if_rum.c revision 1.56.2.1 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.56.2.1 2017/01/07 08:56:41 pgoyette Exp $ */
3
4 /*-
5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com.tw/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.56.2.1 2017/01/07 08:56:41 pgoyette Exp $");
28
29 #ifdef _KERNEL_OPT
30 #include "opt_usb.h"
31 #endif
32
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/module.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/firmload.h>
67
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72
73 #include <dev/usb/if_rumreg.h>
74 #include <dev/usb/if_rumvar.h>
75
76 #ifdef RUM_DEBUG
77 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0)
78 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0)
79 int rum_debug = 1;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84
85 /* various supported device vendors/products */
86 static const struct usb_devno rum_devs[] = {
87 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
88 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
89 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
90 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
92 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
93 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
94 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
95 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
96 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
97 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C },
98 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 },
99 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
100 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
101 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
102 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_RT2573 },
103 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL },
104 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX },
105 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
106 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
107 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
108 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
109 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 },
110 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 },
111 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 },
112 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 },
113 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
114 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
115 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
116 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
117 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
118 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
119 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
120 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
121 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
122 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG },
123 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG },
124 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
125 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
126 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
127 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
128 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
129 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
130 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
131 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
132 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
133 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
134 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 },
135 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
136 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
137 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
138 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
139 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 },
140 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 },
141 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 }
142 };
143
144 static int rum_attachhook(void *);
145 static int rum_alloc_tx_list(struct rum_softc *);
146 static void rum_free_tx_list(struct rum_softc *);
147 static int rum_alloc_rx_list(struct rum_softc *);
148 static void rum_free_rx_list(struct rum_softc *);
149 static int rum_media_change(struct ifnet *);
150 static void rum_next_scan(void *);
151 static void rum_task(void *);
152 static int rum_newstate(struct ieee80211com *,
153 enum ieee80211_state, int);
154 static void rum_txeof(struct usbd_xfer *, void *,
155 usbd_status);
156 static void rum_rxeof(struct usbd_xfer *, void *,
157 usbd_status);
158 static uint8_t rum_rxrate(const struct rum_rx_desc *);
159 static int rum_ack_rate(struct ieee80211com *, int);
160 static uint16_t rum_txtime(int, int, uint32_t);
161 static uint8_t rum_plcp_signal(int);
162 static void rum_setup_tx_desc(struct rum_softc *,
163 struct rum_tx_desc *, uint32_t, uint16_t, int,
164 int);
165 static int rum_tx_data(struct rum_softc *, struct mbuf *,
166 struct ieee80211_node *);
167 static void rum_start(struct ifnet *);
168 static void rum_watchdog(struct ifnet *);
169 static int rum_ioctl(struct ifnet *, u_long, void *);
170 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
171 int);
172 static uint32_t rum_read(struct rum_softc *, uint16_t);
173 static void rum_read_multi(struct rum_softc *, uint16_t, void *,
174 int);
175 static void rum_write(struct rum_softc *, uint16_t, uint32_t);
176 static void rum_write_multi(struct rum_softc *, uint16_t, void *,
177 size_t);
178 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
179 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
180 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
181 static void rum_select_antenna(struct rum_softc *);
182 static void rum_enable_mrr(struct rum_softc *);
183 static void rum_set_txpreamble(struct rum_softc *);
184 static void rum_set_basicrates(struct rum_softc *);
185 static void rum_select_band(struct rum_softc *,
186 struct ieee80211_channel *);
187 static void rum_set_chan(struct rum_softc *,
188 struct ieee80211_channel *);
189 static void rum_enable_tsf_sync(struct rum_softc *);
190 static void rum_update_slot(struct rum_softc *);
191 static void rum_set_bssid(struct rum_softc *, const uint8_t *);
192 static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
193 static void rum_update_promisc(struct rum_softc *);
194 static const char *rum_get_rf(int);
195 static void rum_read_eeprom(struct rum_softc *);
196 static int rum_bbp_init(struct rum_softc *);
197 static int rum_init(struct ifnet *);
198 static void rum_stop(struct ifnet *, int);
199 static int rum_load_microcode(struct rum_softc *, const u_char *,
200 size_t);
201 static int rum_prepare_beacon(struct rum_softc *);
202 static void rum_newassoc(struct ieee80211_node *, int);
203 static void rum_amrr_start(struct rum_softc *,
204 struct ieee80211_node *);
205 static void rum_amrr_timeout(void *);
206 static void rum_amrr_update(struct usbd_xfer *, void *,
207 usbd_status);
208
209 /*
210 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
211 */
212 static const struct ieee80211_rateset rum_rateset_11a =
213 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
214
215 static const struct ieee80211_rateset rum_rateset_11b =
216 { 4, { 2, 4, 11, 22 } };
217
218 static const struct ieee80211_rateset rum_rateset_11g =
219 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
220
221 static const struct {
222 uint32_t reg;
223 uint32_t val;
224 } rum_def_mac[] = {
225 RT2573_DEF_MAC
226 };
227
228 static const struct {
229 uint8_t reg;
230 uint8_t val;
231 } rum_def_bbp[] = {
232 RT2573_DEF_BBP
233 };
234
235 static const struct rfprog {
236 uint8_t chan;
237 uint32_t r1, r2, r3, r4;
238 } rum_rf5226[] = {
239 RT2573_RF5226
240 }, rum_rf5225[] = {
241 RT2573_RF5225
242 };
243
244 static int rum_match(device_t, cfdata_t, void *);
245 static void rum_attach(device_t, device_t, void *);
246 static int rum_detach(device_t, int);
247 static int rum_activate(device_t, enum devact);
248 extern struct cfdriver rum_cd;
249 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
250 rum_detach, rum_activate);
251
252 static int
253 rum_match(device_t parent, cfdata_t match, void *aux)
254 {
255 struct usb_attach_arg *uaa = aux;
256
257 return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
258 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
259 }
260
261 static int
262 rum_attachhook(void *xsc)
263 {
264 struct rum_softc *sc = xsc;
265 firmware_handle_t fwh;
266 const char *name = "rum-rt2573";
267 u_char *ucode;
268 size_t size;
269 int error;
270
271 if ((error = firmware_open("rum", name, &fwh)) != 0) {
272 printf("%s: failed firmware_open of file %s (error %d)\n",
273 device_xname(sc->sc_dev), name, error);
274 return error;
275 }
276 size = firmware_get_size(fwh);
277 ucode = firmware_malloc(size);
278 if (ucode == NULL) {
279 printf("%s: failed to allocate firmware memory\n",
280 device_xname(sc->sc_dev));
281 firmware_close(fwh);
282 return ENOMEM;
283 }
284 error = firmware_read(fwh, 0, ucode, size);
285 firmware_close(fwh);
286 if (error != 0) {
287 printf("%s: failed to read firmware (error %d)\n",
288 device_xname(sc->sc_dev), error);
289 firmware_free(ucode, size);
290 return error;
291 }
292
293 if (rum_load_microcode(sc, ucode, size) != 0) {
294 printf("%s: could not load 8051 microcode\n",
295 device_xname(sc->sc_dev));
296 firmware_free(ucode, size);
297 return ENXIO;
298 }
299
300 firmware_free(ucode, size);
301 sc->sc_flags |= RT2573_FWLOADED;
302
303 return 0;
304 }
305
306 static void
307 rum_attach(device_t parent, device_t self, void *aux)
308 {
309 struct rum_softc *sc = device_private(self);
310 struct usb_attach_arg *uaa = aux;
311 struct ieee80211com *ic = &sc->sc_ic;
312 struct ifnet *ifp = &sc->sc_if;
313 usb_interface_descriptor_t *id;
314 usb_endpoint_descriptor_t *ed;
315 usbd_status error;
316 char *devinfop;
317 int i, ntries;
318 uint32_t tmp;
319
320 sc->sc_dev = self;
321 sc->sc_udev = uaa->uaa_device;
322 sc->sc_flags = 0;
323
324 aprint_naive("\n");
325 aprint_normal("\n");
326
327 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
328 aprint_normal_dev(self, "%s\n", devinfop);
329 usbd_devinfo_free(devinfop);
330
331 error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
332 if (error != 0) {
333 aprint_error_dev(self, "failed to set configuration"
334 ", err=%s\n", usbd_errstr(error));
335 return;
336 }
337
338 /* get the first interface handle */
339 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
340 &sc->sc_iface);
341 if (error != 0) {
342 aprint_error_dev(self, "could not get interface handle\n");
343 return;
344 }
345
346 /*
347 * Find endpoints.
