if_rum.c revision 1.6.4.3 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.6.4.3 2007/06/17 00:53:36 itohy Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.6.4.3 2007/06/17 00:53:36 itohy Exp $");
28
29 #include "bpfilter.h"
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41
42 #include <machine/bus.h>
43 #include <machine/endian.h>
44 #include <machine/intr.h>
45
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/firmload.h>
67
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72 #include <dev/usb/usb_ethersubr.h>
73
74 #include <dev/usb/if_rumreg.h>
75 #include <dev/usb/if_rumvar.h>
76
77 #ifdef USB_DEBUG
78 #define RUM_DEBUG
79 #endif
80
81 #ifdef RUM_DEBUG
82 #define DPRINTF(x) do { if (rum_debug) logprintf x; } while (0)
83 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) logprintf x; } while (0)
84 int rum_debug = 0;
85 #else
86 #define DPRINTF(x)
87 #define DPRINTFN(n, x)
88 #endif
89
90 /* various supported device vendors/products */
91 static const struct usb_devno rum_devs[] = {
92 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573 },
93 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
94 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
95 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
96 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
97 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
98 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
99 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
100 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
101 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
102 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
103 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
104 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
105 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
106 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
107 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
108 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
109 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
110 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
111 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
112 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
113 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
114 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2573 },
115 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
116 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
117 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
118 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }
119 };
120
121 Static int rum_attachhook(void *);
122 #if 0
123 Static int rum_alloc_tx_list(struct rum_softc *);
124 #endif
125 Static void rum_free_tx_list(struct rum_softc *);
126 #if 0
127 Static int rum_alloc_rx_list(struct rum_softc *);
128 #endif
129 Static void rum_free_rx_list(struct rum_softc *);
130 Static int rum_media_change(struct ifnet *);
131 Static void rum_next_scan(void *);
132 Static void rum_task(void *);
133 Static int rum_newstate(struct ieee80211com *,
134 enum ieee80211_state, int);
135 Static void rum_txeof(usbd_xfer_handle, usbd_private_handle,
136 usbd_status);
137 Static void rum_rxeof(usbd_xfer_handle, usbd_private_handle,
138 usbd_status);
139 #if NBPFILTER > 0
140 Static uint8_t rum_rxrate(struct rum_rx_desc *);
141 #endif
142 Static int rum_ack_rate(struct ieee80211com *, int);
143 Static uint16_t rum_txtime(int, int, uint32_t);
144 Static uint8_t rum_plcp_signal(int);
145 Static void rum_setup_tx_desc(struct rum_softc *,
146 struct rum_tx_desc *, uint32_t, uint16_t, int,
147 int);
148 Static int rum_tx_mgt(struct rum_softc *, struct mbuf *,
149 struct ieee80211_node *);
150 Static int rum_tx_data(struct rum_softc *, struct mbuf *,
151 struct ieee80211_node *);
152 Static void rum_start(struct ifnet *);
153 Static void rum_watchdog(struct ifnet *);
154 Static int rum_ioctl(struct ifnet *, u_long, usb_ioctlarg_t);
155 Static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
156 int);
157 Static uint32_t rum_read(struct rum_softc *, uint16_t);
158 Static void rum_read_multi(struct rum_softc *, uint16_t, void *,
159 int);
160 Static void rum_write(struct rum_softc *, uint16_t, uint32_t);
161 Static void rum_write_multi(struct rum_softc *, uint16_t, void *,
162 size_t);
163 Static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
164 Static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
165 Static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
166 Static void rum_select_antenna(struct rum_softc *);
167 Static void rum_enable_mrr(struct rum_softc *);
168 Static void rum_set_txpreamble(struct rum_softc *);
169 Static void rum_set_basicrates(struct rum_softc *);
170 Static void rum_select_band(struct rum_softc *,
171 struct ieee80211_channel *);
172 Static void rum_set_chan(struct rum_softc *,
173 struct ieee80211_channel *);
174 Static void rum_enable_tsf_sync(struct rum_softc *);
175 Static void rum_update_slot(struct rum_softc *);
176 Static void rum_set_bssid(struct rum_softc *, const uint8_t *);
177 Static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
178 Static void rum_update_promisc(struct rum_softc *);
179 Static const char *rum_get_rf(int);
180 Static void rum_read_eeprom(struct rum_softc *);
181 Static int rum_bbp_init(struct rum_softc *);
182 Static int rum_init(struct ifnet *);
183 Static void rum_stop(struct ifnet *, int);
184 Static int rum_load_microcode(struct rum_softc *, const u_char *,
185 size_t);
186 Static int rum_prepare_beacon(struct rum_softc *);
187 Static void rum_amrr_start(struct rum_softc *,
188 struct ieee80211_node *);
189 Static void rum_amrr_timeout(void *);
190 Static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
191 usbd_status status);
192
193 /*
194 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
195 */
196 static const struct ieee80211_rateset rum_rateset_11a =
197 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
198
199 static const struct ieee80211_rateset rum_rateset_11b =
200 { 4, { 2, 4, 11, 22 } };
201
202 static const struct ieee80211_rateset rum_rateset_11g =
203 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
204
205 static const struct {
206 uint32_t reg;
207 uint32_t val;
208 } rum_def_mac[] = {
209 RT2573_DEF_MAC
210 };
211
212 static const struct {
213 uint8_t reg;
214 uint8_t val;
215 } rum_def_bbp[] = {
216 RT2573_DEF_BBP
217 };
218
219 static const struct rfprog {
220 uint8_t chan;
221 uint32_t r1, r2, r3, r4;
222 } rum_rf5226[] = {
223 RT2573_RF5226
224 }, rum_rf5225[] = {
225 RT2573_RF5225
226 };
227
228 USB_DECLARE_DRIVER(rum);
229
230 USB_MATCH(rum)
231 {
232 USB_MATCH_START(rum, uaa);
233
234 if (uaa->iface != NULL)
235 return UMATCH_NONE;
236
237 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
238 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
239 }
240
241 Static int
242 rum_attachhook(void *xsc)
243 {
244 struct rum_softc *sc = xsc;
245 firmware_handle_t fwh;
246 const char *name = "rum-rt2573";
247 u_char *ucode;
248 size_t size;
249 int error;
250
251 if ((error = firmware_open("rum", name, &fwh)) != 0) {
252 printf("%s: failed loadfirmware of file %s (error %d)\n",
253 USBDEVNAME(sc->sc_dev), name, error);
254 return error;
255 }
256 size = firmware_get_size(fwh);
257 ucode = firmware_malloc(size);
258 if (ucode == NULL) {
259 printf("%s: failed to allocate firmware memory\n",
260 USBDEVNAME(sc->sc_dev));
261 firmware_close(fwh);
262 return ENOMEM;;
263 }
264 error = firmware_read(fwh, 0, ucode, size);
265 firmware_close(fwh);
266 if (error != 0) {
267 printf("%s: failed to read firmware (error %d)\n",
268 USBDEVNAME(sc->sc_dev), error);
269 firmware_free(ucode, 0);
270 return error;
271 }
272
273 if (rum_load_microcode(sc, ucode, size) != 0) {
274 printf("%s: could not load 8051 microcode\n",
275 USBDEVNAME(sc->sc_dev));
276 firmware_free(ucode, 0);
277 return ENXIO;
278 }
279
280 firmware_free(ucode, 0);
281 sc->sc_flags |= RT2573_FWLOADED;
282
283 return 0;
284 }
285
286 USB_ATTACH(rum)
287 {
288 USB_ATTACH_START(rum, sc, uaa);
289 struct ieee80211com *ic = &sc->sc_ic;
290 struct ifnet *ifp = &sc->sc_if;
291 usb_interface_descriptor_t *id;
292 usb_endpoint_descriptor_t *ed;
293 usbd_status error;
294 char *devinfop;
295 int i, ntries;
296 uint32_t tmp;
297
298 sc->sc_udev = uaa->device;
299 sc->sc_flags = 0;
300
301 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
302 USB_ATTACH_SETUP;
303 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
304 usbd_devinfo_free(devinfop);
305
306 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
307 printf("%s: could not set configuration no\n",
308 USBDEVNAME(sc->sc_dev));
309 USB_ATTACH_ERROR_RETURN;
310 }
311
312 /* get the first interface handle */
313 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
314 &sc->sc_iface);
315 if (error != 0) {
316 printf("%s: could not get interface handle\n",
317 USBDEVNAME(sc->sc_dev));
318 USB_ATTACH_ERROR_RETURN;
319 }
320
321 /*
322 * Find endpoints.
