if_rum.c revision 1.6.4.4 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.6.4.4 2007/06/18 13:42:31 itohy Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.6.4.4 2007/06/18 13:42:31 itohy Exp $");
28
29 #include "bpfilter.h"
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41
42 #include <machine/bus.h>
43 #include <machine/endian.h>
44 #include <machine/intr.h>
45
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/firmload.h>
67
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72 #include <dev/usb/usb_ethersubr.h>
73
74 #include <dev/usb/if_rumreg.h>
75 #include <dev/usb/if_rumvar.h>
76
77 #ifdef USB_DEBUG
78 #define RUM_DEBUG
79 #endif
80
81 #ifdef RUM_DEBUG
82 #define DPRINTF(x) do { if (rum_debug) logprintf x; } while (0)
83 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) logprintf x; } while (0)
84 int rum_debug = 0;
85 #else
86 #define DPRINTF(x)
87 #define DPRINTFN(n, x)
88 #endif
89
90 /* various supported device vendors/products */
91 static const struct usb_devno rum_devs[] = {
92 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573 },
93 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
94 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
95 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
96 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
97 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
98 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
99 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
100 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
101 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
102 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
103 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
104 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
105 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
106 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
107 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
108 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
109 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
110 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
111 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
112 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
113 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
114 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2573 },
115 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
116 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
117 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
118 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }
119 };
120
121 Static int rum_attachhook(void *);
122 #if 0
123 Static int rum_alloc_tx_list(struct rum_softc *);
124 #endif
125 Static void rum_free_tx_list(struct rum_softc *);
126 #if 0
127 Static int rum_alloc_rx_list(struct rum_softc *);
128 #endif
129 Static void rum_free_rx_list(struct rum_softc *);
130 Static int rum_media_change(struct ifnet *);
131 Static void rum_next_scan(void *);
132 Static void rum_task(void *);
133 Static int rum_newstate(struct ieee80211com *,
134 enum ieee80211_state, int);
135 Static void rum_txeof(usbd_xfer_handle, usbd_private_handle,
136 usbd_status);
137 Static void rum_rxeof(usbd_xfer_handle, usbd_private_handle,
138 usbd_status);
139 #if NBPFILTER > 0
140 Static uint8_t rum_rxrate(struct rum_rx_desc *);
141 #endif
142 Static int rum_ack_rate(struct ieee80211com *, int);
143 Static uint16_t rum_txtime(int, int, uint32_t);
144 Static uint8_t rum_plcp_signal(int);
145 Static void rum_setup_tx_desc(struct rum_softc *,
146 struct rum_tx_desc *, uint32_t, uint16_t, int,
147 int);
148 Static int rum_tx_mgt(struct rum_softc *, struct mbuf *,
149 struct ieee80211_node *);
150 Static int rum_tx_data(struct rum_softc *, struct mbuf *,
151 struct ieee80211_node *);
152 Static void rum_start(struct ifnet *);
153 Static void rum_watchdog(struct ifnet *);
154 Static int rum_ioctl(struct ifnet *, u_long, usb_ioctlarg_t);
155 Static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
156 int);
157 Static uint32_t rum_read(struct rum_softc *, uint16_t);
158 Static void rum_read_multi(struct rum_softc *, uint16_t, void *,
159 int);
160 Static void rum_write(struct rum_softc *, uint16_t, uint32_t);
161 Static void rum_write_multi(struct rum_softc *, uint16_t, void *,
162 size_t);
163 Static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
164 Static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
165 Static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
166 Static void rum_select_antenna(struct rum_softc *);
167 Static void rum_enable_mrr(struct rum_softc *);
168 Static void rum_set_txpreamble(struct rum_softc *);
169 Static void rum_set_basicrates(struct rum_softc *);
170 Static void rum_select_band(struct rum_softc *,
171 struct ieee80211_channel *);
172 Static void rum_set_chan(struct rum_softc *,
173 struct ieee80211_channel *);
174 Static void rum_enable_tsf_sync(struct rum_softc *);
175 Static void rum_update_slot(struct rum_softc *);
176 Static void rum_set_bssid(struct rum_softc *, const uint8_t *);
177 Static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
178 Static void rum_update_promisc(struct rum_softc *);
179 Static const char *rum_get_rf(int);
180 Static void rum_read_eeprom(struct rum_softc *);
181 Static int rum_bbp_init(struct rum_softc *);
182 Static int rum_init(struct ifnet *);
183 Static void rum_stop(struct ifnet *, int);
184 Static int rum_load_microcode(struct rum_softc *, const u_char *,
185 size_t);
186 Static int rum_prepare_beacon(struct rum_softc *);
187 Static void rum_amrr_start(struct rum_softc *,
188 struct ieee80211_node *);
189 Static void rum_amrr_timeout(void *);
190 Static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
191 usbd_status status);
192
193 /*
194 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
195 */
196 static const struct ieee80211_rateset rum_rateset_11a =
197 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
198
199 static const struct ieee80211_rateset rum_rateset_11b =
200 { 4, { 2, 4, 11, 22 } };
201
202 static const struct ieee80211_rateset rum_rateset_11g =
203 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
204
205 static const struct {
206 uint32_t reg;
207 uint32_t val;
208 } rum_def_mac[] = {
209 RT2573_DEF_MAC
210 };
211
212 static const struct {
213 uint8_t reg;
214 uint8_t val;
215 } rum_def_bbp[] = {
216 RT2573_DEF_BBP
217 };
218
219 static const struct rfprog {
220 uint8_t chan;
221 uint32_t r1, r2, r3, r4;
222 } rum_rf5226[] = {
223 RT2573_RF5226
224 }, rum_rf5225[] = {
225 RT2573_RF5225
226 };
227
228 USB_DECLARE_DRIVER(rum);
229
230 USB_MATCH(rum)
231 {
232 USB_MATCH_START(rum, uaa);
233
234 #ifndef USB_USE_IFATTACH
235 if (uaa->iface != NULL)
236 return UMATCH_NONE;
237 #endif /* USB_USE_IFATTACH */
238
