if_rum.c revision 1.50 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.50 2015/04/08 12:38:13 nonaka Exp $ */
3
4 /*-
5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com.tw/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.50 2015/04/08 12:38:13 nonaka Exp $");
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <dev/firmload.h>
64
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69
70 #include <dev/usb/if_rumreg.h>
71 #include <dev/usb/if_rumvar.h>
72
73 #ifdef RUM_DEBUG
74 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0)
75 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0)
76 int rum_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 /* various supported device vendors/products */
83 static const struct usb_devno rum_devs[] = {
84 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
85 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
86 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
87 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
88 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
89 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
90 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
91 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
92 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
93 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
94 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C },
95 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 },
96 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
97 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
98 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
99 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_RT2573 },
100 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL },
101 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX },
102 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
103 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
104 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
105 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
106 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 },
107 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 },
108 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 },
109 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 },
110 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
111 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
112 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
113 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
114 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
115 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
116 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
117 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
118 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
119 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG },
120 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG },
121 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
122 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
123 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
124 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
125 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
126 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
127 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
128 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
129 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
130 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
131 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 },
132 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
133 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
134 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
135 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
136 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 },
137 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 },
138 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 }
139 };
140
141 static int rum_attachhook(void *);
142 static int rum_alloc_tx_list(struct rum_softc *);
143 static void rum_free_tx_list(struct rum_softc *);
144 static int rum_alloc_rx_list(struct rum_softc *);
145 static void rum_free_rx_list(struct rum_softc *);
146 static int rum_media_change(struct ifnet *);
147 static void rum_next_scan(void *);
148 static void rum_task(void *);
149 static int rum_newstate(struct ieee80211com *,
150 enum ieee80211_state, int);
151 static void rum_txeof(usbd_xfer_handle, usbd_private_handle,
152 usbd_status);
153 static void rum_rxeof(usbd_xfer_handle, usbd_private_handle,
154 usbd_status);
155 static uint8_t rum_rxrate(const struct rum_rx_desc *);
156 static int rum_ack_rate(struct ieee80211com *, int);
157 static uint16_t rum_txtime(int, int, uint32_t);
158 static uint8_t rum_plcp_signal(int);
159 static void rum_setup_tx_desc(struct rum_softc *,
160 struct rum_tx_desc *, uint32_t, uint16_t, int,
161 int);
162 static int rum_tx_data(struct rum_softc *, struct mbuf *,
163 struct ieee80211_node *);
164 static void rum_start(struct ifnet *);
165 static void rum_watchdog(struct ifnet *);
166 static int rum_ioctl(struct ifnet *, u_long, void *);
167 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
168 int);
169 static uint32_t rum_read(struct rum_softc *, uint16_t);
170 static void rum_read_multi(struct rum_softc *, uint16_t, void *,
171 int);
172 static void rum_write(struct rum_softc *, uint16_t, uint32_t);
173 static void rum_write_multi(struct rum_softc *, uint16_t, void *,
174 size_t);
175 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
176 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
177 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
178 static void rum_select_antenna(struct rum_softc *);
179 static void rum_enable_mrr(struct rum_softc *);
180 static void rum_set_txpreamble(struct rum_softc *);
181 static void rum_set_basicrates(struct rum_softc *);
182 static void rum_select_band(struct rum_softc *,
183 struct ieee80211_channel *);
184 static void rum_set_chan(struct rum_softc *,
185 struct ieee80211_channel *);
186 static void rum_enable_tsf_sync(struct rum_softc *);
187 static void rum_update_slot(struct rum_softc *);
188 static void rum_set_bssid(struct rum_softc *, const uint8_t *);
189 static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
190 static void rum_update_promisc(struct rum_softc *);
191 static const char *rum_get_rf(int);
192 static void rum_read_eeprom(struct rum_softc *);
193 static int rum_bbp_init(struct rum_softc *);
194 static int rum_init(struct ifnet *);
195 static void rum_stop(struct ifnet *, int);
196 static int rum_load_microcode(struct rum_softc *, const u_char *,
197 size_t);
198 static int rum_prepare_beacon(struct rum_softc *);
199 static void rum_newassoc(struct ieee80211_node *, int);
200 static void rum_amrr_start(struct rum_softc *,
201 struct ieee80211_node *);
202 static void rum_amrr_timeout(void *);
203 static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
204 usbd_status status);
205
206 /*
207 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
208 */
209 static const struct ieee80211_rateset rum_rateset_11a =
210 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
211
212 static const struct ieee80211_rateset rum_rateset_11b =
213 { 4, { 2, 4, 11, 22 } };
214
215 static const struct ieee80211_rateset rum_rateset_11g =
216 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
217
218 static const struct {
219 uint32_t reg;
220 uint32_t val;
221 } rum_def_mac[] = {
222 RT2573_DEF_MAC
223 };
224
225 static const struct {
226 uint8_t reg;
227 uint8_t val;
228 } rum_def_bbp[] = {
229 RT2573_DEF_BBP
230 };
231
232 static const struct rfprog {
233 uint8_t chan;
234 uint32_t r1, r2, r3, r4;
235 } rum_rf5226[] = {
236 RT2573_RF5226
237 }, rum_rf5225[] = {
238 RT2573_RF5225
239 };
240
241 static int rum_match(device_t, cfdata_t, void *);
242 static void rum_attach(device_t, device_t, void *);
243 static int rum_detach(device_t, int);
244 static int rum_activate(device_t, enum devact);
245 extern struct cfdriver rum_cd;
246 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
247 rum_detach, rum_activate);
248
249 static int
250 rum_match(device_t parent, cfdata_t match, void *aux)
251 {
252 struct usb_attach_arg *uaa = aux;
253
254 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
255 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
256 }
257
258 static int
259 rum_attachhook(void *xsc)
260 {
261 struct rum_softc *sc = xsc;
262 firmware_handle_t fwh;
263 const char *name = "rum-rt2573";
264 u_char *ucode;
265 size_t size;
266 int error;
267
268 if ((error = firmware_open("rum", name, &fwh)) != 0) {
269 printf("%s: failed loadfirmware of file %s (error %d)\n",
270 device_xname(sc->sc_dev), name, error);
271 return error;
272 }
273 size = firmware_get_size(fwh);
274 ucode = firmware_malloc(size);
275 if (ucode == NULL) {
276 printf("%s: failed to allocate firmware memory\n",
277 device_xname(sc->sc_dev));
278 firmware_close(fwh);
279 return ENOMEM;
280 }
281 error = firmware_read(fwh, 0, ucode, size);
282 firmware_close(fwh);
283 if (error != 0) {
284 printf("%s: failed to read firmware (error %d)\n",
285 device_xname(sc->sc_dev), error);
286 firmware_free(ucode, size);
287 return error;
288 }
289
290 if (rum_load_microcode(sc, ucode, size) != 0) {
291 printf("%s: could not load 8051 microcode\n",
292 device_xname(sc->sc_dev));
293 firmware_free(ucode, size);
294 return ENXIO;
295 }
296
297 firmware_free(ucode, size);
298 sc->sc_flags |= RT2573_FWLOADED;
299
300 return 0;
301 }
302
303 static void
304 rum_attach(device_t parent, device_t self, void *aux)
305 {
306 struct rum_softc *sc = device_private(self);
307 struct usb_attach_arg *uaa = aux;
308 struct ieee80211com *ic = &sc->sc_ic;
309 struct ifnet *ifp = &sc->sc_if;
310 usb_interface_descriptor_t *id;
311 usb_endpoint_descriptor_t *ed;
312 usbd_status error;
313 char *devinfop;
314 int i, ntries;
315 uint32_t tmp;
316
317 sc->sc_dev = self;
318 sc->sc_udev = uaa->device;
319 sc->sc_flags = 0;
320
321 aprint_naive("\n");
322 aprint_normal("\n");
323
324 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
325 aprint_normal_dev(self, "%s\n", devinfop);
326 usbd_devinfo_free(devinfop);
327
328 error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
329 if (error != 0) {
330 aprint_error_dev(self, "failed to set configuration"
331 ", err=%s\n", usbd_errstr(error));
332 return;
333 }
334
335 /* get the first interface handle */
336 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
337 &sc->sc_iface);
338 if (error != 0) {
339 aprint_error_dev(self, "could not get interface handle\n");
340 return;
341 }
342
343 /*
344 * Find endpoints.