323 */
324 id = usbd_get_interface_descriptor(sc->sc_iface);
325
326 sc->sc_rx_no = sc->sc_tx_no = -1;
327 for (i = 0; i < id->bNumEndpoints; i++) {
328 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
329 if (ed == NULL) {
330 printf("%s: no endpoint descriptor for iface %d\n",
331 USBDEVNAME(sc->sc_dev), i);
332 USB_ATTACH_ERROR_RETURN;
333 }
334
335 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
336 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
337 sc->sc_rx_no = ed->bEndpointAddress;
338 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
339 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
340 sc->sc_tx_no = ed->bEndpointAddress;
341 }
342 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
343 printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
344 USB_ATTACH_ERROR_RETURN;
345 }
346
347 usb_init_task(&sc->sc_task, rum_task, sc);
348 callout_init(&sc->scan_ch);
349
350 sc->amrr.amrr_min_success_threshold = 1;
351 sc->amrr.amrr_max_success_threshold = 10;
352 callout_init(&sc->amrr_ch);
353
354 /* retrieve RT2573 rev. no */
355 tmp = 0; /* XXX shut up warning */
356 for (ntries = 0; ntries < 1000; ntries++) {
357 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
358 break;
359 DELAY(1000);
360 }
361 if (ntries == 1000) {
362 printf("%s: timeout waiting for chip to settle\n",
363 USBDEVNAME(sc->sc_dev));
364 USB_ATTACH_ERROR_RETURN;
365 }
366
367 /* retrieve MAC address and various other things from EEPROM */
368 rum_read_eeprom(sc);
369
370 printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
371 USBDEVNAME(sc->sc_dev), sc->macbbp_rev, tmp,
372 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
373
374 ic->ic_ifp = ifp;
375 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
376 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
377 ic->ic_state = IEEE80211_S_INIT;
378
379 /* set device capabilities */
380 ic->ic_caps =
381 IEEE80211_C_IBSS | /* IBSS mode supported */
382 IEEE80211_C_MONITOR | /* monitor mode supported */
383 IEEE80211_C_HOSTAP | /* HostAp mode supported */
384 IEEE80211_C_TXPMGT | /* tx power management */
385 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
386 IEEE80211_C_SHSLOT | /* short slot time supported */
387 IEEE80211_C_WPA; /* 802.11i */
388
389 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
390 /* set supported .11a rates */
391 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
392
393 /* set supported .11a channels */
394 for (i = 34; i <= 46; i += 4) {
395 ic->ic_channels[i].ic_freq =
396 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
397 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
398 }
399 for (i = 36; i <= 64; i += 4) {
400 ic->ic_channels[i].ic_freq =
401 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
402 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
403 }
404 for (i = 100; i <= 140; i += 4) {
405 ic->ic_channels[i].ic_freq =
406 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
407 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
408 }
409 for (i = 149; i <= 165; i += 4) {
410 ic->ic_channels[i].ic_freq =
411 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
412 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
413 }
414 }
415
416 /* set supported .11b and .11g rates */
417 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
418 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
419
420 /* set supported .11b and .11g channels (1 through 14) */
421 for (i = 1; i <= 14; i++) {
422 ic->ic_channels[i].ic_freq =
423 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
424 ic->ic_channels[i].ic_flags =
425 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
426 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
427 }
428
429 ifp->if_softc = sc;
430 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
431 ifp->if_init = rum_init;
432 ifp->if_ioctl = rum_ioctl;
433 ifp->if_start = rum_start;
434 ifp->if_watchdog = rum_watchdog;
435 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
436 IFQ_SET_READY(&ifp->if_snd);
437 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
438
439 if_attach(ifp);
440 ieee80211_ifattach(ic);
441
442 /* override state transition machine */
443 sc->sc_newstate = ic->ic_newstate;
444 ic->ic_newstate = rum_newstate;
445 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
446
447 #if NBPFILTER > 0
448 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
449 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf);
450
451 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
452 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
453 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
454
455 sc->sc_txtap_len = sizeof sc->sc_txtapu;
456 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
457 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
458 #endif
459
460 ieee80211_announce(ic);
461
462 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
463 USBDEV(sc->sc_dev));
464
465 USB_ATTACH_SUCCESS_RETURN;
466 }
467
468 USB_DETACH(rum)
469 {
470 USB_DETACH_START(rum, sc);
471 struct ieee80211com *ic = &sc->sc_ic;
472 struct ifnet *ifp = &sc->sc_if;
473 int s;
474
475 s = splusb();
476
477 rum_stop(ifp, 1);
478 usb_rem_task(sc->sc_udev, &sc->sc_task);
479 callout_stop(&sc->scan_ch);
480 callout_stop(&sc->amrr_ch);
481
482 if (sc->sc_rx_pipeh != NULL)
483 usbd_abort_pipe(sc->sc_rx_pipeh);
484
485 if (sc->sc_tx_pipeh != NULL)
486 usbd_abort_pipe(sc->sc_tx_pipeh);
487
488 rum_free_rx_list(sc);
489 rum_free_tx_list(sc);
490
491 if (sc->amrr_xfer != NULL) {
492 usbd_free_xfer(sc->amrr_xfer);
493 sc->amrr_xfer = NULL;
494 }
495
496 if (sc->sc_rx_pipeh != NULL)
497 usbd_close_pipe(sc->sc_rx_pipeh);
498
499 if (sc->sc_tx_pipeh != NULL)
500 usbd_close_pipe(sc->sc_tx_pipeh);
501
502 #if NBPFILTER > 0
503 bpfdetach(ifp);
504 #endif
505 ieee80211_ifdetach(ic); /* free all nodes */
506 if_detach(ifp);
507
508 splx(s);
509
510 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
511 USBDEV(sc->sc_dev));
512
513 return 0;
514 }
515
516 Static void
517 rum_free_tx_list(struct rum_softc *sc)
518 {
519 int i;
520
521 usb_ether_tx_list_free(sc->tx_data, RT2573_TX_LIST_COUNT);
522
523 for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
524 if (sc->tx_ni[i] != NULL) {
525 ieee80211_free_node(sc->tx_ni[i]);
526 sc->tx_ni[i] = NULL;
527 }
528 }
529 }
530
531 Static void
532 rum_free_rx_list(struct rum_softc *sc)
533 {
534
535 usb_ether_rx_list_free(sc->rx_data, RT2573_RX_LIST_COUNT);
536 }
537
538 Static int
539 rum_media_change(struct ifnet *ifp)
540 {
541 int error;
542
543 error = ieee80211_media_change(ifp);
544 if (error != ENETRESET)
545 return error;
546
547 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
548 rum_init(ifp);
549
550 return 0;
551 }
552
553 /*
554 * This function is called periodically (every 200ms) during scanning to
555 * switch from one channel to another.
