endpoint_descriptor_t *ed;
311 usbd_status error;
312 char *devinfop;
313 int i, ntries;
314 uint32_t tmp;
315
316 sc->sc_dev = self;
317 sc->sc_udev = uaa->device;
318 sc->sc_flags = 0;
319
320 aprint_naive("\n");
321 aprint_normal("\n");
322
323 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
324 aprint_normal_dev(self, "%s\n", devinfop);
325 usbd_devinfo_free(devinfop);
326
327 error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
328 if (error != 0) {
329 aprint_error_dev(self, "failed to set configuration"
330 ", err=%s\n", usbd_errstr(error));
331 return;
332 }
333
334 /* get the first interface handle */
335 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
336 &sc->sc_iface);
337 if (error != 0) {
338 aprint_error_dev(self, "could not get interface handle\n");
339 return;
340 }
341
342 /*
343 * Find endpoints.
344 */
345 id = usbd_get_interface_descriptor(sc->sc_iface);
346
347 sc->sc_rx_no = sc->sc_tx_no = -1;
348 for (i = 0; i < id->bNumEndpoints; i++) {
349 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
350 if (ed == NULL) {
351 aprint_error_dev(self,
352 "no endpoint descriptor for iface %d\n", i);
353 return;
354 }
355
356 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
357 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
358 sc->sc_rx_no = ed->bEndpointAddress;
359 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
360 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
361 sc->sc_tx_no = ed->bEndpointAddress;
362 }
363 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
364 aprint_error_dev(self, "missing endpoint\n");
365 return;
366 }
367
368 usb_init_task(&sc->sc_task, rum_task, sc, 0);
369 callout_init(&sc->sc_scan_ch, 0);
370
371 sc->amrr.amrr_min_success_threshold = 1;
372 sc->amrr.amrr_max_success_threshold = 10;
373 callout_init(&sc->sc_amrr_ch, 0);
374
375 /* retrieve RT2573 rev. no */
376 for (ntries = 0; ntries < 1000; ntries++) {
377 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
378 break;
379 DELAY(1000);
380 }
381 if (ntries == 1000) {
382 aprint_error_dev(self, "timeout waiting for chip to settle\n");
383 return;
384 }
385
386 /* retrieve MAC address and various other things from EEPROM */
387 rum_read_eeprom(sc);
388
389 aprint_normal_dev(self,
390 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
391 sc->macbbp_rev, tmp,
392 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
393
394 ic->ic_ifp = ifp;
395 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
396 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
397 ic->ic_state = IEEE80211_S_INIT;
398
399 /* set device capabilities */
400 ic->ic_caps =
401 IEEE80211_C_IBSS | /* IBSS mode supported */
402 IEEE80211_C_MONITOR | /* monitor mode supported */
403 IEEE80211_C_HOSTAP | /* HostAp mode supported */
404 IEEE80211_C_TXPMGT | /* tx power management */
405 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
406 IEEE80211_C_SHSLOT | /* short slot time supported */
407 IEEE80211_C_WPA; /* 802.11i */
408
409 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
410 /* set supported .11a rates */
411 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
412
413 /* set supported .11a channels */
414 for (i = 34; i <= 46; i += 4) {
415 ic->ic_channels[i].ic_freq =
416 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
417 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
418 }
419 for (i = 36; i <= 64; i += 4) {
420 ic->ic_channels[i].ic_freq =
421 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
422 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
423 }
424 for (i = 100; i <= 140; i += 4) {
425 ic->ic_channels[i].ic_freq =
426 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
427 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
428 }
429 for (i = 149; i <= 165; i += 4) {
430 ic->ic_channels[i].ic_freq =
431 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
432 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
433 }
434 }
435
436 /* set supported .11b and .11g rates */
437 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
438 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
439
440 /* set supported .11b and .11g channels (1 through 14) */
441 for (i = 1; i <= 14; i++) {
442 ic->ic_channels[i].ic_freq =
443 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
444 ic->ic_channels[i].ic_flags =
445 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
446 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
447 }
448
449 ifp->if_softc = sc;
450 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
451 ifp->if_init = rum_init;
452 ifp->if_ioctl = rum_ioctl;
453 ifp->if_start = rum_start;
454 ifp->if_watchdog = rum_watchdog;
455 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
456 IFQ_SET_READY(&ifp->if_snd);
457 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
458
459 if_attach(ifp);
460 ieee80211_ifattach(ic);
461 ic->ic_newassoc = rum_newassoc;
462
463 /* override state transition machine */
464 sc->sc_newstate = ic->ic_newstate;
465 ic->ic_newstate = rum_newstate;
466 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
467
468 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
469 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
470 &sc->sc_drvbpf);
471
472 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
473 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
474 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
475
476 sc->sc_txtap_len = sizeof sc->sc_txtapu;
477 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
478 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
479
480 ieee80211_announce(ic);
481
482 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
483 sc->sc_dev);
484
485 return;
486 }
487
488 static int
489 rum_detach(device_t self, int flags)
490 {
491 struct rum_softc *sc = device_private(self);
492 struct ieee80211com *ic = &sc->sc_ic;
493 struct ifnet *ifp = &sc->sc_if;
494 int s;
495
496 if (!ifp->if_softc)
497 return 0;
498
499 s = splusb();
500
501 rum_stop(ifp, 1);
502 usb_rem_task(sc->sc_udev, &sc->sc_task);
503 callout_stop(&sc->sc_scan_ch);
504 callout_stop(&sc->sc_amrr_ch);
505
506 if (sc->amrr_xfer != NULL) {
507 usbd_free_xfer(sc->amrr_xfer);
508 sc->amrr_xfer = NULL;
509 }
510
511 if (sc->sc_rx_pipeh != NULL) {
512 usbd_abort_pipe(sc->sc_rx_pipeh);
513 usbd_close_pipe(sc->sc_rx_pipeh);
514 }
515
516 if (sc->sc_tx_pipeh != NULL) {
517 usbd_abort_pipe(sc->sc_tx_pipeh);
518 usbd_close_pipe(sc->sc_tx_pipeh);
519 }
520
521 bpf_detach(ifp);
522 ieee80211_ifdetach(ic); /* free all nodes */
523 if_detach(ifp);
524
525 splx(s);
526
527 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
528
529 return 0;
530 }
531
532 static int
533 rum_alloc_tx_list(struct rum_softc *sc)
534 {
535 struct rum_tx_data *data;
536 int i, error;
537
538 sc->tx_cur = sc->tx_queued = 0;
539
540 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
541 data = &sc->tx_data[i];
542
543 data->sc = sc;
544
545 data->xfer = usbd_alloc_xfer(sc->sc_udev);
546 if (data->xfer == NULL) {
547 printf("%s: could not allocate tx xfer\n",
548 device_xname(sc->sc_dev));
549 error = ENOMEM;
550 goto fail;
551 }
552
553 data->buf = usbd_alloc_buffer(data->xfer,
