if_rum.c revision 1.52 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.52 2016/04/23 10:15:31 skrll Exp $ */
3
4 /*-
5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com.tw/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.52 2016/04/23 10:15:31 skrll Exp $");
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/module.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39
40 #include <sys/bus.h>
41 #include <machine/endian.h>
42 #include <sys/intr.h>
43
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_arp.h>
47 #include <net/if_dl.h>
48 #include <net/if_ether.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip.h>
56
57 #include <net80211/ieee80211_netbsd.h>
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_amrr.h>
60 #include <net80211/ieee80211_radiotap.h>
61
62 #include <dev/firmload.h>
63
64 #include <dev/usb/usb.h>
65 #include <dev/usb/usbdi.h>
66 #include <dev/usb/usbdi_util.h>
67 #include <dev/usb/usbdevs.h>
68
69 #include <dev/usb/if_rumreg.h>
70 #include <dev/usb/if_rumvar.h>
71
72 #ifdef RUM_DEBUG
73 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0)
74 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0)
75 int rum_debug = 1;
76 #else
77 #define DPRINTF(x)
78 #define DPRINTFN(n, x)
79 #endif
80
81 /* various supported device vendors/products */
82 static const struct usb_devno rum_devs[] = {
83 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
84 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
85 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
86 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
87 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
88 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
89 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
90 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
91 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
92 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
93 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C },
94 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 },
95 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
96 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
97 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
98 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_RT2573 },
99 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL },
100 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX },
101 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
102 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
103 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
104 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
105 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 },
106 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 },
107 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 },
108 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 },
109 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
110 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
111 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
112 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
113 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
114 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
115 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
116 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
117 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
118 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG },
119 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG },
120 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
121 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
122 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
123 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
124 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
125 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
126 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
127 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
128 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
129 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
130 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 },
131 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
132 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
133 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
134 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
135 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 },
136 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 },
137 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 }
138 };
139
140 static int rum_attachhook(void *);
141 static int rum_alloc_tx_list(struct rum_softc *);
142 static void rum_free_tx_list(struct rum_softc *);
143 static int rum_alloc_rx_list(struct rum_softc *);
144 static void rum_free_rx_list(struct rum_softc *);
145 static int rum_media_change(struct ifnet *);
146 static void rum_next_scan(void *);
147 static void rum_task(void *);
148 static int rum_newstate(struct ieee80211com *,
149 enum ieee80211_state, int);
150 static void rum_txeof(struct usbd_xfer *, void *,
151 usbd_status);
152 static void rum_rxeof(struct usbd_xfer *, void *,
153 usbd_status);
154 static uint8_t rum_rxrate(const struct rum_rx_desc *);
155 static int rum_ack_rate(struct ieee80211com *, int);
156 static uint16_t rum_txtime(int, int, uint32_t);
157 static uint8_t rum_plcp_signal(int);
158 static void rum_setup_tx_desc(struct rum_softc *,
159 struct rum_tx_desc *, uint32_t, uint16_t, int,
160 int);
161 static int rum_tx_data(struct rum_softc *, struct mbuf *,
162 struct ieee80211_node *);
163 static void rum_start(struct ifnet *);
164 static void rum_watchdog(struct ifnet *);
165 static int rum_ioctl(struct ifnet *, u_long, void *);
166 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
167 int);
168 static uint32_t rum_read(struct rum_softc *, uint16_t);
169 static void rum_read_multi(struct rum_softc *, uint16_t, void *,
170 int);
171 static void rum_write(struct rum_softc *, uint16_t, uint32_t);
172 static void rum_write_multi(struct rum_softc *, uint16_t, void *,
173 size_t);
174 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
175 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
176 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
177 static void rum_select_antenna(struct rum_softc *);
178 static void rum_enable_mrr(struct rum_softc *);
179 static void rum_set_txpreamble(struct rum_softc *);
180 static void rum_set_basicrates(struct rum_softc *);
181 static void rum_select_band(struct rum_softc *,
182 struct ieee80211_channel *);
183 static void rum_set_chan(struct rum_softc *,
184 struct ieee80211_channel *);
185 static void rum_enable_tsf_sync(struct rum_softc *);
186 static void rum_update_slot(struct rum_softc *);
187 static void rum_set_bssid(struct rum_softc *, const uint8_t *);
188 static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
189 static void rum_update_promisc(struct rum_softc *);
190 static const char *rum_get_rf(int);
191 static void rum_read_eeprom(struct rum_softc *);
192 static int rum_bbp_init(struct rum_softc *);
193 static int rum_init(struct ifnet *);
194 static void rum_stop(struct ifnet *, int);
195 static int rum_load_microcode(struct rum_softc *, const u_char *,
196 size_t);
197 static int rum_prepare_beacon(struct rum_softc *);
198 static void rum_newassoc(struct ieee80211_node *, int);
199 static void rum_amrr_start(struct rum_softc *,
200 struct ieee80211_node *);
201 static void rum_amrr_timeout(void *);
202 static void rum_amrr_update(struct usbd_xfer *, void *,
203 usbd_status);
204
205 /*
206 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
207 */
208 static const struct ieee80211_rateset rum_rateset_11a =
209 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
210
211 static const struct ieee80211_rateset rum_rateset_11b =
212 { 4, { 2, 4, 11, 22 } };
213
214 static const struct ieee80211_rateset rum_rateset_11g =
215 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
216
217 static const struct {
218 uint32_t reg;
219 uint32_t val;
220 } rum_def_mac[] = {
221 RT2573_DEF_MAC
222 };
223
224 static const struct {
225 uint8_t reg;
226 uint8_t val;
227 } rum_def_bbp[] = {
228 RT2573_DEF_BBP
229 };
230
231 static const struct rfprog {
232 uint8_t chan;
233 uint32_t r1, r2, r3, r4;
234 } rum_rf5226[] = {
235 RT2573_RF5226
236 }, rum_rf5225[] = {
237 RT2573_RF5225
238 };
239
240 static int rum_match(device_t, cfdata_t, void *);
241 static void rum_attach(device_t, device_t, void *);
242 static int rum_detach(device_t, int);
243 static int rum_activate(device_t, enum devact);
244 extern struct cfdriver rum_cd;
245 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
246 rum_detach, rum_activate);
247
248 static int
249 rum_match(device_t parent, cfdata_t match, void *aux)
250 {
251 struct usb_attach_arg *uaa = aux;
252
253 return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
254 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
255 }
256
257 static int
258 rum_attachhook(void *xsc)
259 {
260 struct rum_softc *sc = xsc;
261 firmware_handle_t fwh;
262 const char *name = "rum-rt2573";
263 u_char *ucode;
264 size_t size;
265 int error;
266
267 if ((error = firmware_open("rum", name, &fwh)) != 0) {
268 printf("%s: failed firmware_open of file %s (error %d)\n",
269 device_xname(sc->sc_dev), name, error);
270 return error;
271 }
272 size = firmware_get_size(fwh);
273 ucode = firmware_malloc(size);
274 if (ucode == NULL) {
275 printf("%s: failed to allocate firmware memory\n",
276 device_xname(sc->sc_dev));
277 firmware_close(fwh);
278 return ENOMEM;
279 }
280 error = firmware_read(fwh, 0, ucode, size);
281 firmware_close(fwh);
282 if (error != 0) {
283 printf("%s: failed to read firmware (error %d)\n",
284 device_xname(sc->sc_dev), error);
285 firmware_free(ucode, size);
286 return error;
287 }
288
289 if (rum_load_microcode(sc, ucode, size) != 0) {
290 printf("%s: could not load 8051 microcode\n",
291 device_xname(sc->sc_dev));
292 firmware_free(ucode, size);
293 return ENXIO;
294 }
295
296 firmware_free(ucode, size);
297 sc->sc_flags |= RT2573_FWLOADED;
298
299 return 0;
300 }
301
302 static void
303 rum_attach(device_t parent, device_t self, void *aux)
304 {
305 struct rum_softc *sc = device_private(self);
306 struct usb_attach_arg *uaa = aux;
307 struct ieee80211com *ic = &sc->sc_ic;
308 struct ifnet *ifp = &sc->sc_if;
309 usb_interface_descriptor_t *id;
310 usb_endpoint_descriptor_t *ed;
311 usbd_status error;
312 char *devinfop;
313 int i, ntries;
314 uint32_t tmp;
315
316 sc->sc_dev = self;
317 sc->sc_udev = uaa->uaa_device;
318 sc->sc_flags = 0;
319
320 aprint_naive("\n");
321 aprint_normal("\n");
322
323 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
324 aprint_normal_dev(self, "%s\n", devinfop);
325 usbd_devinfo_free(devinfop);
326
327 error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
328 if (error != 0) {
329 aprint_error_dev(self, "failed to set configuration"
330 ", err=%s\n", usbd_errstr(error));
331 return;
332 }
333
334 /* get the first interface handle */
335 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
336 &sc->sc_iface);
337 if (error != 0) {
338 aprint_error_dev(self, "could not get interface handle\n");
339 return;
340 }
341
342 /*
343 * Find endpoints.