348 */
349 id = usbd_get_interface_descriptor(sc->sc_iface);
350
351 sc->sc_rx_no = sc->sc_tx_no = -1;
352 for (i = 0; i < id->bNumEndpoints; i++) {
353 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
354 if (ed == NULL) {
355 aprint_error_dev(self,
356 "no endpoint descriptor for iface %d\n", i);
357 return;
358 }
359
360 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
361 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
362 sc->sc_rx_no = ed->bEndpointAddress;
363 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
364 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
365 sc->sc_tx_no = ed->bEndpointAddress;
366 }
367 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
368 aprint_error_dev(self, "missing endpoint\n");
369 return;
370 }
371
372 usb_init_task(&sc->sc_task, rum_task, sc, 0);
373 callout_init(&sc->sc_scan_ch, 0);
374
375 sc->amrr.amrr_min_success_threshold = 1;
376 sc->amrr.amrr_max_success_threshold = 10;
377 callout_init(&sc->sc_amrr_ch, 0);
378
379 /* retrieve RT2573 rev. no */
380 for (ntries = 0; ntries < 1000; ntries++) {
381 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
382 break;
383 DELAY(1000);
384 }
385 if (ntries == 1000) {
386 aprint_error_dev(self, "timeout waiting for chip to settle\n");
387 return;
388 }
389
390 /* retrieve MAC address and various other things from EEPROM */
391 rum_read_eeprom(sc);
392
393 aprint_normal_dev(self,
394 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
395 sc->macbbp_rev, tmp,
396 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
397
398 ic->ic_ifp = ifp;
399 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
400 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
401 ic->ic_state = IEEE80211_S_INIT;
402
403 /* set device capabilities */
404 ic->ic_caps =
405 IEEE80211_C_IBSS | /* IBSS mode supported */
406 IEEE80211_C_MONITOR | /* monitor mode supported */
407 IEEE80211_C_HOSTAP | /* HostAp mode supported */
408 IEEE80211_C_TXPMGT | /* tx power management */
409 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
410 IEEE80211_C_SHSLOT | /* short slot time supported */
411 IEEE80211_C_WPA; /* 802.11i */
412
413 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
414 /* set supported .11a rates */
415 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
416
417 /* set supported .11a channels */
418 for (i = 34; i <= 46; i += 4) {
419 ic->ic_channels[i].ic_freq =
420 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
421 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
422 }
423 for (i = 36; i <= 64; i += 4) {
424 ic->ic_channels[i].ic_freq =
425 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
426 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
427 }
428 for (i = 100; i <= 140; i += 4) {
429 ic->ic_channels[i].ic_freq =
430 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
431 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
432 }
433 for (i = 149; i <= 165; i += 4) {
434 ic->ic_channels[i].ic_freq =
435 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
436 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
437 }
438 }
439
440 /* set supported .11b and .11g rates */
441 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
442 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
443
444 /* set supported .11b and .11g channels (1 through 14) */
445 for (i = 1; i <= 14; i++) {
446 ic->ic_channels[i].ic_freq =
447 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
448 ic->ic_channels[i].ic_flags =
449 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
450 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
451 }
452
453 ifp->if_softc = sc;
454 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
455 ifp->if_init = rum_init;
456 ifp->if_ioctl = rum_ioctl;
457 ifp->if_start = rum_start;
458 ifp->if_watchdog = rum_watchdog;
459 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
460 IFQ_SET_READY(&ifp->if_snd);
461 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
462
463 if_attach(ifp);
464 ieee80211_ifattach(ic);
465 ic->ic_newassoc = rum_newassoc;
466
467 /* override state transition machine */
468 sc->sc_newstate = ic->ic_newstate;
469 ic->ic_newstate = rum_newstate;
470 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
471
472 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
473 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
474 &sc->sc_drvbpf);
475
476 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
477 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
478 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
479
480 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
481 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
482 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
483
484 ieee80211_announce(ic);
485
486 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
487
488 if (!pmf_device_register(self, NULL, NULL))
489 aprint_error_dev(self, "couldn't establish power handler\n");
490
491 return;
492 }
493
494 static int
495 rum_detach(device_t self, int flags)
496 {
497 struct rum_softc *sc = device_private(self);
498 struct ieee80211com *ic = &sc->sc_ic;
499 struct ifnet *ifp = &sc->sc_if;
500 int s;
501
502 if (!ifp->if_softc)
503 return 0;
504
505 pmf_device_deregister(self);
506
507 s = splusb();
508
509 rum_stop(ifp, 1);
510 usb_rem_task(sc->sc_udev, &sc->sc_task);
511 callout_stop(&sc->sc_scan_ch);
512 callout_stop(&sc->sc_amrr_ch);
513
514 bpf_detach(ifp);
515 ieee80211_ifdetach(ic); /* free all nodes */
516 if_detach(ifp);
517
518 splx(s);
519
520 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
521
522 return 0;
523 }
524
525 static int
526 rum_alloc_tx_list(struct rum_softc *sc)
527 {
528 struct rum_tx_data *data;
529 int i, error;
530
531 sc->tx_cur = sc->tx_queued = 0;
532
533 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
534 data = &sc->tx_data[i];
535
536 data->sc = sc;
537
538 error = usbd_create_xfer(sc->sc_tx_pipeh,
539 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN,
540 USBD_FORCE_SHORT_XFER, 0, &data->xfer);
541 if (error) {
542 printf("%s: could not allocate tx xfer\n",
543 device_xname(sc->sc_dev));
544 goto fail;
545 }
546 data->buf = usbd_get_buffer(data->xfer);
547
548 /* clean Tx descriptor */
549 memset(data->buf, 0, RT2573_TX_DESC_SIZE);
550 }
551
552 return 0;
553
554 fail: rum_free_tx_list(sc);
555 return error;
556 }
557
558 static void
559 rum_free_tx_list(struct rum_softc *sc)
560 {
561 struct rum_tx_data *data;
562 int i;
563
564 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
565 data = &sc->tx_data[i];
566
567 if (data->xfer != NULL) {
568 usbd_destroy_xfer(data->xfer);
569 data->xfer = NULL;
570 }
571
572 if (data->ni != NULL) {
573 ieee80211_free_node(data->ni);
574 data->ni = NULL;
575 }
576 }
577 }
578
579 static int
580 rum_alloc_rx_list(struct rum_softc *sc)
581 {
582 struct rum_rx_data *data;
583 int i, error;
584
585 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
586 data = &sc->rx_data[i];
587
588 data->sc = sc;
589
590 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
591 USBD_SHORT_XFER_OK, 0, &data->xfer);
592 if (error) {
593 printf("%s: could not allocate rx xfer\n",
594 device_xname(sc->sc_dev));
595 goto fail;
596 }
597
598 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
599 if (data->m == NULL) {
600 printf("%s: could not allocate rx mbuf\n",
601 device_xname(sc->sc_dev));
602 error = ENOMEM;
603 goto fail;
604 }
605
606 MCLGET(data->m, M_DONTWAIT);
607 if (!(data->m->m_flags & M_EXT)) {
608 printf("%s: could not allocate rx mbuf cluster\n",
609 device_xname(sc->sc_dev));
610 error = ENOMEM;
611 goto fail;
612 }
613
614 data->buf = mtod(data->m, uint8_t *);
615 }
616
617 return 0;
618
619 fail: rum_free_rx_list(sc);
620 return error;
621 }
622
623 static void
624 rum_free_rx_list(struct rum_softc *sc)
625 {
626 struct rum_rx_data *data;
627 int i;
628
629 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
630 data = &sc->rx_data[i];
631
632 if (data->xfer != NULL) {
633 usbd_destroy_xfer(data->xfer);
634 data->xfer = NULL;
635 }
636
637 if (data->m != NULL) {
638 m_freem(data->m);
639 data->m = NULL;
640 }
641 }
642 }
643
644 static int
645 rum_media_change(struct ifnet *ifp)
646 {
647 int error;
648
649 error = ieee80211_media_change(ifp);
650 if (error != ENETRESET)
651 return error;
652
653 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
654 rum_init(ifp);
655
656 return 0;
657 }
658
659 /*
660 * This function is called periodically (every 200ms) during scanning to
661 * switch from one channel to another.