345 */
346 id = usbd_get_interface_descriptor(sc->sc_iface);
347
348 sc->sc_rx_no = sc->sc_tx_no = -1;
349 for (i = 0; i < id->bNumEndpoints; i++) {
350 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
351 if (ed == NULL) {
352 aprint_error_dev(self,
353 "no endpoint descriptor for iface %d\n", i);
354 return;
355 }
356
357 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
358 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
359 sc->sc_rx_no = ed->bEndpointAddress;
360 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
361 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
362 sc->sc_tx_no = ed->bEndpointAddress;
363 }
364 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
365 aprint_error_dev(self, "missing endpoint\n");
366 return;
367 }
368
369 usb_init_task(&sc->sc_task, rum_task, sc, 0);
370 callout_init(&sc->sc_scan_ch, 0);
371
372 sc->amrr.amrr_min_success_threshold = 1;
373 sc->amrr.amrr_max_success_threshold = 10;
374 callout_init(&sc->sc_amrr_ch, 0);
375
376 /* retrieve RT2573 rev. no */
377 for (ntries = 0; ntries < 1000; ntries++) {
378 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
379 break;
380 DELAY(1000);
381 }
382 if (ntries == 1000) {
383 aprint_error_dev(self, "timeout waiting for chip to settle\n");
384 return;
385 }
386
387 /* retrieve MAC address and various other things from EEPROM */
388 rum_read_eeprom(sc);
389
390 aprint_normal_dev(self,
391 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
392 sc->macbbp_rev, tmp,
393 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
394
395 ic->ic_ifp = ifp;
396 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
397 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
398 ic->ic_state = IEEE80211_S_INIT;
399
400 /* set device capabilities */
401 ic->ic_caps =
402 IEEE80211_C_IBSS | /* IBSS mode supported */
403 IEEE80211_C_MONITOR | /* monitor mode supported */
404 IEEE80211_C_HOSTAP | /* HostAp mode supported */
405 IEEE80211_C_TXPMGT | /* tx power management */
406 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
407 IEEE80211_C_SHSLOT | /* short slot time supported */
408 IEEE80211_C_WPA; /* 802.11i */
409
410 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
411 /* set supported .11a rates */
412 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
413
414 /* set supported .11a channels */
415 for (i = 34; i <= 46; i += 4) {
416 ic->ic_channels[i].ic_freq =
417 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
418 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
419 }
420 for (i = 36; i <= 64; i += 4) {
421 ic->ic_channels[i].ic_freq =
422 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
423 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
424 }
425 for (i = 100; i <= 140; i += 4) {
426 ic->ic_channels[i].ic_freq =
427 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
428 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
429 }
430 for (i = 149; i <= 165; i += 4) {
431 ic->ic_channels[i].ic_freq =
432 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
433 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
434 }
435 }
436
437 /* set supported .11b and .11g rates */
438 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
439 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
440
441 /* set supported .11b and .11g channels (1 through 14) */
442 for (i = 1; i <= 14; i++) {
443 ic->ic_channels[i].ic_freq =
444 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
445 ic->ic_channels[i].ic_flags =
446 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
447 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
448 }
449
450 ifp->if_softc = sc;
451 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
452 ifp->if_init = rum_init;
453 ifp->if_ioctl = rum_ioctl;
454 ifp->if_start = rum_start;
455 ifp->if_watchdog = rum_watchdog;
456 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
457 IFQ_SET_READY(&ifp->if_snd);
458 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
459
460 if_attach(ifp);
461 ieee80211_ifattach(ic);
462 ic->ic_newassoc = rum_newassoc;
463
464 /* override state transition machine */
465 sc->sc_newstate = ic->ic_newstate;
466 ic->ic_newstate = rum_newstate;
467 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
468
469 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
470 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
471 &sc->sc_drvbpf);
472
473 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
474 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
475 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
476
477 sc->sc_txtap_len = sizeof sc->sc_txtapu;
478 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
479 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
480
481 ieee80211_announce(ic);
482
483 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
484 sc->sc_dev);
485
486 if (!pmf_device_register(self, NULL, NULL))
487 aprint_error_dev(self, "couldn't establish power handler\n");
488
489 return;
490 }
491
492 static int
493 rum_detach(device_t self, int flags)
494 {
495 struct rum_softc *sc = device_private(self);
496 struct ieee80211com *ic = &sc->sc_ic;
497 struct ifnet *ifp = &sc->sc_if;
498 int s;
499
500 if (!ifp->if_softc)
501 return 0;
502
503 pmf_device_deregister(self);
504
505 s = splusb();
506
507 rum_stop(ifp, 1);
508 usb_rem_task(sc->sc_udev, &sc->sc_task);
509 callout_stop(&sc->sc_scan_ch);
510 callout_stop(&sc->sc_amrr_ch);
511
512 if (sc->amrr_xfer != NULL) {
513 usbd_free_xfer(sc->amrr_xfer);
514 sc->amrr_xfer = NULL;
515 }
516
517 if (sc->sc_rx_pipeh != NULL) {
518 usbd_abort_pipe(sc->sc_rx_pipeh);
519 usbd_close_pipe(sc->sc_rx_pipeh);
520 }
521
522 if (sc->sc_tx_pipeh != NULL) {
523 usbd_abort_pipe(sc->sc_tx_pipeh);
524 usbd_close_pipe(sc->sc_tx_pipeh);
525 }
526
527 bpf_detach(ifp);
528 ieee80211_ifdetach(ic); /* free all nodes */
529 if_detach(ifp);
530
531 splx(s);
532
533 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
534
535 return 0;
536 }
537
538 static int
539 rum_alloc_tx_list(struct rum_softc *sc)
540 {
541 struct rum_tx_data *data;
542 int i, error;
543
544 sc->tx_cur = sc->tx_queued = 0;
545
546 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
547 data = &sc->tx_data[i];
548
549 data->sc = sc;
550
551 data->xfer = usbd_alloc_xfer(sc->sc_udev);
552 if (data->xfer == NULL) {
553 printf("%s: could not allocate tx xfer\n",
554 device_xname(sc->sc_dev));
555 error = ENOMEM;
556 goto fail;
557 }
558
559 data->buf = usbd_alloc_buffer(data->xfer,
560 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
561 if (data->buf == NULL) {
562 printf("%s: could not allocate tx buffer\n",
563 device_xname(sc->sc_dev));
564 error = ENOMEM;
565 goto fail;
566 }
567
568 /* clean Tx descriptor */
569 memset(data->buf, 0, RT2573_TX_DESC_SIZE);
570 }
571
572 return 0;
573
574 fail: rum_free_tx_list(sc);
575 return error;
576 }
577
578 static void
579 rum_free_tx_list(struct rum_softc *sc)
580 {
581 struct rum_tx_data *data;
582 int i;
583
584 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
585 data = &sc->tx_data[i];
586
587 if (data->xfer != NULL) {
588 usbd_free_xfer(data->xfer);
589 data->xfer = NULL;
590 }
591
592 if (data->ni != NULL) {
593 ieee80211_free_node(data->ni);
594 data->ni = NULL;
595 }
596 }
597 }
598
599 static int
600 rum_alloc_rx_list(struct rum_softc *sc)
601 {
602 struct rum_rx_data *data;
603 int i, error;
604
605 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
606 data = &sc->rx_data[i];
607
608 data->sc = sc;
609
610 data->xfer = usbd_alloc_xfer(sc->sc_udev);
611 if (data->xfer == NULL) {
612 printf("%s: could not allocate rx xfer\n",
613 device_xname(sc->sc_dev));
614 error = ENOMEM;
615 goto fail;
616 }
617
618 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
619 printf("%s: could not allocate rx buffer\n",
620 device_xname(sc->sc_dev));
621 error = ENOMEM;
622 goto fail;
623 }
624
625 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
626 if (data->m == NULL) {
627 printf("%s: could not allocate rx mbuf\n",
628 device_xname(sc->sc_dev));
629 error = ENOMEM;
630 goto fail;
631 }
632
633 MCLGET(data->m, M_DONTWAIT);
634 if (!(data->m->m_flags & M_EXT)) {
635 printf("%s: could not allocate rx mbuf cluster\n",
636 device_xname(sc->sc_dev));
637 error = ENOMEM;
638 goto fail;
639 }
640
641 data->buf = mtod(data->m, uint8_t *);
642 }
643
644 return 0;
645
646 fail: rum_free_rx_list(sc);
647 return error;
648 }
649
650 static void
651 rum_free_rx_list(struct rum_softc *sc)
652 {
653 struct rum_rx_data *data;
654 int i;
655
656 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
657 data = &sc->rx_data[i];
658
659 if (data->xfer != NULL) {
660 usbd_free_xfer(data->xfer);
661 data->xfer = NULL;
662 }
663
664 if (data->m != NULL) {
665 m_freem(data->m);
666 data->m = NULL;
667 }
668 }
669 }
670
671 static int
672 rum_media_change(struct ifnet *ifp)
673 {
674 int error;
675
676 error = ieee80211_media_change(ifp);
677 if (error != ENETRESET)
678 return error;
679
680 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
681 rum_init(ifp);
682
683 return 0;
684 }
685
686 /*
687 * This function is called periodically (every 200ms) during scanning to
688 * switch from one channel to another.