344 */
345 id = usbd_get_interface_descriptor(sc->sc_iface);
346
347 sc->sc_rx_no = sc->sc_tx_no = -1;
348 for (i = 0; i < id->bNumEndpoints; i++) {
349 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
350 if (ed == NULL) {
351 aprint_error_dev(self,
352 "no endpoint descriptor for iface %d\n", i);
353 return;
354 }
355
356 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
357 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
358 sc->sc_rx_no = ed->bEndpointAddress;
359 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
360 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
361 sc->sc_tx_no = ed->bEndpointAddress;
362 }
363 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
364 aprint_error_dev(self, "missing endpoint\n");
365 return;
366 }
367
368 usb_init_task(&sc->sc_task, rum_task, sc, 0);
369 callout_init(&sc->sc_scan_ch, 0);
370
371 sc->amrr.amrr_min_success_threshold = 1;
372 sc->amrr.amrr_max_success_threshold = 10;
373 callout_init(&sc->sc_amrr_ch, 0);
374
375 /* retrieve RT2573 rev. no */
376 for (ntries = 0; ntries < 1000; ntries++) {
377 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
378 break;
379 DELAY(1000);
380 }
381 if (ntries == 1000) {
382 aprint_error_dev(self, "timeout waiting for chip to settle\n");
383 return;
384 }
385
386 /* retrieve MAC address and various other things from EEPROM */
387 rum_read_eeprom(sc);
388
389 aprint_normal_dev(self,
390 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
391 sc->macbbp_rev, tmp,
392 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
393
394 ic->ic_ifp = ifp;
395 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
396 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
397 ic->ic_state = IEEE80211_S_INIT;
398
399 /* set device capabilities */
400 ic->ic_caps =
401 IEEE80211_C_IBSS | /* IBSS mode supported */
402 IEEE80211_C_MONITOR | /* monitor mode supported */
403 IEEE80211_C_HOSTAP | /* HostAp mode supported */
404 IEEE80211_C_TXPMGT | /* tx power management */
405 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
406 IEEE80211_C_SHSLOT | /* short slot time supported */
407 IEEE80211_C_WPA; /* 802.11i */
408
409 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
410 /* set supported .11a rates */
411 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
412
413 /* set supported .11a channels */
414 for (i = 34; i <= 46; i += 4) {
415 ic->ic_channels[i].ic_freq =
416 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
417 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
418 }
419 for (i = 36; i <= 64; i += 4) {
420 ic->ic_channels[i].ic_freq =
421 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
422 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
423 }
424 for (i = 100; i <= 140; i += 4) {
425 ic->ic_channels[i].ic_freq =
426 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
427 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
428 }
429 for (i = 149; i <= 165; i += 4) {
430 ic->ic_channels[i].ic_freq =
431 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
432 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
433 }
434 }
435
436 /* set supported .11b and .11g rates */
437 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
438 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
439
440 /* set supported .11b and .11g channels (1 through 14) */
441 for (i = 1; i <= 14; i++) {
442 ic->ic_channels[i].ic_freq =
443 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
444 ic->ic_channels[i].ic_flags =
445 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
446 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
447 }
448
449 ifp->if_softc = sc;
450 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
451 ifp->if_init = rum_init;
452 ifp->if_ioctl = rum_ioctl;
453 ifp->if_start = rum_start;
454 ifp->if_watchdog = rum_watchdog;
455 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
456 IFQ_SET_READY(&ifp->if_snd);
457 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
458
459 if_attach(ifp);
460 ieee80211_ifattach(ic);
461 ic->ic_newassoc = rum_newassoc;
462
463 /* override state transition machine */
464 sc->sc_newstate = ic->ic_newstate;
465 ic->ic_newstate = rum_newstate;
466 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
467
468 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
469 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
470 &sc->sc_drvbpf);
471
472 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
473 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
474 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
475
476 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
477 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
478 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
479
480 ieee80211_announce(ic);
481
482 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
483 sc->sc_dev);
484
485 if (!pmf_device_register(self, NULL, NULL))
486 aprint_error_dev(self, "couldn't establish power handler\n");
487
488 return;
489 }
490
491 static int
492 rum_detach(device_t self, int flags)
493 {
494 struct rum_softc *sc = device_private(self);
495 struct ieee80211com *ic = &sc->sc_ic;
496 struct ifnet *ifp = &sc->sc_if;
497 int s;
498
499 if (!ifp->if_softc)
500 return 0;
501
502 pmf_device_deregister(self);
503
504 s = splusb();
505
506 rum_stop(ifp, 1);
507 usb_rem_task(sc->sc_udev, &sc->sc_task);
508 callout_stop(&sc->sc_scan_ch);
509 callout_stop(&sc->sc_amrr_ch);
510
511 bpf_detach(ifp);
512 ieee80211_ifdetach(ic); /* free all nodes */
513 if_detach(ifp);
514
515 splx(s);
516
517 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
518
519 return 0;
520 }
521
522 static int
523 rum_alloc_tx_list(struct rum_softc *sc)
524 {
525 struct rum_tx_data *data;
526 int i, error;
527
528 sc->tx_cur = sc->tx_queued = 0;
529
530 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
531 data = &sc->tx_data[i];
532
533 data->sc = sc;
534
535 error = usbd_create_xfer(sc->sc_tx_pipeh,
536 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN,
537 USBD_FORCE_SHORT_XFER, 0, &data->xfer);
538 if (error) {
539 printf("%s: could not allocate tx xfer\n",
540 device_xname(sc->sc_dev));
541 goto fail;
542 }
543 data->buf = usbd_get_buffer(data->xfer);
544
545 /* clean Tx descriptor */
546 memset(data->buf, 0, RT2573_TX_DESC_SIZE);
547 }
548
549 return 0;
550
551 fail: rum_free_tx_list(sc);
552 return error;
553 }
554
555 static void
556 rum_free_tx_list(struct rum_softc *sc)
557 {
558 struct rum_tx_data *data;
559 int i;
560
561 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
562 data = &sc->tx_data[i];
563
564 if (data->xfer != NULL) {
565 usbd_destroy_xfer(data->xfer);
566 data->xfer = NULL;
567 }
568
569 if (data->ni != NULL) {
570 ieee80211_free_node(data->ni);
571 data->ni = NULL;
572 }
573 }
574 }
575
576 static int
577 rum_alloc_rx_list(struct rum_softc *sc)
578 {
579 struct rum_rx_data *data;
580 int i, error;
581
582 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
583 data = &sc->rx_data[i];
584
585 data->sc = sc;
586
587 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
588 USBD_SHORT_XFER_OK, 0, &data->xfer);
589 if (error) {
590 printf("%s: could not allocate rx xfer\n",
591 device_xname(sc->sc_dev));
592 goto fail;
593 }
594
595 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
596 if (data->m == NULL) {
597 printf("%s: could not allocate rx mbuf\n",
598 device_xname(sc->sc_dev));
599 error = ENOMEM;
600 goto fail;
601 }
602
603 MCLGET(data->m, M_DONTWAIT);
604 if (!(data->m->m_flags & M_EXT)) {
605 printf("%s: could not allocate rx mbuf cluster\n",
606 device_xname(sc->sc_dev));
607 error = ENOMEM;
608 goto fail;
609 }
610
611 data->buf = mtod(data->m, uint8_t *);
612 }
613
614 return 0;
615
616 fail: rum_free_rx_list(sc);
617 return error;
618 }
619
620 static void
621 rum_free_rx_list(struct rum_softc *sc)
622 {
623 struct rum_rx_data *data;
624 int i;
625
626 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
627 data = &sc->rx_data[i];
628
629 if (data->xfer != NULL) {
630 usbd_destroy_xfer(data->xfer);
631 data->xfer = NULL;
632 }
633
634 if (data->m != NULL) {
635 m_freem(data->m);
636 data->m = NULL;
637 }
638 }
639 }
640
641 static int
642 rum_media_change(struct ifnet *ifp)
643 {
644 int error;
645
646 error = ieee80211_media_change(ifp);
647 if (error != ENETRESET)
648 return error;
649
650 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
651 rum_init(ifp);
652
653 return 0;
654 }
655
656 /*
657 * This function is called periodically (every 200ms) during scanning to
658 * switch from one channel to another.
