if_rum.c revision 1.58 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.58 2017/05/23 00:32:47 khorben Exp $ */
3
4 /*-
5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com.tw/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.58 2017/05/23 00:32:47 khorben Exp $");
28
29 #ifdef _KERNEL_OPT
30 #include "opt_usb.h"
31 #endif
32
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/module.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/firmload.h>
67
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72
73 #include <dev/usb/if_rumreg.h>
74 #include <dev/usb/if_rumvar.h>
75
76 #ifdef RUM_DEBUG
77 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0)
78 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0)
79 int rum_debug = 1;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84
85 /* various supported device vendors/products */
86 static const struct usb_devno rum_devs[] = {
87 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
88 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
89 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
90 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
92 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
93 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
94 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
95 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
96 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
97 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C },
98 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 },
99 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
100 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
101 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
102 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_RT2573 },
103 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL },
104 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX },
105 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
106 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
107 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
108 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
109 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 },
110 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 },
111 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 },
112 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 },
113 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
114 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
115 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
116 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
117 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
118 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
119 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
120 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
121 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
122 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG },
123 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG },
124 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
125 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
126 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
127 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
128 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
129 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
130 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
131 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
132 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
133 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
134 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 },
135 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
136 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
137 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
138 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
139 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 },
140 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 },
141 { USB_VENDOR_SYNET, USB_PRODUCT_SYNET_MWP54SS },
142 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 }
143 };
144
145 static int rum_attachhook(void *);
146 static int rum_alloc_tx_list(struct rum_softc *);
147 static void rum_free_tx_list(struct rum_softc *);
148 static int rum_alloc_rx_list(struct rum_softc *);
149 static void rum_free_rx_list(struct rum_softc *);
150 static int rum_media_change(struct ifnet *);
151 static void rum_next_scan(void *);
152 static void rum_task(void *);
153 static int rum_newstate(struct ieee80211com *,
154 enum ieee80211_state, int);
155 static void rum_txeof(struct usbd_xfer *, void *,
156 usbd_status);
157 static void rum_rxeof(struct usbd_xfer *, void *,
158 usbd_status);
159 static uint8_t rum_rxrate(const struct rum_rx_desc *);
160 static int rum_ack_rate(struct ieee80211com *, int);
161 static uint16_t rum_txtime(int, int, uint32_t);
162 static uint8_t rum_plcp_signal(int);
163 static void rum_setup_tx_desc(struct rum_softc *,
164 struct rum_tx_desc *, uint32_t, uint16_t, int,
165 int);
166 static int rum_tx_data(struct rum_softc *, struct mbuf *,
167 struct ieee80211_node *);
168 static void rum_start(struct ifnet *);
169 static void rum_watchdog(struct ifnet *);
170 static int rum_ioctl(struct ifnet *, u_long, void *);
171 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
172 int);
173 static uint32_t rum_read(struct rum_softc *, uint16_t);
174 static void rum_read_multi(struct rum_softc *, uint16_t, void *,
175 int);
176 static void rum_write(struct rum_softc *, uint16_t, uint32_t);
177 static void rum_write_multi(struct rum_softc *, uint16_t, void *,
178 size_t);
179 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
180 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
181 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
182 static void rum_select_antenna(struct rum_softc *);
183 static void rum_enable_mrr(struct rum_softc *);
184 static void rum_set_txpreamble(struct rum_softc *);
185 static void rum_set_basicrates(struct rum_softc *);
186 static void rum_select_band(struct rum_softc *,
187 struct ieee80211_channel *);
188 static void rum_set_chan(struct rum_softc *,
189 struct ieee80211_channel *);
190 static void rum_enable_tsf_sync(struct rum_softc *);
191 static void rum_update_slot(struct rum_softc *);
192 static void rum_set_bssid(struct rum_softc *, const uint8_t *);
193 static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
194 static void rum_update_promisc(struct rum_softc *);
195 static const char *rum_get_rf(int);
196 static void rum_read_eeprom(struct rum_softc *);
197 static int rum_bbp_init(struct rum_softc *);
198 static int rum_init(struct ifnet *);
199 static void rum_stop(struct ifnet *, int);
200 static int rum_load_microcode(struct rum_softc *, const u_char *,
201 size_t);
202 static int rum_prepare_beacon(struct rum_softc *);
203 static void rum_newassoc(struct ieee80211_node *, int);
204 static void rum_amrr_start(struct rum_softc *,
205 struct ieee80211_node *);
206 static void rum_amrr_timeout(void *);
207 static void rum_amrr_update(struct usbd_xfer *, void *,
208 usbd_status);
209
210 /*
211 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
212 */
213 static const struct ieee80211_rateset rum_rateset_11a =
214 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
215
216 static const struct ieee80211_rateset rum_rateset_11b =
217 { 4, { 2, 4, 11, 22 } };
218
219 static const struct ieee80211_rateset rum_rateset_11g =
220 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
221
222 static const struct {
223 uint32_t reg;
224 uint32_t val;
225 } rum_def_mac[] = {
226 RT2573_DEF_MAC
227 };
228
229 static const struct {
230 uint8_t reg;
231 uint8_t val;
232 } rum_def_bbp[] = {
233 RT2573_DEF_BBP
234 };
235
236 static const struct rfprog {
237 uint8_t chan;
238 uint32_t r1, r2, r3, r4;
239 } rum_rf5226[] = {
240 RT2573_RF5226
241 }, rum_rf5225[] = {
242 RT2573_RF5225
243 };
244
245 static int rum_match(device_t, cfdata_t, void *);
246 static void rum_attach(device_t, device_t, void *);
247 static int rum_detach(device_t, int);
248 static int rum_activate(device_t, enum devact);
249 extern struct cfdriver rum_cd;
250 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
251 rum_detach, rum_activate);
252
253 static int
254 rum_match(device_t parent, cfdata_t match, void *aux)
255 {
256 struct usb_attach_arg *uaa = aux;
257
258 return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
259 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
260 }
261
262 static int
263 rum_attachhook(void *xsc)
264 {
265 struct rum_softc *sc = xsc;
266 firmware_handle_t fwh;
267 const char *name = "rum-rt2573";
268 u_char *ucode;
269 size_t size;
270 int error;
271
272 if ((error = firmware_open("rum", name, &fwh)) != 0) {
273 printf("%s: failed firmware_open of file %s (error %d)\n",
274 device_xname(sc->sc_dev), name, error);
275 return error;
276 }
277 size = firmware_get_size(fwh);
278 ucode = firmware_malloc(size);
279 if (ucode == NULL) {
280 printf("%s: failed to allocate firmware memory\n",
281 device_xname(sc->sc_dev));
282 firmware_close(fwh);
283 return ENOMEM;
284 }
285 error = firmware_read(fwh, 0, ucode, size);
286 firmware_close(fwh);
287 if (error != 0) {
288 printf("%s: failed to read firmware (error %d)\n",
289 device_xname(sc->sc_dev), error);
290 firmware_free(ucode, size);
291 return error;
292 }
293
294 if (rum_load_microcode(sc, ucode, size) != 0) {
295 printf("%s: could not load 8051 microcode\n",
296 device_xname(sc->sc_dev));
297 firmware_free(ucode, size);
298 return ENXIO;
299 }
300
301 firmware_free(ucode, size);
302 sc->sc_flags |= RT2573_FWLOADED;
303
304 return 0;
305 }
306
307 static void
308 rum_attach(device_t parent, device_t self, void *aux)
309 {
310 struct rum_softc *sc = device_private(self);
311 struct usb_attach_arg *uaa = aux;
312 struct ieee80211com *ic = &sc->sc_ic;
313 struct ifnet *ifp = &sc->sc_if;
314 usb_interface_descriptor_t *id;
315 usb_endpoint_descriptor_t *ed;
316 usbd_status error;
317 char *devinfop;
318 int i, ntries;
319 uint32_t tmp;
320
321 sc->sc_dev = self;
322 sc->sc_udev = uaa->uaa_device;
323 sc->sc_flags = 0;
324
325 aprint_naive("\n");
326 aprint_normal("\n");
327
328 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
329 aprint_normal_dev(self, "%s\n", devinfop);
330 usbd_devinfo_free(devinfop);
331
332 error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
333 if (error != 0) {
334 aprint_error_dev(self, "failed to set configuration"
335 ", err=%s\n", usbd_errstr(error));
336 return;
337 }
338
339 /* get the first interface handle */
340 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
341 &sc->sc_iface);
342 if (error != 0) {
343 aprint_error_dev(self, "could not get interface handle\n");
344 return;
345 }
346
347 /*
348 * Find endpoints.