239 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
240 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
241 }
242
243 Static int
244 rum_attachhook(void *xsc)
245 {
246 struct rum_softc *sc = xsc;
247 firmware_handle_t fwh;
248 const char *name = "rum-rt2573";
249 u_char *ucode;
250 size_t size;
251 int error;
252
253 if ((error = firmware_open("rum", name, &fwh)) != 0) {
254 printf("%s: failed loadfirmware of file %s (error %d)\n",
255 USBDEVNAME(sc->sc_dev), name, error);
256 return error;
257 }
258 size = firmware_get_size(fwh);
259 ucode = firmware_malloc(size);
260 if (ucode == NULL) {
261 printf("%s: failed to allocate firmware memory\n",
262 USBDEVNAME(sc->sc_dev));
263 firmware_close(fwh);
264 return ENOMEM;;
265 }
266 error = firmware_read(fwh, 0, ucode, size);
267 firmware_close(fwh);
268 if (error != 0) {
269 printf("%s: failed to read firmware (error %d)\n",
270 USBDEVNAME(sc->sc_dev), error);
271 firmware_free(ucode, 0);
272 return error;
273 }
274
275 if (rum_load_microcode(sc, ucode, size) != 0) {
276 printf("%s: could not load 8051 microcode\n",
277 USBDEVNAME(sc->sc_dev));
278 firmware_free(ucode, 0);
279 return ENXIO;
280 }
281
282 firmware_free(ucode, 0);
283 sc->sc_flags |= RT2573_FWLOADED;
284
285 return 0;
286 }
287
288 USB_ATTACH(rum)
289 {
290 USB_ATTACH_START(rum, sc, uaa);
291 struct ieee80211com *ic = &sc->sc_ic;
292 struct ifnet *ifp = &sc->sc_if;
293 usb_interface_descriptor_t *id;
294 usb_endpoint_descriptor_t *ed;
295 usbd_status error;
296 char *devinfop;
297 int i, ntries;
298 uint32_t tmp;
299
300 sc->sc_udev = uaa->device;
301 sc->sc_flags = 0;
302
303 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
304 USB_ATTACH_SETUP;
305 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
306 usbd_devinfo_free(devinfop);
307
308 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
309 printf("%s: could not set configuration no\n",
310 USBDEVNAME(sc->sc_dev));
311 USB_ATTACH_ERROR_RETURN;
312 }
313
314 /* get the first interface handle */
315 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
316 &sc->sc_iface);
317 if (error != 0) {
318 printf("%s: could not get interface handle\n",
319 USBDEVNAME(sc->sc_dev));
320 USB_ATTACH_ERROR_RETURN;
321 }
322
323 /*
324 * Find endpoints.
325 */
326 id = usbd_get_interface_descriptor(sc->sc_iface);
327
328 sc->sc_rx_no = sc->sc_tx_no = -1;
329 for (i = 0; i < id->bNumEndpoints; i++) {
330 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
331 if (ed == NULL) {
332 printf("%s: no endpoint descriptor for iface %d\n",
333 USBDEVNAME(sc->sc_dev), i);
334 USB_ATTACH_ERROR_RETURN;
335 }
336
337 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
338 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
339 sc->sc_rx_no = ed->bEndpointAddress;
340 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
341 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
342 sc->sc_tx_no = ed->bEndpointAddress;
343 }
344 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
345 printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
346 USB_ATTACH_ERROR_RETURN;
347 }
348
349 usb_init_task(&sc->sc_task, rum_task, sc);
350 callout_init(&sc->scan_ch);
351
352 sc->amrr.amrr_min_success_threshold = 1;
353 sc->amrr.amrr_max_success_threshold = 10;
354 callout_init(&sc->amrr_ch);
355
356 /* retrieve RT2573 rev. no */
357 tmp = 0; /* XXX shut up warning */
358 for (ntries = 0; ntries < 1000; ntries++) {
359 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
360 break;
361 DELAY(1000);
362 }
363 if (ntries == 1000) {
364 printf("%s: timeout waiting for chip to settle\n",
365 USBDEVNAME(sc->sc_dev));
366 USB_ATTACH_ERROR_RETURN;
367 }
368
369 /* retrieve MAC address and various other things from EEPROM */
370 rum_read_eeprom(sc);
371
372 printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
373 USBDEVNAME(sc->sc_dev), sc->macbbp_rev, tmp,
374 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
375
376 ic->ic_ifp = ifp;
377 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
378 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
379 ic->ic_state = IEEE80211_S_INIT;
380
381 /* set device capabilities */
382 ic->ic_caps =
383 IEEE80211_C_IBSS | /* IBSS mode supported */
384 IEEE80211_C_MONITOR | /* monitor mode supported */
385 IEEE80211_C_HOSTAP | /* HostAp mode supported */
386 IEEE80211_C_TXPMGT | /* tx power management */
387 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
388 IEEE80211_C_SHSLOT | /* short slot time supported */
389 IEEE80211_C_WPA; /* 802.11i */
390
391 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
392 /* set supported .11a rates */
393 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
394
395 /* set supported .11a channels */
396 for (i = 34; i <= 46; i += 4) {
397 ic->ic_channels[i].ic_freq =
398 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
399 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
400 }
401 for (i = 36; i <= 64; i += 4) {
402 ic->ic_channels[i].ic_freq =
403 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
404 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
405 }
406 for (i = 100; i <= 140; i += 4) {
407 ic->ic_channels[i].ic_freq =
408 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
409 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
410 }
411 for (i = 149; i <= 165; i += 4) {
412 ic->ic_channels[i].ic_freq =
413 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
414 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
415 }
416 }
417
418 /* set supported .11b and .11g rates */
419 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
420 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
421
422 /* set supported .11b and .11g channels (1 through 14) */
423 for (i = 1; i <= 14; i++) {
424 ic->ic_channels[i].ic_freq =
425 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
426 ic->ic_channels[i].ic_flags =
427 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
428 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
429 }
430
431 ifp->if_softc = sc;
432 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
433 ifp->if_init = rum_init;
434 ifp->if_ioctl = rum_ioctl;
435 ifp->if_start = rum_start;
436 ifp->if_watchdog = rum_watchdog;
437 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
438 IFQ_SET_READY(&ifp->if_snd);
439 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
440
441 if_attach(ifp);
442 ieee80211_ifattach(ic);
443
444 /* override state transition machine */
445 sc->sc_newstate = ic->ic_newstate;
446 ic->ic_newstate = rum_newstate;
447 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
448
449 #if NBPFILTER > 0
450 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
451 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf);
452
453 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
454 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