659 */
660 static void
661 rum_next_scan(void *arg)
662 {
663 struct rum_softc *sc = arg;
664 struct ieee80211com *ic = &sc->sc_ic;
665 int s;
666
667 s = splnet();
668 if (ic->ic_state == IEEE80211_S_SCAN)
669 ieee80211_next_scan(ic);
670 splx(s);
671 }
672
673 static void
674 rum_task(void *arg)
675 {
676 struct rum_softc *sc = arg;
677 struct ieee80211com *ic = &sc->sc_ic;
678 enum ieee80211_state ostate;
679 struct ieee80211_node *ni;
680 uint32_t tmp;
681
682 ostate = ic->ic_state;
683
684 switch (sc->sc_state) {
685 case IEEE80211_S_INIT:
686 if (ostate == IEEE80211_S_RUN) {
687 /* abort TSF synchronization */
688 tmp = rum_read(sc, RT2573_TXRX_CSR9);
689 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
690 }
691 break;
692
693 case IEEE80211_S_SCAN:
694 rum_set_chan(sc, ic->ic_curchan);
695 callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
696 break;
697
698 case IEEE80211_S_AUTH:
699 rum_set_chan(sc, ic->ic_curchan);
700 break;
701
702 case IEEE80211_S_ASSOC:
703 rum_set_chan(sc, ic->ic_curchan);
704 break;
705
706 case IEEE80211_S_RUN:
707 rum_set_chan(sc, ic->ic_curchan);
708
709 ni = ic->ic_bss;
710
711 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
712 rum_update_slot(sc);
713 rum_enable_mrr(sc);
714 rum_set_txpreamble(sc);
715 rum_set_basicrates(sc);
716 rum_set_bssid(sc, ni->ni_bssid);
717 }
718
719 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
720 ic->ic_opmode == IEEE80211_M_IBSS)
721 rum_prepare_beacon(sc);
722
723 if (ic->ic_opmode != IEEE80211_M_MONITOR)
724 rum_enable_tsf_sync(sc);
725
726 if (ic->ic_opmode == IEEE80211_M_STA) {
727 /* fake a join to init the tx rate */
728 rum_newassoc(ic->ic_bss, 1);
729
730 /* enable automatic rate adaptation in STA mode */
731 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
732 rum_amrr_start(sc, ni);
733 }
734
735 break;
736 }
737
738 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
739 }
740
741 static int
742 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
743 {
744 struct rum_softc *sc = ic->ic_ifp->if_softc;
745
746 usb_rem_task(sc->sc_udev, &sc->sc_task);
747 callout_stop(&sc->sc_scan_ch);
748 callout_stop(&sc->sc_amrr_ch);
749
750 /* do it in a process context */
751 sc->sc_state = nstate;
752 sc->sc_arg = arg;
753 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
754
755 return 0;
756 }
757
758 /* quickly determine if a given rate is CCK or OFDM */
759 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
760
761 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
762 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
763
764 static void
765 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
766 {
767 struct rum_tx_data *data = priv;
768 struct rum_softc *sc = data->sc;
769 struct ifnet *ifp = &sc->sc_if;
770 int s;
771
772 if (status != USBD_NORMAL_COMPLETION) {
773 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
774 return;
775
776 printf("%s: could not transmit buffer: %s\n",
777 device_xname(sc->sc_dev), usbd_errstr(status));
778
779 if (status == USBD_STALLED)
780 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
781
782 ifp->if_oerrors++;
783 return;
784 }
785
786 s = splnet();
787
788 ieee80211_free_node(data->ni);
789 data->ni = NULL;
790
791 sc->tx_queued--;
792 ifp->if_opackets++;
793
794 DPRINTFN(10, ("tx done\n"));
795
796 sc->sc_tx_timer = 0;
797 ifp->if_flags &= ~IFF_OACTIVE;
798 rum_start(ifp);
799
800 splx(s);
801 }
802
803 static void
804 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
805 {
806 struct rum_rx_data *data = priv;
807 struct rum_softc *sc = data->sc;
808 struct ieee80211com *ic = &sc->sc_ic;
809 struct ifnet *ifp = &sc->sc_if;
810 struct rum_rx_desc *desc;
811 struct ieee80211_frame *wh;
812 struct ieee80211_node *ni;
813 struct mbuf *mnew, *m;
814 int s, len;
815
816 if (status != USBD_NORMAL_COMPLETION) {
817 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
818 return;
819
820 if (status == USBD_STALLED)
821 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
822 goto skip;
823 }
824
825 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
826
827 if (len < (int)(RT2573_RX_DESC_SIZE +
828 sizeof(struct ieee80211_frame_min))) {
829 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
830 len));
831 ifp->if_ierrors++;
832 goto skip;
833 }
834
835 desc = (struct rum_rx_desc *)data->buf;
836
837 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
838 /*
839 * This should not happen since we did not request to receive
840 * those frames when we filled RT2573_TXRX_CSR0.
841 */
842 DPRINTFN(5, ("CRC error\n"));
843 ifp->if_ierrors++;
844 goto skip;
845 }
846
847 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
848 if (mnew == NULL) {
849 printf("%s: could not allocate rx mbuf\n",
850 device_xname(sc->sc_dev));
851 ifp->if_ierrors++;
852 goto skip;
853 }
854
855 MCLGET(mnew, M_DONTWAIT);
856 if (!(mnew->m_flags & M_EXT)) {
857 printf("%s: could not allocate rx mbuf cluster\n",
858 device_xname(sc->sc_dev));
859 m_freem(mnew);
860 ifp->if_ierrors++;
861 goto skip;
862 }
863
864 m = data->m;
865 data->m = mnew;
866 data->buf = mtod(data->m, uint8_t *);
867
868 /* finalize mbuf */
869 m->m_pkthdr.rcvif = ifp;
870 m->m_data = (void *)(desc + 1);
871 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
872
873 s = splnet();
874
875 if (sc->sc_drvbpf != NULL) {
876 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
877
878 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
879 tap->wr_rate = rum_rxrate(desc);
880 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
881 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
882 tap->wr_antenna = sc->rx_ant;
883 tap->wr_antsignal = desc->rssi;
884
885 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
886 }
887
888 wh = mtod(m, struct ieee80211_frame *);
889 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
890
891 /* send the frame to the 802.11 layer */
892 ieee80211_input(ic, m, ni, desc->rssi, 0);
893
894 /* node is no longer needed */
895 ieee80211_free_node(ni);
896
897 splx(s);
898
899 DPRINTFN(15, ("rx done\n"));
900
901 skip: /* setup a new transfer */
902 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK,
903 USBD_NO_TIMEOUT, rum_rxeof);
904 usbd_transfer(xfer);
905 }
906
907 /*
908 * This function is only used by the Rx radiotap code. It returns the rate at
909 * which a given frame was received.