349 */
350 id = usbd_get_interface_descriptor(sc->sc_iface);
351
352 sc->sc_rx_no = sc->sc_tx_no = -1;
353 for (i = 0; i < id->bNumEndpoints; i++) {
354 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
355 if (ed == NULL) {
356 aprint_error_dev(self,
357 "no endpoint descriptor for iface %d\n", i);
358 return;
359 }
360
361 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
362 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
363 sc->sc_rx_no = ed->bEndpointAddress;
364 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
365 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
366 sc->sc_tx_no = ed->bEndpointAddress;
367 }
368 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
369 aprint_error_dev(self, "missing endpoint\n");
370 return;
371 }
372
373 usb_init_task(&sc->sc_task, rum_task, sc, 0);
374 callout_init(&sc->sc_scan_ch, 0);
375
376 sc->amrr.amrr_min_success_threshold = 1;
377 sc->amrr.amrr_max_success_threshold = 10;
378 callout_init(&sc->sc_amrr_ch, 0);
379
380 /* retrieve RT2573 rev. no */
381 for (ntries = 0; ntries < 1000; ntries++) {
382 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
383 break;
384 DELAY(1000);
385 }
386 if (ntries == 1000) {
387 aprint_error_dev(self, "timeout waiting for chip to settle\n");
388 return;
389 }
390
391 /* retrieve MAC address and various other things from EEPROM */
392 rum_read_eeprom(sc);
393
394 aprint_normal_dev(self,
395 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
396 sc->macbbp_rev, tmp,
397 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
398
399 ic->ic_ifp = ifp;
400 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
401 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
402 ic->ic_state = IEEE80211_S_INIT;
403
404 /* set device capabilities */
405 ic->ic_caps =
406 IEEE80211_C_IBSS | /* IBSS mode supported */
407 IEEE80211_C_MONITOR | /* monitor mode supported */
408 IEEE80211_C_HOSTAP | /* HostAp mode supported */
409 IEEE80211_C_TXPMGT | /* tx power management */
410 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
411 IEEE80211_C_SHSLOT | /* short slot time supported */
412 IEEE80211_C_WPA; /* 802.11i */
413
414 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
415 /* set supported .11a rates */
416 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
417
418 /* set supported .11a channels */
419 for (i = 34; i <= 46; i += 4) {
420 ic->ic_channels[i].ic_freq =
421 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
422 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
423 }
424 for (i = 36; i <= 64; i += 4) {
425 ic->ic_channels[i].ic_freq =
426 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
427 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
428 }
429 for (i = 100; i <= 140; i += 4) {
430 ic->ic_channels[i].ic_freq =
431 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
432 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
433 }
434 for (i = 149; i <= 165; i += 4) {
435 ic->ic_channels[i].ic_freq =
436 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
437 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
438 }
439 }
440
441 /* set supported .11b and .11g rates */
442 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
443 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
444
445 /* set supported .11b and .11g channels (1 through 14) */
446 for (i = 1; i <= 14; i++) {
447 ic->ic_channels[i].ic_freq =
448 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
449 ic->ic_channels[i].ic_flags =
450 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
451 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
452 }
453
454 ifp->if_softc = sc;
455 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
456 ifp->if_init = rum_init;
457 ifp->if_ioctl = rum_ioctl;
458 ifp->if_start = rum_start;
459 ifp->if_watchdog = rum_watchdog;
460 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
461 IFQ_SET_READY(&ifp->if_snd);
462 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
463
464 if_attach(ifp);
465 ieee80211_ifattach(ic);
466 ic->ic_newassoc = rum_newassoc;
467
468 /* override state transition machine */
469 sc->sc_newstate = ic->ic_newstate;
470 ic->ic_newstate = rum_newstate;
471 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
472
473 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
474 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
475 &sc->sc_drvbpf);
476
477 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
478 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
479 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
480
481 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
482 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
483 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
484
485 ieee80211_announce(ic);
486
487 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
488
489 if (!pmf_device_register(self, NULL, NULL))
490 aprint_error_dev(self, "couldn't establish power handler\n");
491
492 return;
493 }
494
495 static int
496 rum_detach(device_t self, int flags)
497 {
498 struct rum_softc *sc = device_private(self);
499 struct ieee80211com *ic = &sc->sc_ic;
500 struct ifnet *ifp = &sc->sc_if;
501 int s;
502
503 if (!ifp->if_softc)
504 return 0;
505
506 pmf_device_deregister(self);
507
508 s = splusb();
509
510 rum_stop(ifp, 1);
511 usb_rem_task(sc->sc_udev, &sc->sc_task);
512 callout_stop(&sc->sc_scan_ch);
513 callout_stop(&sc->sc_amrr_ch);
514
515 bpf_detach(ifp);
516 ieee80211_ifdetach(ic); /* free all nodes */
517 if_detach(ifp);
518
519 splx(s);
520
521 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
522
523 return 0;
524 }
525
526 static int
527 rum_alloc_tx_list(struct rum_softc *sc)
528 {
529 struct rum_tx_data *data;
530 int i, error;
531
532 sc->tx_cur = sc->tx_queued = 0;
533
534 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
535 data = &sc->tx_data[i];
536
537 data->sc = sc;
538
539 error = usbd_create_xfer(sc->sc_tx_pipeh,
540 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN,
541 USBD_FORCE_SHORT_XFER, 0, &data->xfer);
542 if (error) {
543 printf("%s: could not allocate tx xfer\n",
544 device_xname(sc->sc_dev));
545 goto fail;
546 }
547 data->buf = usbd_get_buffer(data->xfer);
548
549 /* clean Tx descriptor */
550 memset(data->buf, 0, RT2573_TX_DESC_SIZE);
551 }
552
553 return 0;
554
555 fail: rum_free_tx_list(sc);
556 return error;
557 }
558
559 static void
560 rum_free_tx_list(struct rum_softc *sc)
561 {
562 struct rum_tx_data *data;
563 int i;
564
565 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
566 data = &sc->tx_data[i];
567
568 if (data->xfer != NULL) {
569 usbd_destroy_xfer(data->xfer);
570 data->xfer = NULL;
571 }
572
573 if (data->ni != NULL) {
574 ieee80211_free_node(data->ni);
575 data->ni = NULL;
576 }
577 }
578 }
579
580 static int
581 rum_alloc_rx_list(struct rum_softc *sc)
582 {
583 struct rum_rx_data *data;
584 int i, error;
585
586 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
587 data = &sc->rx_data[i];
588
589 data->sc = sc;
590
591 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
592 USBD_SHORT_XFER_OK, 0, &data->xfer);
593 if (error) {
594 printf("%s: could not allocate rx xfer\n",
595 device_xname(sc->sc_dev));
596 goto fail;
597 }
598
599 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
600 if (data->m == NULL) {
601 printf("%s: could not allocate rx mbuf\n",
602 device_xname(sc->sc_dev));
603 error = ENOMEM;
604 goto fail;
605 }
606
607 MCLGET(data->m, M_DONTWAIT);
608 if (!(data->m->m_flags & M_EXT)) {
609 printf("%s: could not allocate rx mbuf cluster\n",
610 device_xname(sc->sc_dev));
611 error = ENOMEM;
612 goto fail;
613 }
614
615 data->buf = mtod(data->m, uint8_t *);
616 }
617
618 return 0;
619
620 fail: rum_free_rx_list(sc);
621 return error;
622 }
623
624 static void
625 rum_free_rx_list(struct rum_softc *sc)
626 {
627 struct rum_rx_data *data;
628 int i;
629
630 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
631 data = &sc->rx_data[i];
632
633 if (data->xfer != NULL) {
634 usbd_destroy_xfer(data->xfer);
635 data->xfer = NULL;
636 }
637
638 if (data->m != NULL) {
639 m_freem(data->m);
640 data->m = NULL;
641 }
642 }
643 }
644
645 static int
646 rum_media_change(struct ifnet *ifp)
647 {
648 int error;
649
650 error = ieee80211_media_change(ifp);
651 if (error != ENETRESET)
652 return error;
653
654 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
655 rum_init(ifp);
656
657 return 0;
658 }
659
660 /*
661 * This function is called periodically (every 200ms) during scanning to
662 * switch from one channel to another.