662 */
663 static void
664 rum_next_scan(void *arg)
665 {
666 struct rum_softc *sc = arg;
667 struct ieee80211com *ic = &sc->sc_ic;
668 int s;
669
670 s = splnet();
671 if (ic->ic_state == IEEE80211_S_SCAN)
672 ieee80211_next_scan(ic);
673 splx(s);
674 }
675
676 static void
677 rum_task(void *arg)
678 {
679 struct rum_softc *sc = arg;
680 struct ieee80211com *ic = &sc->sc_ic;
681 enum ieee80211_state ostate;
682 struct ieee80211_node *ni;
683 uint32_t tmp;
684
685 ostate = ic->ic_state;
686
687 switch (sc->sc_state) {
688 case IEEE80211_S_INIT:
689 if (ostate == IEEE80211_S_RUN) {
690 /* abort TSF synchronization */
691 tmp = rum_read(sc, RT2573_TXRX_CSR9);
692 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
693 }
694 break;
695
696 case IEEE80211_S_SCAN:
697 rum_set_chan(sc, ic->ic_curchan);
698 callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
699 break;
700
701 case IEEE80211_S_AUTH:
702 rum_set_chan(sc, ic->ic_curchan);
703 break;
704
705 case IEEE80211_S_ASSOC:
706 rum_set_chan(sc, ic->ic_curchan);
707 break;
708
709 case IEEE80211_S_RUN:
710 rum_set_chan(sc, ic->ic_curchan);
711
712 ni = ic->ic_bss;
713
714 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
715 rum_update_slot(sc);
716 rum_enable_mrr(sc);
717 rum_set_txpreamble(sc);
718 rum_set_basicrates(sc);
719 rum_set_bssid(sc, ni->ni_bssid);
720 }
721
722 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
723 ic->ic_opmode == IEEE80211_M_IBSS)
724 rum_prepare_beacon(sc);
725
726 if (ic->ic_opmode != IEEE80211_M_MONITOR)
727 rum_enable_tsf_sync(sc);
728
729 if (ic->ic_opmode == IEEE80211_M_STA) {
730 /* fake a join to init the tx rate */
731 rum_newassoc(ic->ic_bss, 1);
732
733 /* enable automatic rate adaptation in STA mode */
734 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
735 rum_amrr_start(sc, ni);
736 }
737
738 break;
739 }
740
741 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
742 }
743
744 static int
745 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
746 {
747 struct rum_softc *sc = ic->ic_ifp->if_softc;
748
749 usb_rem_task(sc->sc_udev, &sc->sc_task);
750 callout_stop(&sc->sc_scan_ch);
751 callout_stop(&sc->sc_amrr_ch);
752
753 /* do it in a process context */
754 sc->sc_state = nstate;
755 sc->sc_arg = arg;
756 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
757
758 return 0;
759 }
760
761 /* quickly determine if a given rate is CCK or OFDM */
762 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
763
764 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
765 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
766
767 static void
768 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
769 {
770 struct rum_tx_data *data = priv;
771 struct rum_softc *sc = data->sc;
772 struct ifnet *ifp = &sc->sc_if;
773 int s;
774
775 if (status != USBD_NORMAL_COMPLETION) {
776 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
777 return;
778
779 printf("%s: could not transmit buffer: %s\n",
780 device_xname(sc->sc_dev), usbd_errstr(status));
781
782 if (status == USBD_STALLED)
783 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
784
785 ifp->if_oerrors++;
786 return;
787 }
788
789 s = splnet();
790
791 ieee80211_free_node(data->ni);
792 data->ni = NULL;
793
794 sc->tx_queued--;
795 ifp->if_opackets++;
796
797 DPRINTFN(10, ("tx done\n"));
798
799 sc->sc_tx_timer = 0;
800 ifp->if_flags &= ~IFF_OACTIVE;
801 rum_start(ifp);
802
803 splx(s);
804 }
805
806 static void
807 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
808 {
809 struct rum_rx_data *data = priv;
810 struct rum_softc *sc = data->sc;
811 struct ieee80211com *ic = &sc->sc_ic;
812 struct ifnet *ifp = &sc->sc_if;
813 struct rum_rx_desc *desc;
814 struct ieee80211_frame *wh;
815 struct ieee80211_node *ni;
816 struct mbuf *mnew, *m;
817 int s, len;
818
819 if (status != USBD_NORMAL_COMPLETION) {
820 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
821 return;
822
823 if (status == USBD_STALLED)
824 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
825 goto skip;
826 }
827
828 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
829
830 if (len < (int)(RT2573_RX_DESC_SIZE +
831 sizeof(struct ieee80211_frame_min))) {
832 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
833 len));
834 ifp->if_ierrors++;
835 goto skip;
836 }
837
838 desc = (struct rum_rx_desc *)data->buf;
839
840 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
841 /*
842 * This should not happen since we did not request to receive
843 * those frames when we filled RT2573_TXRX_CSR0.
844 */
845 DPRINTFN(5, ("CRC error\n"));
846 ifp->if_ierrors++;
847 goto skip;
848 }
849
850 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
851 if (mnew == NULL) {
852 printf("%s: could not allocate rx mbuf\n",
853 device_xname(sc->sc_dev));
854 ifp->if_ierrors++;
855 goto skip;
856 }
857
858 MCLGET(mnew, M_DONTWAIT);
859 if (!(mnew->m_flags & M_EXT)) {
860 printf("%s: could not allocate rx mbuf cluster\n",
861 device_xname(sc->sc_dev));
862 m_freem(mnew);
863 ifp->if_ierrors++;
864 goto skip;
865 }
866
867 m = data->m;
868 data->m = mnew;
869 data->buf = mtod(data->m, uint8_t *);
870
871 /* finalize mbuf */
872 m_set_rcvif(m, ifp);
873 m->m_data = (void *)(desc + 1);
874 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
875
876 s = splnet();
877
878 if (sc->sc_drvbpf != NULL) {
879 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
880
881 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
882 tap->wr_rate = rum_rxrate(desc);
883 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
884 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
885 tap->wr_antenna = sc->rx_ant;
886 tap->wr_antsignal = desc->rssi;
887
888 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
889 }
890
891 wh = mtod(m, struct ieee80211_frame *);
892 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
893
894 /* send the frame to the 802.11 layer */
895 ieee80211_input(ic, m, ni, desc->rssi, 0);
896
897 /* node is no longer needed */
898 ieee80211_free_node(ni);
899
900 splx(s);
901
902 DPRINTFN(15, ("rx done\n"));
903
904 skip: /* setup a new transfer */
905 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK,
906 USBD_NO_TIMEOUT, rum_rxeof);
907 usbd_transfer(xfer);
908 }
909
910 /*
911 * This function is only used by the Rx radiotap code. It returns the rate at
912 * which a given frame was received.