689 */
690 static void
691 rum_next_scan(void *arg)
692 {
693 struct rum_softc *sc = arg;
694 struct ieee80211com *ic = &sc->sc_ic;
695 int s;
696
697 s = splnet();
698 if (ic->ic_state == IEEE80211_S_SCAN)
699 ieee80211_next_scan(ic);
700 splx(s);
701 }
702
703 static void
704 rum_task(void *arg)
705 {
706 struct rum_softc *sc = arg;
707 struct ieee80211com *ic = &sc->sc_ic;
708 enum ieee80211_state ostate;
709 struct ieee80211_node *ni;
710 uint32_t tmp;
711
712 ostate = ic->ic_state;
713
714 switch (sc->sc_state) {
715 case IEEE80211_S_INIT:
716 if (ostate == IEEE80211_S_RUN) {
717 /* abort TSF synchronization */
718 tmp = rum_read(sc, RT2573_TXRX_CSR9);
719 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
720 }
721 break;
722
723 case IEEE80211_S_SCAN:
724 rum_set_chan(sc, ic->ic_curchan);
725 callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
726 break;
727
728 case IEEE80211_S_AUTH:
729 rum_set_chan(sc, ic->ic_curchan);
730 break;
731
732 case IEEE80211_S_ASSOC:
733 rum_set_chan(sc, ic->ic_curchan);
734 break;
735
736 case IEEE80211_S_RUN:
737 rum_set_chan(sc, ic->ic_curchan);
738
739 ni = ic->ic_bss;
740
741 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
742 rum_update_slot(sc);
743 rum_enable_mrr(sc);
744 rum_set_txpreamble(sc);
745 rum_set_basicrates(sc);
746 rum_set_bssid(sc, ni->ni_bssid);
747 }
748
749 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
750 ic->ic_opmode == IEEE80211_M_IBSS)
751 rum_prepare_beacon(sc);
752
753 if (ic->ic_opmode != IEEE80211_M_MONITOR)
754 rum_enable_tsf_sync(sc);
755
756 if (ic->ic_opmode == IEEE80211_M_STA) {
757 /* fake a join to init the tx rate */
758 rum_newassoc(ic->ic_bss, 1);
759
760 /* enable automatic rate adaptation in STA mode */
761 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
762 rum_amrr_start(sc, ni);
763 }
764
765 break;
766 }
767
768 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
769 }
770
771 static int
772 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
773 {
774 struct rum_softc *sc = ic->ic_ifp->if_softc;
775
776 usb_rem_task(sc->sc_udev, &sc->sc_task);
777 callout_stop(&sc->sc_scan_ch);
778 callout_stop(&sc->sc_amrr_ch);
779
780 /* do it in a process context */
781 sc->sc_state = nstate;
782 sc->sc_arg = arg;
783 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
784
785 return 0;
786 }
787
788 /* quickly determine if a given rate is CCK or OFDM */
789 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
790
791 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
792 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
793
794 static void
795 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
796 {
797 struct rum_tx_data *data = priv;
798 struct rum_softc *sc = data->sc;
799 struct ifnet *ifp = &sc->sc_if;
800 int s;
801
802 if (status != USBD_NORMAL_COMPLETION) {
803 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
804 return;
805
806 printf("%s: could not transmit buffer: %s\n",
807 device_xname(sc->sc_dev), usbd_errstr(status));
808
809 if (status == USBD_STALLED)
810 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
811
812 ifp->if_oerrors++;
813 return;
814 }
815
816 s = splnet();
817
818 ieee80211_free_node(data->ni);
819 data->ni = NULL;
820
821 sc->tx_queued--;
822 ifp->if_opackets++;
823
824 DPRINTFN(10, ("tx done\n"));
825
826 sc->sc_tx_timer = 0;
827 ifp->if_flags &= ~IFF_OACTIVE;
828 rum_start(ifp);
829
830 splx(s);
831 }
832
833 static void
834 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
835 {
836 struct rum_rx_data *data = priv;
837 struct rum_softc *sc = data->sc;
838 struct ieee80211com *ic = &sc->sc_ic;
839 struct ifnet *ifp = &sc->sc_if;
840 struct rum_rx_desc *desc;
841 struct ieee80211_frame *wh;
842 struct ieee80211_node *ni;
843 struct mbuf *mnew, *m;
844 int s, len;
845
846 if (status != USBD_NORMAL_COMPLETION) {
847 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
848 return;
849
850 if (status == USBD_STALLED)
851 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
852 goto skip;
853 }
854
855 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
856
857 if (len < (int)(RT2573_RX_DESC_SIZE +
858 sizeof(struct ieee80211_frame_min))) {
859 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
860 len));
861 ifp->if_ierrors++;
862 goto skip;
863 }
864
865 desc = (struct rum_rx_desc *)data->buf;
866
867 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
868 /*
869 * This should not happen since we did not request to receive
870 * those frames when we filled RT2573_TXRX_CSR0.
871 */
872 DPRINTFN(5, ("CRC error\n"));
873 ifp->if_ierrors++;
874 goto skip;
875 }
876
877 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
878 if (mnew == NULL) {
879 printf("%s: could not allocate rx mbuf\n",
880 device_xname(sc->sc_dev));
881 ifp->if_ierrors++;
882 goto skip;
883 }
884
885 MCLGET(mnew, M_DONTWAIT);
886 if (!(mnew->m_flags & M_EXT)) {
887 printf("%s: could not allocate rx mbuf cluster\n",
888 device_xname(sc->sc_dev));
889 m_freem(mnew);
890 ifp->if_ierrors++;
891 goto skip;
892 }
893
894 m = data->m;
895 data->m = mnew;
896 data->buf = mtod(data->m, uint8_t *);
897
898 /* finalize mbuf */
899 m->m_pkthdr.rcvif = ifp;
900 m->m_data = (void *)(desc + 1);
901 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
902
903 s = splnet();
904
905 if (sc->sc_drvbpf != NULL) {
906 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
907
908 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
909 tap->wr_rate = rum_rxrate(desc);
910 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
911 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
912 tap->wr_antenna = sc->rx_ant;
913 tap->wr_antsignal = desc->rssi;
914
915 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
916 }
917
918 wh = mtod(m, struct ieee80211_frame *);
919 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
920
921 /* send the frame to the 802.11 layer */
922 ieee80211_input(ic, m, ni, desc->rssi, 0);
923
924 /* node is no longer needed */
925 ieee80211_free_node(ni);
926
927 splx(s);
928
929 DPRINTFN(15, ("rx done\n"));
930
931 skip: /* setup a new transfer */
932 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
933 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
934 usbd_transfer(xfer);
935 }
936
937 /*
938 * This function is only used by the Rx radiotap code. It returns the rate at
939 * which a given frame was received.