556 */
557 Static void
558 rum_next_scan(void *arg)
559 {
560 struct rum_softc *sc = arg;
561 struct ieee80211com *ic = &sc->sc_ic;
562
563 if (ic->ic_state == IEEE80211_S_SCAN)
564 ieee80211_next_scan(ic);
565 }
566
567 Static void
568 rum_task(void *arg)
569 {
570 struct rum_softc *sc = arg;
571 struct ieee80211com *ic = &sc->sc_ic;
572 enum ieee80211_state ostate;
573 struct ieee80211_node *ni;
574 uint32_t tmp;
575
576 ostate = ic->ic_state;
577
578 switch (sc->sc_state) {
579 case IEEE80211_S_INIT:
580 if (ostate == IEEE80211_S_RUN) {
581 /* abort TSF synchronization */
582 tmp = rum_read(sc, RT2573_TXRX_CSR9);
583 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
584 }
585 break;
586
587 case IEEE80211_S_SCAN:
588 rum_set_chan(sc, ic->ic_curchan);
589 callout_reset(&sc->scan_ch, hz / 5, rum_next_scan, sc);
590 break;
591
592 case IEEE80211_S_AUTH:
593 rum_set_chan(sc, ic->ic_curchan);
594 break;
595
596 case IEEE80211_S_ASSOC:
597 rum_set_chan(sc, ic->ic_curchan);
598 break;
599
600 case IEEE80211_S_RUN:
601 rum_set_chan(sc, ic->ic_curchan);
602
603 ni = ic->ic_bss;
604
605 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
606 rum_update_slot(sc);
607 rum_enable_mrr(sc);
608 rum_set_txpreamble(sc);
609 rum_set_basicrates(sc);
610 rum_set_bssid(sc, ni->ni_bssid);
611 }
612
613 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
614 ic->ic_opmode == IEEE80211_M_IBSS)
615 rum_prepare_beacon(sc);
616
617 if (ic->ic_opmode != IEEE80211_M_MONITOR)
618 rum_enable_tsf_sync(sc);
619
620 /* enable automatic rate adaptation in STA mode */
621 if (ic->ic_opmode == IEEE80211_M_STA &&
622 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
623 rum_amrr_start(sc, ni);
624
625 break;
626 }
627
628 sc->sc_newstate(ic, sc->sc_state, -1);
629 }
630
631 Static int
632 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
633 {
634 struct rum_softc *sc = ic->ic_ifp->if_softc;
635
636 usb_rem_task(sc->sc_udev, &sc->sc_task);
637 callout_stop(&sc->scan_ch);
638 callout_stop(&sc->amrr_ch);
639
640 /* do it in a process context */
641 sc->sc_state = nstate;
642 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
643
644 return 0;
645 }
646
647 /* quickly determine if a given rate is CCK or OFDM */
648 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
649
650 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
651 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
652
653 Static void
654 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
655 {
656 struct ue_chain *data = priv;
657 struct rum_softc *sc = (void *)data->ue_dev;
658 struct ifnet *ifp = &sc->sc_if;
659 int s;
660
661 usbd_unmap_buffer(xfer);
662
663 if (status != USBD_NORMAL_COMPLETION) {
664 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
665 return;
666
667 printf("%s: could not transmit buffer: %s\n",
668 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
669
670 if (status == USBD_STALLED)
671 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
672
673 ifp->if_oerrors++;
674 return;
675 }
676
677 s = splnet();
678
679 m_freem(data->ue_mbuf);
680 data->ue_mbuf = NULL;
681 ieee80211_free_node(sc->tx_ni[data->ue_idx]);
682 sc->tx_ni[data->ue_idx] = NULL;
683
684 sc->tx_queued--;
685 ifp->if_opackets++;
686
687 DPRINTFN(10, ("tx done\n"));
688
689 sc->sc_tx_timer = 0;
690 ifp->if_flags &= ~IFF_OACTIVE;
691 rum_start(ifp);
692
693 splx(s);
694 }
695
696 Static void
697 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
698 {
699 struct ue_chain *data = priv;
700 struct rum_softc *sc = (void *)data->ue_dev;
701 struct ieee80211com *ic = &sc->sc_ic;
702 struct ifnet *ifp = &sc->sc_if;
703 struct rum_rx_desc *desc;
704 struct ieee80211_frame *wh;
705 struct ieee80211_node *ni;
706 struct mbuf *m;
707 int s, len;
708
709 usbd_unmap_buffer(xfer);
710
711 if (status != USBD_NORMAL_COMPLETION) {
712 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
713 return;
714
715 if (status == USBD_STALLED)
716 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
717 goto skip;
718 }
719
720 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
721
722 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
723 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
724 len));
725 ifp->if_ierrors++;
726 goto skip;
727 }
728
729 m = data->ue_mbuf;
730 desc = mtod(m, struct rum_rx_desc *);
731
732 if (UGETDW((u_int8_t *)&desc->flags) & RT2573_RX_CRC_ERROR) {
733 /*
734 * This should not happen since we did not request to receive
735 * those frames when we filled RT2573_TXRX_CSR0.
736 */
737 DPRINTFN(5, ("CRC error\n"));
738 ifp->if_ierrors++;
739 goto skip;
740 }
741
742 /*
743 * Allocate new mbuf cluster for the next transfer.
744 * If that failed, discard current packet and recycle the mbuf.
745 */
746 if ((data->ue_mbuf = usb_ether_newbuf(NULL)) == NULL) {
747 printf("%s: no memory for rx list -- packet dropped!\n",
748 USBDEVNAME(sc->sc_dev));
749 ifp->if_ierrors++;
750 data->ue_mbuf = usb_ether_newbuf(m);
751 goto skip;
752 }
753
754 /* finalize mbuf */
755 m->m_pkthdr.rcvif = ifp;
756 m->m_data = (void *)(desc + 1);
757 m->m_pkthdr.len = m->m_len = UGETW((u_int8_t *)&desc->flags + 2);
758
759 s = splnet();
760
761 #if NBPFILTER > 0
762 if (sc->sc_drvbpf != NULL) {
763 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
764
765 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
766 tap->wr_rate = rum_rxrate(desc);
767 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
768 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
769 tap->wr_antenna = sc->rx_ant;
770 tap->wr_antsignal = desc->rssi;
771
772 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
773 }
774 #endif
775
776 wh = mtod(m, struct ieee80211_frame *);
777 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
778
779 /* send the frame to the 802.11 layer */
780 ieee80211_input(ic, m, ni, desc->rssi, 0);
781
782 /* node is no longer needed */
783 ieee80211_free_node(ni);
784
785 splx(s);
786
787 DPRINTFN(15, ("rx done\n"));
788
789 skip: /* setup a new transfer */
790 (void)usbd_map_buffer_mbuf(xfer, data->ue_mbuf);
791 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, NULL /* XXX buf */, MCLBYTES,
792 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
793 usbd_transfer(xfer);
794 }
795
796 /*
797 * This function is only used by the Rx radiotap code. It returns the rate at
798 * which a given frame was received.
799 */
800 #if NBPFILTER > 0
801 Static uint8_t
802 rum_rxrate(struct rum_rx_desc *desc)
803 {
804 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
805 /* reverse function of rum_plcp_signal */
806 switch (desc->rate) {
807 case 0xb: return 12;
808 case 0xf: return 18;
809 case 0xa: return 24;
810 case 0xe: return 36;
811 case 0x9: return 48;
812 case 0xd: return 72;
813 case 0x8: return 96;
814 case 0xc: return 108;
815 }
816 } else {
817 if (desc->rate == 10)
818 return 2;
819 if (desc->rate == 20)
820 return 4;
821 if (desc->rate == 55)
822 return 11;
823 if (desc->rate == 110)
824 return 22;
825 }
826 return 2; /* should not get there */
827 }
828 #endif
829
830 /*
831 * Return the expected ack rate for a frame transmitted at rate `rate'.
832 * XXX: this should depend on the destination node basic rate set.