913 */
914 static uint8_t
915 rum_rxrate(const struct rum_rx_desc *desc)
916 {
917 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
918 /* reverse function of rum_plcp_signal */
919 switch (desc->rate) {
920 case 0xb: return 12;
921 case 0xf: return 18;
922 case 0xa: return 24;
923 case 0xe: return 36;
924 case 0x9: return 48;
925 case 0xd: return 72;
926 case 0x8: return 96;
927 case 0xc: return 108;
928 }
929 } else {
930 if (desc->rate == 10)
931 return 2;
932 if (desc->rate == 20)
933 return 4;
934 if (desc->rate == 55)
935 return 11;
936 if (desc->rate == 110)
937 return 22;
938 }
939 return 2; /* should not get there */
940 }
941
942 /*
943 * Return the expected ack rate for a frame transmitted at rate `rate'.
944 * XXX: this should depend on the destination node basic rate set.
945 */
946 static int
947 rum_ack_rate(struct ieee80211com *ic, int rate)
948 {
949 switch (rate) {
950 /* CCK rates */
951 case 2:
952 return 2;
953 case 4:
954 case 11:
955 case 22:
956 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
957
958 /* OFDM rates */
959 case 12:
960 case 18:
961 return 12;
962 case 24:
963 case 36:
964 return 24;
965 case 48:
966 case 72:
967 case 96:
968 case 108:
969 return 48;
970 }
971
972 /* default to 1Mbps */
973 return 2;
974 }
975
976 /*
977 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
978 * The function automatically determines the operating mode depending on the
979 * given rate. `flags' indicates whether short preamble is in use or not.
980 */
981 static uint16_t
982 rum_txtime(int len, int rate, uint32_t flags)
983 {
984 uint16_t txtime;
985
986 if (RUM_RATE_IS_OFDM(rate)) {
987 /* IEEE Std 802.11a-1999, pp. 37 */
988 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
989 txtime = 16 + 4 + 4 * txtime + 6;
990 } else {
991 /* IEEE Std 802.11b-1999, pp. 28 */
992 txtime = (16 * len + rate - 1) / rate;
993 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
994 txtime += 72 + 24;
995 else
996 txtime += 144 + 48;
997 }
998 return txtime;
999 }
1000
1001 static uint8_t
1002 rum_plcp_signal(int rate)
1003 {
1004 switch (rate) {
1005 /* CCK rates (returned values are device-dependent) */
1006 case 2: return 0x0;
1007 case 4: return 0x1;
1008 case 11: return 0x2;
1009 case 22: return 0x3;
1010
1011 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1012 case 12: return 0xb;
1013 case 18: return 0xf;
1014 case 24: return 0xa;
1015 case 36: return 0xe;
1016 case 48: return 0x9;
1017 case 72: return 0xd;
1018 case 96: return 0x8;
1019 case 108: return 0xc;
1020
1021 /* unsupported rates (should not get there) */
1022 default: return 0xff;
1023 }
1024 }
1025
1026 static void
1027 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1028 uint32_t flags, uint16_t xflags, int len, int rate)
1029 {
1030 struct ieee80211com *ic = &sc->sc_ic;
1031 uint16_t plcp_length;
1032 int remainder;
1033
1034 desc->flags = htole32(flags);
1035 desc->flags |= htole32(RT2573_TX_VALID);
1036 desc->flags |= htole32(len << 16);
1037
1038 desc->xflags = htole16(xflags);
1039
1040 desc->wme = htole16(
1041 RT2573_QID(0) |
1042 RT2573_AIFSN(2) |
1043 RT2573_LOGCWMIN(4) |
1044 RT2573_LOGCWMAX(10));
1045
1046 /* setup PLCP fields */
1047 desc->plcp_signal = rum_plcp_signal(rate);
1048 desc->plcp_service = 4;
1049
1050 len += IEEE80211_CRC_LEN;
1051 if (RUM_RATE_IS_OFDM(rate)) {
1052 desc->flags |= htole32(RT2573_TX_OFDM);
1053
1054 plcp_length = len & 0xfff;
1055 desc->plcp_length_hi = plcp_length >> 6;
1056 desc->plcp_length_lo = plcp_length & 0x3f;
1057 } else {
1058 plcp_length = (16 * len + rate - 1) / rate;
1059 if (rate == 22) {
1060 remainder = (16 * len) % 22;
1061 if (remainder != 0 && remainder < 7)
1062 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1063 }
1064 desc->plcp_length_hi = plcp_length >> 8;
1065 desc->plcp_length_lo = plcp_length & 0xff;
1066
1067 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1068 desc->plcp_signal |= 0x08;
1069 }
1070 }
1071
1072 #define RUM_TX_TIMEOUT 5000
1073
1074 static int
1075 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1076 {
1077 struct ieee80211com *ic = &sc->sc_ic;
1078 struct rum_tx_desc *desc;
1079 struct rum_tx_data *data;
1080 struct ieee80211_frame *wh;
1081 struct ieee80211_key *k;
1082 uint32_t flags = 0;
1083 uint16_t dur;
1084 usbd_status error;
1085 int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1086
1087 wh = mtod(m0, struct ieee80211_frame *);
1088
1089 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1090 k = ieee80211_crypto_encap(ic, ni, m0);
1091 if (k == NULL) {
1092 m_freem(m0);
1093 return ENOBUFS;
1094 }
1095
1096 /* packet header may have moved, reset our local pointer */
1097 wh = mtod(m0, struct ieee80211_frame *);
1098 }
1099
1100 /* compute actual packet length (including CRC and crypto overhead) */
1101 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1102
1103 /* pickup a rate */
1104 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1105 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1106 IEEE80211_FC0_TYPE_MGT)) {
1107 /* mgmt/multicast frames are sent at the lowest avail. rate */
1108 rate = ni->ni_rates.rs_rates[0];
1109 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1110 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1111 } else
1112 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1113 if (rate == 0)
1114 rate = 2; /* XXX should not happen */
1115 rate &= IEEE80211_RATE_VAL;
1116
1117 /* check if RTS/CTS or CTS-to-self protection must be used */
1118 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1119 /* multicast frames are not sent at OFDM rates in 802.11b/g */
1120 if (pktlen > ic->ic_rtsthreshold) {
1121 needrts = 1; /* RTS/CTS based on frame length */
1122 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1123 RUM_RATE_IS_OFDM(rate)) {
1124 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1125 needcts = 1; /* CTS-to-self */
1126 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1127 needrts = 1; /* RTS/CTS */
1128 }
1129 }
1130 if (needrts || needcts) {
1131 struct mbuf *mprot;
1132 int protrate, ackrate;
1133
1134 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1135 ackrate = rum_ack_rate(ic, rate);
1136
1137 dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1138 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1139 2 * sc->sifs;
1140 if (needrts) {
1141 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1142 protrate), ic->ic_flags) + sc->sifs;
1143 mprot = ieee80211_get_rts(ic, wh, dur);
1144 } else {
1145 mprot = ieee80211_get_cts_to_self(ic, dur);
1146 }
1147 if (mprot == NULL) {
1148 aprint_error_dev(sc->sc_dev,
1149 "couldn't allocate protection frame\n");
1150 m_freem(m0);
1151 return ENOBUFS;
1152 }
1153
1154 data = &sc->tx_data[sc->tx_cur];
1155 desc = (struct rum_tx_desc *)data->buf;
1156
1157 /* avoid multiple free() of the same node for each fragment */
1158 data->ni = ieee80211_ref_node(ni);
1159
1160 m_copydata(mprot, 0, mprot->m_pkthdr.len,
1161 data->buf + RT2573_TX_DESC_SIZE);
1162 rum_setup_tx_desc(sc, desc,
1163 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1164 0, mprot->m_pkthdr.len, protrate);
1165
1166 /* no roundup necessary here */
1167 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1168
1169 /* XXX may want to pass the protection frame to BPF */
1170
1171 /* mbuf is no longer needed */
1172 m_freem(mprot);
1173
1174 usbd_setup_xfer(data->xfer, data, data->buf,
1175 xferlen, USBD_FORCE_SHORT_XFER,
1176 RUM_TX_TIMEOUT, rum_txeof);
1177 error = usbd_transfer(data->xfer);
1178 if (error != USBD_NORMAL_COMPLETION &&
1179 error != USBD_IN_PROGRESS) {
1180 m_freem(m0);
1181 return error;
1182 }
1183
1184 sc->tx_queued++;
1185 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1186
1187 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1188 }
1189
1190 data = &sc->tx_data[sc->tx_cur];
1191 desc = (struct rum_tx_desc *)data->buf;
1192
1193 data->ni = ni;
1194
1195 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1196 flags |= RT2573_TX_NEED_ACK;
1197
1198 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1199 ic->ic_flags) + sc->sifs;
1200 *(uint16_t *)wh->i_dur = htole16(dur);
1201
1202 /* tell hardware to set timestamp in probe responses */
1203 if ((wh->i_fc[0] &
1204 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1205 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1206 flags |= RT2573_TX_TIMESTAMP;
1207 }
1208
1209 if (sc->sc_drvbpf != NULL) {
1210 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1211
1212 tap->wt_flags = 0;
1213 tap->wt_rate = rate;
1214 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1215 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1216 tap->wt_antenna = sc->tx_ant;
1217
1218 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1219 }
1220
1221 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1222 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1223
1224 /* align end on a 4-bytes boundary */
1225 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1226
1227 /*
1228 * No space left in the last URB to store the extra 4 bytes, force
1229 * sending of another URB.