663 */
664 static void
665 rum_next_scan(void *arg)
666 {
667 struct rum_softc *sc = arg;
668 struct ieee80211com *ic = &sc->sc_ic;
669 int s;
670
671 s = splnet();
672 if (ic->ic_state == IEEE80211_S_SCAN)
673 ieee80211_next_scan(ic);
674 splx(s);
675 }
676
677 static void
678 rum_task(void *arg)
679 {
680 struct rum_softc *sc = arg;
681 struct ieee80211com *ic = &sc->sc_ic;
682 enum ieee80211_state ostate;
683 struct ieee80211_node *ni;
684 uint32_t tmp;
685
686 ostate = ic->ic_state;
687
688 switch (sc->sc_state) {
689 case IEEE80211_S_INIT:
690 if (ostate == IEEE80211_S_RUN) {
691 /* abort TSF synchronization */
692 tmp = rum_read(sc, RT2573_TXRX_CSR9);
693 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
694 }
695 break;
696
697 case IEEE80211_S_SCAN:
698 rum_set_chan(sc, ic->ic_curchan);
699 callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
700 break;
701
702 case IEEE80211_S_AUTH:
703 rum_set_chan(sc, ic->ic_curchan);
704 break;
705
706 case IEEE80211_S_ASSOC:
707 rum_set_chan(sc, ic->ic_curchan);
708 break;
709
710 case IEEE80211_S_RUN:
711 rum_set_chan(sc, ic->ic_curchan);
712
713 ni = ic->ic_bss;
714
715 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
716 rum_update_slot(sc);
717 rum_enable_mrr(sc);
718 rum_set_txpreamble(sc);
719 rum_set_basicrates(sc);
720 rum_set_bssid(sc, ni->ni_bssid);
721 }
722
723 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
724 ic->ic_opmode == IEEE80211_M_IBSS)
725 rum_prepare_beacon(sc);
726
727 if (ic->ic_opmode != IEEE80211_M_MONITOR)
728 rum_enable_tsf_sync(sc);
729
730 if (ic->ic_opmode == IEEE80211_M_STA) {
731 /* fake a join to init the tx rate */
732 rum_newassoc(ic->ic_bss, 1);
733
734 /* enable automatic rate adaptation in STA mode */
735 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
736 rum_amrr_start(sc, ni);
737 }
738
739 break;
740 }
741
742 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
743 }
744
745 static int
746 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
747 {
748 struct rum_softc *sc = ic->ic_ifp->if_softc;
749
750 usb_rem_task(sc->sc_udev, &sc->sc_task);
751 callout_stop(&sc->sc_scan_ch);
752 callout_stop(&sc->sc_amrr_ch);
753
754 /* do it in a process context */
755 sc->sc_state = nstate;
756 sc->sc_arg = arg;
757 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
758
759 return 0;
760 }
761
762 /* quickly determine if a given rate is CCK or OFDM */
763 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
764
765 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
766 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
767
768 static void
769 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
770 {
771 struct rum_tx_data *data = priv;
772 struct rum_softc *sc = data->sc;
773 struct ifnet *ifp = &sc->sc_if;
774 int s;
775
776 if (status != USBD_NORMAL_COMPLETION) {
777 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
778 return;
779
780 printf("%s: could not transmit buffer: %s\n",
781 device_xname(sc->sc_dev), usbd_errstr(status));
782
783 if (status == USBD_STALLED)
784 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
785
786 ifp->if_oerrors++;
787 return;
788 }
789
790 s = splnet();
791
792 ieee80211_free_node(data->ni);
793 data->ni = NULL;
794
795 sc->tx_queued--;
796 ifp->if_opackets++;
797
798 DPRINTFN(10, ("tx done\n"));
799
800 sc->sc_tx_timer = 0;
801 ifp->if_flags &= ~IFF_OACTIVE;
802 rum_start(ifp);
803
804 splx(s);
805 }
806
807 static void
808 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
809 {
810 struct rum_rx_data *data = priv;
811 struct rum_softc *sc = data->sc;
812 struct ieee80211com *ic = &sc->sc_ic;
813 struct ifnet *ifp = &sc->sc_if;
814 struct rum_rx_desc *desc;
815 struct ieee80211_frame *wh;
816 struct ieee80211_node *ni;
817 struct mbuf *mnew, *m;
818 int s, len;
819
820 if (status != USBD_NORMAL_COMPLETION) {
821 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
822 return;
823
824 if (status == USBD_STALLED)
825 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
826 goto skip;
827 }
828
829 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
830
831 if (len < (int)(RT2573_RX_DESC_SIZE +
832 sizeof(struct ieee80211_frame_min))) {
833 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
834 len));
835 ifp->if_ierrors++;
836 goto skip;
837 }
838
839 desc = (struct rum_rx_desc *)data->buf;
840
841 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
842 /*
843 * This should not happen since we did not request to receive
844 * those frames when we filled RT2573_TXRX_CSR0.
845 */
846 DPRINTFN(5, ("CRC error\n"));
847 ifp->if_ierrors++;
848 goto skip;
849 }
850
851 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
852 if (mnew == NULL) {
853 printf("%s: could not allocate rx mbuf\n",
854 device_xname(sc->sc_dev));
855 ifp->if_ierrors++;
856 goto skip;
857 }
858
859 MCLGET(mnew, M_DONTWAIT);
860 if (!(mnew->m_flags & M_EXT)) {
861 printf("%s: could not allocate rx mbuf cluster\n",
862 device_xname(sc->sc_dev));
863 m_freem(mnew);
864 ifp->if_ierrors++;
865 goto skip;
866 }
867
868 m = data->m;
869 data->m = mnew;
870 data->buf = mtod(data->m, uint8_t *);
871
872 /* finalize mbuf */
873 m_set_rcvif(m, ifp);
874 m->m_data = (void *)(desc + 1);
875 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
876
877 s = splnet();
878
879 if (sc->sc_drvbpf != NULL) {
880 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
881
882 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
883 tap->wr_rate = rum_rxrate(desc);
884 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
885 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
886 tap->wr_antenna = sc->rx_ant;
887 tap->wr_antsignal = desc->rssi;
888
889 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
890 }
891
892 wh = mtod(m, struct ieee80211_frame *);
893 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
894
895 /* send the frame to the 802.11 layer */
896 ieee80211_input(ic, m, ni, desc->rssi, 0);
897
898 /* node is no longer needed */
899 ieee80211_free_node(ni);
900
901 splx(s);
902
903 DPRINTFN(15, ("rx done\n"));
904
905 skip: /* setup a new transfer */
906 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK,
907 USBD_NO_TIMEOUT, rum_rxeof);
908 usbd_transfer(xfer);
909 }
910
911 /*
912 * This function is only used by the Rx radiotap code. It returns the rate at
913 * which a given frame was received.