833 */
834 Static int
835 rum_ack_rate(struct ieee80211com *ic, int rate)
836 {
837 switch (rate) {
838 /* CCK rates */
839 case 2:
840 return 2;
841 case 4:
842 case 11:
843 case 22:
844 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
845
846 /* OFDM rates */
847 case 12:
848 case 18:
849 return 12;
850 case 24:
851 case 36:
852 return 24;
853 case 48:
854 case 72:
855 case 96:
856 case 108:
857 return 48;
858 }
859
860 /* default to 1Mbps */
861 return 2;
862 }
863
864 /*
865 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
866 * The function automatically determines the operating mode depending on the
867 * given rate. `flags' indicates whether short preamble is in use or not.
868 */
869 Static uint16_t
870 rum_txtime(int len, int rate, uint32_t flags)
871 {
872 uint16_t txtime;
873
874 if (RUM_RATE_IS_OFDM(rate)) {
875 /* IEEE Std 802.11a-1999, pp. 37 */
876 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
877 txtime = 16 + 4 + 4 * txtime + 6;
878 } else {
879 /* IEEE Std 802.11b-1999, pp. 28 */
880 txtime = (16 * len + rate - 1) / rate;
881 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
882 txtime += 72 + 24;
883 else
884 txtime += 144 + 48;
885 }
886 return txtime;
887 }
888
889 Static uint8_t
890 rum_plcp_signal(int rate)
891 {
892 switch (rate) {
893 /* CCK rates (returned values are device-dependent) */
894 case 2: return 0x0;
895 case 4: return 0x1;
896 case 11: return 0x2;
897 case 22: return 0x3;
898
899 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
900 case 12: return 0xb;
901 case 18: return 0xf;
902 case 24: return 0xa;
903 case 36: return 0xe;
904 case 48: return 0x9;
905 case 72: return 0xd;
906 case 96: return 0x8;
907 case 108: return 0xc;
908
909 /* unsupported rates (should not get there) */
910 default: return 0xff;
911 }
912 }
913
914 Static void
915 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
916 uint32_t flags, uint16_t xflags, int len, int rate)
917 {
918 struct ieee80211com *ic = &sc->sc_ic;
919 uint16_t plcp_length;
920 int remainder;
921
922 desc->flags = htole32(flags);
923 desc->flags |= htole32(RT2573_TX_VALID);
924 desc->flags |= htole32(len << 16);
925
926 desc->xflags = htole16(xflags);
927
928 desc->wme = htole16(
929 RT2573_QID(0) |
930 RT2573_AIFSN(2) |
931 RT2573_LOGCWMIN(4) |
932 RT2573_LOGCWMAX(10));
933
934 /* setup PLCP fields */
935 desc->plcp_signal = rum_plcp_signal(rate);
936 desc->plcp_service = 4;
937
938 len += IEEE80211_CRC_LEN;
939 if (RUM_RATE_IS_OFDM(rate)) {
940 desc->flags |= htole32(RT2573_TX_OFDM);
941
942 plcp_length = len & 0xfff;
943 desc->plcp_length_hi = plcp_length >> 6;
944 desc->plcp_length_lo = plcp_length & 0x3f;
945 } else {
946 plcp_length = (16 * len + rate - 1) / rate;
947 if (rate == 22) {
948 remainder = (16 * len) % 22;
949 if (remainder != 0 && remainder < 7)
950 desc->plcp_service |= RT2573_PLCP_LENGEXT;
951 }
952 desc->plcp_length_hi = plcp_length >> 8;
953 desc->plcp_length_lo = plcp_length & 0xff;
954
955 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
956 desc->plcp_signal |= 0x08;
957 }
958 }
959
960 #define RUM_TX_TIMEOUT 5000
961
962 Static int
963 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
964 {
965 struct ieee80211com *ic = &sc->sc_ic;
966 struct rum_tx_desc *desc;
967 struct ue_chain *data;
968 struct ieee80211_frame *wh;
969 uint32_t flags = 0;
970 uint16_t dur;
971 usbd_status error;
972 int xferlen, rate;
973 int ret;
974
975 data = &sc->tx_data[0];
976
977 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
978
979 data->ue_mbuf = m0;
980 sc->tx_ni[data->ue_idx] = ni;
981
982 wh = mtod(m0, struct ieee80211_frame *);
983
984 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
985 flags |= RT2573_TX_ACK;
986
987 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
988 ic->ic_flags) + sc->sifs;
989 *(uint16_t *)wh->i_dur = htole16(dur);
990
991 /* tell hardware to set timestamp in probe responses */
992 if ((wh->i_fc[0] &
993 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
994 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
995 flags |= RT2573_TX_TIMESTAMP;
996 }
997
998 #if NBPFILTER > 0
999 if (sc->sc_drvbpf != NULL) {
1000 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1001
1002 tap->wt_flags = 0;
1003 tap->wt_rate = rate;
1004 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1005 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1006 tap->wt_antenna = sc->tx_ant;
1007
1008 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1009 }
1010 #endif
1011
1012 /* Prepend Tx descriptor */
1013 M_PREPEND(m0, RT2573_TX_DESC_SIZE, M_DONTWAIT);
1014 if (m0 != NULL)
1015 m0 = m_pullup(m0, RT2573_TX_DESC_SIZE); /* just in case */
1016 if (m0 == NULL) {
1017 return ENOBUFS;
1018 }
1019 desc = mtod(m0, struct rum_tx_desc *);
1020
1021 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1022
1023 /* align end on a 4-bytes boundary */
1024 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1025
1026 /*
1027 * No space left in the last URB to store the extra 4 bytes, force
1028 * sending of another URB.
1029 */
1030 if ((xferlen % 64) == 0)
1031 xferlen += 4;
1032
1033 if (m0->m_pkthdr.len != xferlen) {
1034 m_copyback(m0, xferlen - 1, 1, ""); /* expand mbuf chain */
1035 if (m0->m_pkthdr.len != xferlen) {
1036 m_freem(m0);
1037 return ENOBUFS;
1038 }
1039 }
1040
1041 ret = usb_ether_map_tx_buffer_mbuf(data, m0);
1042 if (ret) {
1043 m_freem(m0);
1044 return ret;
1045 }
1046
1047 DPRINTFN(10, ("sending msg frame len=%lu rate=%u xfer len=%u\n",
1048 (long unsigned int)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1049 rate, xferlen));
1050
1051 usbd_setup_xfer(data->ue_xfer, sc->sc_tx_pipeh, data, NULL /* XXX buf */, xferlen,
1052 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1053
1054 error = usbd_transfer(data->ue_xfer);
1055 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1056 data->ue_mbuf = NULL;
1057 m_freem(m0);
1058 return error;
1059 }
1060
1061 sc->tx_queued++;
1062
1063 return 0;
1064 }
1065
1066 Static int
1067 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1068 {
1069 struct ieee80211com *ic = &sc->sc_ic;
1070 struct rum_tx_desc *desc;
1071 struct ue_chain *data;
1072 struct ieee80211_frame *wh;
1073 struct ieee80211_key *k;
1074 uint32_t flags = 0;
1075 uint16_t dur;
1076 usbd_status error;
1077 int xferlen, rate;
1078 int ret;
1079
1080 wh = mtod(m0, struct ieee80211_frame *);
1081
1082 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1083 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1084 else
1085 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1086 rate &= IEEE80211_RATE_VAL;
1087
1088 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1089 k = ieee80211_crypto_encap(ic, ni, m0);
1090 if (k == NULL) {
1091 m_freem(m0);
1092 return ENOBUFS;
1093 }
1094
1095 /* packet header may have moved, reset our local pointer */
1096 wh = mtod(m0, struct ieee80211_frame *);
1097 }
1098
1099 data = &sc->tx_data[0];
1100
1101 data->ue_mbuf = m0;
1102 sc->tx_ni[data->ue_idx] = ni;
1103
1104 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1105 flags |= RT2573_TX_ACK;
1106
1107 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1108 ic->ic_flags) + sc->sifs;
1109 *(uint16_t *)wh->i_dur = htole16(dur);
1110 }
1111
1112 #if NBPFILTER > 0
1113 if (sc->sc_drvbpf != NULL) {
1114 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1115
1116 tap->wt_flags = 0;
1117 tap->wt_rate = rate;
1118 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1119 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1120 tap->wt_antenna = sc->tx_ant;
1121
1122 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1123 }
1124 #endif
1125
1126 /* Prepend Tx descriptor */
1127 M_PREPEND(m0, RT2573_TX_DESC_SIZE, M_DONTWAIT);
1128 if (m0 != NULL)
1129 m0 = m_pullup(m0, RT2573_TX_DESC_SIZE); /* just in case */
1130 if (m0 == NULL) {
1131 return ENOBUFS;
1132 }
1133 desc = mtod(m0, struct rum_tx_desc *);
1134
1135 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1136
1137 /* align end on a 4-bytes boundary */
1138 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1139
1140 /*
1141 * No space left in the last URB to store the extra 4 bytes, force
1142 * sending of another URB.