1230 */
1231 if ((xferlen % 64) == 0)
1232 xferlen += 4;
1233
1234 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1235 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1236 rate, xferlen));
1237
1238 /* mbuf is no longer needed */
1239 m_freem(m0);
1240
1241 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1242 USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof);
1243 error = usbd_transfer(data->xfer);
1244 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1245 return error;
1246
1247 sc->tx_queued++;
1248 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1249
1250 return 0;
1251 }
1252
1253 static void
1254 rum_start(struct ifnet *ifp)
1255 {
1256 struct rum_softc *sc = ifp->if_softc;
1257 struct ieee80211com *ic = &sc->sc_ic;
1258 struct ether_header *eh;
1259 struct ieee80211_node *ni;
1260 struct mbuf *m0;
1261
1262 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1263 return;
1264
1265 for (;;) {
1266 IF_POLL(&ic->ic_mgtq, m0);
1267 if (m0 != NULL) {
1268 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1269 ifp->if_flags |= IFF_OACTIVE;
1270 break;
1271 }
1272 IF_DEQUEUE(&ic->ic_mgtq, m0);
1273
1274 ni = M_GETCTX(m0, struct ieee80211_node *);
1275 M_CLEARCTX(m0);
1276 bpf_mtap3(ic->ic_rawbpf, m0);
1277 if (rum_tx_data(sc, m0, ni) != 0)
1278 break;
1279
1280 } else {
1281 if (ic->ic_state != IEEE80211_S_RUN)
1282 break;
1283 IFQ_POLL(&ifp->if_snd, m0);
1284 if (m0 == NULL)
1285 break;
1286 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1287 ifp->if_flags |= IFF_OACTIVE;
1288 break;
1289 }
1290 IFQ_DEQUEUE(&ifp->if_snd, m0);
1291 if (m0->m_len < (int)sizeof(struct ether_header) &&
1292 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1293 continue;
1294
1295 eh = mtod(m0, struct ether_header *);
1296 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1297 if (ni == NULL) {
1298 m_freem(m0);
1299 continue;
1300 }
1301 bpf_mtap(ifp, m0);
1302 m0 = ieee80211_encap(ic, m0, ni);
1303 if (m0 == NULL) {
1304 ieee80211_free_node(ni);
1305 continue;
1306 }
1307 bpf_mtap3(ic->ic_rawbpf, m0);
1308 if (rum_tx_data(sc, m0, ni) != 0) {
1309 ieee80211_free_node(ni);
1310 ifp->if_oerrors++;
1311 break;
1312 }
1313 }
1314
1315 sc->sc_tx_timer = 5;
1316 ifp->if_timer = 1;
1317 }
1318 }
1319
1320 static void
1321 rum_watchdog(struct ifnet *ifp)
1322 {
1323 struct rum_softc *sc = ifp->if_softc;
1324 struct ieee80211com *ic = &sc->sc_ic;
1325
1326 ifp->if_timer = 0;
1327
1328 if (sc->sc_tx_timer > 0) {
1329 if (--sc->sc_tx_timer == 0) {
1330 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1331 /*rum_init(ifp); XXX needs a process context! */
1332 ifp->if_oerrors++;
1333 return;
1334 }
1335 ifp->if_timer = 1;
1336 }
1337
1338 ieee80211_watchdog(ic);
1339 }
1340
1341 static int
1342 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1343 {
1344 #define IS_RUNNING(ifp) \
1345 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1346
1347 struct rum_softc *sc = ifp->if_softc;
1348 struct ieee80211com *ic = &sc->sc_ic;
1349 int s, error = 0;
1350
1351 s = splnet();
1352
1353 switch (cmd) {
1354 case SIOCSIFFLAGS:
1355 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1356 break;
1357 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1358 case IFF_UP|IFF_RUNNING:
1359 rum_update_promisc(sc);
1360 break;
1361 case IFF_UP:
1362 rum_init(ifp);
1363 break;
1364 case IFF_RUNNING:
1365 rum_stop(ifp, 1);
1366 break;
1367 case 0:
1368 break;
1369 }
1370 break;
1371
1372 case SIOCADDMULTI:
1373 case SIOCDELMULTI:
1374 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1375 error = 0;
1376 }
1377 break;
1378
1379 default:
1380 error = ieee80211_ioctl(ic, cmd, data);
1381 }
1382
1383 if (error == ENETRESET) {
1384 if (IS_RUNNING(ifp) &&
1385 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1386 rum_init(ifp);
1387 error = 0;
1388 }
1389
1390 splx(s);
1391
1392 return error;
1393 #undef IS_RUNNING
1394 }
1395
1396 static void
1397 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1398 {
1399 usb_device_request_t req;
1400 usbd_status error;
1401
1402 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1403 req.bRequest = RT2573_READ_EEPROM;
1404 USETW(req.wValue, 0);
1405 USETW(req.wIndex, addr);
1406 USETW(req.wLength, len);
1407
1408 error = usbd_do_request(sc->sc_udev, &req, buf);
1409 if (error != 0) {
1410 printf("%s: could not read EEPROM: %s\n",
1411 device_xname(sc->sc_dev), usbd_errstr(error));
1412 }
1413 }
1414
1415 static uint32_t
1416 rum_read(struct rum_softc *sc, uint16_t reg)
1417 {
1418 uint32_t val;
1419
1420 rum_read_multi(sc, reg, &val, sizeof(val));
1421
1422 return le32toh(val);
1423 }
1424
1425 static void
1426 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1427 {
1428 usb_device_request_t req;
1429 usbd_status error;
1430
1431 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1432 req.bRequest = RT2573_READ_MULTI_MAC;
1433 USETW(req.wValue, 0);
1434 USETW(req.wIndex, reg);
1435 USETW(req.wLength, len);
1436
1437 error = usbd_do_request(sc->sc_udev, &req, buf);
1438 if (error != 0) {
1439 printf("%s: could not multi read MAC register: %s\n",
1440 device_xname(sc->sc_dev), usbd_errstr(error));
1441 }
1442 }
1443
1444 static void
1445 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1446 {
1447 uint32_t tmp = htole32(val);
1448
1449 rum_write_multi(sc, reg, &tmp, sizeof(tmp));
1450 }
1451
1452 static void
1453 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1454 {
1455 usb_device_request_t req;
1456 usbd_status error;
1457 int offset;
1458
1459 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1460 req.bRequest = RT2573_WRITE_MULTI_MAC;
1461 USETW(req.wValue, 0);
1462
1463 /* write at most 64 bytes at a time */
1464 for (offset = 0; offset < len; offset += 64) {
1465 USETW(req.wIndex, reg + offset);
1466 USETW(req.wLength, MIN(len - offset, 64));
1467
1468 error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
1469 if (error != 0) {
1470 printf("%s: could not multi write MAC register: %s\n",
1471 device_xname(sc->sc_dev), usbd_errstr(error));
1472 }
1473 }
1474 }
1475
1476 static void
1477 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1478 {
1479 uint32_t tmp;
1480 int ntries;
1481
1482 for (ntries = 0; ntries < 5; ntries++) {
1483 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1484 break;
1485 }
1486 if (ntries == 5) {
1487 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1488 return;
1489 }
1490
1491 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1492 rum_write(sc, RT2573_PHY_CSR3, tmp);
1493 }
1494
1495 static uint8_t
1496 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1497 {
1498 uint32_t val;
1499 int ntries;
1500
1501 for (ntries = 0; ntries < 5; ntries++) {
1502 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1503 break;
1504 }
1505 if (ntries == 5) {
1506 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1507 return 0;
1508 }
1509
1510 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1511 rum_write(sc, RT2573_PHY_CSR3, val);
1512
1513 for (ntries = 0; ntries < 100; ntries++) {
1514 val = rum_read(sc, RT2573_PHY_CSR3);
1515 if (!(val & RT2573_BBP_BUSY))
1516 return val & 0xff;