554 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
555 if (data->buf == NULL) {
556 printf("%s: could not allocate tx buffer\n",
557 device_xname(sc->sc_dev));
558 error = ENOMEM;
559 goto fail;
560 }
561
562 /* clean Tx descriptor */
563 memset(data->buf, 0, RT2573_TX_DESC_SIZE);
564 }
565
566 return 0;
567
568 fail: rum_free_tx_list(sc);
569 return error;
570 }
571
572 static void
573 rum_free_tx_list(struct rum_softc *sc)
574 {
575 struct rum_tx_data *data;
576 int i;
577
578 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
579 data = &sc->tx_data[i];
580
581 if (data->xfer != NULL) {
582 usbd_free_xfer(data->xfer);
583 data->xfer = NULL;
584 }
585
586 if (data->ni != NULL) {
587 ieee80211_free_node(data->ni);
588 data->ni = NULL;
589 }
590 }
591 }
592
593 static int
594 rum_alloc_rx_list(struct rum_softc *sc)
595 {
596 struct rum_rx_data *data;
597 int i, error;
598
599 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
600 data = &sc->rx_data[i];
601
602 data->sc = sc;
603
604 data->xfer = usbd_alloc_xfer(sc->sc_udev);
605 if (data->xfer == NULL) {
606 printf("%s: could not allocate rx xfer\n",
607 device_xname(sc->sc_dev));
608 error = ENOMEM;
609 goto fail;
610 }
611
612 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
613 printf("%s: could not allocate rx buffer\n",
614 device_xname(sc->sc_dev));
615 error = ENOMEM;
616 goto fail;
617 }
618
619 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
620 if (data->m == NULL) {
621 printf("%s: could not allocate rx mbuf\n",
622 device_xname(sc->sc_dev));
623 error = ENOMEM;
624 goto fail;
625 }
626
627 MCLGET(data->m, M_DONTWAIT);
628 if (!(data->m->m_flags & M_EXT)) {
629 printf("%s: could not allocate rx mbuf cluster\n",
630 device_xname(sc->sc_dev));
631 error = ENOMEM;
632 goto fail;
633 }
634
635 data->buf = mtod(data->m, uint8_t *);
636 }
637
638 return 0;
639
640 fail: rum_free_rx_list(sc);
641 return error;
642 }
643
644 static void
645 rum_free_rx_list(struct rum_softc *sc)
646 {
647 struct rum_rx_data *data;
648 int i;
649
650 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
651 data = &sc->rx_data[i];
652
653 if (data->xfer != NULL) {
654 usbd_free_xfer(data->xfer);
655 data->xfer = NULL;
656 }
657
658 if (data->m != NULL) {
659 m_freem(data->m);
660 data->m = NULL;
661 }
662 }
663 }
664
665 static int
666 rum_media_change(struct ifnet *ifp)
667 {
668 int error;
669
670 error = ieee80211_media_change(ifp);
671 if (error != ENETRESET)
672 return error;
673
674 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
675 rum_init(ifp);
676
677 return 0;
678 }
679
680 /*
681 * This function is called periodically (every 200ms) during scanning to
682 * switch from one channel to another.
683 */
684 static void
685 rum_next_scan(void *arg)
686 {
687 struct rum_softc *sc = arg;
688 struct ieee80211com *ic = &sc->sc_ic;
689 int s;
690
691 s = splnet();
692 if (ic->ic_state == IEEE80211_S_SCAN)
693 ieee80211_next_scan(ic);
694 splx(s);
695 }
696
697 static void
698 rum_task(void *arg)
699 {
700 struct rum_softc *sc = arg;
701 struct ieee80211com *ic = &sc->sc_ic;
702 enum ieee80211_state ostate;
703 struct ieee80211_node *ni;
704 uint32_t tmp;
705
706 ostate = ic->ic_state;
707
708 switch (sc->sc_state) {
709 case IEEE80211_S_INIT:
710 if (ostate == IEEE80211_S_RUN) {
711 /* abort TSF synchronization */
712 tmp = rum_read(sc, RT2573_TXRX_CSR9);
713 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
714 }
715 break;
716
717 case IEEE80211_S_SCAN:
718 rum_set_chan(sc, ic->ic_curchan);
719 callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
720 break;
721
722 case IEEE80211_S_AUTH:
723 rum_set_chan(sc, ic->ic_curchan);
724 break;
725
726 case IEEE80211_S_ASSOC:
727 rum_set_chan(sc, ic->ic_curchan);
728 break;
729
730 case IEEE80211_S_RUN:
731 rum_set_chan(sc, ic->ic_curchan);
732
733 ni = ic->ic_bss;
734
735 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
736 rum_update_slot(sc);
737 rum_enable_mrr(sc);
738 rum_set_txpreamble(sc);
739 rum_set_basicrates(sc);
740 rum_set_bssid(sc, ni->ni_bssid);
741 }
742
743 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
744 ic->ic_opmode == IEEE80211_M_IBSS)
745 rum_prepare_beacon(sc);
746
747 if (ic->ic_opmode != IEEE80211_M_MONITOR)
748 rum_enable_tsf_sync(sc);
749
750 if (ic->ic_opmode == IEEE80211_M_STA) {
751 /* fake a join to init the tx rate */
752 rum_newassoc(ic->ic_bss, 1);
753
754 /* enable automatic rate adaptation in STA mode */
755 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
756 rum_amrr_start(sc, ni);
757 }
758
759 break;
760 }
761
762 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
763 }
764
765 static int
766 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
767 {
768 struct rum_softc *sc = ic->ic_ifp->if_softc;
769
770 usb_rem_task(sc->sc_udev, &sc->sc_task);
771 callout_stop(&sc->sc_scan_ch);
772 callout_stop(&sc->sc_amrr_ch);
773
774 /* do it in a process context */
775 sc->sc_state = nstate;
776 sc->sc_arg = arg;
777 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
778
779 return 0;
780 }
781
782 /* quickly determine if a given rate is CCK or OFDM */
783 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
784
785 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
786 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
787
788 static void
789 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
790 {
791 struct rum_tx_data *data = priv;
792 struct rum_softc *sc = data->sc;
793 struct ifnet *ifp = &sc->sc_if;
794 int s;
795
796 if (status != USBD_NORMAL_COMPLETION) {
797 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
798 return;
799
800 printf("%s: could not transmit buffer: %s\n",
801 device_xname(sc->sc_dev), usbd_errstr(status));
802
803 if (status == USBD_STALLED)
804 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
805
806 ifp->if_oerrors++;
807 return;
808 }
809
810 s = splnet();
811
812 ieee80211_free_node(data->ni);
813 data->ni = NULL;
814
815 sc->tx_queued--;
816 ifp->if_opackets++;
817
818 DPRINTFN(10, ("tx done\n"));
819
820 sc->sc_tx_timer = 0;
821 ifp->if_flags &= ~IFF_OACTIVE;
822 rum_start(ifp);
823
824 splx(s);
825 }
826
827 static void
828 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
829 {
830 struct rum_rx_data *data = priv;
831 struct rum_softc *sc = data->sc;
832 struct ieee80211com *ic = &sc->sc_ic;
833 struct ifnet *ifp = &sc->sc_if;
834 struct rum_rx_desc *desc;
835 struct ieee80211_frame *wh;
836 struct ieee80211_node *ni;
837 struct mbuf *mnew, *m;
838 int s, len;
839
840 if (status != USBD_NORMAL_COMPLETION) {
841 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
842 return;
843
844 if (status == USBD_STALLED)
845 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
846 goto skip;
847 }
848
849 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
850
851 if (len < (int)(RT2573_RX_DESC_SIZE +
852 sizeof(struct ieee80211_frame_min))) {
853 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
854 len));
855 ifp->if_ierrors++;
856 goto skip;
857 }
858
859 desc = (struct rum_rx_desc *)data->buf;
860
861 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
862 /*
863 * This should not happen since we did not request to receive
864 * those frames when we filled RT2573_TXRX_CSR0.