455 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
456
457 sc->sc_txtap_len = sizeof sc->sc_txtapu;
458 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
459 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
460 #endif
461
462 ieee80211_announce(ic);
463
464 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
465 USBDEV(sc->sc_dev));
466
467 USB_ATTACH_SUCCESS_RETURN;
468 }
469
470 USB_DETACH(rum)
471 {
472 USB_DETACH_START(rum, sc);
473 struct ieee80211com *ic = &sc->sc_ic;
474 struct ifnet *ifp = &sc->sc_if;
475 int s;
476
477 s = splusb();
478
479 rum_stop(ifp, 1);
480 usb_rem_task(sc->sc_udev, &sc->sc_task);
481 callout_stop(&sc->scan_ch);
482 callout_stop(&sc->amrr_ch);
483
484 if (sc->sc_rx_pipeh != NULL)
485 usbd_abort_pipe(sc->sc_rx_pipeh);
486
487 if (sc->sc_tx_pipeh != NULL)
488 usbd_abort_pipe(sc->sc_tx_pipeh);
489
490 rum_free_rx_list(sc);
491 rum_free_tx_list(sc);
492
493 if (sc->amrr_xfer != NULL) {
494 usbd_free_xfer(sc->amrr_xfer);
495 sc->amrr_xfer = NULL;
496 }
497
498 if (sc->sc_rx_pipeh != NULL)
499 usbd_close_pipe(sc->sc_rx_pipeh);
500
501 if (sc->sc_tx_pipeh != NULL)
502 usbd_close_pipe(sc->sc_tx_pipeh);
503
504 #if NBPFILTER > 0
505 bpfdetach(ifp);
506 #endif
507 ieee80211_ifdetach(ic); /* free all nodes */
508 if_detach(ifp);
509
510 splx(s);
511
512 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
513 USBDEV(sc->sc_dev));
514
515 return 0;
516 }
517
518 Static void
519 rum_free_tx_list(struct rum_softc *sc)
520 {
521 int i;
522
523 usb_ether_tx_list_free(sc->tx_data, RT2573_TX_LIST_COUNT);
524
525 for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
526 if (sc->tx_ni[i] != NULL) {
527 ieee80211_free_node(sc->tx_ni[i]);
528 sc->tx_ni[i] = NULL;
529 }
530 }
531 }
532
533 Static void
534 rum_free_rx_list(struct rum_softc *sc)
535 {
536
537 usb_ether_rx_list_free(sc->rx_data, RT2573_RX_LIST_COUNT);
538 }
539
540 Static int
541 rum_media_change(struct ifnet *ifp)
542 {
543 int error;
544
545 error = ieee80211_media_change(ifp);
546 if (error != ENETRESET)
547 return error;
548
549 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
550 rum_init(ifp);
551
552 return 0;
553 }
554
555 /*
556 * This function is called periodically (every 200ms) during scanning to
557 * switch from one channel to another.
558 */
559 Static void
560 rum_next_scan(void *arg)
561 {
562 struct rum_softc *sc = arg;
563 struct ieee80211com *ic = &sc->sc_ic;
564
565 if (ic->ic_state == IEEE80211_S_SCAN)
566 ieee80211_next_scan(ic);
567 }
568
569 Static void
570 rum_task(void *arg)
571 {
572 struct rum_softc *sc = arg;
573 struct ieee80211com *ic = &sc->sc_ic;
574 enum ieee80211_state ostate;
575 struct ieee80211_node *ni;
576 uint32_t tmp;
577
578 ostate = ic->ic_state;
579
580 switch (sc->sc_state) {
581 case IEEE80211_S_INIT:
582 if (ostate == IEEE80211_S_RUN) {
583 /* abort TSF synchronization */
584 tmp = rum_read(sc, RT2573_TXRX_CSR9);
585 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
586 }
587 break;
588
589 case IEEE80211_S_SCAN:
590 rum_set_chan(sc, ic->ic_curchan);
591 callout_reset(&sc->scan_ch, hz / 5, rum_next_scan, sc);
592 break;
593
594 case IEEE80211_S_AUTH:
595 rum_set_chan(sc, ic->ic_curchan);
596 break;
597
598 case IEEE80211_S_ASSOC:
599 rum_set_chan(sc, ic->ic_curchan);
600 break;
601
602 case IEEE80211_S_RUN:
603 rum_set_chan(sc, ic->ic_curchan);
604
605 ni = ic->ic_bss;
606
607 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
608 rum_update_slot(sc);
609 rum_enable_mrr(sc);
610 rum_set_txpreamble(sc);
611 rum_set_basicrates(sc);
612 rum_set_bssid(sc, ni->ni_bssid);
613 }
614
615 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
616 ic->ic_opmode == IEEE80211_M_IBSS)
617 rum_prepare_beacon(sc);
618
619 if (ic->ic_opmode != IEEE80211_M_MONITOR)
620 rum_enable_tsf_sync(sc);
621
622 /* enable automatic rate adaptation in STA mode */
623 if (ic->ic_opmode == IEEE80211_M_STA &&
624 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
625 rum_amrr_start(sc, ni);
626
627 break;
628 }
629
630 sc->sc_newstate(ic, sc->sc_state, -1);
631 }
632
633 Static int
634 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
635 {
636 struct rum_softc *sc = ic->ic_ifp->if_softc;
637
638 usb_rem_task(sc->sc_udev, &sc->sc_task);
639 callout_stop(&sc->scan_ch);
640 callout_stop(&sc->amrr_ch);
641
642 /* do it in a process context */
643 sc->sc_state = nstate;
644 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
645
646 return 0;
647 }
648
649 /* quickly determine if a given rate is CCK or OFDM */
650 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
651
652 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
653 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
654
655 Static void
656 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
657 {
658 struct ue_chain *data = priv;
659 struct rum_softc *sc = (void *)data->ue_dev;
660 struct ifnet *ifp = &sc->sc_if;
661 int s;
662
663 usbd_unmap_buffer(xfer);
664
665 if (status != USBD_NORMAL_COMPLETION) {
666 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
667 return;
668
669 printf("%s: could not transmit buffer: %s\n",
670 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
671
672 if (status == USBD_STALLED)
673 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
674
675 ifp->if_oerrors++;
676 return;
677 }
678
679 s = splnet();
680
681 m_freem(data->ue_mbuf);
682 data->ue_mbuf = NULL;
683 ieee80211_free_node(sc->tx_ni[data->ue_idx]);
684 sc->tx_ni[data->ue_idx] = NULL;
685
686 sc->tx_queued--;
687 ifp->if_opackets++;
688
689 DPRINTFN(10, ("tx done\n"));
690
691 sc->sc_tx_timer = 0;
692 ifp->if_flags &= ~IFF_OACTIVE;
693 rum_start(ifp);
694
695 splx(s);
696 }
697
698 Static void
699 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
700 {
701 struct ue_chain *data = priv;
702 struct rum_softc *sc = (void *)data->ue_dev;
703 struct ieee80211com *ic = &sc->sc_ic;
704 struct ifnet *ifp = &sc->sc_if;
705 struct rum_rx_desc *desc;
706 struct ieee80211_frame *wh;
707 struct ieee80211_node *ni;
708 struct mbuf *m;
709 int s, len;
710
711 usbd_unmap_buffer(xfer);
712
713 if (status != USBD_NORMAL_COMPLETION) {
714 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
715 return;
716
717 if (status == USBD_STALLED)
718 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
719 goto skip;
720 }
721
722 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
723
724 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
725 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
726 len));
727 ifp->if_ierrors++;
728 goto skip;
729 }
730
731 m = data->ue_mbuf;
732 desc = mtod(m, struct rum_rx_desc *);
733
734 if (UGETDW((u_int8_t *)&desc->flags) & RT2573_RX_CRC_ERROR) {
735 /*
736 * This should not happen since we did not request to receive
737 * those frames when we filled RT2573_TXRX_CSR0.