1517 DELAY(1);
1518 }
1519
1520 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1521 return 0;
1522 }
1523
1524 static void
1525 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1526 {
1527 uint32_t tmp;
1528 int ntries;
1529
1530 for (ntries = 0; ntries < 5; ntries++) {
1531 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1532 break;
1533 }
1534 if (ntries == 5) {
1535 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1536 return;
1537 }
1538
1539 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1540 (reg & 3);
1541 rum_write(sc, RT2573_PHY_CSR4, tmp);
1542
1543 /* remember last written value in sc */
1544 sc->rf_regs[reg] = val;
1545
1546 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1547 }
1548
1549 static void
1550 rum_select_antenna(struct rum_softc *sc)
1551 {
1552 uint8_t bbp4, bbp77;
1553 uint32_t tmp;
1554
1555 bbp4 = rum_bbp_read(sc, 4);
1556 bbp77 = rum_bbp_read(sc, 77);
1557
1558 /* TBD */
1559
1560 /* make sure Rx is disabled before switching antenna */
1561 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1562 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1563
1564 rum_bbp_write(sc, 4, bbp4);
1565 rum_bbp_write(sc, 77, bbp77);
1566
1567 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1568 }
1569
1570 /*
1571 * Enable multi-rate retries for frames sent at OFDM rates.
1572 * In 802.11b/g mode, allow fallback to CCK rates.
1573 */
1574 static void
1575 rum_enable_mrr(struct rum_softc *sc)
1576 {
1577 struct ieee80211com *ic = &sc->sc_ic;
1578 uint32_t tmp;
1579
1580 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1581
1582 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1583 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1584 tmp |= RT2573_MRR_CCK_FALLBACK;
1585 tmp |= RT2573_MRR_ENABLED;
1586
1587 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1588 }
1589
1590 static void
1591 rum_set_txpreamble(struct rum_softc *sc)
1592 {
1593 uint32_t tmp;
1594
1595 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1596
1597 tmp &= ~RT2573_SHORT_PREAMBLE;
1598 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1599 tmp |= RT2573_SHORT_PREAMBLE;
1600
1601 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1602 }
1603
1604 static void
1605 rum_set_basicrates(struct rum_softc *sc)
1606 {
1607 struct ieee80211com *ic = &sc->sc_ic;
1608
1609 /* update basic rate set */
1610 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1611 /* 11b basic rates: 1, 2Mbps */
1612 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1613 } else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1614 /* 11a basic rates: 6, 12, 24Mbps */
1615 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1616 } else {
1617 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1618 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1619 }
1620 }
1621
1622 /*
1623 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1624 * driver.
1625 */
1626 static void
1627 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1628 {
1629 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1630 uint32_t tmp;
1631
1632 /* update all BBP registers that depend on the band */
1633 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1634 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1635 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1636 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1637 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1638 }
1639 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1640 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1641 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1642 }
1643
1644 sc->bbp17 = bbp17;
1645 rum_bbp_write(sc, 17, bbp17);
1646 rum_bbp_write(sc, 96, bbp96);
1647 rum_bbp_write(sc, 104, bbp104);
1648
1649 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1650 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1651 rum_bbp_write(sc, 75, 0x80);
1652 rum_bbp_write(sc, 86, 0x80);
1653 rum_bbp_write(sc, 88, 0x80);
1654 }
1655
1656 rum_bbp_write(sc, 35, bbp35);
1657 rum_bbp_write(sc, 97, bbp97);
1658 rum_bbp_write(sc, 98, bbp98);
1659
1660 tmp = rum_read(sc, RT2573_PHY_CSR0);
1661 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1662 if (IEEE80211_IS_CHAN_2GHZ(c))
1663 tmp |= RT2573_PA_PE_2GHZ;
1664 else
1665 tmp |= RT2573_PA_PE_5GHZ;
1666 rum_write(sc, RT2573_PHY_CSR0, tmp);
1667
1668 /* 802.11a uses a 16 microseconds short interframe space */
1669 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1670 }
1671
1672 static void
1673 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1674 {
1675 struct ieee80211com *ic = &sc->sc_ic;
1676 const struct rfprog *rfprog;
1677 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1678 int8_t power;
1679 u_int i, chan;
1680
1681 chan = ieee80211_chan2ieee(ic, c);
1682 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1683 return;
1684
1685 /* select the appropriate RF settings based on what EEPROM says */
1686 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1687 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1688
1689 /* find the settings for this channel (we know it exists) */
1690 for (i = 0; rfprog[i].chan != chan; i++);
1691
1692 power = sc->txpow[i];
1693 if (power < 0) {
1694 bbp94 += power;
1695 power = 0;
1696 } else if (power > 31) {
1697 bbp94 += power - 31;
1698 power = 31;
1699 }
1700
1701 /*
1702 * If we are switching from the 2GHz band to the 5GHz band or
1703 * vice-versa, BBP registers need to be reprogrammed.
1704 */
1705 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1706 rum_select_band(sc, c);
1707 rum_select_antenna(sc);
1708 }
1709 ic->ic_curchan = c;
1710
1711 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1712 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1713 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1714 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1715
1716 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1717 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1718 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1719 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1720
1721 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1722 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1723 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1724 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1725
1726 DELAY(10);
1727
1728 /* enable smart mode for MIMO-capable RFs */
1729 bbp3 = rum_bbp_read(sc, 3);
1730
1731 bbp3 &= ~RT2573_SMART_MODE;
1732 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1733 bbp3 |= RT2573_SMART_MODE;
1734
1735 rum_bbp_write(sc, 3, bbp3);
1736
1737 if (bbp94 != RT2573_BBPR94_DEFAULT)
1738 rum_bbp_write(sc, 94, bbp94);
1739 }
1740
1741 /*
1742 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1743 * and HostAP operating modes.
1744 */
1745 static void
1746 rum_enable_tsf_sync(struct rum_softc *sc)
1747 {
1748 struct ieee80211com *ic = &sc->sc_ic;
1749 uint32_t tmp;
1750
1751 if (ic->ic_opmode != IEEE80211_M_STA) {
1752 /*
1753 * Change default 16ms TBTT adjustment to 8ms.
1754 * Must be done before enabling beacon generation.