940 */
941 static uint8_t
942 rum_rxrate(const struct rum_rx_desc *desc)
943 {
944 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
945 /* reverse function of rum_plcp_signal */
946 switch (desc->rate) {
947 case 0xb: return 12;
948 case 0xf: return 18;
949 case 0xa: return 24;
950 case 0xe: return 36;
951 case 0x9: return 48;
952 case 0xd: return 72;
953 case 0x8: return 96;
954 case 0xc: return 108;
955 }
956 } else {
957 if (desc->rate == 10)
958 return 2;
959 if (desc->rate == 20)
960 return 4;
961 if (desc->rate == 55)
962 return 11;
963 if (desc->rate == 110)
964 return 22;
965 }
966 return 2; /* should not get there */
967 }
968
969 /*
970 * Return the expected ack rate for a frame transmitted at rate `rate'.
971 * XXX: this should depend on the destination node basic rate set.
972 */
973 static int
974 rum_ack_rate(struct ieee80211com *ic, int rate)
975 {
976 switch (rate) {
977 /* CCK rates */
978 case 2:
979 return 2;
980 case 4:
981 case 11:
982 case 22:
983 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
984
985 /* OFDM rates */
986 case 12:
987 case 18:
988 return 12;
989 case 24:
990 case 36:
991 return 24;
992 case 48:
993 case 72:
994 case 96:
995 case 108:
996 return 48;
997 }
998
999 /* default to 1Mbps */
1000 return 2;
1001 }
1002
1003 /*
1004 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1005 * The function automatically determines the operating mode depending on the
1006 * given rate. `flags' indicates whether short preamble is in use or not.
1007 */
1008 static uint16_t
1009 rum_txtime(int len, int rate, uint32_t flags)
1010 {
1011 uint16_t txtime;
1012
1013 if (RUM_RATE_IS_OFDM(rate)) {
1014 /* IEEE Std 802.11a-1999, pp. 37 */
1015 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1016 txtime = 16 + 4 + 4 * txtime + 6;
1017 } else {
1018 /* IEEE Std 802.11b-1999, pp. 28 */
1019 txtime = (16 * len + rate - 1) / rate;
1020 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1021 txtime += 72 + 24;
1022 else
1023 txtime += 144 + 48;
1024 }
1025 return txtime;
1026 }
1027
1028 static uint8_t
1029 rum_plcp_signal(int rate)
1030 {
1031 switch (rate) {
1032 /* CCK rates (returned values are device-dependent) */
1033 case 2: return 0x0;
1034 case 4: return 0x1;
1035 case 11: return 0x2;
1036 case 22: return 0x3;
1037
1038 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1039 case 12: return 0xb;
1040 case 18: return 0xf;
1041 case 24: return 0xa;
1042 case 36: return 0xe;
1043 case 48: return 0x9;
1044 case 72: return 0xd;
1045 case 96: return 0x8;
1046 case 108: return 0xc;
1047
1048 /* unsupported rates (should not get there) */
1049 default: return 0xff;
1050 }
1051 }
1052
1053 static void
1054 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1055 uint32_t flags, uint16_t xflags, int len, int rate)
1056 {
1057 struct ieee80211com *ic = &sc->sc_ic;
1058 uint16_t plcp_length;
1059 int remainder;
1060
1061 desc->flags = htole32(flags);
1062 desc->flags |= htole32(RT2573_TX_VALID);
1063 desc->flags |= htole32(len << 16);
1064
1065 desc->xflags = htole16(xflags);
1066
1067 desc->wme = htole16(
1068 RT2573_QID(0) |
1069 RT2573_AIFSN(2) |
1070 RT2573_LOGCWMIN(4) |
1071 RT2573_LOGCWMAX(10));
1072
1073 /* setup PLCP fields */
1074 desc->plcp_signal = rum_plcp_signal(rate);
1075 desc->plcp_service = 4;
1076
1077 len += IEEE80211_CRC_LEN;
1078 if (RUM_RATE_IS_OFDM(rate)) {
1079 desc->flags |= htole32(RT2573_TX_OFDM);
1080
1081 plcp_length = len & 0xfff;
1082 desc->plcp_length_hi = plcp_length >> 6;
1083 desc->plcp_length_lo = plcp_length & 0x3f;
1084 } else {
1085 plcp_length = (16 * len + rate - 1) / rate;
1086 if (rate == 22) {
1087 remainder = (16 * len) % 22;
1088 if (remainder != 0 && remainder < 7)
1089 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1090 }
1091 desc->plcp_length_hi = plcp_length >> 8;
1092 desc->plcp_length_lo = plcp_length & 0xff;
1093
1094 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1095 desc->plcp_signal |= 0x08;
1096 }
1097 }
1098
1099 #define RUM_TX_TIMEOUT 5000
1100
1101 static int
1102 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1103 {
1104 struct ieee80211com *ic = &sc->sc_ic;
1105 struct rum_tx_desc *desc;
1106 struct rum_tx_data *data;
1107 struct ieee80211_frame *wh;
1108 struct ieee80211_key *k;
1109 uint32_t flags = 0;
1110 uint16_t dur;
1111 usbd_status error;
1112 int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1113
1114 wh = mtod(m0, struct ieee80211_frame *);
1115
1116 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1117 k = ieee80211_crypto_encap(ic, ni, m0);
1118 if (k == NULL) {
1119 m_freem(m0);
1120 return ENOBUFS;
1121 }
1122
1123 /* packet header may have moved, reset our local pointer */
1124 wh = mtod(m0, struct ieee80211_frame *);
1125 }
1126
1127 /* compute actual packet length (including CRC and crypto overhead) */
1128 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1129
1130 /* pickup a rate */
1131 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1132 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1133 IEEE80211_FC0_TYPE_MGT)) {
1134 /* mgmt/multicast frames are sent at the lowest avail. rate */
1135 rate = ni->ni_rates.rs_rates[0];
1136 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1137 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1138 } else
1139 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1140 if (rate == 0)
1141 rate = 2; /* XXX should not happen */
1142 rate &= IEEE80211_RATE_VAL;
1143
1144 /* check if RTS/CTS or CTS-to-self protection must be used */
1145 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1146 /* multicast frames are not sent at OFDM rates in 802.11b/g */
1147 if (pktlen > ic->ic_rtsthreshold) {
1148 needrts = 1; /* RTS/CTS based on frame length */
1149 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1150 RUM_RATE_IS_OFDM(rate)) {
1151 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1152 needcts = 1; /* CTS-to-self */
1153 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1154 needrts = 1; /* RTS/CTS */
1155 }
1156 }
1157 if (needrts || needcts) {
1158 struct mbuf *mprot;
1159 int protrate, ackrate;
1160
1161 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1162 ackrate = rum_ack_rate(ic, rate);
1163
1164 dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1165 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1166 2 * sc->sifs;
1167 if (needrts) {
1168 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1169 protrate), ic->ic_flags) + sc->sifs;
1170 mprot = ieee80211_get_rts(ic, wh, dur);
1171 } else {
1172 mprot = ieee80211_get_cts_to_self(ic, dur);
1173 }
1174 if (mprot == NULL) {
1175 aprint_error_dev(sc->sc_dev,
1176 "couldn't allocate protection frame\n");
1177 m_freem(m0);
1178 return ENOBUFS;
1179 }
1180
1181 data = &sc->tx_data[sc->tx_cur];
1182 desc = (struct rum_tx_desc *)data->buf;
1183
1184 /* avoid multiple free() of the same node for each fragment */
1185 data->ni = ieee80211_ref_node(ni);
1186
1187 m_copydata(mprot, 0, mprot->m_pkthdr.len,
1188 data->buf + RT2573_TX_DESC_SIZE);
1189 rum_setup_tx_desc(sc, desc,
1190 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1191 0, mprot->m_pkthdr.len, protrate);
1192
1193 /* no roundup necessary here */
1194 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1195
1196 /* XXX may want to pass the protection frame to BPF */
1197
1198 /* mbuf is no longer needed */
1199 m_freem(mprot);
1200
1201 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1202 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1203 RUM_TX_TIMEOUT, rum_txeof);
1204 error = usbd_transfer(data->xfer);
1205 if (error != USBD_NORMAL_COMPLETION &&
1206 error != USBD_IN_PROGRESS) {
1207 m_freem(m0);
1208 return error;
1209 }
1210
1211 sc->tx_queued++;
1212 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1213
1214 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1215 }
1216
1217 data = &sc->tx_data[sc->tx_cur];
1218 desc = (struct rum_tx_desc *)data->buf;
1219
1220 data->ni = ni;
1221
1222 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1223 flags |= RT2573_TX_NEED_ACK;
1224
1225 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1226 ic->ic_flags) + sc->sifs;
1227 *(uint16_t *)wh->i_dur = htole16(dur);
1228
1229 /* tell hardware to set timestamp in probe responses */
1230 if ((wh->i_fc[0] &
1231 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1232 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1233 flags |= RT2573_TX_TIMESTAMP;
1234 }
1235
1236 if (sc->sc_drvbpf != NULL) {
1237 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1238
1239 tap->wt_flags = 0;
1240 tap->wt_rate = rate;
1241 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1242 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1243 tap->wt_antenna = sc->tx_ant;
1244
1245 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1246 }
1247
1248 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1249 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1250
1251 /* align end on a 4-bytes boundary */
1252 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1253
1254 /*
1255 * No space left in the last URB to store the extra 4 bytes, force
1256 * sending of another URB.