910 */
911 static uint8_t
912 rum_rxrate(const struct rum_rx_desc *desc)
913 {
914 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
915 /* reverse function of rum_plcp_signal */
916 switch (desc->rate) {
917 case 0xb: return 12;
918 case 0xf: return 18;
919 case 0xa: return 24;
920 case 0xe: return 36;
921 case 0x9: return 48;
922 case 0xd: return 72;
923 case 0x8: return 96;
924 case 0xc: return 108;
925 }
926 } else {
927 if (desc->rate == 10)
928 return 2;
929 if (desc->rate == 20)
930 return 4;
931 if (desc->rate == 55)
932 return 11;
933 if (desc->rate == 110)
934 return 22;
935 }
936 return 2; /* should not get there */
937 }
938
939 /*
940 * Return the expected ack rate for a frame transmitted at rate `rate'.
941 * XXX: this should depend on the destination node basic rate set.
942 */
943 static int
944 rum_ack_rate(struct ieee80211com *ic, int rate)
945 {
946 switch (rate) {
947 /* CCK rates */
948 case 2:
949 return 2;
950 case 4:
951 case 11:
952 case 22:
953 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
954
955 /* OFDM rates */
956 case 12:
957 case 18:
958 return 12;
959 case 24:
960 case 36:
961 return 24;
962 case 48:
963 case 72:
964 case 96:
965 case 108:
966 return 48;
967 }
968
969 /* default to 1Mbps */
970 return 2;
971 }
972
973 /*
974 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
975 * The function automatically determines the operating mode depending on the
976 * given rate. `flags' indicates whether short preamble is in use or not.
977 */
978 static uint16_t
979 rum_txtime(int len, int rate, uint32_t flags)
980 {
981 uint16_t txtime;
982
983 if (RUM_RATE_IS_OFDM(rate)) {
984 /* IEEE Std 802.11a-1999, pp. 37 */
985 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
986 txtime = 16 + 4 + 4 * txtime + 6;
987 } else {
988 /* IEEE Std 802.11b-1999, pp. 28 */
989 txtime = (16 * len + rate - 1) / rate;
990 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
991 txtime += 72 + 24;
992 else
993 txtime += 144 + 48;
994 }
995 return txtime;
996 }
997
998 static uint8_t
999 rum_plcp_signal(int rate)
1000 {
1001 switch (rate) {
1002 /* CCK rates (returned values are device-dependent) */
1003 case 2: return 0x0;
1004 case 4: return 0x1;
1005 case 11: return 0x2;
1006 case 22: return 0x3;
1007
1008 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1009 case 12: return 0xb;
1010 case 18: return 0xf;
1011 case 24: return 0xa;
1012 case 36: return 0xe;
1013 case 48: return 0x9;
1014 case 72: return 0xd;
1015 case 96: return 0x8;
1016 case 108: return 0xc;
1017
1018 /* unsupported rates (should not get there) */
1019 default: return 0xff;
1020 }
1021 }
1022
1023 static void
1024 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1025 uint32_t flags, uint16_t xflags, int len, int rate)
1026 {
1027 struct ieee80211com *ic = &sc->sc_ic;
1028 uint16_t plcp_length;
1029 int remainder;
1030
1031 desc->flags = htole32(flags);
1032 desc->flags |= htole32(RT2573_TX_VALID);
1033 desc->flags |= htole32(len << 16);
1034
1035 desc->xflags = htole16(xflags);
1036
1037 desc->wme = htole16(
1038 RT2573_QID(0) |
1039 RT2573_AIFSN(2) |
1040 RT2573_LOGCWMIN(4) |
1041 RT2573_LOGCWMAX(10));
1042
1043 /* setup PLCP fields */
1044 desc->plcp_signal = rum_plcp_signal(rate);
1045 desc->plcp_service = 4;
1046
1047 len += IEEE80211_CRC_LEN;
1048 if (RUM_RATE_IS_OFDM(rate)) {
1049 desc->flags |= htole32(RT2573_TX_OFDM);
1050
1051 plcp_length = len & 0xfff;
1052 desc->plcp_length_hi = plcp_length >> 6;
1053 desc->plcp_length_lo = plcp_length & 0x3f;
1054 } else {
1055 plcp_length = (16 * len + rate - 1) / rate;
1056 if (rate == 22) {
1057 remainder = (16 * len) % 22;
1058 if (remainder != 0 && remainder < 7)
1059 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1060 }
1061 desc->plcp_length_hi = plcp_length >> 8;
1062 desc->plcp_length_lo = plcp_length & 0xff;
1063
1064 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1065 desc->plcp_signal |= 0x08;
1066 }
1067 }
1068
1069 #define RUM_TX_TIMEOUT 5000
1070
1071 static int
1072 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1073 {
1074 struct ieee80211com *ic = &sc->sc_ic;
1075 struct rum_tx_desc *desc;
1076 struct rum_tx_data *data;
1077 struct ieee80211_frame *wh;
1078 struct ieee80211_key *k;
1079 uint32_t flags = 0;
1080 uint16_t dur;
1081 usbd_status error;
1082 int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1083
1084 wh = mtod(m0, struct ieee80211_frame *);
1085
1086 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1087 k = ieee80211_crypto_encap(ic, ni, m0);
1088 if (k == NULL) {
1089 m_freem(m0);
1090 return ENOBUFS;
1091 }
1092
1093 /* packet header may have moved, reset our local pointer */
1094 wh = mtod(m0, struct ieee80211_frame *);
1095 }
1096
1097 /* compute actual packet length (including CRC and crypto overhead) */
1098 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1099
1100 /* pickup a rate */
1101 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1102 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1103 IEEE80211_FC0_TYPE_MGT)) {
1104 /* mgmt/multicast frames are sent at the lowest avail. rate */
1105 rate = ni->ni_rates.rs_rates[0];
1106 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1107 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1108 } else
1109 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1110 if (rate == 0)
1111 rate = 2; /* XXX should not happen */
1112 rate &= IEEE80211_RATE_VAL;
1113
1114 /* check if RTS/CTS or CTS-to-self protection must be used */
1115 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1116 /* multicast frames are not sent at OFDM rates in 802.11b/g */
1117 if (pktlen > ic->ic_rtsthreshold) {
1118 needrts = 1; /* RTS/CTS based on frame length */
1119 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1120 RUM_RATE_IS_OFDM(rate)) {
1121 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1122 needcts = 1; /* CTS-to-self */
1123 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1124 needrts = 1; /* RTS/CTS */
1125 }
1126 }
1127 if (needrts || needcts) {
1128 struct mbuf *mprot;
1129 int protrate, ackrate;
1130
1131 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1132 ackrate = rum_ack_rate(ic, rate);
1133
1134 dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1135 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1136 2 * sc->sifs;
1137 if (needrts) {
1138 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1139 protrate), ic->ic_flags) + sc->sifs;
1140 mprot = ieee80211_get_rts(ic, wh, dur);
1141 } else {
1142 mprot = ieee80211_get_cts_to_self(ic, dur);
1143 }
1144 if (mprot == NULL) {
1145 aprint_error_dev(sc->sc_dev,
1146 "couldn't allocate protection frame\n");
1147 m_freem(m0);
1148 return ENOBUFS;
1149 }
1150
1151 data = &sc->tx_data[sc->tx_cur];
1152 desc = (struct rum_tx_desc *)data->buf;
1153
1154 /* avoid multiple free() of the same node for each fragment */
1155 data->ni = ieee80211_ref_node(ni);
1156
1157 m_copydata(mprot, 0, mprot->m_pkthdr.len,
1158 data->buf + RT2573_TX_DESC_SIZE);
1159 rum_setup_tx_desc(sc, desc,
1160 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1161 0, mprot->m_pkthdr.len, protrate);
1162
1163 /* no roundup necessary here */
1164 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1165
1166 /* XXX may want to pass the protection frame to BPF */
1167
1168 /* mbuf is no longer needed */
1169 m_freem(mprot);
1170
1171 usbd_setup_xfer(data->xfer, data, data->buf,
1172 xferlen, USBD_FORCE_SHORT_XFER,
1173 RUM_TX_TIMEOUT, rum_txeof);
1174 error = usbd_transfer(data->xfer);
1175 if (error != USBD_NORMAL_COMPLETION &&
1176 error != USBD_IN_PROGRESS) {
1177 m_freem(m0);
1178 return error;
1179 }
1180
1181 sc->tx_queued++;
1182 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1183
1184 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1185 }
1186
1187 data = &sc->tx_data[sc->tx_cur];
1188 desc = (struct rum_tx_desc *)data->buf;
1189
1190 data->ni = ni;
1191
1192 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1193 flags |= RT2573_TX_NEED_ACK;
1194
1195 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1196 ic->ic_flags) + sc->sifs;
1197 *(uint16_t *)wh->i_dur = htole16(dur);
1198
1199 /* tell hardware to set timestamp in probe responses */
1200 if ((wh->i_fc[0] &
1201 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1202 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1203 flags |= RT2573_TX_TIMESTAMP;
1204 }
1205
1206 if (sc->sc_drvbpf != NULL) {
1207 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1208
1209 tap->wt_flags = 0;
1210 tap->wt_rate = rate;
1211 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1212 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1213 tap->wt_antenna = sc->tx_ant;
1214
1215 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1216 }
1217
1218 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1219 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1220
1221 /* align end on a 4-bytes boundary */
1222 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1223
1224 /*
1225 * No space left in the last URB to store the extra 4 bytes, force
1226 * sending of another URB.