1755 */
1756 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1757 }
1758
1759 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1760
1761 /* set beacon interval (in 1/16ms unit) */
1762 tmp |= ic->ic_bss->ni_intval * 16;
1763
1764 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1765 if (ic->ic_opmode == IEEE80211_M_STA)
1766 tmp |= RT2573_TSF_MODE(1);
1767 else
1768 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1769
1770 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1771 }
1772
1773 static void
1774 rum_update_slot(struct rum_softc *sc)
1775 {
1776 struct ieee80211com *ic = &sc->sc_ic;
1777 uint8_t slottime;
1778 uint32_t tmp;
1779
1780 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1781
1782 tmp = rum_read(sc, RT2573_MAC_CSR9);
1783 tmp = (tmp & ~0xff) | slottime;
1784 rum_write(sc, RT2573_MAC_CSR9, tmp);
1785
1786 DPRINTF(("setting slot time to %uus\n", slottime));
1787 }
1788
1789 static void
1790 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1791 {
1792 uint32_t tmp;
1793
1794 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1795 rum_write(sc, RT2573_MAC_CSR4, tmp);
1796
1797 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1798 rum_write(sc, RT2573_MAC_CSR5, tmp);
1799 }
1800
1801 static void
1802 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1803 {
1804 uint32_t tmp;
1805
1806 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1807 rum_write(sc, RT2573_MAC_CSR2, tmp);
1808
1809 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1810 rum_write(sc, RT2573_MAC_CSR3, tmp);
1811 }
1812
1813 static void
1814 rum_update_promisc(struct rum_softc *sc)
1815 {
1816 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1817 uint32_t tmp;
1818
1819 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1820
1821 tmp &= ~RT2573_DROP_NOT_TO_ME;
1822 if (!(ifp->if_flags & IFF_PROMISC))
1823 tmp |= RT2573_DROP_NOT_TO_ME;
1824
1825 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1826
1827 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1828 "entering" : "leaving"));
1829 }
1830
1831 static const char *
1832 rum_get_rf(int rev)
1833 {
1834 switch (rev) {
1835 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1836 case RT2573_RF_2528: return "RT2528";
1837 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1838 case RT2573_RF_5226: return "RT5226";
1839 default: return "unknown";
1840 }
1841 }
1842
1843 static void
1844 rum_read_eeprom(struct rum_softc *sc)
1845 {
1846 struct ieee80211com *ic = &sc->sc_ic;
1847 uint16_t val;
1848 #ifdef RUM_DEBUG
1849 int i;
1850 #endif
1851
1852 /* read MAC/BBP type */
1853 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1854 sc->macbbp_rev = le16toh(val);
1855
1856 /* read MAC address */
1857 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1858
1859 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1860 val = le16toh(val);
1861 sc->rf_rev = (val >> 11) & 0x1f;
1862 sc->hw_radio = (val >> 10) & 0x1;
1863 sc->rx_ant = (val >> 4) & 0x3;
1864 sc->tx_ant = (val >> 2) & 0x3;
1865 sc->nb_ant = val & 0x3;
1866
1867 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1868
1869 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1870 val = le16toh(val);
1871 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1872 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1873
1874 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1875 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1876
1877 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1878 val = le16toh(val);
1879 if ((val & 0xff) != 0xff)
1880 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1881
1882 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1883 val = le16toh(val);
1884 if ((val & 0xff) != 0xff)
1885 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1886
1887 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1888 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1889
1890 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1891 val = le16toh(val);
1892 if ((val & 0xff) != 0xff)
1893 sc->rffreq = val & 0xff;
1894
1895 DPRINTF(("RF freq=%d\n", sc->rffreq));
1896
1897 /* read Tx power for all a/b/g channels */
1898 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1899 /* XXX default Tx power for 802.11a channels */
1900 memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14);
1901 #ifdef RUM_DEBUG
1902 for (i = 0; i < 14; i++)
1903 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1904 #endif
1905
1906 /* read default values for BBP registers */
1907 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1908 #ifdef RUM_DEBUG
1909 for (i = 0; i < 14; i++) {
1910 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1911 continue;
1912 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1913 sc->bbp_prom[i].val));
1914 }
1915 #endif
1916 }
1917
1918 static int
1919 rum_bbp_init(struct rum_softc *sc)
1920 {
1921 unsigned int i, ntries;
1922 uint8_t val;
1923
1924 /* wait for BBP to be ready */
1925 for (ntries = 0; ntries < 100; ntries++) {
1926 val = rum_bbp_read(sc, 0);
1927 if (val != 0 && val != 0xff)
1928 break;
1929 DELAY(1000);
1930 }
1931 if (ntries == 100) {
1932 printf("%s: timeout waiting for BBP\n",
1933 device_xname(sc->sc_dev));
1934 return EIO;
1935 }
1936
1937 /* initialize BBP registers to default values */
1938 for (i = 0; i < __arraycount(rum_def_bbp); i++)
1939 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1940
1941 /* write vendor-specific BBP values (from EEPROM) */
1942 for (i = 0; i < 16; i++) {
1943 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1944 continue;
1945 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1946 }
1947
1948 return 0;
1949 }
1950
1951 static int
1952 rum_init(struct ifnet *ifp)
1953 {
1954 struct rum_softc *sc = ifp->if_softc;
1955 struct ieee80211com *ic = &sc->sc_ic;
1956 uint32_t tmp;
1957 usbd_status error = 0;
1958 unsigned int i, ntries;
1959
1960 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1961 if (rum_attachhook(sc))
1962 goto fail;
1963 }
1964
1965 rum_stop(ifp, 0);
1966
1967 /* initialize MAC registers to default values */
1968 for (i = 0; i < __arraycount(rum_def_mac); i++)
1969 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1970
1971 /* set host ready */
1972 rum_write(sc, RT2573_MAC_CSR1, 3);
1973 rum_write(sc, RT2573_MAC_CSR1, 0);
1974
1975 /* wait for BBP/RF to wakeup */
1976 for (ntries = 0; ntries < 1000; ntries++) {
1977 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1978 break;
1979 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1980 DELAY(1000);
1981 }
1982 if (ntries == 1000) {
1983 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1984 device_xname(sc->sc_dev));
1985 goto fail;
1986 }
1987
1988 if ((error = rum_bbp_init(sc)) != 0)
1989 goto fail;
1990
1991 /* select default channel */
1992 rum_select_band(sc, ic->ic_curchan);
1993 rum_select_antenna(sc);
1994 rum_set_chan(sc, ic->ic_curchan);
1995
1996 /* clear STA registers */
1997 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
1998
1999 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2000 rum_set_macaddr(sc, ic->ic_myaddr);
2001
2002 /* initialize ASIC */
2003 rum_write(sc, RT2573_MAC_CSR1, 4);
2004
2005 /*
2006 * Allocate xfer for AMRR statistics requests.
2007 */
2008 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2009 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0,
2010 &sc->amrr_xfer);
2011 if (error) {
2012 printf("%s: could not allocate AMRR xfer\n",
2013 device_xname(sc->sc_dev));
2014 goto fail;
2015 }
2016
2017 /*
2018 * Open Tx and Rx USB bulk pipes.
2019 */
2020 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2021 &sc->sc_tx_pipeh);
2022 if (error != 0) {
2023 printf("%s: could not open Tx pipe: %s\n",
2024 device_xname(sc->sc_dev), usbd_errstr(error));
2025 goto fail;
2026 }
2027
2028 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2029 &sc->sc_rx_pipeh);
2030 if (error != 0) {
2031 printf("%s: could not open Rx pipe: %s\n",
2032 device_xname(sc->sc_dev), usbd_errstr(error));
2033 goto fail;
2034 }
2035
2036 /*
2037 * Allocate Tx and Rx xfer queues.