1257 */
1258 if ((xferlen % 64) == 0)
1259 xferlen += 4;
1260
1261 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1262 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1263 rate, xferlen));
1264
1265 /* mbuf is no longer needed */
1266 m_freem(m0);
1267
1268 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1269 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1270 error = usbd_transfer(data->xfer);
1271 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1272 return error;
1273
1274 sc->tx_queued++;
1275 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1276
1277 return 0;
1278 }
1279
1280 static void
1281 rum_start(struct ifnet *ifp)
1282 {
1283 struct rum_softc *sc = ifp->if_softc;
1284 struct ieee80211com *ic = &sc->sc_ic;
1285 struct ether_header *eh;
1286 struct ieee80211_node *ni;
1287 struct mbuf *m0;
1288
1289 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1290 return;
1291
1292 for (;;) {
1293 IF_POLL(&ic->ic_mgtq, m0);
1294 if (m0 != NULL) {
1295 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1296 ifp->if_flags |= IFF_OACTIVE;
1297 break;
1298 }
1299 IF_DEQUEUE(&ic->ic_mgtq, m0);
1300
1301 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1302 m0->m_pkthdr.rcvif = NULL;
1303 bpf_mtap3(ic->ic_rawbpf, m0);
1304 if (rum_tx_data(sc, m0, ni) != 0)
1305 break;
1306
1307 } else {
1308 if (ic->ic_state != IEEE80211_S_RUN)
1309 break;
1310 IFQ_POLL(&ifp->if_snd, m0);
1311 if (m0 == NULL)
1312 break;
1313 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1314 ifp->if_flags |= IFF_OACTIVE;
1315 break;
1316 }
1317 IFQ_DEQUEUE(&ifp->if_snd, m0);
1318 if (m0->m_len < (int)sizeof(struct ether_header) &&
1319 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1320 continue;
1321
1322 eh = mtod(m0, struct ether_header *);
1323 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1324 if (ni == NULL) {
1325 m_freem(m0);
1326 continue;
1327 }
1328 bpf_mtap(ifp, m0);
1329 m0 = ieee80211_encap(ic, m0, ni);
1330 if (m0 == NULL) {
1331 ieee80211_free_node(ni);
1332 continue;
1333 }
1334 bpf_mtap3(ic->ic_rawbpf, m0);
1335 if (rum_tx_data(sc, m0, ni) != 0) {
1336 ieee80211_free_node(ni);
1337 ifp->if_oerrors++;
1338 break;
1339 }
1340 }
1341
1342 sc->sc_tx_timer = 5;
1343 ifp->if_timer = 1;
1344 }
1345 }
1346
1347 static void
1348 rum_watchdog(struct ifnet *ifp)
1349 {
1350 struct rum_softc *sc = ifp->if_softc;
1351 struct ieee80211com *ic = &sc->sc_ic;
1352
1353 ifp->if_timer = 0;
1354
1355 if (sc->sc_tx_timer > 0) {
1356 if (--sc->sc_tx_timer == 0) {
1357 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1358 /*rum_init(ifp); XXX needs a process context! */
1359 ifp->if_oerrors++;
1360 return;
1361 }
1362 ifp->if_timer = 1;
1363 }
1364
1365 ieee80211_watchdog(ic);
1366 }
1367
1368 static int
1369 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1370 {
1371 #define IS_RUNNING(ifp) \
1372 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1373
1374 struct rum_softc *sc = ifp->if_softc;
1375 struct ieee80211com *ic = &sc->sc_ic;
1376 int s, error = 0;
1377
1378 s = splnet();
1379
1380 switch (cmd) {
1381 case SIOCSIFFLAGS:
1382 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1383 break;
1384 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1385 case IFF_UP|IFF_RUNNING:
1386 rum_update_promisc(sc);
1387 break;
1388 case IFF_UP:
1389 rum_init(ifp);
1390 break;
1391 case IFF_RUNNING:
1392 rum_stop(ifp, 1);
1393 break;
1394 case 0:
1395 break;
1396 }
1397 break;
1398
1399 case SIOCADDMULTI:
1400 case SIOCDELMULTI:
1401 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1402 error = 0;
1403 }
1404 break;
1405
1406 default:
1407 error = ieee80211_ioctl(ic, cmd, data);
1408 }
1409
1410 if (error == ENETRESET) {
1411 if (IS_RUNNING(ifp) &&
1412 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1413 rum_init(ifp);
1414 error = 0;
1415 }
1416
1417 splx(s);
1418
1419 return error;
1420 #undef IS_RUNNING
1421 }
1422
1423 static void
1424 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1425 {
1426 usb_device_request_t req;
1427 usbd_status error;
1428
1429 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1430 req.bRequest = RT2573_READ_EEPROM;
1431 USETW(req.wValue, 0);
1432 USETW(req.wIndex, addr);
1433 USETW(req.wLength, len);
1434
1435 error = usbd_do_request(sc->sc_udev, &req, buf);
1436 if (error != 0) {
1437 printf("%s: could not read EEPROM: %s\n",
1438 device_xname(sc->sc_dev), usbd_errstr(error));
1439 }
1440 }
1441
1442 static uint32_t
1443 rum_read(struct rum_softc *sc, uint16_t reg)
1444 {
1445 uint32_t val;
1446
1447 rum_read_multi(sc, reg, &val, sizeof val);
1448
1449 return le32toh(val);
1450 }
1451
1452 static void
1453 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1454 {
1455 usb_device_request_t req;
1456 usbd_status error;
1457
1458 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1459 req.bRequest = RT2573_READ_MULTI_MAC;
1460 USETW(req.wValue, 0);
1461 USETW(req.wIndex, reg);
1462 USETW(req.wLength, len);
1463
1464 error = usbd_do_request(sc->sc_udev, &req, buf);
1465 if (error != 0) {
1466 printf("%s: could not multi read MAC register: %s\n",
1467 device_xname(sc->sc_dev), usbd_errstr(error));
1468 }
1469 }
1470
1471 static void
1472 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1473 {
1474 uint32_t tmp = htole32(val);
1475
1476 rum_write_multi(sc, reg, &tmp, sizeof tmp);
1477 }
1478
1479 static void
1480 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1481 {
1482 usb_device_request_t req;
1483 usbd_status error;
1484 int offset;
1485
1486 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1487 req.bRequest = RT2573_WRITE_MULTI_MAC;
1488 USETW(req.wValue, 0);
1489
1490 /* write at most 64 bytes at a time */
1491 for (offset = 0; offset < len; offset += 64) {
1492 USETW(req.wIndex, reg + offset);
1493 USETW(req.wLength, MIN(len - offset, 64));
1494
1495 error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
1496 if (error != 0) {
1497 printf("%s: could not multi write MAC register: %s\n",
1498 device_xname(sc->sc_dev), usbd_errstr(error));
1499 }
1500 }
1501 }
1502
1503 static void
1504 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1505 {
1506 uint32_t tmp;
1507 int ntries;
1508
1509 for (ntries = 0; ntries < 5; ntries++) {
1510 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1511 break;
1512 }
1513 if (ntries == 5) {
1514 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1515 return;
1516 }
1517
1518 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1519 rum_write(sc, RT2573_PHY_CSR3, tmp);
1520 }
1521
1522 static uint8_t
1523 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1524 {
1525 uint32_t val;
1526 int ntries;
1527
1528 for (ntries = 0; ntries < 5; ntries++) {
1529 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1530 break;
1531 }
1532 if (ntries == 5) {
1533 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1534 return 0;
1535 }
1536
1537 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1538 rum_write(sc, RT2573_PHY_CSR3, val);