1227 */
1228 if ((xferlen % 64) == 0)
1229 xferlen += 4;
1230
1231 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1232 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1233 rate, xferlen));
1234
1235 /* mbuf is no longer needed */
1236 m_freem(m0);
1237
1238 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1239 USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof);
1240 error = usbd_transfer(data->xfer);
1241 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1242 return error;
1243
1244 sc->tx_queued++;
1245 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1246
1247 return 0;
1248 }
1249
1250 static void
1251 rum_start(struct ifnet *ifp)
1252 {
1253 struct rum_softc *sc = ifp->if_softc;
1254 struct ieee80211com *ic = &sc->sc_ic;
1255 struct ether_header *eh;
1256 struct ieee80211_node *ni;
1257 struct mbuf *m0;
1258
1259 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1260 return;
1261
1262 for (;;) {
1263 IF_POLL(&ic->ic_mgtq, m0);
1264 if (m0 != NULL) {
1265 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1266 ifp->if_flags |= IFF_OACTIVE;
1267 break;
1268 }
1269 IF_DEQUEUE(&ic->ic_mgtq, m0);
1270
1271 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1272 m0->m_pkthdr.rcvif = NULL;
1273 bpf_mtap3(ic->ic_rawbpf, m0);
1274 if (rum_tx_data(sc, m0, ni) != 0)
1275 break;
1276
1277 } else {
1278 if (ic->ic_state != IEEE80211_S_RUN)
1279 break;
1280 IFQ_POLL(&ifp->if_snd, m0);
1281 if (m0 == NULL)
1282 break;
1283 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1284 ifp->if_flags |= IFF_OACTIVE;
1285 break;
1286 }
1287 IFQ_DEQUEUE(&ifp->if_snd, m0);
1288 if (m0->m_len < (int)sizeof(struct ether_header) &&
1289 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1290 continue;
1291
1292 eh = mtod(m0, struct ether_header *);
1293 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1294 if (ni == NULL) {
1295 m_freem(m0);
1296 continue;
1297 }
1298 bpf_mtap(ifp, m0);
1299 m0 = ieee80211_encap(ic, m0, ni);
1300 if (m0 == NULL) {
1301 ieee80211_free_node(ni);
1302 continue;
1303 }
1304 bpf_mtap3(ic->ic_rawbpf, m0);
1305 if (rum_tx_data(sc, m0, ni) != 0) {
1306 ieee80211_free_node(ni);
1307 ifp->if_oerrors++;
1308 break;
1309 }
1310 }
1311
1312 sc->sc_tx_timer = 5;
1313 ifp->if_timer = 1;
1314 }
1315 }
1316
1317 static void
1318 rum_watchdog(struct ifnet *ifp)
1319 {
1320 struct rum_softc *sc = ifp->if_softc;
1321 struct ieee80211com *ic = &sc->sc_ic;
1322
1323 ifp->if_timer = 0;
1324
1325 if (sc->sc_tx_timer > 0) {
1326 if (--sc->sc_tx_timer == 0) {
1327 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1328 /*rum_init(ifp); XXX needs a process context! */
1329 ifp->if_oerrors++;
1330 return;
1331 }
1332 ifp->if_timer = 1;
1333 }
1334
1335 ieee80211_watchdog(ic);
1336 }
1337
1338 static int
1339 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1340 {
1341 #define IS_RUNNING(ifp) \
1342 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1343
1344 struct rum_softc *sc = ifp->if_softc;
1345 struct ieee80211com *ic = &sc->sc_ic;
1346 int s, error = 0;
1347
1348 s = splnet();
1349
1350 switch (cmd) {
1351 case SIOCSIFFLAGS:
1352 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1353 break;
1354 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1355 case IFF_UP|IFF_RUNNING:
1356 rum_update_promisc(sc);
1357 break;
1358 case IFF_UP:
1359 rum_init(ifp);
1360 break;
1361 case IFF_RUNNING:
1362 rum_stop(ifp, 1);
1363 break;
1364 case 0:
1365 break;
1366 }
1367 break;
1368
1369 case SIOCADDMULTI:
1370 case SIOCDELMULTI:
1371 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1372 error = 0;
1373 }
1374 break;
1375
1376 default:
1377 error = ieee80211_ioctl(ic, cmd, data);
1378 }
1379
1380 if (error == ENETRESET) {
1381 if (IS_RUNNING(ifp) &&
1382 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1383 rum_init(ifp);
1384 error = 0;
1385 }
1386
1387 splx(s);
1388
1389 return error;
1390 #undef IS_RUNNING
1391 }
1392
1393 static void
1394 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1395 {
1396 usb_device_request_t req;
1397 usbd_status error;
1398
1399 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1400 req.bRequest = RT2573_READ_EEPROM;
1401 USETW(req.wValue, 0);
1402 USETW(req.wIndex, addr);
1403 USETW(req.wLength, len);
1404
1405 error = usbd_do_request(sc->sc_udev, &req, buf);
1406 if (error != 0) {
1407 printf("%s: could not read EEPROM: %s\n",
1408 device_xname(sc->sc_dev), usbd_errstr(error));
1409 }
1410 }
1411
1412 static uint32_t
1413 rum_read(struct rum_softc *sc, uint16_t reg)
1414 {
1415 uint32_t val;
1416
1417 rum_read_multi(sc, reg, &val, sizeof(val));
1418
1419 return le32toh(val);
1420 }
1421
1422 static void
1423 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1424 {
1425 usb_device_request_t req;
1426 usbd_status error;
1427
1428 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1429 req.bRequest = RT2573_READ_MULTI_MAC;
1430 USETW(req.wValue, 0);
1431 USETW(req.wIndex, reg);
1432 USETW(req.wLength, len);
1433
1434 error = usbd_do_request(sc->sc_udev, &req, buf);
1435 if (error != 0) {
1436 printf("%s: could not multi read MAC register: %s\n",
1437 device_xname(sc->sc_dev), usbd_errstr(error));
1438 }
1439 }
1440
1441 static void
1442 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1443 {
1444 uint32_t tmp = htole32(val);
1445
1446 rum_write_multi(sc, reg, &tmp, sizeof(tmp));
1447 }
1448
1449 static void
1450 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1451 {
1452 usb_device_request_t req;
1453 usbd_status error;
1454 int offset;
1455
1456 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1457 req.bRequest = RT2573_WRITE_MULTI_MAC;
1458 USETW(req.wValue, 0);
1459
1460 /* write at most 64 bytes at a time */
1461 for (offset = 0; offset < len; offset += 64) {
1462 USETW(req.wIndex, reg + offset);
1463 USETW(req.wLength, MIN(len - offset, 64));
1464
1465 error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
1466 if (error != 0) {
1467 printf("%s: could not multi write MAC register: %s\n",
1468 device_xname(sc->sc_dev), usbd_errstr(error));
1469 }
1470 }
1471 }
1472
1473 static void
1474 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1475 {
1476 uint32_t tmp;
1477 int ntries;
1478
1479 for (ntries = 0; ntries < 5; ntries++) {
1480 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1481 break;
1482 }
1483 if (ntries == 5) {
1484 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1485 return;
1486 }
1487
1488 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1489 rum_write(sc, RT2573_PHY_CSR3, tmp);
1490 }
1491
1492 static uint8_t
1493 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1494 {
1495 uint32_t val;
1496 int ntries;
1497
1498 for (ntries = 0; ntries < 5; ntries++) {
1499 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1500 break;
1501 }
1502 if (ntries == 5) {
1503 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1504 return 0;
1505 }
1506
1507 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1508 rum_write(sc, RT2573_PHY_CSR3, val);
1509
1510 for (ntries = 0; ntries < 100; ntries++) {
1511 val = rum_read(sc, RT2573_PHY_CSR3);
1512 if (!(val & RT2573_BBP_BUSY))