1143 */
1144 if ((xferlen % 64) == 0)
1145 xferlen += 4;
1146
1147 if (m0->m_pkthdr.len != xferlen) {
1148 m_copyback(m0, xferlen - 1, 1, ""); /* expand mbuf chain */
1149 if (m0->m_pkthdr.len != xferlen) {
1150 m_freem(m0);
1151 return ENOBUFS;
1152 }
1153 }
1154
1155 ret = usb_ether_map_tx_buffer_mbuf(data, m0);
1156 if (ret) {
1157 m_freem(m0);
1158 return ret;
1159 }
1160
1161 DPRINTFN(10, ("sending data frame len=%lu rate=%u xfer len=%u\n",
1162 (long unsigned int)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1163 rate, xferlen));
1164
1165 usbd_setup_xfer(data->ue_xfer, sc->sc_tx_pipeh, data, NULL /* XXX buf */, xferlen,
1166 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1167
1168 error = usbd_transfer(data->ue_xfer);
1169 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1170 data->ue_mbuf = NULL;
1171 m_freem(m0);
1172 return error;
1173 }
1174
1175 sc->tx_queued++;
1176
1177 return 0;
1178 }
1179
1180 Static void
1181 rum_start(struct ifnet *ifp)
1182 {
1183 struct rum_softc *sc = ifp->if_softc;
1184 struct ieee80211com *ic = &sc->sc_ic;
1185 struct ether_header *eh;
1186 struct ieee80211_node *ni;
1187 struct mbuf *m0;
1188
1189 for (;;) {
1190 IF_POLL(&ic->ic_mgtq, m0);
1191 if (m0 != NULL) {
1192 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1193 ifp->if_flags |= IFF_OACTIVE;
1194 break;
1195 }
1196 IF_DEQUEUE(&ic->ic_mgtq, m0);
1197
1198 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1199 m0->m_pkthdr.rcvif = NULL;
1200 #if NBPFILTER > 0
1201 if (ic->ic_rawbpf != NULL)
1202 bpf_mtap(ic->ic_rawbpf, m0);
1203 #endif
1204 if (rum_tx_mgt(sc, m0, ni) != 0)
1205 break;
1206
1207 } else {
1208 if (ic->ic_state != IEEE80211_S_RUN)
1209 break;
1210 IFQ_POLL(&ifp->if_snd, m0);
1211 if (m0 == NULL)
1212 break;
1213 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1214 ifp->if_flags |= IFF_OACTIVE;
1215 break;
1216 }
1217 IFQ_DEQUEUE(&ifp->if_snd, m0);
1218 if (m0->m_len < sizeof(struct ether_header) &&
1219 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1220 continue;
1221
1222 eh = mtod(m0, struct ether_header *);
1223 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1224 if (ni == NULL) {
1225 m_freem(m0);
1226 continue;
1227 }
1228 #if NBPFILTER > 0
1229 if (ifp->if_bpf != NULL)
1230 bpf_mtap(ifp->if_bpf, m0);
1231 #endif
1232 m0 = ieee80211_encap(ic, m0, ni);
1233 if (m0 == NULL) {
1234 ieee80211_free_node(ni);
1235 continue;
1236 }
1237 #if NBPFILTER > 0
1238 if (ic->ic_rawbpf != NULL)
1239 bpf_mtap(ic->ic_rawbpf, m0);
1240 #endif
1241 if (rum_tx_data(sc, m0, ni) != 0) {
1242 ieee80211_free_node(ni);
1243 ifp->if_oerrors++;
1244 break;
1245 }
1246 }
1247
1248 sc->sc_tx_timer = 5;
1249 ifp->if_timer = 1;
1250 }
1251 }
1252
1253 Static void
1254 rum_watchdog(struct ifnet *ifp)
1255 {
1256 struct rum_softc *sc = ifp->if_softc;
1257 struct ieee80211com *ic = &sc->sc_ic;
1258
1259 ifp->if_timer = 0;
1260
1261 if (sc->sc_tx_timer > 0) {
1262 if (--sc->sc_tx_timer == 0) {
1263 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1264 /*rum_init(ifp); XXX needs a process context! */
1265 ifp->if_oerrors++;
1266 return;
1267 }
1268 ifp->if_timer = 1;
1269 }
1270
1271 ieee80211_watchdog(ic);
1272 }
1273
1274 Static int
1275 rum_ioctl(struct ifnet *ifp, u_long cmd, usb_ioctlarg_t data)
1276 {
1277 struct rum_softc *sc = ifp->if_softc;
1278 struct ieee80211com *ic = &sc->sc_ic;
1279 int s, error = 0;
1280
1281 s = splnet();
1282
1283 switch (cmd) {
1284 case SIOCSIFFLAGS:
1285 if (ifp->if_flags & IFF_UP) {
1286 if (ifp->if_flags & IFF_RUNNING)
1287 rum_update_promisc(sc);
1288 else
1289 rum_init(ifp);
1290 } else {
1291 if (ifp->if_flags & IFF_RUNNING)
1292 rum_stop(ifp, 1);
1293 }
1294 break;
1295
1296 default:
1297 error = ieee80211_ioctl(ic, cmd, data);
1298 }
1299
1300 if (error == ENETRESET) {
1301 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1302 (IFF_UP | IFF_RUNNING))
1303 rum_init(ifp);
1304 error = 0;
1305 }
1306
1307 splx(s);
1308
1309 return error;
1310 }
1311
1312 Static void
1313 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1314 {
1315 usb_device_request_t req;
1316 usbd_status error;
1317
1318 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1319 req.bRequest = RT2573_READ_EEPROM;
1320 USETW(req.wValue, 0);
1321 USETW(req.wIndex, addr);
1322 USETW(req.wLength, len);
1323
1324 error = usbd_do_request(sc->sc_udev, &req, buf);
1325 if (error != 0) {
1326 printf("%s: could not read EEPROM: %s\n",
1327 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1328 }
1329 }
1330
1331 Static uint32_t
1332 rum_read(struct rum_softc *sc, uint16_t reg)
1333 {
1334 uint32_t val;
1335
1336 rum_read_multi(sc, reg, &val, sizeof val);
1337
1338 return le32toh(val);
1339 }
1340
1341 Static void
1342 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1343 {
1344 usb_device_request_t req;
1345 usbd_status error;
1346
1347 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1348 req.bRequest = RT2573_READ_MULTI_MAC;
1349 USETW(req.wValue, 0);
1350 USETW(req.wIndex, reg);
1351 USETW(req.wLength, len);
1352
1353 error = usbd_do_request(sc->sc_udev, &req, buf);
1354 if (error != 0) {
1355 printf("%s: could not multi read MAC register: %s\n",
1356 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1357 }
1358 }
1359
1360 Static void
1361 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1362 {
1363 uint32_t tmp = htole32(val);
1364
1365 rum_write_multi(sc, reg, &tmp, sizeof tmp);
1366 }
1367
1368 Static void
1369 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1370 {
1371 usb_device_request_t req;
1372 usbd_status error;
1373
1374 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1375 req.bRequest = RT2573_WRITE_MULTI_MAC;
1376 USETW(req.wValue, 0);
1377 USETW(req.wIndex, reg);
1378 USETW(req.wLength, len);
1379
1380 error = usbd_do_request(sc->sc_udev, &req, buf);
1381 if (error != 0) {
1382 printf("%s: could not multi write MAC register: %s\n",
1383 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1384 }
1385 }
1386
1387 Static void
1388 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1389 {
1390 uint32_t tmp;
1391 int ntries;
1392
1393 for (ntries = 0; ntries < 5; ntries++) {
1394 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1395 break;
1396 }
1397 if (ntries == 5) {
1398 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1399 return;
1400 }
1401
1402 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1403 rum_write(sc, RT2573_PHY_CSR3, tmp);
1404 }
1405
1406 Static uint8_t
1407 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1408 {
1409 uint32_t val;
1410 int ntries;
1411
1412 for (ntries = 0; ntries < 5; ntries++) {
1413 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1414 break;
1415 }
1416 if (ntries == 5) {
1417 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1418 return 0;
1419 }
1420
1421 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1422 rum_write(sc, RT2573_PHY_CSR3, val);
1423
1424 for (ntries = 0; ntries < 100; ntries++) {
1425 val = rum_read(sc, RT2573_PHY_CSR3);
1426 if (!(val & RT2573_BBP_BUSY))
1427 return val & 0xff;