1539
1540 for (ntries = 0; ntries < 100; ntries++) {
1541 val = rum_read(sc, RT2573_PHY_CSR3);
1542 if (!(val & RT2573_BBP_BUSY))
1543 return val & 0xff;
1544 DELAY(1);
1545 }
1546
1547 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1548 return 0;
1549 }
1550
1551 static void
1552 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1553 {
1554 uint32_t tmp;
1555 int ntries;
1556
1557 for (ntries = 0; ntries < 5; ntries++) {
1558 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1559 break;
1560 }
1561 if (ntries == 5) {
1562 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1563 return;
1564 }
1565
1566 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1567 (reg & 3);
1568 rum_write(sc, RT2573_PHY_CSR4, tmp);
1569
1570 /* remember last written value in sc */
1571 sc->rf_regs[reg] = val;
1572
1573 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1574 }
1575
1576 static void
1577 rum_select_antenna(struct rum_softc *sc)
1578 {
1579 uint8_t bbp4, bbp77;
1580 uint32_t tmp;
1581
1582 bbp4 = rum_bbp_read(sc, 4);
1583 bbp77 = rum_bbp_read(sc, 77);
1584
1585 /* TBD */
1586
1587 /* make sure Rx is disabled before switching antenna */
1588 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1589 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1590
1591 rum_bbp_write(sc, 4, bbp4);
1592 rum_bbp_write(sc, 77, bbp77);
1593
1594 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1595 }
1596
1597 /*
1598 * Enable multi-rate retries for frames sent at OFDM rates.
1599 * In 802.11b/g mode, allow fallback to CCK rates.
1600 */
1601 static void
1602 rum_enable_mrr(struct rum_softc *sc)
1603 {
1604 struct ieee80211com *ic = &sc->sc_ic;
1605 uint32_t tmp;
1606
1607 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1608
1609 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1610 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1611 tmp |= RT2573_MRR_CCK_FALLBACK;
1612 tmp |= RT2573_MRR_ENABLED;
1613
1614 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1615 }
1616
1617 static void
1618 rum_set_txpreamble(struct rum_softc *sc)
1619 {
1620 uint32_t tmp;
1621
1622 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1623
1624 tmp &= ~RT2573_SHORT_PREAMBLE;
1625 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1626 tmp |= RT2573_SHORT_PREAMBLE;
1627
1628 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1629 }
1630
1631 static void
1632 rum_set_basicrates(struct rum_softc *sc)
1633 {
1634 struct ieee80211com *ic = &sc->sc_ic;
1635
1636 /* update basic rate set */
1637 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1638 /* 11b basic rates: 1, 2Mbps */
1639 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1640 } else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1641 /* 11a basic rates: 6, 12, 24Mbps */
1642 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1643 } else {
1644 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1645 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1646 }
1647 }
1648
1649 /*
1650 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1651 * driver.
1652 */
1653 static void
1654 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1655 {
1656 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1657 uint32_t tmp;
1658
1659 /* update all BBP registers that depend on the band */
1660 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1661 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1662 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1663 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1664 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1665 }
1666 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1667 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1668 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1669 }
1670
1671 sc->bbp17 = bbp17;
1672 rum_bbp_write(sc, 17, bbp17);
1673 rum_bbp_write(sc, 96, bbp96);
1674 rum_bbp_write(sc, 104, bbp104);
1675
1676 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1677 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1678 rum_bbp_write(sc, 75, 0x80);
1679 rum_bbp_write(sc, 86, 0x80);
1680 rum_bbp_write(sc, 88, 0x80);
1681 }
1682
1683 rum_bbp_write(sc, 35, bbp35);
1684 rum_bbp_write(sc, 97, bbp97);
1685 rum_bbp_write(sc, 98, bbp98);
1686
1687 tmp = rum_read(sc, RT2573_PHY_CSR0);
1688 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1689 if (IEEE80211_IS_CHAN_2GHZ(c))
1690 tmp |= RT2573_PA_PE_2GHZ;
1691 else
1692 tmp |= RT2573_PA_PE_5GHZ;
1693 rum_write(sc, RT2573_PHY_CSR0, tmp);
1694
1695 /* 802.11a uses a 16 microseconds short interframe space */
1696 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1697 }
1698
1699 static void
1700 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1701 {
1702 struct ieee80211com *ic = &sc->sc_ic;
1703 const struct rfprog *rfprog;
1704 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1705 int8_t power;
1706 u_int i, chan;
1707
1708 chan = ieee80211_chan2ieee(ic, c);
1709 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1710 return;
1711
1712 /* select the appropriate RF settings based on what EEPROM says */
1713 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1714 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1715
1716 /* find the settings for this channel (we know it exists) */
1717 for (i = 0; rfprog[i].chan != chan; i++);
1718
1719 power = sc->txpow[i];
1720 if (power < 0) {
1721 bbp94 += power;
1722 power = 0;
1723 } else if (power > 31) {
1724 bbp94 += power - 31;
1725 power = 31;
1726 }
1727
1728 /*
1729 * If we are switching from the 2GHz band to the 5GHz band or
1730 * vice-versa, BBP registers need to be reprogrammed.
1731 */
1732 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1733 rum_select_band(sc, c);
1734 rum_select_antenna(sc);
1735 }
1736 ic->ic_curchan = c;
1737
1738 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1739 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1740 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1741 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1742
1743 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1744 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1745 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1746 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1747
1748 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1749 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1750 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1751 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1752
1753 DELAY(10);
1754
1755 /* enable smart mode for MIMO-capable RFs */
1756 bbp3 = rum_bbp_read(sc, 3);
1757
1758 bbp3 &= ~RT2573_SMART_MODE;
1759 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1760 bbp3 |= RT2573_SMART_MODE;
1761
1762 rum_bbp_write(sc, 3, bbp3);
1763
1764 if (bbp94 != RT2573_BBPR94_DEFAULT)
1765 rum_bbp_write(sc, 94, bbp94);
1766 }
1767
1768 /*
1769 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1770 * and HostAP operating modes.