2038 */
2039 error = rum_alloc_tx_list(sc);
2040 if (error != 0) {
2041 printf("%s: could not allocate Tx list\n",
2042 device_xname(sc->sc_dev));
2043 goto fail;
2044 }
2045
2046 error = rum_alloc_rx_list(sc);
2047 if (error != 0) {
2048 printf("%s: could not allocate Rx list\n",
2049 device_xname(sc->sc_dev));
2050 goto fail;
2051 }
2052
2053 /*
2054 * Start up the receive pipe.
2055 */
2056 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2057 struct rum_rx_data *data;
2058
2059 data = &sc->rx_data[i];
2060
2061 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2062 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2063 error = usbd_transfer(data->xfer);
2064 if (error != USBD_NORMAL_COMPLETION &&
2065 error != USBD_IN_PROGRESS) {
2066 printf("%s: could not queue Rx transfer\n",
2067 device_xname(sc->sc_dev));
2068 goto fail;
2069 }
2070 }
2071
2072 /* update Rx filter */
2073 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2074
2075 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2076 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2077 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2078 RT2573_DROP_ACKCTS;
2079 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2080 tmp |= RT2573_DROP_TODS;
2081 if (!(ifp->if_flags & IFF_PROMISC))
2082 tmp |= RT2573_DROP_NOT_TO_ME;
2083 }
2084 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2085
2086 ifp->if_flags &= ~IFF_OACTIVE;
2087 ifp->if_flags |= IFF_RUNNING;
2088
2089 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2090 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2091 else
2092 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2093
2094 return 0;
2095
2096 fail: rum_stop(ifp, 1);
2097 return error;
2098 }
2099
2100 static void
2101 rum_stop(struct ifnet *ifp, int disable)
2102 {
2103 struct rum_softc *sc = ifp->if_softc;
2104 struct ieee80211com *ic = &sc->sc_ic;
2105 uint32_t tmp;
2106
2107 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2108
2109 sc->sc_tx_timer = 0;
2110 ifp->if_timer = 0;
2111 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2112
2113 /* disable Rx */
2114 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2115 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2116
2117 /* reset ASIC */
2118 rum_write(sc, RT2573_MAC_CSR1, 3);
2119 rum_write(sc, RT2573_MAC_CSR1, 0);
2120
2121 if (sc->amrr_xfer != NULL) {
2122 usbd_destroy_xfer(sc->amrr_xfer);
2123 sc->amrr_xfer = NULL;
2124 }
2125
2126 if (sc->sc_rx_pipeh != NULL) {
2127 usbd_abort_pipe(sc->sc_rx_pipeh);
2128 }
2129
2130 if (sc->sc_tx_pipeh != NULL) {
2131 usbd_abort_pipe(sc->sc_tx_pipeh);
2132 }
2133
2134 rum_free_rx_list(sc);
2135 rum_free_tx_list(sc);
2136
2137 if (sc->sc_rx_pipeh != NULL) {
2138 usbd_close_pipe(sc->sc_rx_pipeh);
2139 sc->sc_rx_pipeh = NULL;
2140 }
2141
2142 if (sc->sc_tx_pipeh != NULL) {
2143 usbd_close_pipe(sc->sc_tx_pipeh);
2144 sc->sc_tx_pipeh = NULL;
2145 }
2146 }
2147
2148 static int
2149 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2150 {
2151 usb_device_request_t req;
2152 uint16_t reg = RT2573_MCU_CODE_BASE;
2153 usbd_status error;
2154
2155 /* copy firmware image into NIC */
2156 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2157 rum_write(sc, reg, UGETDW(ucode));
2158
2159 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2160 req.bRequest = RT2573_MCU_CNTL;
2161 USETW(req.wValue, RT2573_MCU_RUN);
2162 USETW(req.wIndex, 0);
2163 USETW(req.wLength, 0);
2164
2165 error = usbd_do_request(sc->sc_udev, &req, NULL);
2166 if (error != 0) {
2167 printf("%s: could not run firmware: %s\n",
2168 device_xname(sc->sc_dev), usbd_errstr(error));
2169 }
2170 return error;
2171 }
2172
2173 static int
2174 rum_prepare_beacon(struct rum_softc *sc)
2175 {
2176 struct ieee80211com *ic = &sc->sc_ic;
2177 struct rum_tx_desc desc;
2178 struct mbuf *m0;
2179 int rate;
2180
2181 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2182 if (m0 == NULL) {
2183 aprint_error_dev(sc->sc_dev,
2184 "could not allocate beacon frame\n");
2185 return ENOBUFS;
2186 }
2187
2188 /* send beacons at the lowest available rate */
2189 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2190
2191 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2192 m0->m_pkthdr.len, rate);
2193
2194 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2195 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2196
2197 /* copy beacon header and payload into NIC memory */
2198 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2199 m0->m_pkthdr.len);
2200
2201 m_freem(m0);
2202
2203 return 0;
2204 }
2205
2206 static void
2207 rum_newassoc(struct ieee80211_node *ni, int isnew)
2208 {
2209 /* start with lowest Tx rate */
2210 ni->ni_txrate = 0;
2211 }
2212
2213 static void
2214 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2215 {
2216 int i;
2217
2218 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2219 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
2220
2221 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2222
2223 /* set rate to some reasonable initial value */
2224 for (i = ni->ni_rates.rs_nrates - 1;
2225 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2226 i--);
2227 ni->ni_txrate = i;
2228
2229 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2230 }
2231
2232 static void
2233 rum_amrr_timeout(void *arg)
2234 {
2235 struct rum_softc *sc = arg;
2236 usb_device_request_t req;
2237
2238 /*
2239 * Asynchronously read statistic registers (cleared by read).
2240 */
2241 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2242 req.bRequest = RT2573_READ_MULTI_MAC;
2243 USETW(req.wValue, 0);
2244 USETW(req.wIndex, RT2573_STA_CSR0);
2245 USETW(req.wLength, sizeof(sc->sta));
2246
2247 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2248 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2249 rum_amrr_update);
2250 (void)usbd_transfer(sc->amrr_xfer);
2251 }
2252
2253 static void
2254 rum_amrr_update(struct usbd_xfer *xfer, void *priv,
2255 usbd_status status)
2256 {
2257 struct rum_softc *sc = (struct rum_softc *)priv;
2258 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2259
2260 if (status != USBD_NORMAL_COMPLETION) {
2261 printf("%s: could not retrieve Tx statistics - cancelling "
2262 "automatic rate control\n", device_xname(sc->sc_dev));
2263 return;
2264 }
2265
2266 /* count TX retry-fail as Tx errors */
2267 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2268
2269 sc->amn.amn_retrycnt =
2270 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2271 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2272 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2273
2274 sc->amn.amn_txcnt =
2275 sc->amn.amn_retrycnt +
2276 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2277
2278 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2279
2280 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2281 }
2282
2283 static int
2284 rum_activate(device_t self, enum devact act)
2285 {
2286 switch (act) {
2287 case DVACT_DEACTIVATE:
2288 /*if_deactivate(&sc->sc_ic.ic_if);*/
2289 return 0;
2290 default:
2291 return 0;
2292 }
2293 }
2294
2295 MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf");
2296
2297 #ifdef _MODULE
2298 #include "ioconf.c"
2299 #endif
2300
2301 static int
2302 if_rum_modcmd(modcmd_t cmd, void *aux)
2303 {
2304 int error = 0;
2305
2306 switch (cmd) {
2307 case MODULE_CMD_INIT:
2308 #ifdef _MODULE
2309 error = config_init_component(cfdriver_ioconf_rum,
2310 cfattach_ioconf_rum, cfdata_ioconf_rum);
2311 #endif
2312 return error;
2313 case MODULE_CMD_FINI:
2314 #ifdef _MODULE
2315 error = config_fini_component(cfdriver_ioconf_rum,
2316 cfattach_ioconf_rum, cfdata_ioconf_rum);
2317 #endif
2318 return error;
2319 default:
2320 return ENOTTY;
2321 }
2322 }
2323