914 */
915 static uint8_t
916 rum_rxrate(const struct rum_rx_desc *desc)
917 {
918 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
919 /* reverse function of rum_plcp_signal */
920 switch (desc->rate) {
921 case 0xb: return 12;
922 case 0xf: return 18;
923 case 0xa: return 24;
924 case 0xe: return 36;
925 case 0x9: return 48;
926 case 0xd: return 72;
927 case 0x8: return 96;
928 case 0xc: return 108;
929 }
930 } else {
931 if (desc->rate == 10)
932 return 2;
933 if (desc->rate == 20)
934 return 4;
935 if (desc->rate == 55)
936 return 11;
937 if (desc->rate == 110)
938 return 22;
939 }
940 return 2; /* should not get there */
941 }
942
943 /*
944 * Return the expected ack rate for a frame transmitted at rate `rate'.
945 * XXX: this should depend on the destination node basic rate set.
946 */
947 static int
948 rum_ack_rate(struct ieee80211com *ic, int rate)
949 {
950 switch (rate) {
951 /* CCK rates */
952 case 2:
953 return 2;
954 case 4:
955 case 11:
956 case 22:
957 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
958
959 /* OFDM rates */
960 case 12:
961 case 18:
962 return 12;
963 case 24:
964 case 36:
965 return 24;
966 case 48:
967 case 72:
968 case 96:
969 case 108:
970 return 48;
971 }
972
973 /* default to 1Mbps */
974 return 2;
975 }
976
977 /*
978 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
979 * The function automatically determines the operating mode depending on the
980 * given rate. `flags' indicates whether short preamble is in use or not.
981 */
982 static uint16_t
983 rum_txtime(int len, int rate, uint32_t flags)
984 {
985 uint16_t txtime;
986
987 if (RUM_RATE_IS_OFDM(rate)) {
988 /* IEEE Std 802.11a-1999, pp. 37 */
989 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
990 txtime = 16 + 4 + 4 * txtime + 6;
991 } else {
992 /* IEEE Std 802.11b-1999, pp. 28 */
993 txtime = (16 * len + rate - 1) / rate;
994 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
995 txtime += 72 + 24;
996 else
997 txtime += 144 + 48;
998 }
999 return txtime;
1000 }
1001
1002 static uint8_t
1003 rum_plcp_signal(int rate)
1004 {
1005 switch (rate) {
1006 /* CCK rates (returned values are device-dependent) */
1007 case 2: return 0x0;
1008 case 4: return 0x1;
1009 case 11: return 0x2;
1010 case 22: return 0x3;
1011
1012 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1013 case 12: return 0xb;
1014 case 18: return 0xf;
1015 case 24: return 0xa;
1016 case 36: return 0xe;
1017 case 48: return 0x9;
1018 case 72: return 0xd;
1019 case 96: return 0x8;
1020 case 108: return 0xc;
1021
1022 /* unsupported rates (should not get there) */
1023 default: return 0xff;
1024 }
1025 }
1026
1027 static void
1028 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1029 uint32_t flags, uint16_t xflags, int len, int rate)
1030 {
1031 struct ieee80211com *ic = &sc->sc_ic;
1032 uint16_t plcp_length;
1033 int remainder;
1034
1035 desc->flags = htole32(flags);
1036 desc->flags |= htole32(RT2573_TX_VALID);
1037 desc->flags |= htole32(len << 16);
1038
1039 desc->xflags = htole16(xflags);
1040
1041 desc->wme = htole16(
1042 RT2573_QID(0) |
1043 RT2573_AIFSN(2) |
1044 RT2573_LOGCWMIN(4) |
1045 RT2573_LOGCWMAX(10));
1046
1047 /* setup PLCP fields */
1048 desc->plcp_signal = rum_plcp_signal(rate);
1049 desc->plcp_service = 4;
1050
1051 len += IEEE80211_CRC_LEN;
1052 if (RUM_RATE_IS_OFDM(rate)) {
1053 desc->flags |= htole32(RT2573_TX_OFDM);
1054
1055 plcp_length = len & 0xfff;
1056 desc->plcp_length_hi = plcp_length >> 6;
1057 desc->plcp_length_lo = plcp_length & 0x3f;
1058 } else {
1059 plcp_length = (16 * len + rate - 1) / rate;
1060 if (rate == 22) {
1061 remainder = (16 * len) % 22;
1062 if (remainder != 0 && remainder < 7)
1063 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1064 }
1065 desc->plcp_length_hi = plcp_length >> 8;
1066 desc->plcp_length_lo = plcp_length & 0xff;
1067
1068 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1069 desc->plcp_signal |= 0x08;
1070 }
1071 }
1072
1073 #define RUM_TX_TIMEOUT 5000
1074
1075 static int
1076 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1077 {
1078 struct ieee80211com *ic = &sc->sc_ic;
1079 struct rum_tx_desc *desc;
1080 struct rum_tx_data *data;
1081 struct ieee80211_frame *wh;
1082 struct ieee80211_key *k;
1083 uint32_t flags = 0;
1084 uint16_t dur;
1085 usbd_status error;
1086 int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1087
1088 wh = mtod(m0, struct ieee80211_frame *);
1089
1090 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1091 k = ieee80211_crypto_encap(ic, ni, m0);
1092 if (k == NULL) {
1093 m_freem(m0);
1094 return ENOBUFS;
1095 }
1096
1097 /* packet header may have moved, reset our local pointer */
1098 wh = mtod(m0, struct ieee80211_frame *);
1099 }
1100
1101 /* compute actual packet length (including CRC and crypto overhead) */
1102 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1103
1104 /* pickup a rate */
1105 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1106 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1107 IEEE80211_FC0_TYPE_MGT)) {
1108 /* mgmt/multicast frames are sent at the lowest avail. rate */
1109 rate = ni->ni_rates.rs_rates[0];
1110 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1111 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1112 } else
1113 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1114 if (rate == 0)
1115 rate = 2; /* XXX should not happen */
1116 rate &= IEEE80211_RATE_VAL;
1117
1118 /* check if RTS/CTS or CTS-to-self protection must be used */
1119 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1120 /* multicast frames are not sent at OFDM rates in 802.11b/g */
1121 if (pktlen > ic->ic_rtsthreshold) {
1122 needrts = 1; /* RTS/CTS based on frame length */
1123 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1124 RUM_RATE_IS_OFDM(rate)) {
1125 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1126 needcts = 1; /* CTS-to-self */
1127 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1128 needrts = 1; /* RTS/CTS */
1129 }
1130 }
1131 if (needrts || needcts) {
1132 struct mbuf *mprot;
1133 int protrate, ackrate;
1134
1135 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1136 ackrate = rum_ack_rate(ic, rate);
1137
1138 dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1139 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1140 2 * sc->sifs;
1141 if (needrts) {
1142 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1143 protrate), ic->ic_flags) + sc->sifs;
1144 mprot = ieee80211_get_rts(ic, wh, dur);
1145 } else {
1146 mprot = ieee80211_get_cts_to_self(ic, dur);
1147 }
1148 if (mprot == NULL) {
1149 aprint_error_dev(sc->sc_dev,
1150 "couldn't allocate protection frame\n");
1151 m_freem(m0);
1152 return ENOBUFS;
1153 }
1154
1155 data = &sc->tx_data[sc->tx_cur];
1156 desc = (struct rum_tx_desc *)data->buf;
1157
1158 /* avoid multiple free() of the same node for each fragment */
1159 data->ni = ieee80211_ref_node(ni);
1160
1161 m_copydata(mprot, 0, mprot->m_pkthdr.len,
1162 data->buf + RT2573_TX_DESC_SIZE);
1163 rum_setup_tx_desc(sc, desc,
1164 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1165 0, mprot->m_pkthdr.len, protrate);
1166
1167 /* no roundup necessary here */
1168 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1169
1170 /* XXX may want to pass the protection frame to BPF */
1171
1172 /* mbuf is no longer needed */
1173 m_freem(mprot);
1174
1175 usbd_setup_xfer(data->xfer, data, data->buf,
1176 xferlen, USBD_FORCE_SHORT_XFER,
1177 RUM_TX_TIMEOUT, rum_txeof);
1178 error = usbd_transfer(data->xfer);
1179 if (error != USBD_NORMAL_COMPLETION &&
1180 error != USBD_IN_PROGRESS) {
1181 m_freem(m0);
1182 return error;
1183 }
1184
1185 sc->tx_queued++;
1186 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1187
1188 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1189 }
1190
1191 data = &sc->tx_data[sc->tx_cur];
1192 desc = (struct rum_tx_desc *)data->buf;
1193
1194 data->ni = ni;
1195
1196 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1197 flags |= RT2573_TX_NEED_ACK;
1198
1199 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1200 ic->ic_flags) + sc->sifs;
1201 *(uint16_t *)wh->i_dur = htole16(dur);
1202
1203 /* tell hardware to set timestamp in probe responses */
1204 if ((wh->i_fc[0] &
1205 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1206 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1207 flags |= RT2573_TX_TIMESTAMP;
1208 }
1209
1210 if (sc->sc_drvbpf != NULL) {
1211 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1212
1213 tap->wt_flags = 0;
1214 tap->wt_rate = rate;
1215 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1216 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1217 tap->wt_antenna = sc->tx_ant;
1218
1219 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1220 }
1221
1222 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1223 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1224
1225 /* align end on a 4-bytes boundary */
1226 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1227
1228 /*
1229 * No space left in the last URB to store the extra 4 bytes, force
1230 * sending of another URB.