1513 return val & 0xff;
1514 DELAY(1);
1515 }
1516
1517 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1518 return 0;
1519 }
1520
1521 static void
1522 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1523 {
1524 uint32_t tmp;
1525 int ntries;
1526
1527 for (ntries = 0; ntries < 5; ntries++) {
1528 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1529 break;
1530 }
1531 if (ntries == 5) {
1532 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1533 return;
1534 }
1535
1536 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1537 (reg & 3);
1538 rum_write(sc, RT2573_PHY_CSR4, tmp);
1539
1540 /* remember last written value in sc */
1541 sc->rf_regs[reg] = val;
1542
1543 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1544 }
1545
1546 static void
1547 rum_select_antenna(struct rum_softc *sc)
1548 {
1549 uint8_t bbp4, bbp77;
1550 uint32_t tmp;
1551
1552 bbp4 = rum_bbp_read(sc, 4);
1553 bbp77 = rum_bbp_read(sc, 77);
1554
1555 /* TBD */
1556
1557 /* make sure Rx is disabled before switching antenna */
1558 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1559 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1560
1561 rum_bbp_write(sc, 4, bbp4);
1562 rum_bbp_write(sc, 77, bbp77);
1563
1564 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1565 }
1566
1567 /*
1568 * Enable multi-rate retries for frames sent at OFDM rates.
1569 * In 802.11b/g mode, allow fallback to CCK rates.
1570 */
1571 static void
1572 rum_enable_mrr(struct rum_softc *sc)
1573 {
1574 struct ieee80211com *ic = &sc->sc_ic;
1575 uint32_t tmp;
1576
1577 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1578
1579 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1580 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1581 tmp |= RT2573_MRR_CCK_FALLBACK;
1582 tmp |= RT2573_MRR_ENABLED;
1583
1584 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1585 }
1586
1587 static void
1588 rum_set_txpreamble(struct rum_softc *sc)
1589 {
1590 uint32_t tmp;
1591
1592 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1593
1594 tmp &= ~RT2573_SHORT_PREAMBLE;
1595 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1596 tmp |= RT2573_SHORT_PREAMBLE;
1597
1598 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1599 }
1600
1601 static void
1602 rum_set_basicrates(struct rum_softc *sc)
1603 {
1604 struct ieee80211com *ic = &sc->sc_ic;
1605
1606 /* update basic rate set */
1607 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1608 /* 11b basic rates: 1, 2Mbps */
1609 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1610 } else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1611 /* 11a basic rates: 6, 12, 24Mbps */
1612 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1613 } else {
1614 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1615 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1616 }
1617 }
1618
1619 /*
1620 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1621 * driver.
1622 */
1623 static void
1624 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1625 {
1626 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1627 uint32_t tmp;
1628
1629 /* update all BBP registers that depend on the band */
1630 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1631 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1632 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1633 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1634 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1635 }
1636 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1637 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1638 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1639 }
1640
1641 sc->bbp17 = bbp17;
1642 rum_bbp_write(sc, 17, bbp17);
1643 rum_bbp_write(sc, 96, bbp96);
1644 rum_bbp_write(sc, 104, bbp104);
1645
1646 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1647 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1648 rum_bbp_write(sc, 75, 0x80);
1649 rum_bbp_write(sc, 86, 0x80);
1650 rum_bbp_write(sc, 88, 0x80);
1651 }
1652
1653 rum_bbp_write(sc, 35, bbp35);
1654 rum_bbp_write(sc, 97, bbp97);
1655 rum_bbp_write(sc, 98, bbp98);
1656
1657 tmp = rum_read(sc, RT2573_PHY_CSR0);
1658 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1659 if (IEEE80211_IS_CHAN_2GHZ(c))
1660 tmp |= RT2573_PA_PE_2GHZ;
1661 else
1662 tmp |= RT2573_PA_PE_5GHZ;
1663 rum_write(sc, RT2573_PHY_CSR0, tmp);
1664
1665 /* 802.11a uses a 16 microseconds short interframe space */
1666 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1667 }
1668
1669 static void
1670 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1671 {
1672 struct ieee80211com *ic = &sc->sc_ic;
1673 const struct rfprog *rfprog;
1674 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1675 int8_t power;
1676 u_int i, chan;
1677
1678 chan = ieee80211_chan2ieee(ic, c);
1679 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1680 return;
1681
1682 /* select the appropriate RF settings based on what EEPROM says */
1683 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1684 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1685
1686 /* find the settings for this channel (we know it exists) */
1687 for (i = 0; rfprog[i].chan != chan; i++);
1688
1689 power = sc->txpow[i];
1690 if (power < 0) {
1691 bbp94 += power;
1692 power = 0;
1693 } else if (power > 31) {
1694 bbp94 += power - 31;
1695 power = 31;
1696 }
1697
1698 /*
1699 * If we are switching from the 2GHz band to the 5GHz band or
1700 * vice-versa, BBP registers need to be reprogrammed.
1701 */
1702 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1703 rum_select_band(sc, c);
1704 rum_select_antenna(sc);
1705 }
1706 ic->ic_curchan = c;
1707
1708 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1709 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1710 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1711 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1712
1713 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1714 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1715 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1716 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1717
1718 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1719 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1720 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1721 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1722
1723 DELAY(10);
1724
1725 /* enable smart mode for MIMO-capable RFs */
1726 bbp3 = rum_bbp_read(sc, 3);
1727
1728 bbp3 &= ~RT2573_SMART_MODE;
1729 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1730 bbp3 |= RT2573_SMART_MODE;
1731
1732 rum_bbp_write(sc, 3, bbp3);
1733
1734 if (bbp94 != RT2573_BBPR94_DEFAULT)
1735 rum_bbp_write(sc, 94, bbp94);
1736 }
1737
1738 /*
1739 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1740 * and HostAP operating modes.
1741 */
1742 static void
1743 rum_enable_tsf_sync(struct rum_softc *sc)
1744 {
1745 struct ieee80211com *ic = &sc->sc_ic;
1746 uint32_t tmp;
1747
1748 if (ic->ic_opmode != IEEE80211_M_STA) {
1749 /*
1750 * Change default 16ms TBTT adjustment to 8ms.