738 */
739 DPRINTFN(5, ("CRC error\n"));
740 ifp->if_ierrors++;
741 goto skip;
742 }
743
744 /*
745 * Allocate new mbuf cluster for the next transfer.
746 * If that failed, discard current packet and recycle the mbuf.
747 */
748 if ((data->ue_mbuf = usb_ether_newbuf(NULL)) == NULL) {
749 printf("%s: no memory for rx list -- packet dropped!\n",
750 USBDEVNAME(sc->sc_dev));
751 ifp->if_ierrors++;
752 data->ue_mbuf = usb_ether_newbuf(m);
753 goto skip;
754 }
755
756 /* finalize mbuf */
757 m->m_pkthdr.rcvif = ifp;
758 m->m_data = (void *)(desc + 1);
759 m->m_pkthdr.len = m->m_len = UGETW((u_int8_t *)&desc->flags + 2);
760
761 s = splnet();
762
763 #if NBPFILTER > 0
764 if (sc->sc_drvbpf != NULL) {
765 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
766
767 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
768 tap->wr_rate = rum_rxrate(desc);
769 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
770 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
771 tap->wr_antenna = sc->rx_ant;
772 tap->wr_antsignal = desc->rssi;
773
774 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
775 }
776 #endif
777
778 wh = mtod(m, struct ieee80211_frame *);
779 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
780
781 /* send the frame to the 802.11 layer */
782 ieee80211_input(ic, m, ni, desc->rssi, 0);
783
784 /* node is no longer needed */
785 ieee80211_free_node(ni);
786
787 splx(s);
788
789 DPRINTFN(15, ("rx done\n"));
790
791 skip: /* setup a new transfer */
792 (void)usbd_map_buffer_mbuf(xfer, data->ue_mbuf);
793 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, NULL /* XXX buf */, MCLBYTES,
794 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
795 usbd_transfer(xfer);
796 }
797
798 /*
799 * This function is only used by the Rx radiotap code. It returns the rate at
800 * which a given frame was received.
801 */
802 #if NBPFILTER > 0
803 Static uint8_t
804 rum_rxrate(struct rum_rx_desc *desc)
805 {
806 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
807 /* reverse function of rum_plcp_signal */
808 switch (desc->rate) {
809 case 0xb: return 12;
810 case 0xf: return 18;
811 case 0xa: return 24;
812 case 0xe: return 36;
813 case 0x9: return 48;
814 case 0xd: return 72;
815 case 0x8: return 96;
816 case 0xc: return 108;
817 }
818 } else {
819 if (desc->rate == 10)
820 return 2;
821 if (desc->rate == 20)
822 return 4;
823 if (desc->rate == 55)
824 return 11;
825 if (desc->rate == 110)
826 return 22;
827 }
828 return 2; /* should not get there */
829 }
830 #endif
831
832 /*
833 * Return the expected ack rate for a frame transmitted at rate `rate'.
834 * XXX: this should depend on the destination node basic rate set.
835 */
836 Static int
837 rum_ack_rate(struct ieee80211com *ic, int rate)
838 {
839 switch (rate) {
840 /* CCK rates */
841 case 2:
842 return 2;
843 case 4:
844 case 11:
845 case 22:
846 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
847
848 /* OFDM rates */
849 case 12:
850 case 18:
851 return 12;
852 case 24:
853 case 36:
854 return 24;
855 case 48:
856 case 72:
857 case 96:
858 case 108:
859 return 48;
860 }
861
862 /* default to 1Mbps */
863 return 2;
864 }
865
866 /*
867 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
868 * The function automatically determines the operating mode depending on the
869 * given rate. `flags' indicates whether short preamble is in use or not.