1231 */
1232 if ((xferlen % 64) == 0)
1233 xferlen += 4;
1234
1235 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1236 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1237 rate, xferlen));
1238
1239 /* mbuf is no longer needed */
1240 m_freem(m0);
1241
1242 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1243 USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof);
1244 error = usbd_transfer(data->xfer);
1245 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1246 return error;
1247
1248 sc->tx_queued++;
1249 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1250
1251 return 0;
1252 }
1253
1254 static void
1255 rum_start(struct ifnet *ifp)
1256 {
1257 struct rum_softc *sc = ifp->if_softc;
1258 struct ieee80211com *ic = &sc->sc_ic;
1259 struct ether_header *eh;
1260 struct ieee80211_node *ni;
1261 struct mbuf *m0;
1262
1263 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1264 return;
1265
1266 for (;;) {
1267 IF_POLL(&ic->ic_mgtq, m0);
1268 if (m0 != NULL) {
1269 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1270 ifp->if_flags |= IFF_OACTIVE;
1271 break;
1272 }
1273 IF_DEQUEUE(&ic->ic_mgtq, m0);
1274
1275 ni = M_GETCTX(m0, struct ieee80211_node *);
1276 M_CLEARCTX(m0);
1277 bpf_mtap3(ic->ic_rawbpf, m0);
1278 if (rum_tx_data(sc, m0, ni) != 0)
1279 break;
1280
1281 } else {
1282 if (ic->ic_state != IEEE80211_S_RUN)
1283 break;
1284 IFQ_POLL(&ifp->if_snd, m0);
1285 if (m0 == NULL)
1286 break;
1287 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1288 ifp->if_flags |= IFF_OACTIVE;
1289 break;
1290 }
1291 IFQ_DEQUEUE(&ifp->if_snd, m0);
1292 if (m0->m_len < (int)sizeof(struct ether_header) &&
1293 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1294 continue;
1295
1296 eh = mtod(m0, struct ether_header *);
1297 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1298 if (ni == NULL) {
1299 m_freem(m0);
1300 continue;
1301 }
1302 bpf_mtap(ifp, m0);
1303 m0 = ieee80211_encap(ic, m0, ni);
1304 if (m0 == NULL) {
1305 ieee80211_free_node(ni);
1306 continue;
1307 }
1308 bpf_mtap3(ic->ic_rawbpf, m0);
1309 if (rum_tx_data(sc, m0, ni) != 0) {
1310 ieee80211_free_node(ni);
1311 ifp->if_oerrors++;
1312 break;
1313 }
1314 }
1315
1316 sc->sc_tx_timer = 5;
1317 ifp->if_timer = 1;
1318 }
1319 }
1320
1321 static void
1322 rum_watchdog(struct ifnet *ifp)
1323 {
1324 struct rum_softc *sc = ifp->if_softc;
1325 struct ieee80211com *ic = &sc->sc_ic;
1326
1327 ifp->if_timer = 0;
1328
1329 if (sc->sc_tx_timer > 0) {
1330 if (--sc->sc_tx_timer == 0) {
1331 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1332 /*rum_init(ifp); XXX needs a process context! */
1333 ifp->if_oerrors++;
1334 return;
1335 }
1336 ifp->if_timer = 1;
1337 }
1338
1339 ieee80211_watchdog(ic);
1340 }
1341
1342 static int
1343 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1344 {
1345 #define IS_RUNNING(ifp) \
1346 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1347
1348 struct rum_softc *sc = ifp->if_softc;
1349 struct ieee80211com *ic = &sc->sc_ic;
1350 int s, error = 0;
1351
1352 s = splnet();
1353
1354 switch (cmd) {
1355 case SIOCSIFFLAGS:
1356 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1357 break;
1358 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1359 case IFF_UP|IFF_RUNNING:
1360 rum_update_promisc(sc);
1361 break;
1362 case IFF_UP:
1363 rum_init(ifp);
1364 break;
1365 case IFF_RUNNING:
1366 rum_stop(ifp, 1);
1367 break;
1368 case 0:
1369 break;
1370 }
1371 break;
1372
1373 case SIOCADDMULTI:
1374 case SIOCDELMULTI:
1375 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1376 error = 0;
1377 }
1378 break;
1379
1380 default:
1381 error = ieee80211_ioctl(ic, cmd, data);
1382 }
1383
1384 if (error == ENETRESET) {
1385 if (IS_RUNNING(ifp) &&
1386 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1387 rum_init(ifp);
1388 error = 0;
1389 }
1390
1391 splx(s);
1392
1393 return error;
1394 #undef IS_RUNNING
1395 }
1396
1397 static void
1398 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1399 {
1400 usb_device_request_t req;
1401 usbd_status error;
1402
1403 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1404 req.bRequest = RT2573_READ_EEPROM;
1405 USETW(req.wValue, 0);
1406 USETW(req.wIndex, addr);
1407 USETW(req.wLength, len);
1408
1409 error = usbd_do_request(sc->sc_udev, &req, buf);
1410 if (error != 0) {
1411 printf("%s: could not read EEPROM: %s\n",
1412 device_xname(sc->sc_dev), usbd_errstr(error));
1413 }
1414 }
1415
1416 static uint32_t
1417 rum_read(struct rum_softc *sc, uint16_t reg)
1418 {
1419 uint32_t val;
1420
1421 rum_read_multi(sc, reg, &val, sizeof(val));
1422
1423 return le32toh(val);
1424 }
1425
1426 static void
1427 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1428 {
1429 usb_device_request_t req;
1430 usbd_status error;
1431
1432 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1433 req.bRequest = RT2573_READ_MULTI_MAC;
1434 USETW(req.wValue, 0);
1435 USETW(req.wIndex, reg);
1436 USETW(req.wLength, len);
1437
1438 error = usbd_do_request(sc->sc_udev, &req, buf);
1439 if (error != 0) {
1440 printf("%s: could not multi read MAC register: %s\n",
1441 device_xname(sc->sc_dev), usbd_errstr(error));
1442 }
1443 }
1444
1445 static void
1446 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1447 {
1448 uint32_t tmp = htole32(val);
1449
1450 rum_write_multi(sc, reg, &tmp, sizeof(tmp));
1451 }
1452
1453 static void
1454 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1455 {
1456 usb_device_request_t req;
1457 usbd_status error;
1458 int offset;
1459
1460 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1461 req.bRequest = RT2573_WRITE_MULTI_MAC;
1462 USETW(req.wValue, 0);
1463
1464 /* write at most 64 bytes at a time */
1465 for (offset = 0; offset < len; offset += 64) {
1466 USETW(req.wIndex, reg + offset);
1467 USETW(req.wLength, MIN(len - offset, 64));
1468
1469 error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
1470 if (error != 0) {
1471 printf("%s: could not multi write MAC register: %s\n",
1472 device_xname(sc->sc_dev), usbd_errstr(error));
1473 }
1474 }
1475 }
1476
1477 static void
1478 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1479 {
1480 uint32_t tmp;
1481 int ntries;
1482
1483 for (ntries = 0; ntries < 5; ntries++) {
1484 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1485 break;
1486 }
1487 if (ntries == 5) {
1488 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1489 return;
1490 }
1491
1492 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1493 rum_write(sc, RT2573_PHY_CSR3, tmp);
1494 }
1495
1496 static uint8_t
1497 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1498 {
1499 uint32_t val;
1500 int ntries;
1501
1502 for (ntries = 0; ntries < 5; ntries++) {
1503 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1504 break;
1505 }
1506 if (ntries == 5) {
1507 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1508 return 0;
1509 }
1510
1511 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1512 rum_write(sc, RT2573_PHY_CSR3, val);
1513
1514 for (ntries = 0; ntries < 100; ntries++) {
1515 val = rum_read(sc, RT2573_PHY_CSR3);
1516 if (!(val & RT2573_BBP_BUSY))
1517 return val & 0xff;