1751 * Must be done before enabling beacon generation.
1752 */
1753 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1754 }
1755
1756 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1757
1758 /* set beacon interval (in 1/16ms unit) */
1759 tmp |= ic->ic_bss->ni_intval * 16;
1760
1761 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1762 if (ic->ic_opmode == IEEE80211_M_STA)
1763 tmp |= RT2573_TSF_MODE(1);
1764 else
1765 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1766
1767 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1768 }
1769
1770 static void
1771 rum_update_slot(struct rum_softc *sc)
1772 {
1773 struct ieee80211com *ic = &sc->sc_ic;
1774 uint8_t slottime;
1775 uint32_t tmp;
1776
1777 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1778
1779 tmp = rum_read(sc, RT2573_MAC_CSR9);
1780 tmp = (tmp & ~0xff) | slottime;
1781 rum_write(sc, RT2573_MAC_CSR9, tmp);
1782
1783 DPRINTF(("setting slot time to %uus\n", slottime));
1784 }
1785
1786 static void
1787 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1788 {
1789 uint32_t tmp;
1790
1791 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1792 rum_write(sc, RT2573_MAC_CSR4, tmp);
1793
1794 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1795 rum_write(sc, RT2573_MAC_CSR5, tmp);
1796 }
1797
1798 static void
1799 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1800 {
1801 uint32_t tmp;
1802
1803 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1804 rum_write(sc, RT2573_MAC_CSR2, tmp);
1805
1806 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1807 rum_write(sc, RT2573_MAC_CSR3, tmp);
1808 }
1809
1810 static void
1811 rum_update_promisc(struct rum_softc *sc)
1812 {
1813 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1814 uint32_t tmp;
1815
1816 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1817
1818 tmp &= ~RT2573_DROP_NOT_TO_ME;
1819 if (!(ifp->if_flags & IFF_PROMISC))
1820 tmp |= RT2573_DROP_NOT_TO_ME;
1821
1822 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1823
1824 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1825 "entering" : "leaving"));
1826 }
1827
1828 static const char *
1829 rum_get_rf(int rev)
1830 {
1831 switch (rev) {
1832 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1833 case RT2573_RF_2528: return "RT2528";
1834 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1835 case RT2573_RF_5226: return "RT5226";
1836 default: return "unknown";
1837 }
1838 }
1839
1840 static void
1841 rum_read_eeprom(struct rum_softc *sc)
1842 {
1843 struct ieee80211com *ic = &sc->sc_ic;
1844 uint16_t val;
1845 #ifdef RUM_DEBUG
1846 int i;
1847 #endif
1848
1849 /* read MAC/BBP type */
1850 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1851 sc->macbbp_rev = le16toh(val);
1852
1853 /* read MAC address */
1854 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1855
1856 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1857 val = le16toh(val);
1858 sc->rf_rev = (val >> 11) & 0x1f;
1859 sc->hw_radio = (val >> 10) & 0x1;
1860 sc->rx_ant = (val >> 4) & 0x3;
1861 sc->tx_ant = (val >> 2) & 0x3;
1862 sc->nb_ant = val & 0x3;
1863
1864 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1865
1866 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1867 val = le16toh(val);
1868 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1869 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1870
1871 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1872 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1873
1874 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1875 val = le16toh(val);
1876 if ((val & 0xff) != 0xff)
1877 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1878
1879 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1880 val = le16toh(val);
1881 if ((val & 0xff) != 0xff)
1882 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1883
1884 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1885 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1886
1887 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1888 val = le16toh(val);
1889 if ((val & 0xff) != 0xff)
1890 sc->rffreq = val & 0xff;
1891
1892 DPRINTF(("RF freq=%d\n", sc->rffreq));
1893
1894 /* read Tx power for all a/b/g channels */
1895 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1896 /* XXX default Tx power for 802.11a channels */
1897 memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14);
1898 #ifdef RUM_DEBUG
1899 for (i = 0; i < 14; i++)
1900 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1901 #endif
1902
1903 /* read default values for BBP registers */
1904 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1905 #ifdef RUM_DEBUG
1906 for (i = 0; i < 14; i++) {
1907 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1908 continue;
1909 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1910 sc->bbp_prom[i].val));
1911 }
1912 #endif
1913 }
1914
1915 static int
1916 rum_bbp_init(struct rum_softc *sc)
1917 {
1918 unsigned int i, ntries;
1919 uint8_t val;
1920
1921 /* wait for BBP to be ready */
1922 for (ntries = 0; ntries < 100; ntries++) {
1923 val = rum_bbp_read(sc, 0);
1924 if (val != 0 && val != 0xff)
1925 break;
1926 DELAY(1000);
1927 }
1928 if (ntries == 100) {
1929 printf("%s: timeout waiting for BBP\n",
1930 device_xname(sc->sc_dev));
1931 return EIO;
1932 }
1933
1934 /* initialize BBP registers to default values */
1935 for (i = 0; i < __arraycount(rum_def_bbp); i++)
1936 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1937
1938 /* write vendor-specific BBP values (from EEPROM) */
1939 for (i = 0; i < 16; i++) {
1940 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1941 continue;
1942 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1943 }
1944
1945 return 0;
1946 }
1947
1948 static int
1949 rum_init(struct ifnet *ifp)
1950 {
1951 struct rum_softc *sc = ifp->if_softc;
1952 struct ieee80211com *ic = &sc->sc_ic;
1953 uint32_t tmp;
1954 usbd_status error = 0;
1955 unsigned int i, ntries;
1956
1957 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1958 if (rum_attachhook(sc))
1959 goto fail;
1960 }
1961
1962 rum_stop(ifp, 0);
1963
1964 /* initialize MAC registers to default values */
1965 for (i = 0; i < __arraycount(rum_def_mac); i++)
1966 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1967
1968 /* set host ready */
1969 rum_write(sc, RT2573_MAC_CSR1, 3);
1970 rum_write(sc, RT2573_MAC_CSR1, 0);
1971
1972 /* wait for BBP/RF to wakeup */
1973 for (ntries = 0; ntries < 1000; ntries++) {
1974 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1975 break;
1976 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1977 DELAY(1000);
1978 }
1979 if (ntries == 1000) {
1980 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1981 device_xname(sc->sc_dev));
1982 goto fail;
1983 }
1984
1985 if ((error = rum_bbp_init(sc)) != 0)
1986 goto fail;
1987
1988 /* select default channel */
1989 rum_select_band(sc, ic->ic_curchan);
1990 rum_select_antenna(sc);
1991 rum_set_chan(sc, ic->ic_curchan);
1992
1993 /* clear STA registers */
1994 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
1995
1996 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1997 rum_set_macaddr(sc, ic->ic_myaddr);
1998
1999 /* initialize ASIC */
2000 rum_write(sc, RT2573_MAC_CSR1, 4);
2001
2002 /*
2003 * Allocate xfer for AMRR statistics requests.
2004 */
2005 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2006 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0,
2007 &sc->amrr_xfer);
2008 if (error) {
2009 printf("%s: could not allocate AMRR xfer\n",
2010 device_xname(sc->sc_dev));
2011 goto fail;
2012 }
2013
2014 /*
2015 * Open Tx and Rx USB bulk pipes.
2016 */
2017 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2018 &sc->sc_tx_pipeh);
2019 if (error != 0) {
2020 printf("%s: could not open Tx pipe: %s\n",
2021 device_xname(sc->sc_dev), usbd_errstr(error));
2022 goto fail;
2023 }
2024
2025 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2026 &sc->sc_rx_pipeh);
2027 if (error != 0) {
2028 printf("%s: could not open Rx pipe: %s\n",
2029 device_xname(sc->sc_dev), usbd_errstr(error));
2030 goto fail;
2031 }
2032
2033 /*
2034 * Allocate Tx and Rx xfer queues.