870 */
871 Static uint16_t
872 rum_txtime(int len, int rate, uint32_t flags)
873 {
874 uint16_t txtime;
875
876 if (RUM_RATE_IS_OFDM(rate)) {
877 /* IEEE Std 802.11a-1999, pp. 37 */
878 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
879 txtime = 16 + 4 + 4 * txtime + 6;
880 } else {
881 /* IEEE Std 802.11b-1999, pp. 28 */
882 txtime = (16 * len + rate - 1) / rate;
883 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
884 txtime += 72 + 24;
885 else
886 txtime += 144 + 48;
887 }
888 return txtime;
889 }
890
891 Static uint8_t
892 rum_plcp_signal(int rate)
893 {
894 switch (rate) {
895 /* CCK rates (returned values are device-dependent) */
896 case 2: return 0x0;
897 case 4: return 0x1;
898 case 11: return 0x2;
899 case 22: return 0x3;
900
901 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
902 case 12: return 0xb;
903 case 18: return 0xf;
904 case 24: return 0xa;
905 case 36: return 0xe;
906 case 48: return 0x9;
907 case 72: return 0xd;
908 case 96: return 0x8;
909 case 108: return 0xc;
910
911 /* unsupported rates (should not get there) */
912 default: return 0xff;
913 }
914 }
915
916 Static void
917 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
918 uint32_t flags, uint16_t xflags, int len, int rate)
919 {
920 struct ieee80211com *ic = &sc->sc_ic;
921 uint16_t plcp_length;
922 int remainder;
923
924 desc->flags = htole32(flags);
925 desc->flags |= htole32(RT2573_TX_VALID);
926 desc->flags |= htole32(len << 16);
927
928 desc->xflags = htole16(xflags);
929
930 desc->wme = htole16(
931 RT2573_QID(0) |
932 RT2573_AIFSN(2) |
933 RT2573_LOGCWMIN(4) |
934 RT2573_LOGCWMAX(10));
935
936 /* setup PLCP fields */
937 desc->plcp_signal = rum_plcp_signal(rate);
938 desc->plcp_service = 4;
939
940 len += IEEE80211_CRC_LEN;
941 if (RUM_RATE_IS_OFDM(rate)) {
942 desc->flags |= htole32(RT2573_TX_OFDM);
943
944 plcp_length = len & 0xfff;
945 desc->plcp_length_hi = plcp_length >> 6;
946 desc->plcp_length_lo = plcp_length & 0x3f;
947 } else {
948 plcp_length = (16 * len + rate - 1) / rate;
949 if (rate == 22) {
950 remainder = (16 * len) % 22;
951 if (remainder != 0 && remainder < 7)
952 desc->plcp_service |= RT2573_PLCP_LENGEXT;
953 }
954 desc->plcp_length_hi = plcp_length >> 8;
955 desc->plcp_length_lo = plcp_length & 0xff;
956
957 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
958 desc->plcp_signal |= 0x08;
959 }
960 }
961
962 #define RUM_TX_TIMEOUT 5000
963
964 Static int
965 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
966 {
967 struct ieee80211com *ic = &sc->sc_ic;
968 struct rum_tx_desc *desc;
969 struct ue_chain *data;
970 struct ieee80211_frame *wh;
971 uint32_t flags = 0;
972 uint16_t dur;
973 usbd_status error;
974 int xferlen, rate;
975 int ret;
976
977 data = &sc->tx_data[0];
978
979 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
980
981 data->ue_mbuf = m0;
982 sc->tx_ni[data->ue_idx] = ni;
983
984 wh = mtod(m0, struct ieee80211_frame *);
985
986 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
987 flags |= RT2573_TX_ACK;
988
989 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
990 ic->ic_flags) + sc->sifs;
991 *(uint16_t *)wh->i_dur = htole16(dur);
992
993 /* tell hardware to set timestamp in probe responses */
994 if ((wh->i_fc[0] &
995 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
996 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
997 flags |= RT2573_TX_TIMESTAMP;
998 }
999
1000 #if NBPFILTER > 0
1001 if (sc->sc_drvbpf != NULL) {
1002 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1003
1004 tap->wt_flags = 0;
1005 tap->wt_rate = rate;
1006 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1007 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1008 tap->wt_antenna = sc->tx_ant;
1009
1010 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1011 }
1012 #endif
1013
1014 /* Prepend Tx descriptor */
1015 M_PREPEND(m0, RT2573_TX_DESC_SIZE, M_DONTWAIT);
1016 if (m0 != NULL)
1017 m0 = m_pullup(m0, RT2573_TX_DESC_SIZE); /* just in case */
1018 if (m0 == NULL) {
1019 return ENOBUFS;
1020 }
1021 desc = mtod(m0, struct rum_tx_desc *);
1022
1023 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1024
1025 /* align end on a 4-bytes boundary */
1026 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1027
1028 /*
1029 * No space left in the last URB to store the extra 4 bytes, force
1030 * sending of another URB.
1031 */
1032 if ((xferlen % 64) == 0)
1033 xferlen += 4;
1034
1035 if (m0->m_pkthdr.len != xferlen) {
1036 m_copyback(m0, xferlen - 1, 1, ""); /* expand mbuf chain */
1037 if (m0->m_pkthdr.len != xferlen) {
1038 m_freem(m0);
1039 return ENOBUFS;
1040 }
1041 }
1042
1043 ret = usb_ether_map_tx_buffer_mbuf(data, m0);
1044 if (ret) {
1045 m_freem(m0);
1046 return ret;
1047 }
1048
1049 DPRINTFN(10, ("sending msg frame len=%lu rate=%u xfer len=%u\n",
1050 (long unsigned int)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1051 rate, xferlen));
1052
1053 usbd_setup_xfer(data->ue_xfer, sc->sc_tx_pipeh, data, NULL /* XXX buf */, xferlen,
1054 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1055
1056 error = usbd_transfer(data->ue_xfer);
1057 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1058 data->ue_mbuf = NULL;
1059 m_freem(m0);
1060 return error;
1061 }
1062
1063 sc->tx_queued++;
1064
1065 return 0;
1066 }
1067
1068 Static int
1069 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1070 {
1071 struct ieee80211com *ic = &sc->sc_ic;
1072 struct rum_tx_desc *desc;
1073 struct ue_chain *data;
1074 struct ieee80211_frame *wh;
1075 struct ieee80211_key *k;
1076 uint32_t flags = 0;
1077 uint16_t dur;
1078 usbd_status error;
1079 int xferlen, rate;
1080 int ret;
1081
1082 wh = mtod(m0, struct ieee80211_frame *);
1083
1084 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1085 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1086 else
1087 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1088 rate &= IEEE80211_RATE_VAL;
1089
1090 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1091 k = ieee80211_crypto_encap(ic, ni, m0);
1092 if (k == NULL) {
1093 m_freem(m0);
1094 return ENOBUFS;
1095 }
1096
1097 /* packet header may have moved, reset our local pointer */
1098 wh = mtod(m0, struct ieee80211_frame *);
1099 }
1100
1101 data = &sc->tx_data[0];
1102
1103 data->ue_mbuf = m0;
1104 sc->tx_ni[data->ue_idx] = ni;
1105
1106 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1107 flags |= RT2573_TX_ACK;
1108
1109 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1110 ic->ic_flags) + sc->sifs;
1111 *(uint16_t *)wh->i_dur = htole16(dur);
1112 }
1113
1114 #if NBPFILTER > 0
1115 if (sc->sc_drvbpf != NULL) {
1116 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1117
1118 tap->wt_flags = 0;
1119 tap->wt_rate = rate;
1120 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1121 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1122 tap->wt_antenna = sc->tx_ant;
1123
1124 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1125 }
1126 #endif
1127
1128 /* Prepend Tx descriptor */
1129 M_PREPEND(m0, RT2573_TX_DESC_SIZE, M_DONTWAIT);
1130 if (m0 != NULL)
1131 m0 = m_pullup(m0, RT2573_TX_DESC_SIZE); /* just in case */
1132 if (m0 == NULL) {
1133 return ENOBUFS;
1134 }
1135 desc = mtod(m0, struct rum_tx_desc *);
1136
1137 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1138
1139 /* align end on a 4-bytes boundary */
1140 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1141
1142 /*
1143 * No space left in the last URB to store the extra 4 bytes, force
1144 * sending of another URB.