1518 DELAY(1);
1519 }
1520
1521 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1522 return 0;
1523 }
1524
1525 static void
1526 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1527 {
1528 uint32_t tmp;
1529 int ntries;
1530
1531 for (ntries = 0; ntries < 5; ntries++) {
1532 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1533 break;
1534 }
1535 if (ntries == 5) {
1536 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1537 return;
1538 }
1539
1540 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1541 (reg & 3);
1542 rum_write(sc, RT2573_PHY_CSR4, tmp);
1543
1544 /* remember last written value in sc */
1545 sc->rf_regs[reg] = val;
1546
1547 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1548 }
1549
1550 static void
1551 rum_select_antenna(struct rum_softc *sc)
1552 {
1553 uint8_t bbp4, bbp77;
1554 uint32_t tmp;
1555
1556 bbp4 = rum_bbp_read(sc, 4);
1557 bbp77 = rum_bbp_read(sc, 77);
1558
1559 /* TBD */
1560
1561 /* make sure Rx is disabled before switching antenna */
1562 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1563 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1564
1565 rum_bbp_write(sc, 4, bbp4);
1566 rum_bbp_write(sc, 77, bbp77);
1567
1568 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1569 }
1570
1571 /*
1572 * Enable multi-rate retries for frames sent at OFDM rates.
1573 * In 802.11b/g mode, allow fallback to CCK rates.
1574 */
1575 static void
1576 rum_enable_mrr(struct rum_softc *sc)
1577 {
1578 struct ieee80211com *ic = &sc->sc_ic;
1579 uint32_t tmp;
1580
1581 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1582
1583 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1584 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1585 tmp |= RT2573_MRR_CCK_FALLBACK;
1586 tmp |= RT2573_MRR_ENABLED;
1587
1588 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1589 }
1590
1591 static void
1592 rum_set_txpreamble(struct rum_softc *sc)
1593 {
1594 uint32_t tmp;
1595
1596 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1597
1598 tmp &= ~RT2573_SHORT_PREAMBLE;
1599 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1600 tmp |= RT2573_SHORT_PREAMBLE;
1601
1602 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1603 }
1604
1605 static void
1606 rum_set_basicrates(struct rum_softc *sc)
1607 {
1608 struct ieee80211com *ic = &sc->sc_ic;
1609
1610 /* update basic rate set */
1611 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1612 /* 11b basic rates: 1, 2Mbps */
1613 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1614 } else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1615 /* 11a basic rates: 6, 12, 24Mbps */
1616 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1617 } else {
1618 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1619 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1620 }
1621 }
1622
1623 /*
1624 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1625 * driver.
1626 */
1627 static void
1628 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1629 {
1630 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1631 uint32_t tmp;
1632
1633 /* update all BBP registers that depend on the band */
1634 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1635 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1636 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1637 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1638 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1639 }
1640 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1641 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1642 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1643 }
1644
1645 sc->bbp17 = bbp17;
1646 rum_bbp_write(sc, 17, bbp17);
1647 rum_bbp_write(sc, 96, bbp96);
1648 rum_bbp_write(sc, 104, bbp104);
1649
1650 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1651 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1652 rum_bbp_write(sc, 75, 0x80);
1653 rum_bbp_write(sc, 86, 0x80);
1654 rum_bbp_write(sc, 88, 0x80);
1655 }
1656
1657 rum_bbp_write(sc, 35, bbp35);
1658 rum_bbp_write(sc, 97, bbp97);
1659 rum_bbp_write(sc, 98, bbp98);
1660
1661 tmp = rum_read(sc, RT2573_PHY_CSR0);
1662 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1663 if (IEEE80211_IS_CHAN_2GHZ(c))
1664 tmp |= RT2573_PA_PE_2GHZ;
1665 else
1666 tmp |= RT2573_PA_PE_5GHZ;
1667 rum_write(sc, RT2573_PHY_CSR0, tmp);
1668
1669 /* 802.11a uses a 16 microseconds short interframe space */
1670 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1671 }
1672
1673 static void
1674 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1675 {
1676 struct ieee80211com *ic = &sc->sc_ic;
1677 const struct rfprog *rfprog;
1678 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1679 int8_t power;
1680 u_int i, chan;
1681
1682 chan = ieee80211_chan2ieee(ic, c);
1683 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1684 return;
1685
1686 /* select the appropriate RF settings based on what EEPROM says */
1687 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1688 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1689
1690 /* find the settings for this channel (we know it exists) */
1691 for (i = 0; rfprog[i].chan != chan; i++);
1692
1693 power = sc->txpow[i];
1694 if (power < 0) {
1695 bbp94 += power;
1696 power = 0;
1697 } else if (power > 31) {
1698 bbp94 += power - 31;
1699 power = 31;
1700 }
1701
1702 /*
1703 * If we are switching from the 2GHz band to the 5GHz band or
1704 * vice-versa, BBP registers need to be reprogrammed.
1705 */
1706 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1707 rum_select_band(sc, c);
1708 rum_select_antenna(sc);
1709 }
1710 ic->ic_curchan = c;
1711
1712 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1713 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1714 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1715 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1716
1717 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1718 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1719 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1720 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1721
1722 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1723 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1724 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1725 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1726
1727 DELAY(10);
1728
1729 /* enable smart mode for MIMO-capable RFs */
1730 bbp3 = rum_bbp_read(sc, 3);
1731
1732 bbp3 &= ~RT2573_SMART_MODE;
1733 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1734 bbp3 |= RT2573_SMART_MODE;
1735
1736 rum_bbp_write(sc, 3, bbp3);
1737
1738 if (bbp94 != RT2573_BBPR94_DEFAULT)
1739 rum_bbp_write(sc, 94, bbp94);
1740 }
1741
1742 /*
1743 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1744 * and HostAP operating modes.
1745 */
1746 static void
1747 rum_enable_tsf_sync(struct rum_softc *sc)
1748 {
1749 struct ieee80211com *ic = &sc->sc_ic;
1750 uint32_t tmp;
1751
1752 if (ic->ic_opmode != IEEE80211_M_STA) {
1753 /*
1754 * Change default 16ms TBTT adjustment to 8ms.
1755 * Must be done before enabling beacon generation.