865 */
866 DPRINTFN(5, ("CRC error\n"));
867 ifp->if_ierrors++;
868 goto skip;
869 }
870
871 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
872 if (mnew == NULL) {
873 printf("%s: could not allocate rx mbuf\n",
874 device_xname(sc->sc_dev));
875 ifp->if_ierrors++;
876 goto skip;
877 }
878
879 MCLGET(mnew, M_DONTWAIT);
880 if (!(mnew->m_flags & M_EXT)) {
881 printf("%s: could not allocate rx mbuf cluster\n",
882 device_xname(sc->sc_dev));
883 m_freem(mnew);
884 ifp->if_ierrors++;
885 goto skip;
886 }
887
888 m = data->m;
889 data->m = mnew;
890 data->buf = mtod(data->m, uint8_t *);
891
892 /* finalize mbuf */
893 m->m_pkthdr.rcvif = ifp;
894 m->m_data = (void *)(desc + 1);
895 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
896
897 s = splnet();
898
899 if (sc->sc_drvbpf != NULL) {
900 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
901
902 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
903 tap->wr_rate = rum_rxrate(desc);
904 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
905 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
906 tap->wr_antenna = sc->rx_ant;
907 tap->wr_antsignal = desc->rssi;
908
909 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
910 }
911
912 wh = mtod(m, struct ieee80211_frame *);
913 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
914
915 /* send the frame to the 802.11 layer */
916 ieee80211_input(ic, m, ni, desc->rssi, 0);
917
918 /* node is no longer needed */
919 ieee80211_free_node(ni);
920
921 splx(s);
922
923 DPRINTFN(15, ("rx done\n"));
924
925 skip: /* setup a new transfer */
926 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
927 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
928 usbd_transfer(xfer);
929 }
930
931 /*
932 * This function is only used by the Rx radiotap code. It returns the rate at
933 * which a given frame was received.
934 */
935 static uint8_t
936 rum_rxrate(const struct rum_rx_desc *desc)
937 {
938 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
939 /* reverse function of rum_plcp_signal */
940 switch (desc->rate) {
941 case 0xb: return 12;
942 case 0xf: return 18;
943 case 0xa: return 24;
944 case 0xe: return 36;
945 case 0x9: return 48;
946 case 0xd: return 72;
947 case 0x8: return 96;
948 case 0xc: return 108;
949 }
950 } else {
951 if (desc->rate == 10)
952 return 2;
953 if (desc->rate == 20)
954 return 4;
955 if (desc->rate == 55)
956 return 11;
957 if (desc->rate == 110)
958 return 22;
959 }
960 return 2; /* should not get there */
961 }
962
963 /*
964 * Return the expected ack rate for a frame transmitted at rate `rate'.
965 * XXX: this should depend on the destination node basic rate set.
966 */
967 static int
968 rum_ack_rate(struct ieee80211com *ic, int rate)
969 {
970 switch (rate) {
971 /* CCK rates */
972 case 2:
973 return 2;
974 case 4:
975 case 11:
976 case 22:
977 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
978
979 /* OFDM rates */
980 case 12:
981 case 18:
982 return 12;
983 case 24:
984 case 36:
985 return 24;
986 case 48:
987 case 72:
988 case 96:
989 case 108:
990 return 48;
991 }
992
993 /* default to 1Mbps */
994 return 2;
995 }
996
997 /*
998 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
999 * The function automatically determines the operating mode depending on the
1000 * given rate. `flags' indicates whether short preamble is in use or not.
1001 */
1002 static uint16_t
1003 rum_txtime(int len, int rate, uint32_t flags)
1004 {
1005 uint16_t txtime;
1006
1007 if (RUM_RATE_IS_OFDM(rate)) {
1008 /* IEEE Std 802.11a-1999, pp. 37 */
1009 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1010 txtime = 16 + 4 + 4 * txtime + 6;
1011 } else {
1012 /* IEEE Std 802.11b-1999, pp. 28 */
1013 txtime = (16 * len + rate - 1) / rate;
1014 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1015 txtime += 72 + 24;
1016 else
1017 txtime += 144 + 48;
1018 }
1019 return txtime;
1020 }
1021
1022 static uint8_t
1023 rum_plcp_signal(int rate)
1024 {
1025 switch (rate) {
1026 /* CCK rates (returned values are device-dependent) */
1027 case 2: return 0x0;
1028 case 4: return 0x1;
1029 case 11: return 0x2;
1030 case 22: return 0x3;
1031
1032 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1033 case 12: return 0xb;
1034 case 18: return 0xf;
1035 case 24: return 0xa;
1036 case 36: return 0xe;
1037 case 48: return 0x9;
1038 case 72: return 0xd;
1039 case 96: return 0x8;
1040 case 108: return 0xc;
1041
1042 /* unsupported rates (should not get there) */
1043 default: return 0xff;
1044 }
1045 }
1046
1047 static void
1048 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1049 uint32_t flags, uint16_t xflags, int len, int rate)
1050 {
1051 struct ieee80211com *ic = &sc->sc_ic;
1052 uint16_t plcp_length;
1053 int remainder;
1054
1055 desc->flags = htole32(flags);
1056 desc->flags |= htole32(RT2573_TX_VALID);
1057 desc->flags |= htole32(len << 16);
1058
1059 desc->xflags = htole16(xflags);
1060
1061 desc->wme = htole16(
1062 RT2573_QID(0) |
1063 RT2573_AIFSN(2) |
1064 RT2573_LOGCWMIN(4) |
1065 RT2573_LOGCWMAX(10));
1066
1067 /* setup PLCP fields */
1068 desc->plcp_signal = rum_plcp_signal(rate);
1069 desc->plcp_service = 4;
1070
1071 len += IEEE80211_CRC_LEN;
1072 if (RUM_RATE_IS_OFDM(rate)) {
1073 desc->flags |= htole32(RT2573_TX_OFDM);
1074
1075 plcp_length = len & 0xfff;
1076 desc->plcp_length_hi = plcp_length >> 6;
1077 desc->plcp_length_lo = plcp_length & 0x3f;
1078 } else {
1079 plcp_length = (16 * len + rate - 1) / rate;
1080 if (rate == 22) {
1081 remainder = (16 * len) % 22;