1771 */
1772 static void
1773 rum_enable_tsf_sync(struct rum_softc *sc)
1774 {
1775 struct ieee80211com *ic = &sc->sc_ic;
1776 uint32_t tmp;
1777
1778 if (ic->ic_opmode != IEEE80211_M_STA) {
1779 /*
1780 * Change default 16ms TBTT adjustment to 8ms.
1781 * Must be done before enabling beacon generation.
1782 */
1783 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1784 }
1785
1786 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1787
1788 /* set beacon interval (in 1/16ms unit) */
1789 tmp |= ic->ic_bss->ni_intval * 16;
1790
1791 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1792 if (ic->ic_opmode == IEEE80211_M_STA)
1793 tmp |= RT2573_TSF_MODE(1);
1794 else
1795 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1796
1797 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1798 }
1799
1800 static void
1801 rum_update_slot(struct rum_softc *sc)
1802 {
1803 struct ieee80211com *ic = &sc->sc_ic;
1804 uint8_t slottime;
1805 uint32_t tmp;
1806
1807 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1808
1809 tmp = rum_read(sc, RT2573_MAC_CSR9);
1810 tmp = (tmp & ~0xff) | slottime;
1811 rum_write(sc, RT2573_MAC_CSR9, tmp);
1812
1813 DPRINTF(("setting slot time to %uus\n", slottime));
1814 }
1815
1816 static void
1817 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1818 {
1819 uint32_t tmp;
1820
1821 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1822 rum_write(sc, RT2573_MAC_CSR4, tmp);
1823
1824 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1825 rum_write(sc, RT2573_MAC_CSR5, tmp);
1826 }
1827
1828 static void
1829 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1830 {
1831 uint32_t tmp;
1832
1833 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1834 rum_write(sc, RT2573_MAC_CSR2, tmp);
1835
1836 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1837 rum_write(sc, RT2573_MAC_CSR3, tmp);
1838 }
1839
1840 static void
1841 rum_update_promisc(struct rum_softc *sc)
1842 {
1843 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1844 uint32_t tmp;
1845
1846 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1847
1848 tmp &= ~RT2573_DROP_NOT_TO_ME;
1849 if (!(ifp->if_flags & IFF_PROMISC))
1850 tmp |= RT2573_DROP_NOT_TO_ME;
1851
1852 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1853
1854 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1855 "entering" : "leaving"));
1856 }
1857
1858 static const char *
1859 rum_get_rf(int rev)
1860 {
1861 switch (rev) {
1862 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1863 case RT2573_RF_2528: return "RT2528";
1864 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1865 case RT2573_RF_5226: return "RT5226";
1866 default: return "unknown";
1867 }
1868 }
1869
1870 static void
1871 rum_read_eeprom(struct rum_softc *sc)
1872 {
1873 struct ieee80211com *ic = &sc->sc_ic;
1874 uint16_t val;
1875 #ifdef RUM_DEBUG
1876 int i;
1877 #endif
1878
1879 /* read MAC/BBP type */
1880 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1881 sc->macbbp_rev = le16toh(val);
1882
1883 /* read MAC address */
1884 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1885
1886 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1887 val = le16toh(val);
1888 sc->rf_rev = (val >> 11) & 0x1f;
1889 sc->hw_radio = (val >> 10) & 0x1;
1890 sc->rx_ant = (val >> 4) & 0x3;
1891 sc->tx_ant = (val >> 2) & 0x3;
1892 sc->nb_ant = val & 0x3;
1893
1894 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1895
1896 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1897 val = le16toh(val);
1898 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1899 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1900
1901 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1902 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1903
1904 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1905 val = le16toh(val);
1906 if ((val & 0xff) != 0xff)
1907 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1908
1909 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1910 val = le16toh(val);
1911 if ((val & 0xff) != 0xff)
1912 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1913
1914 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1915 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1916
1917 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1918 val = le16toh(val);
1919 if ((val & 0xff) != 0xff)
1920 sc->rffreq = val & 0xff;
1921
1922 DPRINTF(("RF freq=%d\n", sc->rffreq));
1923
1924 /* read Tx power for all a/b/g channels */
1925 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1926 /* XXX default Tx power for 802.11a channels */
1927 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1928 #ifdef RUM_DEBUG
1929 for (i = 0; i < 14; i++)
1930 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1931 #endif
1932
1933 /* read default values for BBP registers */
1934 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1935 #ifdef RUM_DEBUG
1936 for (i = 0; i < 14; i++) {
1937 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1938 continue;
1939 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1940 sc->bbp_prom[i].val));
1941 }
1942 #endif
1943 }
1944
1945 static int
1946 rum_bbp_init(struct rum_softc *sc)
1947 {
1948 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1949 unsigned int i, ntries;
1950 uint8_t val;
1951
1952 /* wait for BBP to be ready */
1953 for (ntries = 0; ntries < 100; ntries++) {
1954 val = rum_bbp_read(sc, 0);
1955 if (val != 0 && val != 0xff)
1956 break;
1957 DELAY(1000);
1958 }
1959 if (ntries == 100) {
1960 printf("%s: timeout waiting for BBP\n",
1961 device_xname(sc->sc_dev));
1962 return EIO;
1963 }
1964
1965 /* initialize BBP registers to default values */
1966 for (i = 0; i < N(rum_def_bbp); i++)
1967 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1968
1969 /* write vendor-specific BBP values (from EEPROM) */
1970 for (i = 0; i < 16; i++) {
1971 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1972 continue;
1973 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1974 }
1975
1976 return 0;
1977 #undef N
1978 }
1979
1980 static int
1981 rum_init(struct ifnet *ifp)
1982 {
1983 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1984 struct rum_softc *sc = ifp->if_softc;
1985 struct ieee80211com *ic = &sc->sc_ic;
1986 struct rum_rx_data *data;
1987 uint32_t tmp;
1988 usbd_status error = 0;
1989 unsigned int i, ntries;
1990
1991 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1992 if (rum_attachhook(sc))
1993 goto fail;
1994 }
1995
1996 rum_stop(ifp, 0);
1997
1998 /* initialize MAC registers to default values */
1999 for (i = 0; i < N(rum_def_mac); i++)
2000 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
2001
2002 /* set host ready */
2003 rum_write(sc, RT2573_MAC_CSR1, 3);
2004 rum_write(sc, RT2573_MAC_CSR1, 0);
2005
2006 /* wait for BBP/RF to wakeup */
2007 for (ntries = 0; ntries < 1000; ntries++) {
2008 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
2009 break;
2010 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
2011 DELAY(1000);
2012 }
2013 if (ntries == 1000) {
2014 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2015 device_xname(sc->sc_dev));
2016 goto fail;
2017 }
2018
2019 if ((error = rum_bbp_init(sc)) != 0)
2020 goto fail;
2021
2022 /* select default channel */
2023 rum_select_band(sc, ic->ic_curchan);
2024 rum_select_antenna(sc);
2025 rum_set_chan(sc, ic->ic_curchan);
2026
2027 /* clear STA registers */
2028 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2029
2030 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2031 rum_set_macaddr(sc, ic->ic_myaddr);
2032
2033 /* initialize ASIC */
2034 rum_write(sc, RT2573_MAC_CSR1, 4);
2035
2036 /*
2037 * Allocate xfer for AMRR statistics requests.
2038 */
2039 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2040 if (sc->amrr_xfer == NULL) {
2041 printf("%s: could not allocate AMRR xfer\n",
2042 device_xname(sc->sc_dev));
2043 goto fail;
2044 }
2045
2046 /*
2047 * Open Tx and Rx USB bulk pipes.
2048 */
2049 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2050 &sc->sc_tx_pipeh);
2051 if (error != 0) {
2052 printf("%s: could not open Tx pipe: %s\n",
2053 device_xname(sc->sc_dev), usbd_errstr(error));
2054 goto fail;
2055 }
2056
2057 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2058 &sc->sc_rx_pipeh);
2059 if (error != 0) {
2060 printf("%s: could not open Rx pipe: %s\n",
2061 device_xname(sc->sc_dev), usbd_errstr(error));
2062 goto fail;
2063 }
2064
2065 /*
2066 * Allocate Tx and Rx xfer queues.