1756 */
1757 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1758 }
1759
1760 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1761
1762 /* set beacon interval (in 1/16ms unit) */
1763 tmp |= ic->ic_bss->ni_intval * 16;
1764
1765 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1766 if (ic->ic_opmode == IEEE80211_M_STA)
1767 tmp |= RT2573_TSF_MODE(1);
1768 else
1769 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1770
1771 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1772 }
1773
1774 static void
1775 rum_update_slot(struct rum_softc *sc)
1776 {
1777 struct ieee80211com *ic = &sc->sc_ic;
1778 uint8_t slottime;
1779 uint32_t tmp;
1780
1781 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1782
1783 tmp = rum_read(sc, RT2573_MAC_CSR9);
1784 tmp = (tmp & ~0xff) | slottime;
1785 rum_write(sc, RT2573_MAC_CSR9, tmp);
1786
1787 DPRINTF(("setting slot time to %uus\n", slottime));
1788 }
1789
1790 static void
1791 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1792 {
1793 uint32_t tmp;
1794
1795 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1796 rum_write(sc, RT2573_MAC_CSR4, tmp);
1797
1798 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1799 rum_write(sc, RT2573_MAC_CSR5, tmp);
1800 }
1801
1802 static void
1803 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1804 {
1805 uint32_t tmp;
1806
1807 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1808 rum_write(sc, RT2573_MAC_CSR2, tmp);
1809
1810 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1811 rum_write(sc, RT2573_MAC_CSR3, tmp);
1812 }
1813
1814 static void
1815 rum_update_promisc(struct rum_softc *sc)
1816 {
1817 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1818 uint32_t tmp;
1819
1820 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1821
1822 tmp &= ~RT2573_DROP_NOT_TO_ME;
1823 if (!(ifp->if_flags & IFF_PROMISC))
1824 tmp |= RT2573_DROP_NOT_TO_ME;
1825
1826 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1827
1828 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1829 "entering" : "leaving"));
1830 }
1831
1832 static const char *
1833 rum_get_rf(int rev)
1834 {
1835 switch (rev) {
1836 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1837 case RT2573_RF_2528: return "RT2528";
1838 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1839 case RT2573_RF_5226: return "RT5226";
1840 default: return "unknown";
1841 }
1842 }
1843
1844 static void
1845 rum_read_eeprom(struct rum_softc *sc)
1846 {
1847 struct ieee80211com *ic = &sc->sc_ic;
1848 uint16_t val;
1849 #ifdef RUM_DEBUG
1850 int i;
1851 #endif
1852
1853 /* read MAC/BBP type */
1854 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1855 sc->macbbp_rev = le16toh(val);
1856
1857 /* read MAC address */
1858 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1859
1860 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1861 val = le16toh(val);
1862 sc->rf_rev = (val >> 11) & 0x1f;
1863 sc->hw_radio = (val >> 10) & 0x1;
1864 sc->rx_ant = (val >> 4) & 0x3;
1865 sc->tx_ant = (val >> 2) & 0x3;
1866 sc->nb_ant = val & 0x3;
1867
1868 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1869
1870 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1871 val = le16toh(val);
1872 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1873 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1874
1875 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1876 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1877
1878 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1879 val = le16toh(val);
1880 if ((val & 0xff) != 0xff)
1881 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1882
1883 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1884 val = le16toh(val);
1885 if ((val & 0xff) != 0xff)
1886 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1887
1888 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1889 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1890
1891 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1892 val = le16toh(val);
1893 if ((val & 0xff) != 0xff)
1894 sc->rffreq = val & 0xff;
1895
1896 DPRINTF(("RF freq=%d\n", sc->rffreq));
1897
1898 /* read Tx power for all a/b/g channels */
1899 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1900 /* XXX default Tx power for 802.11a channels */
1901 memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14);
1902 #ifdef RUM_DEBUG
1903 for (i = 0; i < 14; i++)
1904 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1905 #endif
1906
1907 /* read default values for BBP registers */
1908 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1909 #ifdef RUM_DEBUG
1910 for (i = 0; i < 14; i++) {
1911 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1912 continue;
1913 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1914 sc->bbp_prom[i].val));
1915 }
1916 #endif
1917 }
1918
1919 static int
1920 rum_bbp_init(struct rum_softc *sc)
1921 {
1922 unsigned int i, ntries;
1923 uint8_t val;
1924
1925 /* wait for BBP to be ready */
1926 for (ntries = 0; ntries < 100; ntries++) {
1927 val = rum_bbp_read(sc, 0);
1928 if (val != 0 && val != 0xff)
1929 break;
1930 DELAY(1000);
1931 }
1932 if (ntries == 100) {
1933 printf("%s: timeout waiting for BBP\n",
1934 device_xname(sc->sc_dev));
1935 return EIO;
1936 }
1937
1938 /* initialize BBP registers to default values */
1939 for (i = 0; i < __arraycount(rum_def_bbp); i++)
1940 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1941
1942 /* write vendor-specific BBP values (from EEPROM) */
1943 for (i = 0; i < 16; i++) {
1944 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1945 continue;
1946 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1947 }
1948
1949 return 0;
1950 }
1951
1952 static int
1953 rum_init(struct ifnet *ifp)
1954 {
1955 struct rum_softc *sc = ifp->if_softc;
1956 struct ieee80211com *ic = &sc->sc_ic;
1957 uint32_t tmp;
1958 usbd_status error = 0;
1959 unsigned int i, ntries;
1960
1961 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1962 if (rum_attachhook(sc))
1963 goto fail;
1964 }
1965
1966 rum_stop(ifp, 0);
1967
1968 /* initialize MAC registers to default values */
1969 for (i = 0; i < __arraycount(rum_def_mac); i++)
1970 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1971
1972 /* set host ready */
1973 rum_write(sc, RT2573_MAC_CSR1, 3);
1974 rum_write(sc, RT2573_MAC_CSR1, 0);
1975
1976 /* wait for BBP/RF to wakeup */
1977 for (ntries = 0; ntries < 1000; ntries++) {
1978 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1979 break;
1980 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1981 DELAY(1000);
1982 }
1983 if (ntries == 1000) {
1984 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1985 device_xname(sc->sc_dev));
1986 goto fail;
1987 }
1988
1989 if ((error = rum_bbp_init(sc)) != 0)
1990 goto fail;
1991
1992 /* select default channel */
1993 rum_select_band(sc, ic->ic_curchan);
1994 rum_select_antenna(sc);
1995 rum_set_chan(sc, ic->ic_curchan);
1996
1997 /* clear STA registers */
1998 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
1999
2000 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2001 rum_set_macaddr(sc, ic->ic_myaddr);
2002
2003 /* initialize ASIC */
2004 rum_write(sc, RT2573_MAC_CSR1, 4);
2005
2006 /*
2007 * Allocate xfer for AMRR statistics requests.
2008 */
2009 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2010 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0,
2011 &sc->amrr_xfer);
2012 if (error) {
2013 printf("%s: could not allocate AMRR xfer\n",
2014 device_xname(sc->sc_dev));
2015 goto fail;
2016 }
2017
2018 /*
2019 * Open Tx and Rx USB bulk pipes.
2020 */
2021 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2022 &sc->sc_tx_pipeh);
2023 if (error != 0) {
2024 printf("%s: could not open Tx pipe: %s\n",
2025 device_xname(sc->sc_dev), usbd_errstr(error));
2026 goto fail;
2027 }
2028
2029 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2030 &sc->sc_rx_pipeh);
2031 if (error != 0) {
2032 printf("%s: could not open Rx pipe: %s\n",
2033 device_xname(sc->sc_dev), usbd_errstr(error));
2034 goto fail;
2035 }
2036
2037 /*
2038 * Allocate Tx and Rx xfer queues.