1082 if (remainder != 0 && remainder < 7)
1083 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1084 }
1085 desc->plcp_length_hi = plcp_length >> 8;
1086 desc->plcp_length_lo = plcp_length & 0xff;
1087
1088 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1089 desc->plcp_signal |= 0x08;
1090 }
1091 }
1092
1093 #define RUM_TX_TIMEOUT 5000
1094
1095 static int
1096 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1097 {
1098 struct ieee80211com *ic = &sc->sc_ic;
1099 struct rum_tx_desc *desc;
1100 struct rum_tx_data *data;
1101 struct ieee80211_frame *wh;
1102 struct ieee80211_key *k;
1103 uint32_t flags = 0;
1104 uint16_t dur;
1105 usbd_status error;
1106 int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1107
1108 wh = mtod(m0, struct ieee80211_frame *);
1109
1110 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1111 k = ieee80211_crypto_encap(ic, ni, m0);
1112 if (k == NULL) {
1113 m_freem(m0);
1114 return ENOBUFS;
1115 }
1116
1117 /* packet header may have moved, reset our local pointer */
1118 wh = mtod(m0, struct ieee80211_frame *);
1119 }
1120
1121 /* compute actual packet length (including CRC and crypto overhead) */
1122 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1123
1124 /* pickup a rate */
1125 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1126 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1127 IEEE80211_FC0_TYPE_MGT)) {
1128 /* mgmt/multicast frames are sent at the lowest avail. rate */
1129 rate = ni->ni_rates.rs_rates[0];
1130 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1131 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1132 } else
1133 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1134 if (rate == 0)
1135 rate = 2; /* XXX should not happen */
1136 rate &= IEEE80211_RATE_VAL;
1137
1138 /* check if RTS/CTS or CTS-to-self protection must be used */
1139 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1140 /* multicast frames are not sent at OFDM rates in 802.11b/g */
1141 if (pktlen > ic->ic_rtsthreshold) {
1142 needrts = 1; /* RTS/CTS based on frame length */
1143 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1144 RUM_RATE_IS_OFDM(rate)) {
1145 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1146 needcts = 1; /* CTS-to-self */
1147 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1148 needrts = 1; /* RTS/CTS */
1149 }
1150 }
1151 if (needrts || needcts) {
1152 struct mbuf *mprot;
1153 int protrate, ackrate;
1154
1155 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1156 ackrate = rum_ack_rate(ic, rate);
1157
1158 dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1159 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1160 2 * sc->sifs;
1161 if (needrts) {
1162 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1163 protrate), ic->ic_flags) + sc->sifs;
1164 mprot = ieee80211_get_rts(ic, wh, dur);
1165 } else {
1166 mprot = ieee80211_get_cts_to_self(ic, dur);
1167 }
1168 if (mprot == NULL) {
1169 aprint_error_dev(sc->sc_dev,
1170 "couldn't allocate protection frame\n");
1171 m_freem(m0);
1172 return ENOBUFS;
1173 }
1174
1175 data = &sc->tx_data[sc->tx_cur];
1176 desc = (struct rum_tx_desc *)data->buf;
1177
1178 /* avoid multiple free() of the same node for each fragment */
1179 data->ni = ieee80211_ref_node(ni);
1180
1181 m_copydata(mprot, 0, mprot->m_pkthdr.len,
1182 data->buf + RT2573_TX_DESC_SIZE);
1183 rum_setup_tx_desc(sc, desc,
1184 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1185 0, mprot->m_pkthdr.len, protrate);
1186
1187 /* no roundup necessary here */
1188 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1189
1190 /* XXX may want to pass the protection frame to BPF */
1191
1192 /* mbuf is no longer needed */
1193 m_freem(mprot);
1194
1195 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1196 xferlen, USBD_FORCE_SHORT_XFER,
1197 RUM_TX_TIMEOUT, rum_txeof);
1198 error = usbd_transfer(data->xfer);
1199 if (error != USBD_NORMAL_COMPLETION &&
1200 error != USBD_IN_PROGRESS) {
1201 m_freem(m0);
1202 return error;
1203 }
1204
1205 sc->tx_queued++;
1206 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1207
1208 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1209 }
1210
1211 data = &sc->tx_data[sc->tx_cur];
1212 desc = (struct rum_tx_desc *)data->buf;
1213
1214 data->ni = ni;
1215
1216 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1217 flags |= RT2573_TX_NEED_ACK;
1218
1219 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1220 ic->ic_flags) + sc->sifs;
1221 *(uint16_t *)wh->i_dur = htole16(dur);
1222
1223 /* tell hardware to set timestamp in probe responses */
1224 if ((wh->i_fc[0] &
1225 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1226 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1227 flags |= RT2573_TX_TIMESTAMP;
1228 }
1229
1230 if (sc->sc_drvbpf != NULL) {
1231 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1232
1233 tap->wt_flags = 0;
1234 tap->wt_rate = rate;
1235 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1236 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1237 tap->wt_antenna = sc->tx_ant;
1238
1239 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1240 }
1241
1242 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1243 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1244
1245 /* align end on a 4-bytes boundary */
1246 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1247
1248 /*
1249 * No space left in the last URB to store the extra 4 bytes, force
1250 * sending of another URB.