1145 */
1146 if ((xferlen % 64) == 0)
1147 xferlen += 4;
1148
1149 if (m0->m_pkthdr.len != xferlen) {
1150 m_copyback(m0, xferlen - 1, 1, ""); /* expand mbuf chain */
1151 if (m0->m_pkthdr.len != xferlen) {
1152 m_freem(m0);
1153 return ENOBUFS;
1154 }
1155 }
1156
1157 ret = usb_ether_map_tx_buffer_mbuf(data, m0);
1158 if (ret) {
1159 m_freem(m0);
1160 return ret;
1161 }
1162
1163 DPRINTFN(10, ("sending data frame len=%lu rate=%u xfer len=%u\n",
1164 (long unsigned int)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1165 rate, xferlen));
1166
1167 usbd_setup_xfer(data->ue_xfer, sc->sc_tx_pipeh, data, NULL /* XXX buf */, xferlen,
1168 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1169
1170 error = usbd_transfer(data->ue_xfer);
1171 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1172 data->ue_mbuf = NULL;
1173 m_freem(m0);
1174 return error;
1175 }
1176
1177 sc->tx_queued++;
1178
1179 return 0;
1180 }
1181
1182 Static void
1183 rum_start(struct ifnet *ifp)
1184 {
1185 struct rum_softc *sc = ifp->if_softc;
1186 struct ieee80211com *ic = &sc->sc_ic;
1187 struct ether_header *eh;
1188 struct ieee80211_node *ni;
1189 struct mbuf *m0;
1190
1191 for (;;) {
1192 IF_POLL(&ic->ic_mgtq, m0);
1193 if (m0 != NULL) {
1194 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1195 ifp->if_flags |= IFF_OACTIVE;
1196 break;
1197 }
1198 IF_DEQUEUE(&ic->ic_mgtq, m0);
1199
1200 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1201 m0->m_pkthdr.rcvif = NULL;
1202 #if NBPFILTER > 0
1203 if (ic->ic_rawbpf != NULL)
1204 bpf_mtap(ic->ic_rawbpf, m0);
1205 #endif
1206 if (rum_tx_mgt(sc, m0, ni) != 0)
1207 break;
1208
1209 } else {
1210 if (ic->ic_state != IEEE80211_S_RUN)
1211 break;
1212 IFQ_POLL(&ifp->if_snd, m0);
1213 if (m0 == NULL)
1214 break;
1215 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1216 ifp->if_flags |= IFF_OACTIVE;
1217 break;
1218 }
1219 IFQ_DEQUEUE(&ifp->if_snd, m0);
1220 if (m0->m_len < sizeof(struct ether_header) &&
1221 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1222 continue;
1223
1224 eh = mtod(m0, struct ether_header *);
1225 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1226 if (ni == NULL) {
1227 m_freem(m0);
1228 continue;
1229 }
1230 #if NBPFILTER > 0
1231 if (ifp->if_bpf != NULL)
1232 bpf_mtap(ifp->if_bpf, m0);
1233 #endif
1234 m0 = ieee80211_encap(ic, m0, ni);
1235 if (m0 == NULL) {
1236 ieee80211_free_node(ni);
1237 continue;
1238 }
1239 #if NBPFILTER > 0
1240 if (ic->ic_rawbpf != NULL)
1241 bpf_mtap(ic->ic_rawbpf, m0);
1242 #endif
1243 if (rum_tx_data(sc, m0, ni) != 0) {
1244 ieee80211_free_node(ni);
1245 ifp->if_oerrors++;
1246 break;
1247 }
1248 }
1249
1250 sc->sc_tx_timer = 5;
1251 ifp->if_timer = 1;
1252 }
1253 }
1254
1255 Static void
1256 rum_watchdog(struct ifnet *ifp)
1257 {
1258 struct rum_softc *sc = ifp->if_softc;
1259 struct ieee80211com *ic = &sc->sc_ic;
1260
1261 ifp->if_timer = 0;
1262
1263 if (sc->sc_tx_timer > 0) {
1264 if (--sc->sc_tx_timer == 0) {
1265 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1266 /*rum_init(ifp); XXX needs a process context! */
1267 ifp->if_oerrors++;
1268 return;
1269 }
1270 ifp->if_timer = 1;
1271 }
1272
1273 ieee80211_watchdog(ic);
1274 }
1275
1276 Static int
1277 rum_ioctl(struct ifnet *ifp, u_long cmd, usb_ioctlarg_t data)
1278 {
1279 struct rum_softc *sc = ifp->if_softc;
1280 struct ieee80211com *ic = &sc->sc_ic;
1281 int s, error = 0;
1282
1283 s = splnet();
1284
1285 switch (cmd) {
1286 case SIOCSIFFLAGS:
1287 if (ifp->if_flags & IFF_UP) {
1288 if (ifp->if_flags & IFF_RUNNING)
1289 rum_update_promisc(sc);
1290 else
1291 rum_init(ifp);
1292 } else {
1293 if (ifp->if_flags & IFF_RUNNING)
1294 rum_stop(ifp, 1);
1295 }
1296 break;
1297
1298 default:
1299 error = ieee80211_ioctl(ic, cmd, data);
1300 }
1301
1302 if (error == ENETRESET) {
1303 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1304 (IFF_UP | IFF_RUNNING))
1305 rum_init(ifp);
1306 error = 0;
1307 }
1308
1309 splx(s);
1310
1311 return error;
1312 }
1313
1314 Static void
1315 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1316 {
1317 usb_device_request_t req;
1318 usbd_status error;
1319
1320 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1321 req.bRequest = RT2573_READ_EEPROM;
1322 USETW(req.wValue, 0);
1323 USETW(req.wIndex, addr);
1324 USETW(req.wLength, len);
1325
1326 error = usbd_do_request(sc->sc_udev, &req, buf);
1327 if (error != 0) {
1328 printf("%s: could not read EEPROM: %s\n",
1329 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1330 }
1331 }
1332
1333 Static uint32_t
1334 rum_read(struct rum_softc *sc, uint16_t reg)
1335 {
1336 uint32_t val;
1337
1338 rum_read_multi(sc, reg, &val, sizeof val);
1339
1340 return le32toh(val);
1341 }
1342
1343 Static void
1344 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1345 {
1346 usb_device_request_t req;
1347 usbd_status error;
1348
1349 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1350 req.bRequest = RT2573_READ_MULTI_MAC;
1351 USETW(req.wValue, 0);