2039 */
2040 error = rum_alloc_tx_list(sc);
2041 if (error != 0) {
2042 printf("%s: could not allocate Tx list\n",
2043 device_xname(sc->sc_dev));
2044 goto fail;
2045 }
2046
2047 error = rum_alloc_rx_list(sc);
2048 if (error != 0) {
2049 printf("%s: could not allocate Rx list\n",
2050 device_xname(sc->sc_dev));
2051 goto fail;
2052 }
2053
2054 /*
2055 * Start up the receive pipe.
2056 */
2057 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2058 struct rum_rx_data *data;
2059
2060 data = &sc->rx_data[i];
2061
2062 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2063 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2064 error = usbd_transfer(data->xfer);
2065 if (error != USBD_NORMAL_COMPLETION &&
2066 error != USBD_IN_PROGRESS) {
2067 printf("%s: could not queue Rx transfer\n",
2068 device_xname(sc->sc_dev));
2069 goto fail;
2070 }
2071 }
2072
2073 /* update Rx filter */
2074 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2075
2076 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2077 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2078 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2079 RT2573_DROP_ACKCTS;
2080 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2081 tmp |= RT2573_DROP_TODS;
2082 if (!(ifp->if_flags & IFF_PROMISC))
2083 tmp |= RT2573_DROP_NOT_TO_ME;
2084 }
2085 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2086
2087 ifp->if_flags &= ~IFF_OACTIVE;
2088 ifp->if_flags |= IFF_RUNNING;
2089
2090 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2091 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2092 else
2093 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2094
2095 return 0;
2096
2097 fail: rum_stop(ifp, 1);
2098 return error;
2099 }
2100
2101 static void
2102 rum_stop(struct ifnet *ifp, int disable)
2103 {
2104 struct rum_softc *sc = ifp->if_softc;
2105 struct ieee80211com *ic = &sc->sc_ic;
2106 uint32_t tmp;
2107
2108 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2109
2110 sc->sc_tx_timer = 0;
2111 ifp->if_timer = 0;
2112 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2113
2114 /* disable Rx */
2115 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2116 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2117
2118 /* reset ASIC */
2119 rum_write(sc, RT2573_MAC_CSR1, 3);
2120 rum_write(sc, RT2573_MAC_CSR1, 0);
2121
2122 if (sc->amrr_xfer != NULL) {
2123 usbd_destroy_xfer(sc->amrr_xfer);
2124 sc->amrr_xfer = NULL;
2125 }
2126
2127 if (sc->sc_rx_pipeh != NULL) {
2128 usbd_abort_pipe(sc->sc_rx_pipeh);
2129 }
2130
2131 if (sc->sc_tx_pipeh != NULL) {
2132 usbd_abort_pipe(sc->sc_tx_pipeh);
2133 }
2134
2135 rum_free_rx_list(sc);
2136 rum_free_tx_list(sc);
2137
2138 if (sc->sc_rx_pipeh != NULL) {
2139 usbd_close_pipe(sc->sc_rx_pipeh);
2140 sc->sc_rx_pipeh = NULL;
2141 }
2142
2143 if (sc->sc_tx_pipeh != NULL) {
2144 usbd_close_pipe(sc->sc_tx_pipeh);
2145 sc->sc_tx_pipeh = NULL;
2146 }
2147 }
2148
2149 static int
2150 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2151 {
2152 usb_device_request_t req;
2153 uint16_t reg = RT2573_MCU_CODE_BASE;
2154 usbd_status error;
2155
2156 /* copy firmware image into NIC */
2157 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2158 rum_write(sc, reg, UGETDW(ucode));
2159
2160 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2161 req.bRequest = RT2573_MCU_CNTL;
2162 USETW(req.wValue, RT2573_MCU_RUN);
2163 USETW(req.wIndex, 0);
2164 USETW(req.wLength, 0);
2165
2166 error = usbd_do_request(sc->sc_udev, &req, NULL);
2167 if (error != 0) {
2168 printf("%s: could not run firmware: %s\n",
2169 device_xname(sc->sc_dev), usbd_errstr(error));
2170 }
2171 return error;
2172 }
2173
2174 static int
2175 rum_prepare_beacon(struct rum_softc *sc)
2176 {
2177 struct ieee80211com *ic = &sc->sc_ic;
2178 struct rum_tx_desc desc;
2179 struct mbuf *m0;
2180 int rate;
2181
2182 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2183 if (m0 == NULL) {
2184 aprint_error_dev(sc->sc_dev,
2185 "could not allocate beacon frame\n");
2186 return ENOBUFS;
2187 }
2188
2189 /* send beacons at the lowest available rate */
2190 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2191
2192 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2193 m0->m_pkthdr.len, rate);
2194
2195 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2196 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2197
2198 /* copy beacon header and payload into NIC memory */
2199 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2200 m0->m_pkthdr.len);
2201
2202 m_freem(m0);
2203
2204 return 0;
2205 }
2206
2207 static void
2208 rum_newassoc(struct ieee80211_node *ni, int isnew)
2209 {
2210 /* start with lowest Tx rate */
2211 ni->ni_txrate = 0;
2212 }
2213
2214 static void
2215 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2216 {
2217 int i;
2218
2219 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2220 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
2221
2222 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2223
2224 /* set rate to some reasonable initial value */
2225 for (i = ni->ni_rates.rs_nrates - 1;
2226 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2227 i--);
2228 ni->ni_txrate = i;
2229
2230 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2231 }
2232
2233 static void
2234 rum_amrr_timeout(void *arg)
2235 {
2236 struct rum_softc *sc = arg;
2237 usb_device_request_t req;
2238
2239 /*
2240 * Asynchronously read statistic registers (cleared by read).
2241 */
2242 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2243 req.bRequest = RT2573_READ_MULTI_MAC;
2244 USETW(req.wValue, 0);
2245 USETW(req.wIndex, RT2573_STA_CSR0);
2246 USETW(req.wLength, sizeof(sc->sta));
2247
2248 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2249 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2250 rum_amrr_update);
2251 (void)usbd_transfer(sc->amrr_xfer);
2252 }
2253
2254 static void
2255 rum_amrr_update(struct usbd_xfer *xfer, void *priv,
2256 usbd_status status)
2257 {
2258 struct rum_softc *sc = (struct rum_softc *)priv;
2259 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2260
2261 if (status != USBD_NORMAL_COMPLETION) {
2262 printf("%s: could not retrieve Tx statistics - cancelling "
2263 "automatic rate control\n", device_xname(sc->sc_dev));
2264 return;
2265 }
2266
2267 /* count TX retry-fail as Tx errors */
2268 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2269
2270 sc->amn.amn_retrycnt =
2271 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2272 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2273 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2274
2275 sc->amn.amn_txcnt =
2276 sc->amn.amn_retrycnt +
2277 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2278
2279 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2280
2281 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2282 }
2283
2284 static int
2285 rum_activate(device_t self, enum devact act)
2286 {
2287 switch (act) {
2288 case DVACT_DEACTIVATE:
2289 /*if_deactivate(&sc->sc_ic.ic_if);*/
2290 return 0;
2291 default:
2292 return 0;
2293 }
2294 }
2295
2296 MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf");
2297
2298 #ifdef _MODULE
2299 #include "ioconf.c"
2300 #endif
2301
2302 static int
2303 if_rum_modcmd(modcmd_t cmd, void *aux)
2304 {
2305 int error = 0;
2306
2307 switch (cmd) {
2308 case MODULE_CMD_INIT:
2309 #ifdef _MODULE
2310 error = config_init_component(cfdriver_ioconf_rum,
2311 cfattach_ioconf_rum, cfdata_ioconf_rum);
2312 #endif
2313 return error;
2314 case MODULE_CMD_FINI:
2315 #ifdef _MODULE
2316 error = config_fini_component(cfdriver_ioconf_rum,
2317 cfattach_ioconf_rum, cfdata_ioconf_rum);
2318 #endif
2319 return error;
2320 default:
2321 return ENOTTY;
2322 }
2323 }
2324