1251 */
1252 if ((xferlen % 64) == 0)
1253 xferlen += 4;
1254
1255 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1256 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1257 rate, xferlen));
1258
1259 /* mbuf is no longer needed */
1260 m_freem(m0);
1261
1262 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1263 USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof);
1264 error = usbd_transfer(data->xfer);
1265 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1266 return error;
1267
1268 sc->tx_queued++;
1269 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1270
1271 return 0;
1272 }
1273
1274 static void
1275 rum_start(struct ifnet *ifp)
1276 {
1277 struct rum_softc *sc = ifp->if_softc;
1278 struct ieee80211com *ic = &sc->sc_ic;
1279 struct ether_header *eh;
1280 struct ieee80211_node *ni;
1281 struct mbuf *m0;
1282
1283 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1284 return;
1285
1286 for (;;) {
1287 IF_POLL(&ic->ic_mgtq, m0);
1288 if (m0 != NULL) {
1289 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1290 ifp->if_flags |= IFF_OACTIVE;
1291 break;
1292 }
1293 IF_DEQUEUE(&ic->ic_mgtq, m0);
1294
1295 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1296 m0->m_pkthdr.rcvif = NULL;
1297 bpf_mtap3(ic->ic_rawbpf, m0);
1298 if (rum_tx_data(sc, m0, ni) != 0)
1299 break;
1300
1301 } else {
1302 if (ic->ic_state != IEEE80211_S_RUN)
1303 break;
1304 IFQ_POLL(&ifp->if_snd, m0);
1305 if (m0 == NULL)
1306 break;
1307 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1308 ifp->if_flags |= IFF_OACTIVE;
1309 break;
1310 }
1311 IFQ_DEQUEUE(&ifp->if_snd, m0);
1312 if (m0->m_len < (int)sizeof(struct ether_header) &&
1313 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1314 continue;
1315
1316 eh = mtod(m0, struct ether_header *);
1317 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1318 if (ni == NULL) {
1319 m_freem(m0);
1320 continue;
1321 }
1322 bpf_mtap(ifp, m0);
1323 m0 = ieee80211_encap(ic, m0, ni);
1324 if (m0 == NULL) {
1325 ieee80211_free_node(ni);
1326 continue;
1327 }
1328 bpf_mtap3(ic->ic_rawbpf, m0);
1329 if (rum_tx_data(sc, m0, ni) != 0) {
1330 ieee80211_free_node(ni);
1331 ifp->if_oerrors++;
1332 break;
1333 }
1334 }
1335
1336 sc->sc_tx_timer = 5;
1337 ifp->if_timer = 1;
1338 }
1339 }
1340
1341 static void
1342 rum_watchdog(struct ifnet *ifp)
1343 {
1344 struct rum_softc *sc = ifp->if_softc;
1345 struct ieee80211com *ic = &sc->sc_ic;
1346
1347 ifp->if_timer = 0;
1348
1349 if (sc->sc_tx_timer > 0) {
1350 if (--sc->sc_tx_timer == 0) {
1351 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1352 /*rum_init(ifp); XXX needs a process context! */
1353 ifp->if_oerrors++;
1354 return;
1355 }
1356 ifp->if_timer = 1;
1357 }
1358
1359 ieee80211_watchdog(ic);
1360 }
1361
1362 static int
1363 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1364 {
1365 #define IS_RUNNING(ifp) \
1366 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1367
1368 struct rum_softc *sc = ifp->if_softc;
1369 struct ieee80211com *ic = &sc->sc_ic;
1370 int s, error = 0;
1371
1372 s = splnet();
1373
1374 switch (cmd) {
1375 case SIOCSIFFLAGS:
1376 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1377 break;
1378 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1379 case IFF_UP|IFF_RUNNING:
1380 rum_update_promisc(sc);
1381 break;
1382 case IFF_UP:
1383 rum_init(ifp);
1384 break;
1385 case IFF_RUNNING:
1386 rum_stop(ifp, 1);
1387 break;
1388 case 0:
1389 break;
1390 }
1391 break;
1392
1393 case SIOCADDMULTI:
1394 case SIOCDELMULTI:
1395 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1396 error = 0;
1397 }
1398 break;
1399
1400 default:
1401 error = ieee80211_ioctl(ic, cmd, data);
1402 }
1403
1404 if (error == ENETRESET) {
1405 if (IS_RUNNING(ifp) &&
1406 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1407 rum_init(ifp);
1408 error = 0;
1409 }
1410
1411 splx(s);
1412
1413 return error;
1414 #undef IS_RUNNING
1415 }
1416
1417 static void
1418 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1419 {
1420 usb_device_request_t req;
1421 usbd_status error;
1422
1423 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1424 req.bRequest = RT2573_READ_EEPROM;
1425 USETW(req.wValue, 0);
1426 USETW(req.wIndex, addr);
1427 USETW(req.wLength, len);
1428
1429 error = usbd_do_request(sc->sc_udev, &req, buf);
1430 if (error != 0) {
1431 printf("%s: could not read EEPROM: %s\n",
1432 device_xname(sc->sc_dev), usbd_errstr(error));
1433 }
1434 }
1435
1436 static uint32_t
1437 rum_read(struct rum_softc *sc, uint16_t reg)
1438 {
1439 uint32_t val;
1440
1441 rum_read_multi(sc, reg, &val, sizeof val);
1442
1443 return le32toh(val);
1444 }
1445
1446 static void
1447 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1448 {
1449 usb_device_request_t req;
1450 usbd_status error;
1451
1452 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1453 req.bRequest = RT2573_READ_MULTI_MAC;
1454 USETW(req.wValue, 0);
1455 USETW(req.wIndex, reg);
1456 USETW(req.wLength, len);
1457
1458 error = usbd_do_request(sc->sc_udev, &req, buf);
1459 if (error != 0) {
1460 printf("%s: could not multi read MAC register: %s\n",
1461 device_xname(sc->sc_dev), usbd_errstr(error));
1462 }
1463 }
1464
1465 static void
1466 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1467 {
1468 uint32_t tmp = htole32(val);
1469
1470 rum_write_multi(sc, reg, &tmp, sizeof tmp);
1471 }
1472
1473 static void
1474 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1475 {
1476 usb_device_request_t req;
1477 usbd_status error;
1478 int offset;
1479
1480 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1481 req.bRequest = RT2573_WRITE_MULTI_MAC;
1482 USETW(req.wValue, 0);
1483
1484 /* write at most 64 bytes at a time */
1485 for (offset = 0; offset < len; offset += 64) {
1486 USETW(req.wIndex, reg + offset);
1487 USETW(req.wLength, MIN(len - offset, 64));
1488
1489 error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
1490 if (error != 0) {
1491 printf("%s: could not multi write MAC register: %s\n",
1492 device_xname(sc->sc_dev), usbd_errstr(error));
1493 }
1494 }
1495 }
1496
1497 static void
1498 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1499 {
1500 uint32_t tmp;
1501 int ntries;
1502
1503 for (ntries = 0; ntries < 5; ntries++) {
1504 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1505 break;
1506 }
1507 if (ntries == 5) {
1508 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1509 return;
1510 }
1511
1512 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1513 rum_write(sc, RT2573_PHY_CSR3, tmp);
1514 }
1515
1516 static uint8_t
1517 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1518 {
1519 uint32_t val;
1520 int ntries;
1521
1522 for (ntries = 0; ntries < 5; ntries++) {
1523 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1524 break;
1525 }
1526 if (ntries == 5) {
1527 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1528 return 0;
1529 }
1530
1531 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1532 rum_write(sc, RT2573_PHY_CSR3, val);
1533
1534 for (ntries = 0; ntries < 100; ntries++) {
1535 val = rum_read(sc, RT2573_PHY_CSR3);
1536 if (!(val & RT2573_BBP_BUSY))
1537 return val & 0xff;
1538 DELAY(1);
1539 }
1540
1541 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1542 return 0;
1543 }
1544
1545 static void
1546 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1547 {
1548 uint32_t tmp;
1549 int ntries;
1550
1551 for (ntries = 0; ntries < 5; ntries++) {
1552 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1553 break;
1554 }
1555 if (ntries == 5) {
1556 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1557 return;
1558 }
1559
1560 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1561 (reg & 3);
1562 rum_write(sc, RT2573_PHY_CSR4, tmp);
1563
1564 /* remember last written value in sc */
1565 sc->rf_regs[reg] = val;
1566
1567 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1568 }
1569
1570 static void
1571 rum_select_antenna(struct rum_softc *sc)
1572 {
1573 uint8_t bbp4, bbp77;
1574 uint32_t tmp;
1575
1576 bbp4 = rum_bbp_read(sc, 4);
1577 bbp77 = rum_bbp_read(sc, 77);
1578
1579 /* TBD */
1580
1581 /* make sure Rx is disabled before switching antenna */
1582 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1583 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1584
1585 rum_bbp_write(sc, 4, bbp4);
1586 rum_bbp_write(sc, 77, bbp77);
1587
1588 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1589 }
1590
1591 /*
1592 * Enable multi-rate retries for frames sent at OFDM rates.