1352 USETW(req.wIndex, reg);
1353 USETW(req.wLength, len);
1354
1355 error = usbd_do_request(sc->sc_udev, &req, buf);
1356 if (error != 0) {
1357 printf("%s: could not multi read MAC register: %s\n",
1358 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1359 }
1360 }
1361
1362 Static void
1363 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1364 {
1365 uint32_t tmp = htole32(val);
1366
1367 rum_write_multi(sc, reg, &tmp, sizeof tmp);
1368 }
1369
1370 Static void
1371 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1372 {
1373 usb_device_request_t req;
1374 usbd_status error;
1375
1376 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1377 req.bRequest = RT2573_WRITE_MULTI_MAC;
1378 USETW(req.wValue, 0);
1379 USETW(req.wIndex, reg);
1380 USETW(req.wLength, len);
1381
1382 error = usbd_do_request(sc->sc_udev, &req, buf);
1383 if (error != 0) {
1384 printf("%s: could not multi write MAC register: %s\n",
1385 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1386 }
1387 }
1388
1389 Static void
1390 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1391 {
1392 uint32_t tmp;
1393 int ntries;
1394
1395 for (ntries = 0; ntries < 5; ntries++) {
1396 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1397 break;
1398 }
1399 if (ntries == 5) {
1400 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1401 return;
1402 }
1403
1404 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1405 rum_write(sc, RT2573_PHY_CSR3, tmp);
1406 }
1407
1408 Static uint8_t
1409 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1410 {
1411 uint32_t val;
1412 int ntries;
1413
1414 for (ntries = 0; ntries < 5; ntries++) {
1415 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1416 break;
1417 }
1418 if (ntries == 5) {
1419 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1420 return 0;
1421 }
1422
1423 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1424 rum_write(sc, RT2573_PHY_CSR3, val);
1425
1426 for (ntries = 0; ntries < 100; ntries++) {
1427 val = rum_read(sc, RT2573_PHY_CSR3);
1428 if (!(val & RT2573_BBP_BUSY))
1429 return val & 0xff;
1430 DELAY(1);
1431 }
1432
1433 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1434 return 0;
1435 }
1436
1437 Static void
1438 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1439 {
1440 uint32_t tmp;
1441 int ntries;
1442
1443 for (ntries = 0; ntries < 5; ntries++) {
1444 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1445 break;
1446 }
1447 if (ntries == 5) {
1448 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1449 return;
1450 }
1451
1452 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1453 (reg & 3);
1454 rum_write(sc, RT2573_PHY_CSR4, tmp);
1455
1456 /* remember last written value in sc */
1457 sc->rf_regs[reg] = val;
1458
1459 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1460 }
1461
1462 Static void
1463 rum_select_antenna(struct rum_softc *sc)
1464 {
1465 uint8_t bbp4, bbp77;
1466 uint32_t tmp;
1467
1468 bbp4 = rum_bbp_read(sc, 4);
1469 bbp77 = rum_bbp_read(sc, 77);
1470
1471 /* TBD */
1472
1473 /* make sure Rx is disabled before switching antenna */
1474 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1475 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1476
1477 rum_bbp_write(sc, 4, bbp4);
1478 rum_bbp_write(sc, 77, bbp77);
1479
1480 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1481 }
1482
1483 /*
1484 * Enable multi-rate retries for frames sent at OFDM rates.
1485 * In 802.11b/g mode, allow fallback to CCK rates.
1486 */
1487 Static void
1488 rum_enable_mrr(struct rum_softc *sc)
1489 {
1490 struct ieee80211com *ic = &sc->sc_ic;
1491 uint32_t tmp;
1492
1493 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1494
1495 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1496 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1497 tmp |= RT2573_MRR_CCK_FALLBACK;
1498 tmp |= RT2573_MRR_ENABLED;
1499
1500 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1501 }
1502
1503 Static void
1504 rum_set_txpreamble(struct rum_softc *sc)
1505 {
1506 uint32_t tmp;
1507
1508 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1509
1510 tmp &= ~RT2573_SHORT_PREAMBLE;
1511 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1512 tmp |= RT2573_SHORT_PREAMBLE;
1513
1514 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1515 }
1516
1517 Static void
1518 rum_set_basicrates(struct rum_softc *sc)
1519 {
1520 struct ieee80211com *ic = &sc->sc_ic;
1521
1522 /* update basic rate set */
1523 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1524 /* 11b basic rates: 1, 2Mbps */
1525 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1526 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1527 /* 11a basic rates: 6, 12, 24Mbps */
1528 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1529 } else {
1530 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1531 rum_write(sc, RT2573_TXRX_CSR5, 0x15f);
1532 }
1533 }
1534
1535 /*
1536 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1537 * driver.