2035 */
2036 error = rum_alloc_tx_list(sc);
2037 if (error != 0) {
2038 printf("%s: could not allocate Tx list\n",
2039 device_xname(sc->sc_dev));
2040 goto fail;
2041 }
2042
2043 error = rum_alloc_rx_list(sc);
2044 if (error != 0) {
2045 printf("%s: could not allocate Rx list\n",
2046 device_xname(sc->sc_dev));
2047 goto fail;
2048 }
2049
2050 /*
2051 * Start up the receive pipe.
2052 */
2053 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2054 struct rum_rx_data *data;
2055
2056 data = &sc->rx_data[i];
2057
2058 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2059 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2060 error = usbd_transfer(data->xfer);
2061 if (error != USBD_NORMAL_COMPLETION &&
2062 error != USBD_IN_PROGRESS) {
2063 printf("%s: could not queue Rx transfer\n",
2064 device_xname(sc->sc_dev));
2065 goto fail;
2066 }
2067 }
2068
2069 /* update Rx filter */
2070 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2071
2072 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2073 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2074 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2075 RT2573_DROP_ACKCTS;
2076 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2077 tmp |= RT2573_DROP_TODS;
2078 if (!(ifp->if_flags & IFF_PROMISC))
2079 tmp |= RT2573_DROP_NOT_TO_ME;
2080 }
2081 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2082
2083 ifp->if_flags &= ~IFF_OACTIVE;
2084 ifp->if_flags |= IFF_RUNNING;
2085
2086 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2087 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2088 else
2089 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2090
2091 return 0;
2092
2093 fail: rum_stop(ifp, 1);
2094 return error;
2095 }
2096
2097 static void
2098 rum_stop(struct ifnet *ifp, int disable)
2099 {
2100 struct rum_softc *sc = ifp->if_softc;
2101 struct ieee80211com *ic = &sc->sc_ic;
2102 uint32_t tmp;
2103
2104 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2105
2106 sc->sc_tx_timer = 0;
2107 ifp->if_timer = 0;
2108 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2109
2110 /* disable Rx */
2111 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2112 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2113
2114 /* reset ASIC */
2115 rum_write(sc, RT2573_MAC_CSR1, 3);
2116 rum_write(sc, RT2573_MAC_CSR1, 0);
2117
2118 if (sc->amrr_xfer != NULL) {
2119 usbd_destroy_xfer(sc->amrr_xfer);
2120 sc->amrr_xfer = NULL;
2121 }
2122
2123 if (sc->sc_rx_pipeh != NULL) {
2124 usbd_abort_pipe(sc->sc_rx_pipeh);
2125 }
2126
2127 if (sc->sc_tx_pipeh != NULL) {
2128 usbd_abort_pipe(sc->sc_tx_pipeh);
2129 }
2130
2131 rum_free_rx_list(sc);
2132 rum_free_tx_list(sc);
2133
2134 if (sc->sc_rx_pipeh != NULL) {
2135 usbd_close_pipe(sc->sc_rx_pipeh);
2136 sc->sc_rx_pipeh = NULL;
2137 }
2138
2139 if (sc->sc_tx_pipeh != NULL) {
2140 usbd_close_pipe(sc->sc_tx_pipeh);
2141 sc->sc_tx_pipeh = NULL;
2142 }
2143 }
2144
2145 static int
2146 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2147 {
2148 usb_device_request_t req;
2149 uint16_t reg = RT2573_MCU_CODE_BASE;
2150 usbd_status error;
2151
2152 /* copy firmware image into NIC */
2153 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2154 rum_write(sc, reg, UGETDW(ucode));
2155
2156 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2157 req.bRequest = RT2573_MCU_CNTL;
2158 USETW(req.wValue, RT2573_MCU_RUN);
2159 USETW(req.wIndex, 0);
2160 USETW(req.wLength, 0);
2161
2162 error = usbd_do_request(sc->sc_udev, &req, NULL);
2163 if (error != 0) {
2164 printf("%s: could not run firmware: %s\n",
2165 device_xname(sc->sc_dev), usbd_errstr(error));
2166 }
2167 return error;
2168 }
2169
2170 static int
2171 rum_prepare_beacon(struct rum_softc *sc)
2172 {
2173 struct ieee80211com *ic = &sc->sc_ic;
2174 struct rum_tx_desc desc;
2175 struct mbuf *m0;
2176 int rate;
2177
2178 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2179 if (m0 == NULL) {
2180 aprint_error_dev(sc->sc_dev,
2181 "could not allocate beacon frame\n");
2182 return ENOBUFS;
2183 }
2184
2185 /* send beacons at the lowest available rate */
2186 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2187
2188 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2189 m0->m_pkthdr.len, rate);
2190
2191 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2192 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2193
2194 /* copy beacon header and payload into NIC memory */
2195 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2196 m0->m_pkthdr.len);
2197
2198 m_freem(m0);
2199
2200 return 0;
2201 }
2202
2203 static void
2204 rum_newassoc(struct ieee80211_node *ni, int isnew)
2205 {
2206 /* start with lowest Tx rate */
2207 ni->ni_txrate = 0;
2208 }
2209
2210 static void
2211 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2212 {
2213 int i;
2214
2215 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2216 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
2217
2218 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2219
2220 /* set rate to some reasonable initial value */
2221 for (i = ni->ni_rates.rs_nrates - 1;
2222 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2223 i--);
2224 ni->ni_txrate = i;
2225
2226 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2227 }
2228
2229 static void
2230 rum_amrr_timeout(void *arg)
2231 {
2232 struct rum_softc *sc = arg;
2233 usb_device_request_t req;
2234
2235 /*
2236 * Asynchronously read statistic registers (cleared by read).
2237 */
2238 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2239 req.bRequest = RT2573_READ_MULTI_MAC;
2240 USETW(req.wValue, 0);
2241 USETW(req.wIndex, RT2573_STA_CSR0);
2242 USETW(req.wLength, sizeof(sc->sta));
2243
2244 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2245 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2246 rum_amrr_update);
2247 (void)usbd_transfer(sc->amrr_xfer);
2248 }
2249
2250 static void
2251 rum_amrr_update(struct usbd_xfer *xfer, void *priv,
2252 usbd_status status)
2253 {
2254 struct rum_softc *sc = (struct rum_softc *)priv;
2255 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2256
2257 if (status != USBD_NORMAL_COMPLETION) {
2258 printf("%s: could not retrieve Tx statistics - cancelling "
2259 "automatic rate control\n", device_xname(sc->sc_dev));
2260 return;
2261 }
2262
2263 /* count TX retry-fail as Tx errors */
2264 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2265
2266 sc->amn.amn_retrycnt =
2267 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2268 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2269 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2270
2271 sc->amn.amn_txcnt =
2272 sc->amn.amn_retrycnt +
2273 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2274
2275 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2276
2277 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2278 }
2279
2280 static int
2281 rum_activate(device_t self, enum devact act)
2282 {
2283 switch (act) {
2284 case DVACT_DEACTIVATE:
2285 /*if_deactivate(&sc->sc_ic.ic_if);*/
2286 return 0;
2287 default:
2288 return 0;
2289 }
2290 }
2291
2292 MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf");
2293
2294 #ifdef _MODULE
2295 #include "ioconf.c"
2296 #endif
2297
2298 static int
2299 if_rum_modcmd(modcmd_t cmd, void *aux)
2300 {
2301 int error = 0;
2302
2303 switch (cmd) {
2304 case MODULE_CMD_INIT:
2305 #ifdef _MODULE
2306 error = config_init_component(cfdriver_ioconf_rum,
2307 cfattach_ioconf_rum, cfdata_ioconf_rum);
2308 #endif
2309 return error;
2310 case MODULE_CMD_FINI:
2311 #ifdef _MODULE
2312 error = config_fini_component(cfdriver_ioconf_rum,
2313 cfattach_ioconf_rum, cfdata_ioconf_rum);
2314 #endif
2315 return error;
2316 default:
2317 return ENOTTY;
2318 }
2319 }
2320