1593 * In 802.11b/g mode, allow fallback to CCK rates.
1594 */
1595 static void
1596 rum_enable_mrr(struct rum_softc *sc)
1597 {
1598 struct ieee80211com *ic = &sc->sc_ic;
1599 uint32_t tmp;
1600
1601 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1602
1603 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1604 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1605 tmp |= RT2573_MRR_CCK_FALLBACK;
1606 tmp |= RT2573_MRR_ENABLED;
1607
1608 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1609 }
1610
1611 static void
1612 rum_set_txpreamble(struct rum_softc *sc)
1613 {
1614 uint32_t tmp;
1615
1616 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1617
1618 tmp &= ~RT2573_SHORT_PREAMBLE;
1619 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1620 tmp |= RT2573_SHORT_PREAMBLE;
1621
1622 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1623 }
1624
1625 static void
1626 rum_set_basicrates(struct rum_softc *sc)
1627 {
1628 struct ieee80211com *ic = &sc->sc_ic;
1629
1630 /* update basic rate set */
1631 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1632 /* 11b basic rates: 1, 2Mbps */
1633 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1634 } else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1635 /* 11a basic rates: 6, 12, 24Mbps */
1636 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1637 } else {
1638 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1639 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1640 }
1641 }
1642
1643 /*
1644 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1645 * driver.
1646 */
1647 static void
1648 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1649 {
1650 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1651 uint32_t tmp;
1652
1653 /* update all BBP registers that depend on the band */
1654 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1655 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1656 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1657 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1658 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1659 }
1660 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1661 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1662 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1663 }
1664
1665 sc->bbp17 = bbp17;
1666 rum_bbp_write(sc, 17, bbp17);
1667 rum_bbp_write(sc, 96, bbp96);
1668 rum_bbp_write(sc, 104, bbp104);
1669
1670 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1671 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1672 rum_bbp_write(sc, 75, 0x80);
1673 rum_bbp_write(sc, 86, 0x80);
1674 rum_bbp_write(sc, 88, 0x80);
1675 }
1676
1677 rum_bbp_write(sc, 35, bbp35);
1678 rum_bbp_write(sc, 97, bbp97);
1679 rum_bbp_write(sc, 98, bbp98);
1680
1681 tmp = rum_read(sc, RT2573_PHY_CSR0);
1682 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1683 if (IEEE80211_IS_CHAN_2GHZ(c))
1684 tmp |= RT2573_PA_PE_2GHZ;
1685 else
1686 tmp |= RT2573_PA_PE_5GHZ;
1687 rum_write(sc, RT2573_PHY_CSR0, tmp);
1688
1689 /* 802.11a uses a 16 microseconds short interframe space */
1690 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1691 }
1692
1693 static void
1694 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1695 {
1696 struct ieee80211com *ic = &sc->sc_ic;
1697 const struct rfprog *rfprog;
1698 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1699 int8_t power;
1700 u_int i, chan;
1701
1702 chan = ieee80211_chan2ieee(ic, c);
1703 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1704 return;
1705
1706 /* select the appropriate RF settings based on what EEPROM says */
1707 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1708 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1709
1710 /* find the settings for this channel (we know it exists) */
1711 for (i = 0; rfprog[i].chan != chan; i++);
1712
1713 power = sc->txpow[i];
1714 if (power < 0) {
1715 bbp94 += power;
1716 power = 0;
1717 } else if (power > 31) {
1718 bbp94 += power - 31;
1719 power = 31;
1720 }
1721
1722 /*
1723 * If we are switching from the 2GHz band to the 5GHz band or
1724 * vice-versa, BBP registers need to be reprogrammed.
1725 */
1726 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1727 rum_select_band(sc, c);
1728 rum_select_antenna(sc);
1729 }
1730 ic->ic_curchan = c;
1731
1732 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1733 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1734 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1735 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1736
1737 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1738 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1739 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1740 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1741
1742 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1743 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1744 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1745 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1746
1747 DELAY(10);
1748
1749 /* enable smart mode for MIMO-capable RFs */
1750 bbp3 = rum_bbp_read(sc, 3);
1751
1752 bbp3 &= ~RT2573_SMART_MODE;
1753 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1754 bbp3 |= RT2573_SMART_MODE;
1755
1756 rum_bbp_write(sc, 3, bbp3);
1757
1758 if (bbp94 != RT2573_BBPR94_DEFAULT)
1759 rum_bbp_write(sc, 94, bbp94);
1760 }
1761
1762 /*
1763 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1764 * and HostAP operating modes.
1765 */
1766 static void
1767 rum_enable_tsf_sync(struct rum_softc *sc)
1768 {
1769 struct ieee80211com *ic = &sc->sc_ic;
1770 uint32_t tmp;
1771
1772 if (ic->ic_opmode != IEEE80211_M_STA) {
1773 /*
1774 * Change default 16ms TBTT adjustment to 8ms.
1775 * Must be done before enabling beacon generation.