2067 */
2068 error = rum_alloc_tx_list(sc);
2069 if (error != 0) {
2070 printf("%s: could not allocate Tx list\n",
2071 device_xname(sc->sc_dev));
2072 goto fail;
2073 }
2074
2075 error = rum_alloc_rx_list(sc);
2076 if (error != 0) {
2077 printf("%s: could not allocate Rx list\n",
2078 device_xname(sc->sc_dev));
2079 goto fail;
2080 }
2081
2082 /*
2083 * Start up the receive pipe.
2084 */
2085 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2086 data = &sc->rx_data[i];
2087
2088 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2089 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2090 error = usbd_transfer(data->xfer);
2091 if (error != USBD_NORMAL_COMPLETION &&
2092 error != USBD_IN_PROGRESS) {
2093 printf("%s: could not queue Rx transfer\n",
2094 device_xname(sc->sc_dev));
2095 goto fail;
2096 }
2097 }
2098
2099 /* update Rx filter */
2100 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2101
2102 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2103 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2104 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2105 RT2573_DROP_ACKCTS;
2106 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2107 tmp |= RT2573_DROP_TODS;
2108 if (!(ifp->if_flags & IFF_PROMISC))
2109 tmp |= RT2573_DROP_NOT_TO_ME;
2110 }
2111 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2112
2113 ifp->if_flags &= ~IFF_OACTIVE;
2114 ifp->if_flags |= IFF_RUNNING;
2115
2116 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2117 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2118 else
2119 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2120
2121 return 0;
2122
2123 fail: rum_stop(ifp, 1);
2124 return error;
2125 #undef N
2126 }
2127
2128 static void
2129 rum_stop(struct ifnet *ifp, int disable)
2130 {
2131 struct rum_softc *sc = ifp->if_softc;
2132 struct ieee80211com *ic = &sc->sc_ic;
2133 uint32_t tmp;
2134
2135 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2136
2137 sc->sc_tx_timer = 0;
2138 ifp->if_timer = 0;
2139 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2140
2141 /* disable Rx */
2142 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2143 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2144
2145 /* reset ASIC */
2146 rum_write(sc, RT2573_MAC_CSR1, 3);
2147 rum_write(sc, RT2573_MAC_CSR1, 0);
2148
2149 if (sc->amrr_xfer != NULL) {
2150 usbd_free_xfer(sc->amrr_xfer);
2151 sc->amrr_xfer = NULL;
2152 }
2153
2154 if (sc->sc_rx_pipeh != NULL) {
2155 usbd_abort_pipe(sc->sc_rx_pipeh);
2156 usbd_close_pipe(sc->sc_rx_pipeh);
2157 sc->sc_rx_pipeh = NULL;
2158 }
2159
2160 if (sc->sc_tx_pipeh != NULL) {
2161 usbd_abort_pipe(sc->sc_tx_pipeh);
2162 usbd_close_pipe(sc->sc_tx_pipeh);
2163 sc->sc_tx_pipeh = NULL;
2164 }
2165
2166 rum_free_rx_list(sc);
2167 rum_free_tx_list(sc);
2168 }
2169
2170 static int
2171 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2172 {
2173 usb_device_request_t req;
2174 uint16_t reg = RT2573_MCU_CODE_BASE;
2175 usbd_status error;
2176
2177 /* copy firmware image into NIC */
2178 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2179 rum_write(sc, reg, UGETDW(ucode));
2180
2181 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2182 req.bRequest = RT2573_MCU_CNTL;
2183 USETW(req.wValue, RT2573_MCU_RUN);
2184 USETW(req.wIndex, 0);
2185 USETW(req.wLength, 0);
2186
2187 error = usbd_do_request(sc->sc_udev, &req, NULL);
2188 if (error != 0) {
2189 printf("%s: could not run firmware: %s\n",
2190 device_xname(sc->sc_dev), usbd_errstr(error));
2191 }
2192 return error;
2193 }
2194
2195 static int
2196 rum_prepare_beacon(struct rum_softc *sc)
2197 {
2198 struct ieee80211com *ic = &sc->sc_ic;
2199 struct rum_tx_desc desc;
2200 struct mbuf *m0;
2201 int rate;
2202
2203 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2204 if (m0 == NULL) {
2205 aprint_error_dev(sc->sc_dev,
2206 "could not allocate beacon frame\n");
2207 return ENOBUFS;
2208 }
2209
2210 /* send beacons at the lowest available rate */
2211 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2212
2213 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2214 m0->m_pkthdr.len, rate);
2215
2216 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2217 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2218
2219 /* copy beacon header and payload into NIC memory */
2220 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2221 m0->m_pkthdr.len);
2222
2223 m_freem(m0);
2224
2225 return 0;
2226 }
2227
2228 static void
2229 rum_newassoc(struct ieee80211_node *ni, int isnew)
2230 {
2231 /* start with lowest Tx rate */
2232 ni->ni_txrate = 0;
2233 }
2234
2235 static void
2236 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2237 {
2238 int i;
2239
2240 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2241 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2242
2243 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2244
2245 /* set rate to some reasonable initial value */
2246 for (i = ni->ni_rates.rs_nrates - 1;
2247 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2248 i--);
2249 ni->ni_txrate = i;
2250
2251 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2252 }
2253
2254 static void
2255 rum_amrr_timeout(void *arg)
2256 {
2257 struct rum_softc *sc = arg;
2258 usb_device_request_t req;
2259
2260 /*
2261 * Asynchronously read statistic registers (cleared by read).
2262 */
2263 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2264 req.bRequest = RT2573_READ_MULTI_MAC;
2265 USETW(req.wValue, 0);
2266 USETW(req.wIndex, RT2573_STA_CSR0);
2267 USETW(req.wLength, sizeof sc->sta);
2268
2269 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2270 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2271 rum_amrr_update);
2272 (void)usbd_transfer(sc->amrr_xfer);
2273 }
2274
2275 static void
2276 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2277 usbd_status status)
2278 {
2279 struct rum_softc *sc = (struct rum_softc *)priv;
2280 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2281
2282 if (status != USBD_NORMAL_COMPLETION) {
2283 printf("%s: could not retrieve Tx statistics - cancelling "
2284 "automatic rate control\n", device_xname(sc->sc_dev));
2285 return;
2286 }
2287
2288 /* count TX retry-fail as Tx errors */
2289 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2290
2291 sc->amn.amn_retrycnt =
2292 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2293 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2294 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2295
2296 sc->amn.amn_txcnt =
2297 sc->amn.amn_retrycnt +
2298 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2299
2300 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2301
2302 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2303 }
2304
2305 static int
2306 rum_activate(device_t self, enum devact act)
2307 {
2308 switch (act) {
2309 case DVACT_DEACTIVATE:
2310 /*if_deactivate(&sc->sc_ic.ic_if);*/
2311 return 0;
2312 default:
2313 return 0;
2314 }
2315 }
2316
2317 MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf");
2318
2319 #ifdef _MODULE
2320 #include "ioconf.c"
2321 #endif
2322
2323 static int
2324 if_rum_modcmd(modcmd_t cmd, void *aux)
2325 {
2326 int error = 0;
2327
2328 switch (cmd) {
2329 case MODULE_CMD_INIT:
2330 #ifdef _MODULE
2331 error = config_init_component(cfdriver_ioconf_rum,
2332 cfattach_ioconf_rum, cfdata_ioconf_rum);
2333 #endif
2334 return error;
2335 case MODULE_CMD_FINI:
2336 #ifdef _MODULE
2337 error = config_fini_component(cfdriver_ioconf_rum,
2338 cfattach_ioconf_rum, cfdata_ioconf_rum);
2339 #endif
2340 return error;
2341 default:
2342 return ENOTTY;
2343 }
2344 }
2345