1428 DELAY(1);
1429 }
1430
1431 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1432 return 0;
1433 }
1434
1435 Static void
1436 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1437 {
1438 uint32_t tmp;
1439 int ntries;
1440
1441 for (ntries = 0; ntries < 5; ntries++) {
1442 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1443 break;
1444 }
1445 if (ntries == 5) {
1446 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1447 return;
1448 }
1449
1450 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1451 (reg & 3);
1452 rum_write(sc, RT2573_PHY_CSR4, tmp);
1453
1454 /* remember last written value in sc */
1455 sc->rf_regs[reg] = val;
1456
1457 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1458 }
1459
1460 Static void
1461 rum_select_antenna(struct rum_softc *sc)
1462 {
1463 uint8_t bbp4, bbp77;
1464 uint32_t tmp;
1465
1466 bbp4 = rum_bbp_read(sc, 4);
1467 bbp77 = rum_bbp_read(sc, 77);
1468
1469 /* TBD */
1470
1471 /* make sure Rx is disabled before switching antenna */
1472 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1473 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1474
1475 rum_bbp_write(sc, 4, bbp4);
1476 rum_bbp_write(sc, 77, bbp77);
1477
1478 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1479 }
1480
1481 /*
1482 * Enable multi-rate retries for frames sent at OFDM rates.
1483 * In 802.11b/g mode, allow fallback to CCK rates.
1484 */
1485 Static void
1486 rum_enable_mrr(struct rum_softc *sc)
1487 {
1488 struct ieee80211com *ic = &sc->sc_ic;
1489 uint32_t tmp;
1490
1491 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1492
1493 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1494 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1495 tmp |= RT2573_MRR_CCK_FALLBACK;
1496 tmp |= RT2573_MRR_ENABLED;
1497
1498 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1499 }
1500
1501 Static void
1502 rum_set_txpreamble(struct rum_softc *sc)
1503 {
1504 uint32_t tmp;
1505
1506 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1507
1508 tmp &= ~RT2573_SHORT_PREAMBLE;
1509 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1510 tmp |= RT2573_SHORT_PREAMBLE;
1511
1512 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1513 }
1514
1515 Static void
1516 rum_set_basicrates(struct rum_softc *sc)
1517 {
1518 struct ieee80211com *ic = &sc->sc_ic;
1519
1520 /* update basic rate set */
1521 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1522 /* 11b basic rates: 1, 2Mbps */
1523 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1524 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1525 /* 11a basic rates: 6, 12, 24Mbps */
1526 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1527 } else {
1528 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1529 rum_write(sc, RT2573_TXRX_CSR5, 0x15f);
1530 }
1531 }
1532
1533 /*
1534 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1535 * driver.
1536 */
1537 Static void
1538 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1539 {
1540 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1541 uint32_t tmp;
1542
1543 /* update all BBP registers that depend on the band */
1544 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1545 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1546 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1547 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1548 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1549 }
1550 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1551 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1552 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1553 }
1554
1555 sc->bbp17 = bbp17;
1556 rum_bbp_write(sc, 17, bbp17);
1557 rum_bbp_write(sc, 96, bbp96);
1558 rum_bbp_write(sc, 104, bbp104);
1559
1560 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1561 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1562 rum_bbp_write(sc, 75, 0x80);
1563 rum_bbp_write(sc, 86, 0x80);
1564 rum_bbp_write(sc, 88, 0x80);
1565 }
1566
1567 rum_bbp_write(sc, 35, bbp35);
1568 rum_bbp_write(sc, 97, bbp97);
1569 rum_bbp_write(sc, 98, bbp98);
1570
1571 tmp = rum_read(sc, RT2573_PHY_CSR0);
1572 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1573 if (IEEE80211_IS_CHAN_2GHZ(c))
1574 tmp |= RT2573_PA_PE_2GHZ;
1575 else
1576 tmp |= RT2573_PA_PE_5GHZ;
1577 rum_write(sc, RT2573_PHY_CSR0, tmp);
1578
1579 /* 802.11a uses a 16 microseconds short interframe space */
1580 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1581 }
1582
1583 Static void
1584 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1585 {
1586 struct ieee80211com *ic = &sc->sc_ic;
1587 const struct rfprog *rfprog;
1588 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1589 int8_t power;
1590 u_int i, chan;
1591
1592 chan = ieee80211_chan2ieee(ic, c);
1593 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1594 return;
1595
1596 /* select the appropriate RF settings based on what EEPROM says */
1597 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1598 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1599
1600 /* find the settings for this channel (we know it exists) */
1601 for (i = 0; rfprog[i].chan != chan; i++);
1602
1603 power = sc->txpow[i];
1604 if (power < 0) {
1605 bbp94 += power;
1606 power = 0;
1607 } else if (power > 31) {
1608 bbp94 += power - 31;
1609 power = 31;
1610 }
1611
1612 /*
1613 * If we are switching from the 2GHz band to the 5GHz band or
1614 * vice-versa, BBP registers need to be reprogrammed.
1615 */
1616 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1617 rum_select_band(sc, c);
1618 rum_select_antenna(sc);
1619 }
1620 ic->ic_curchan = c;
1621
1622 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1623 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1624 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1625 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1626
1627 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1628 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1629 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1630 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1631
1632 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1633 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1634 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1635 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1636
1637 DELAY(10);
1638
1639 /* enable smart mode for MIMO-capable RFs */
1640 bbp3 = rum_bbp_read(sc, 3);
1641
1642 bbp3 &= ~RT2573_SMART_MODE;
1643 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1644 bbp3 |= RT2573_SMART_MODE;
1645
1646 rum_bbp_write(sc, 3, bbp3);
1647
1648 if (bbp94 != RT2573_BBPR94_DEFAULT)
1649 rum_bbp_write(sc, 94, bbp94);
1650 }
1651
1652 /*
1653 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1654 * and HostAP operating modes.
1655 */
1656 Static void
1657 rum_enable_tsf_sync(struct rum_softc *sc)
1658 {
1659 struct ieee80211com *ic = &sc->sc_ic;
1660 uint32_t tmp;
1661
1662 if (ic->ic_opmode != IEEE80211_M_STA) {
1663 /*
1664 * Change default 16ms TBTT adjustment to 8ms.