1776 */
1777 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1778 }
1779
1780 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1781
1782 /* set beacon interval (in 1/16ms unit) */
1783 tmp |= ic->ic_bss->ni_intval * 16;
1784
1785 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1786 if (ic->ic_opmode == IEEE80211_M_STA)
1787 tmp |= RT2573_TSF_MODE(1);
1788 else
1789 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1790
1791 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1792 }
1793
1794 static void
1795 rum_update_slot(struct rum_softc *sc)
1796 {
1797 struct ieee80211com *ic = &sc->sc_ic;
1798 uint8_t slottime;
1799 uint32_t tmp;
1800
1801 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1802
1803 tmp = rum_read(sc, RT2573_MAC_CSR9);
1804 tmp = (tmp & ~0xff) | slottime;
1805 rum_write(sc, RT2573_MAC_CSR9, tmp);
1806
1807 DPRINTF(("setting slot time to %uus\n", slottime));
1808 }
1809
1810 static void
1811 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1812 {
1813 uint32_t tmp;
1814
1815 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1816 rum_write(sc, RT2573_MAC_CSR4, tmp);
1817
1818 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1819 rum_write(sc, RT2573_MAC_CSR5, tmp);
1820 }
1821
1822 static void
1823 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1824 {
1825 uint32_t tmp;
1826
1827 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1828 rum_write(sc, RT2573_MAC_CSR2, tmp);
1829
1830 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1831 rum_write(sc, RT2573_MAC_CSR3, tmp);
1832 }
1833
1834 static void
1835 rum_update_promisc(struct rum_softc *sc)
1836 {
1837 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1838 uint32_t tmp;
1839
1840 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1841
1842 tmp &= ~RT2573_DROP_NOT_TO_ME;
1843 if (!(ifp->if_flags & IFF_PROMISC))
1844 tmp |= RT2573_DROP_NOT_TO_ME;
1845
1846 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1847
1848 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1849 "entering" : "leaving"));
1850 }
1851
1852 static const char *
1853 rum_get_rf(int rev)
1854 {
1855 switch (rev) {
1856 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1857 case RT2573_RF_2528: return "RT2528";
1858 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1859 case RT2573_RF_5226: return "RT5226";
1860 default: return "unknown";
1861 }
1862 }
1863
1864 static void
1865 rum_read_eeprom(struct rum_softc *sc)
1866 {
1867 struct ieee80211com *ic = &sc->sc_ic;
1868 uint16_t val;
1869 #ifdef RUM_DEBUG
1870 int i;
1871 #endif
1872
1873 /* read MAC/BBP type */
1874 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1875 sc->macbbp_rev = le16toh(val);
1876
1877 /* read MAC address */
1878 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1879
1880 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1881 val = le16toh(val);
1882 sc->rf_rev = (val >> 11) & 0x1f;
1883 sc->hw_radio = (val >> 10) & 0x1;
1884 sc->rx_ant = (val >> 4) & 0x3;
1885 sc->tx_ant = (val >> 2) & 0x3;
1886 sc->nb_ant = val & 0x3;
1887
1888 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1889
1890 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1891 val = le16toh(val);
1892 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1893 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1894
1895 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1896 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1897
1898 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1899 val = le16toh(val);
1900 if ((val & 0xff) != 0xff)
1901 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1902
1903 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1904 val = le16toh(val);
1905 if ((val & 0xff) != 0xff)
1906 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1907
1908 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1909 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1910
1911 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1912 val = le16toh(val);
1913 if ((val & 0xff) != 0xff)
1914 sc->rffreq = val & 0xff;
1915
1916 DPRINTF(("RF freq=%d\n", sc->rffreq));
1917
1918 /* read Tx power for all a/b/g channels */
1919 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1920 /* XXX default Tx power for 802.11a channels */
1921 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1922 #ifdef RUM_DEBUG
1923 for (i = 0; i < 14; i++)
1924 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1925 #endif
1926
1927 /* read default values for BBP registers */
1928 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1929 #ifdef RUM_DEBUG
1930 for (i = 0; i < 14; i++) {
1931 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1932 continue;
1933 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1934 sc->bbp_prom[i].val));
1935 }
1936 #endif
1937 }
1938
1939 static int
1940 rum_bbp_init(struct rum_softc *sc)
1941 {
1942 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1943 unsigned int i, ntries;
1944 uint8_t val;
1945
1946 /* wait for BBP to be ready */
1947 for (ntries = 0; ntries < 100; ntries++) {
1948 val = rum_bbp_read(sc, 0);
1949 if (val != 0 && val != 0xff)
1950 break;
1951 DELAY(1000);
1952 }
1953 if (ntries == 100) {
1954 printf("%s: timeout waiting for BBP\n",
1955 device_xname(sc->sc_dev));
1956 return EIO;
1957 }
1958
1959 /* initialize BBP registers to default values */
1960 for (i = 0; i < N(rum_def_bbp); i++)
1961 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1962
1963 /* write vendor-specific BBP values (from EEPROM) */
1964 for (i = 0; i < 16; i++) {
1965 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1966 continue;
1967 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1968 }
1969
1970 return 0;
1971 #undef N
1972 }
1973
1974 static int
1975 rum_init(struct ifnet *ifp)
1976 {
1977 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1978 struct rum_softc *sc = ifp->if_softc;
1979 struct ieee80211com *ic = &sc->sc_ic;
1980 struct rum_rx_data *data;
1981 uint32_t tmp;
1982 usbd_status error = 0;
1983 unsigned int i, ntries;
1984
1985 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1986 if (rum_attachhook(sc))
1987 goto fail;
1988 }
1989
1990 rum_stop(ifp, 0);
1991
1992 /* initialize MAC registers to default values */
1993 for (i = 0; i < N(rum_def_mac); i++)
1994 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1995
1996 /* set host ready */
1997 rum_write(sc, RT2573_MAC_CSR1, 3);
1998 rum_write(sc, RT2573_MAC_CSR1, 0);
1999
2000 /* wait for BBP/RF to wakeup */
2001 for (ntries = 0; ntries < 1000; ntries++) {
2002 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
2003 break;
2004 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
2005 DELAY(1000);
2006 }
2007 if (ntries == 1000) {
2008 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2009 device_xname(sc->sc_dev));
2010 goto fail;
2011 }
2012
2013 if ((error = rum_bbp_init(sc)) != 0)
2014 goto fail;
2015
2016 /* select default channel */
2017 rum_select_band(sc, ic->ic_curchan);
2018 rum_select_antenna(sc);
2019 rum_set_chan(sc, ic->ic_curchan);
2020
2021 /* clear STA registers */
2022 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2023
2024 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2025 rum_set_macaddr(sc, ic->ic_myaddr);
2026
2027 /* initialize ASIC */
2028 rum_write(sc, RT2573_MAC_CSR1, 4);
2029
2030 /*
2031 * Allocate xfer for AMRR statistics requests.
2032 */
2033 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2034 if (sc->amrr_xfer == NULL) {
2035 printf("%s: could not allocate AMRR xfer\n",
2036 device_xname(sc->sc_dev));
2037 goto fail;
2038 }
2039
2040 /*
2041 * Open Tx and Rx USB bulk pipes.
2042 */
2043 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2044 &sc->sc_tx_pipeh);
2045 if (error != 0) {
2046 printf("%s: could not open Tx pipe: %s\n",
2047 device_xname(sc->sc_dev), usbd_errstr(error));
2048 goto fail;
2049 }
2050
2051 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2052 &sc->sc_rx_pipeh);
2053 if (error != 0) {
2054 printf("%s: could not open Rx pipe: %s\n",
2055 device_xname(sc->sc_dev), usbd_errstr(error));
2056 goto fail;
2057 }
2058
2059 /*
2060 * Allocate Tx and Rx xfer queues.
2061 */
2062 error = rum_alloc_tx_list(sc);
2063 if (error != 0) {
2064 printf("%s: could not allocate Tx list\n",
2065 device_xname(sc->sc_dev));
2066 goto fail;
2067 }
2068
2069 error = rum_alloc_rx_list(sc);
2070 if (error != 0) {
2071 printf("%s: could not allocate Rx list\n",
2072 device_xname(sc->sc_dev));
2073 goto fail;
2074 }
2075
2076 /*
2077 * Start up the receive pipe.