1665 * Must be done before enabling beacon generation.
1666 */
1667 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1668 }
1669
1670 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1671
1672 /* set beacon interval (in 1/16ms unit) */
1673 tmp |= ic->ic_bss->ni_intval * 16;
1674
1675 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1676 if (ic->ic_opmode == IEEE80211_M_STA)
1677 tmp |= RT2573_TSF_MODE(1);
1678 else
1679 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1680
1681 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1682 }
1683
1684 Static void
1685 rum_update_slot(struct rum_softc *sc)
1686 {
1687 struct ieee80211com *ic = &sc->sc_ic;
1688 uint8_t slottime;
1689 uint32_t tmp;
1690
1691 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1692
1693 tmp = rum_read(sc, RT2573_MAC_CSR9);
1694 tmp = (tmp & ~0xff) | slottime;
1695 rum_write(sc, RT2573_MAC_CSR9, tmp);
1696
1697 DPRINTF(("setting slot time to %uus\n", slottime));
1698 }
1699
1700 Static void
1701 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1702 {
1703 uint32_t tmp;
1704
1705 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1706 rum_write(sc, RT2573_MAC_CSR4, tmp);
1707
1708 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1709 rum_write(sc, RT2573_MAC_CSR5, tmp);
1710 }
1711
1712 Static void
1713 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1714 {
1715 uint32_t tmp;
1716
1717 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1718 rum_write(sc, RT2573_MAC_CSR2, tmp);
1719
1720 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1721 rum_write(sc, RT2573_MAC_CSR3, tmp);
1722 }
1723
1724 Static void
1725 rum_update_promisc(struct rum_softc *sc)
1726 {
1727 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1728 uint32_t tmp;
1729
1730 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1731
1732 tmp &= ~RT2573_DROP_NOT_TO_ME;
1733 if (!(ifp->if_flags & IFF_PROMISC))
1734 tmp |= RT2573_DROP_NOT_TO_ME;
1735
1736 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1737
1738 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1739 "entering" : "leaving"));
1740 }
1741
1742 Static const char *
1743 rum_get_rf(int rev)
1744 {
1745 switch (rev) {
1746 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1747 case RT2573_RF_2528: return "RT2528";
1748 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1749 case RT2573_RF_5226: return "RT5226";
1750 default: return "unknown";
1751 }
1752 }
1753
1754 Static void
1755 rum_read_eeprom(struct rum_softc *sc)
1756 {
1757 struct ieee80211com *ic = &sc->sc_ic;
1758 uint16_t val;
1759 #ifdef RUM_DEBUG
1760 int i;
1761 #endif
1762
1763 /* read MAC/BBP type */
1764 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1765 sc->macbbp_rev = le16toh(val);
1766
1767 /* read MAC address */
1768 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1769
1770 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1771 val = le16toh(val);
1772 sc->rf_rev = (val >> 11) & 0x1f;
1773 sc->hw_radio = (val >> 10) & 0x1;
1774 sc->rx_ant = (val >> 4) & 0x3;
1775 sc->tx_ant = (val >> 2) & 0x3;
1776 sc->nb_ant = val & 0x3;
1777
1778 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1779
1780 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1781 val = le16toh(val);
1782 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1783 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1784
1785 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1786 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1787
1788 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1789 val = le16toh(val);
1790 if ((val & 0xff) != 0xff)
1791 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1792
1793 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1794 val = le16toh(val);
1795 if ((val & 0xff) != 0xff)
1796 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1797
1798 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1799 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1800
1801 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1802 val = le16toh(val);
1803 if ((val & 0xff) != 0xff)
1804 sc->rffreq = val & 0xff;
1805
1806 DPRINTF(("RF freq=%d\n", sc->rffreq));
1807
1808 /* read Tx power for all a/b/g channels */
1809 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1810 /* XXX default Tx power for 802.11a channels */
1811 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1812 #ifdef RUM_DEBUG
1813 for (i = 0; i < 14; i++)
1814 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1815 #endif
1816
1817 /* read default values for BBP registers */
1818 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1819 #ifdef RUM_DEBUG
1820 for (i = 0; i < 14; i++) {
1821 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1822 continue;
1823 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1824 sc->bbp_prom[i].val));
1825 }
1826 #endif
1827 }
1828
1829 Static int
1830 rum_bbp_init(struct rum_softc *sc)
1831 {
1832 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1833 int i, ntries;
1834 uint8_t val;
1835
1836 /* wait for BBP to be ready */
1837 for (ntries = 0; ntries < 100; ntries++) {
1838 val = rum_bbp_read(sc, 0);
1839 if (val != 0 && val != 0xff)
1840 break;
1841 DELAY(1000);
1842 }
1843 if (ntries == 100) {
1844 printf("%s: timeout waiting for BBP\n",
1845 USBDEVNAME(sc->sc_dev));
1846 return EIO;
1847 }
1848
1849 /* initialize BBP registers to default values */
1850 for (i = 0; i < N(rum_def_bbp); i++)
1851 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1852
1853 /* write vendor-specific BBP values (from EEPROM) */
1854 for (i = 0; i < 16; i++) {
1855 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1856 continue;
1857 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1858 }
1859
1860 return 0;
1861 #undef N
1862 }
1863
1864 Static int
1865 rum_init(struct ifnet *ifp)
1866 {
1867 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1868 struct rum_softc *sc = ifp->if_softc;
1869 struct ieee80211com *ic = &sc->sc_ic;
1870 struct ue_chain *data;
1871 uint32_t tmp;
1872 usbd_status uerror;
1873 int error;
1874 int i, ntries;
1875
1876 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1877 if (rum_attachhook(sc)) {
1878 error = EIO;
1879 goto fail;
1880 }
1881 }
1882
1883 rum_stop(ifp, 0);
1884
1885 /* initialize MAC registers to default values */
1886 for (i = 0; i < N(rum_def_mac); i++)
1887 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1888
1889 /* set host ready */
1890 rum_write(sc, RT2573_MAC_CSR1, 3);
1891 rum_write(sc, RT2573_MAC_CSR1, 0);
1892
1893 /* wait for BBP/RF to wakeup */
1894 for (ntries = 0; ntries < 1000; ntries++) {
1895 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1896 break;
1897 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1898 DELAY(1000);
1899 }
1900 if (ntries == 1000) {
1901 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1902 USBDEVNAME(sc->sc_dev));
1903 error = EIO;
1904 goto fail;
1905 }
1906
1907 if ((error = rum_bbp_init(sc)) != 0)
1908 goto fail;
1909
1910 /* select default channel */
1911 rum_select_band(sc, ic->ic_curchan);
1912 rum_select_antenna(sc);
1913 rum_set_chan(sc, ic->ic_curchan);
1914
1915 /* clear STA registers */
1916 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1917
1918 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1919 rum_set_macaddr(sc, ic->ic_myaddr);
1920
1921 /* initialize ASIC */
1922 rum_write(sc, RT2573_MAC_CSR1, 4);
1923
1924 /*
1925 * Allocate xfer for AMRR statistics requests.
1926 */
1927 sc->amrr_xfer = usbd_alloc_default_xfer(sc->sc_udev);
1928 if (sc->amrr_xfer == NULL) {
1929 printf("%s: could not allocate AMRR xfer\n",
1930 USBDEVNAME(sc->sc_dev));
1931 goto fail;
1932 }
1933
1934 /*
1935 * Open Tx and Rx USB bulk pipes.
1936 */
1937 uerror = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
1938 &sc->sc_tx_pipeh);
1939 if (uerror != USBD_NORMAL_COMPLETION) {
1940 printf("%s: could not open Tx pipe: %s\n",
1941 USBDEVNAME(sc->sc_dev), usbd_errstr(uerror));
1942 error = EIO;
1943 goto fail;
1944 }
1945
1946 uerror = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
1947 &sc->sc_rx_pipeh);
1948 if (uerror != USBD_NORMAL_COMPLETION) {
1949 printf("%s: could not open Rx pipe: %s\n",
1950 USBDEVNAME(sc->sc_dev), usbd_errstr(uerror));
1951 error = EIO;
1952 goto fail;
1953 }
1954
1955 /*
1956 * Allocate Tx and Rx xfer queues.
1957 */
1958 sc->tx_queued = 0;
1959 error = usb_ether_tx_list_init(USBDEV(sc->sc_dev),
1960 sc->tx_data, RT2573_TX_LIST_COUNT,
1961 sc->sc_udev, sc->sc_tx_pipeh, NULL);
1962 if (error != 0) {
1963 printf("%s: could not allocate Tx list\n",
1964 USBDEVNAME(sc->sc_dev));
1965 goto fail;
1966 }
1967
1968 error = usb_ether_rx_list_init(USBDEV(sc->sc_dev),
1969 sc->rx_data, RT2573_RX_LIST_COUNT,
1970 sc->sc_udev, sc->sc_rx_pipeh);
1971 if (error != 0) {
1972 printf("%s: could not allocate Rx list\n",
1973 USBDEVNAME(sc->sc_dev));
1974 goto fail;
1975 }
1976
1977 /*
1978 * Start up the receive pipe.
1979 */
1980 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
1981 data = &sc->rx_data[i];
1982
1983 (void)usbd_map_buffer_mbuf(data->ue_xfer, data->ue_mbuf);
1984 usbd_setup_xfer(data->ue_xfer, sc->sc_rx_pipeh, data, NULL /* XXX buf */,
1985 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
1986 usbd_transfer(data->ue_xfer);
1987 }
1988
1989 /* update Rx filter */
1990 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
1991
1992 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
1993 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1994 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
1995 RT2573_DROP_ACKCTS;
1996 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
1997 tmp |= RT2573_DROP_TODS;
1998 if (!(ifp->if_flags & IFF_PROMISC))
1999 tmp |= RT2573_DROP_NOT_TO_ME;
2000 }
2001 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2002
2003 ifp->if_flags &= ~IFF_OACTIVE;
2004 ifp->if_flags |= IFF_RUNNING;
2005
2006 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2007 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2008 else
2009 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2010
2011 return 0;
2012
2013 fail: rum_stop(ifp, 1);
2014 return error;
2015 #undef N
2016 }
2017
2018 Static void
2019 rum_stop(struct ifnet *ifp, int disable)
2020 {
2021 struct rum_softc *sc = ifp->if_softc;
2022 struct ieee80211com *ic = &sc->sc_ic;
2023 uint32_t tmp;
2024
2025 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2026
2027 sc->sc_tx_timer = 0;
2028 ifp->if_timer = 0;
2029 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2030
2031 /* disable Rx */
2032 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2033 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2034
2035 /* reset ASIC */
2036 rum_write(sc, RT2573_MAC_CSR1, 3);
2037 rum_write(sc, RT2573_MAC_CSR1, 0);
2038
2039 /* Stop transfers. */
2040 if (sc->sc_rx_pipeh != NULL)
2041 usbd_abort_pipe(sc->sc_rx_pipeh);
2042 if (sc->sc_tx_pipeh != NULL)
2043 usbd_abort_pipe(sc->sc_tx_pipeh);
2044
2045 /* Free RX/TX resources. */
2046 rum_free_rx_list(sc);
2047 rum_free_tx_list(sc);
2048
2049 /* Close pipes. */
2050 if (sc->sc_rx_pipeh != NULL) {
2051 usbd_close_pipe(sc->sc_rx_pipeh);
2052 sc->sc_rx_pipeh = NULL;
2053 }
2054
2055 if (sc->sc_tx_pipeh != NULL) {
2056 usbd_close_pipe(sc->sc_tx_pipeh);
2057 sc->sc_tx_pipeh = NULL;
2058 }
2059 }
2060
2061 Static int
2062 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2063 {
2064 usb_device_request_t req;
2065 uint16_t reg = RT2573_MCU_CODE_BASE;
2066 usbd_status error;
2067
2068 /* copy firmware image into NIC */
2069 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2070 rum_write(sc, reg, UGETDW(ucode));
2071
2072 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2073 req.bRequest = RT2573_MCU_CNTL;
2074 USETW(req.wValue, RT2573_MCU_RUN);
2075 USETW(req.wIndex, 0);
2076 USETW(req.wLength, 0);
2077
2078 error = usbd_do_request(sc->sc_udev, &req, NULL);
2079 if (error != 0) {
2080 printf("%s: could not run firmware: %s\n",
2081 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2082 }
2083 return error;
2084 }
2085
2086 Static int
2087 rum_prepare_beacon(struct rum_softc *sc)
2088 {
2089 struct ieee80211com *ic = &sc->sc_ic;
2090 struct rum_tx_desc desc;
2091 struct mbuf *m0;
2092 int rate;
2093
2094 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2095 if (m0 == NULL) {
2096 printf("%s: could not allocate beacon frame\n",
2097 sc->sc_dev.dv_xname);
2098 return ENOBUFS;
2099 }
2100
2101 /* send beacons at the lowest available rate */
2102 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2103
2104 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2105 m0->m_pkthdr.len, rate);
2106
2107 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2108 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2109
2110 /* copy beacon header and payload into NIC memory */
2111 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2112 m0->m_pkthdr.len);
2113
2114 m_freem(m0);
2115
2116 return 0;
2117 }
2118
2119 Static void
2120 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2121 {
2122 int i;
2123
2124 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2125 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2126
2127 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2128
2129 /* set rate to some reasonable initial value */
2130 for (i = ni->ni_rates.rs_nrates - 1;
2131 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2132 i--);
2133 ni->ni_txrate = i;
2134
2135 callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
2136 }
2137
2138 Static void
2139 rum_amrr_timeout(void *arg)
2140 {
2141 struct rum_softc *sc = arg;
2142 usb_device_request_t req;
2143 int s;
2144
2145 s = splusb();
2146
2147 /*
2148 * Asynchronously read statistic registers (cleared by read).
2149 */
2150 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2151 req.bRequest = RT2573_READ_MULTI_MAC;
2152 USETW(req.wValue, 0);
2153 USETW(req.wIndex, RT2573_STA_CSR0);
2154 USETW(req.wLength, sizeof sc->sta);
2155
2156 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2157 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2158 rum_amrr_update);
2159 (void)usbd_transfer(sc->amrr_xfer);
2160
2161 splx(s);
2162 }
2163
2164 Static void
2165 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2166 usbd_status status)
2167 {
2168 struct rum_softc *sc = (struct rum_softc *)priv;
2169 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2170
2171 if (status != USBD_NORMAL_COMPLETION) {
2172 printf("%s: could not retrieve Tx statistics - cancelling "
2173 "automatic rate control\n", USBDEVNAME(sc->sc_dev));
2174 return;
2175 }
2176
2177 /* count TX retry-fail as Tx errors */
2178 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2179
2180 sc->amn.amn_retrycnt =
2181 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2182 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2183 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2184
2185 sc->amn.amn_txcnt =
2186 sc->amn.amn_retrycnt +
2187 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2188
2189 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2190
2191 callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
2192 }
2193
2194 int
2195 rum_activate(device_ptr_t self, enum devact act)
2196 {
2197 switch (act) {
2198 case DVACT_ACTIVATE:
2199 return EOPNOTSUPP;
2200
2201 case DVACT_DEACTIVATE:
2202 /*if_deactivate(&sc->sc_ic.ic_if);*/
2203 break;
2204 }
2205
2206 return 0;
2207 }
2208