2078 */
2079 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2080 data = &sc->rx_data[i];
2081
2082 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2083 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2084 error = usbd_transfer(data->xfer);
2085 if (error != USBD_NORMAL_COMPLETION &&
2086 error != USBD_IN_PROGRESS) {
2087 printf("%s: could not queue Rx transfer\n",
2088 device_xname(sc->sc_dev));
2089 goto fail;
2090 }
2091 }
2092
2093 /* update Rx filter */
2094 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2095
2096 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2097 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2098 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2099 RT2573_DROP_ACKCTS;
2100 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2101 tmp |= RT2573_DROP_TODS;
2102 if (!(ifp->if_flags & IFF_PROMISC))
2103 tmp |= RT2573_DROP_NOT_TO_ME;
2104 }
2105 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2106
2107 ifp->if_flags &= ~IFF_OACTIVE;
2108 ifp->if_flags |= IFF_RUNNING;
2109
2110 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2111 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2112 else
2113 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2114
2115 return 0;
2116
2117 fail: rum_stop(ifp, 1);
2118 return error;
2119 #undef N
2120 }
2121
2122 static void
2123 rum_stop(struct ifnet *ifp, int disable)
2124 {
2125 struct rum_softc *sc = ifp->if_softc;
2126 struct ieee80211com *ic = &sc->sc_ic;
2127 uint32_t tmp;
2128
2129 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2130
2131 sc->sc_tx_timer = 0;
2132 ifp->if_timer = 0;
2133 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2134
2135 /* disable Rx */
2136 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2137 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2138
2139 /* reset ASIC */
2140 rum_write(sc, RT2573_MAC_CSR1, 3);
2141 rum_write(sc, RT2573_MAC_CSR1, 0);
2142
2143 if (sc->amrr_xfer != NULL) {
2144 usbd_free_xfer(sc->amrr_xfer);
2145 sc->amrr_xfer = NULL;
2146 }
2147
2148 if (sc->sc_rx_pipeh != NULL) {
2149 usbd_abort_pipe(sc->sc_rx_pipeh);
2150 usbd_close_pipe(sc->sc_rx_pipeh);
2151 sc->sc_rx_pipeh = NULL;
2152 }
2153
2154 if (sc->sc_tx_pipeh != NULL) {
2155 usbd_abort_pipe(sc->sc_tx_pipeh);
2156 usbd_close_pipe(sc->sc_tx_pipeh);
2157 sc->sc_tx_pipeh = NULL;
2158 }
2159
2160 rum_free_rx_list(sc);
2161 rum_free_tx_list(sc);
2162 }
2163
2164 static int
2165 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2166 {
2167 usb_device_request_t req;
2168 uint16_t reg = RT2573_MCU_CODE_BASE;
2169 usbd_status error;
2170
2171 /* copy firmware image into NIC */
2172 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2173 rum_write(sc, reg, UGETDW(ucode));
2174
2175 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2176 req.bRequest = RT2573_MCU_CNTL;
2177 USETW(req.wValue, RT2573_MCU_RUN);
2178 USETW(req.wIndex, 0);
2179 USETW(req.wLength, 0);
2180
2181 error = usbd_do_request(sc->sc_udev, &req, NULL);
2182 if (error != 0) {
2183 printf("%s: could not run firmware: %s\n",
2184 device_xname(sc->sc_dev), usbd_errstr(error));
2185 }
2186 return error;
2187 }
2188
2189 static int
2190 rum_prepare_beacon(struct rum_softc *sc)
2191 {
2192 struct ieee80211com *ic = &sc->sc_ic;
2193 struct rum_tx_desc desc;
2194 struct mbuf *m0;
2195 int rate;
2196
2197 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2198 if (m0 == NULL) {
2199 aprint_error_dev(sc->sc_dev,
2200 "could not allocate beacon frame\n");
2201 return ENOBUFS;
2202 }
2203
2204 /* send beacons at the lowest available rate */
2205 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2206
2207 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2208 m0->m_pkthdr.len, rate);
2209
2210 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2211 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2212
2213 /* copy beacon header and payload into NIC memory */
2214 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2215 m0->m_pkthdr.len);
2216
2217 m_freem(m0);
2218
2219 return 0;
2220 }
2221
2222 static void
2223 rum_newassoc(struct ieee80211_node *ni, int isnew)
2224 {
2225 /* start with lowest Tx rate */
2226 ni->ni_txrate = 0;
2227 }
2228
2229 static void
2230 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2231 {
2232 int i;
2233
2234 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2235 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2236
2237 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2238
2239 /* set rate to some reasonable initial value */
2240 for (i = ni->ni_rates.rs_nrates - 1;
2241 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2242 i--);
2243 ni->ni_txrate = i;
2244
2245 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2246 }
2247
2248 static void
2249 rum_amrr_timeout(void *arg)
2250 {
2251 struct rum_softc *sc = arg;
2252 usb_device_request_t req;
2253
2254 /*
2255 * Asynchronously read statistic registers (cleared by read).
2256 */
2257 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2258 req.bRequest = RT2573_READ_MULTI_MAC;
2259 USETW(req.wValue, 0);
2260 USETW(req.wIndex, RT2573_STA_CSR0);
2261 USETW(req.wLength, sizeof sc->sta);
2262
2263 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2264 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2265 rum_amrr_update);
2266 (void)usbd_transfer(sc->amrr_xfer);
2267 }
2268
2269 static void
2270 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2271 usbd_status status)
2272 {
2273 struct rum_softc *sc = (struct rum_softc *)priv;
2274 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2275
2276 if (status != USBD_NORMAL_COMPLETION) {
2277 printf("%s: could not retrieve Tx statistics - cancelling "
2278 "automatic rate control\n", device_xname(sc->sc_dev));
2279 return;
2280 }
2281
2282 /* count TX retry-fail as Tx errors */
2283 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2284
2285 sc->amn.amn_retrycnt =
2286 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2287 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2288 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2289
2290 sc->amn.amn_txcnt =
2291 sc->amn.amn_retrycnt +
2292 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2293
2294 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2295
2296 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2297 }
2298
2299 static int
2300 rum_activate(device_t self, enum devact act)
2301 {
2302 switch (act) {
2303 case DVACT_DEACTIVATE:
2304 /*if_deactivate(&sc->sc_ic.ic_if);*/
2305 return 0;
2306 default:
2307 return 0;
2308 }
2309 }
2310
2311 MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf");
2312
2313 #ifdef _MODULE
2314 #include "ioconf.c"
2315 #endif
2316
2317 static int
2318 if_rum_modcmd(modcmd_t cmd, void *aux)
2319 {
2320 int error = 0;
2321
2322 switch (cmd) {
2323 case MODULE_CMD_INIT:
2324 #ifdef _MODULE
2325 error = config_init_component(cfdriver_ioconf_rum,
2326 cfattach_ioconf_rum, cfdata_ioconf_rum);
2327 #endif
2328 return error;
2329 case MODULE_CMD_FINI:
2330 #ifdef _MODULE
2331 error = config_fini_component(cfdriver_ioconf_rum,
2332 cfattach_ioconf_rum, cfdata_ioconf_rum);
2333 #endif
2334 return error;
2335 default:
2336 return ENOTTY;
2337 }
2338 }
2339