1538 */
1539 Static void
1540 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1541 {
1542 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1543 uint32_t tmp;
1544
1545 /* update all BBP registers that depend on the band */
1546 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1547 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1548 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1549 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1550 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1551 }
1552 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1553 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1554 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1555 }
1556
1557 sc->bbp17 = bbp17;
1558 rum_bbp_write(sc, 17, bbp17);
1559 rum_bbp_write(sc, 96, bbp96);
1560 rum_bbp_write(sc, 104, bbp104);
1561
1562 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1563 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1564 rum_bbp_write(sc, 75, 0x80);
1565 rum_bbp_write(sc, 86, 0x80);
1566 rum_bbp_write(sc, 88, 0x80);
1567 }
1568
1569 rum_bbp_write(sc, 35, bbp35);
1570 rum_bbp_write(sc, 97, bbp97);
1571 rum_bbp_write(sc, 98, bbp98);
1572
1573 tmp = rum_read(sc, RT2573_PHY_CSR0);
1574 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1575 if (IEEE80211_IS_CHAN_2GHZ(c))
1576 tmp |= RT2573_PA_PE_2GHZ;
1577 else
1578 tmp |= RT2573_PA_PE_5GHZ;
1579 rum_write(sc, RT2573_PHY_CSR0, tmp);
1580
1581 /* 802.11a uses a 16 microseconds short interframe space */
1582 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1583 }
1584
1585 Static void
1586 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1587 {
1588 struct ieee80211com *ic = &sc->sc_ic;
1589 const struct rfprog *rfprog;
1590 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1591 int8_t power;
1592 u_int i, chan;
1593
1594 chan = ieee80211_chan2ieee(ic, c);
1595 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1596 return;
1597
1598 /* select the appropriate RF settings based on what EEPROM says */
1599 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1600 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1601
1602 /* find the settings for this channel (we know it exists) */
1603 for (i = 0; rfprog[i].chan != chan; i++);
1604
1605 power = sc->txpow[i];
1606 if (power < 0) {
1607 bbp94 += power;
1608 power = 0;
1609 } else if (power > 31) {
1610 bbp94 += power - 31;
1611 power = 31;
1612 }
1613
1614 /*
1615 * If we are switching from the 2GHz band to the 5GHz band or
1616 * vice-versa, BBP registers need to be reprogrammed.
1617 */
1618 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1619 rum_select_band(sc, c);
1620 rum_select_antenna(sc);
1621 }
1622 ic->ic_curchan = c;
1623
1624 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1625 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1626 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1627 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1628
1629 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1630 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1631 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1632 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1633
1634 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1635 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1636 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1637 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1638
1639 DELAY(10);
1640
1641 /* enable smart mode for MIMO-capable RFs */
1642 bbp3 = rum_bbp_read(sc, 3);
1643
1644 bbp3 &= ~RT2573_SMART_MODE;
1645 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1646 bbp3 |= RT2573_SMART_MODE;
1647
1648 rum_bbp_write(sc, 3, bbp3);
1649
1650 if (bbp94 != RT2573_BBPR94_DEFAULT)
1651 rum_bbp_write(sc, 94, bbp94);
1652 }
1653
1654 /*
1655 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1656 * and HostAP operating modes.
1657 */
1658 Static void
1659 rum_enable_tsf_sync(struct rum_softc *sc)
1660 {
1661 struct ieee80211com *ic = &sc->sc_ic;
1662 uint32_t tmp;
1663
1664 if (ic->ic_opmode != IEEE80211_M_STA) {
1665 /*
1666 * Change default 16ms TBTT adjustment to 8ms.
1667 * Must be done before enabling beacon generation.
1668 */
1669 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1670 }
1671
1672 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1673
1674 /* set beacon interval (in 1/16ms unit) */
1675 tmp |= ic->ic_bss->ni_intval * 16;
1676
1677 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1678 if (ic->ic_opmode == IEEE80211_M_STA)
1679 tmp |= RT2573_TSF_MODE(1);
1680 else
1681 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1682
1683 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1684 }
1685
1686 Static void
1687 rum_update_slot(struct rum_softc *sc)
1688 {
1689 struct ieee80211com *ic = &sc->sc_ic;
1690 uint8_t slottime;
1691 uint32_t tmp;
1692
1693 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1694
1695 tmp = rum_read(sc, RT2573_MAC_CSR9);
1696 tmp = (tmp & ~0xff) | slottime;
1697 rum_write(sc, RT2573_MAC_CSR9, tmp);
1698
1699 DPRINTF(("setting slot time to %uus\n", slottime));
1700 }
1701
1702 Static void
1703 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1704 {
1705 uint32_t tmp;
1706
1707 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1708 rum_write(sc, RT2573_MAC_CSR4, tmp);
1709
1710 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1711 rum_write(sc, RT2573_MAC_CSR5, tmp);
1712 }
1713
1714 Static void
1715 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1716 {
1717 uint32_t tmp;
1718
1719 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1720 rum_write(sc, RT2573_MAC_CSR2, tmp);
1721
1722 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1723 rum_write(sc, RT2573_MAC_CSR3, tmp);
1724 }
1725
1726 Static void
1727 rum_update_promisc(struct rum_softc *sc)
1728 {
1729 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1730 uint32_t tmp;
1731
1732 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1733
1734 tmp &= ~RT2573_DROP_NOT_TO_ME;
1735 if (!(ifp->if_flags & IFF_PROMISC))
1736 tmp |= RT2573_DROP_NOT_TO_ME;
1737
1738 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1739
1740 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1741 "entering" : "leaving"));
1742 }
1743
1744 Static const char *
1745 rum_get_rf(int rev)
1746 {
1747 switch (rev) {
1748 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1749 case RT2573_RF_2528: return "RT2528";
1750 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1751 case RT2573_RF_5226: return "RT5226";
1752 default: return "unknown";
1753 }
1754 }
1755
1756 Static void
1757 rum_read_eeprom(struct rum_softc *sc)
1758 {
1759 struct ieee80211com *ic = &sc->sc_ic;
1760 uint16_t val;
1761 #ifdef RUM_DEBUG
1762 int i;
1763 #endif
1764
1765 /* read MAC/BBP type */
1766 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1767 sc->macbbp_rev = le16toh(val);
1768
1769 /* read MAC address */
1770 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1771
1772 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1773 val = le16toh(val);
1774 sc->rf_rev = (val >> 11) & 0x1f;
1775 sc->hw_radio = (val >> 10) & 0x1;
1776 sc->rx_ant = (val >> 4) & 0x3;
1777 sc->tx_ant = (val >> 2) & 0x3;
1778 sc->nb_ant = val & 0x3;
1779
1780 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1781
1782 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1783 val = le16toh(val);
1784 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1785 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1786
1787 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1788 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1789
1790 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1791 val = le16toh(val);
1792 if ((val & 0xff) != 0xff)
1793 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1794
1795 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1796 val = le16toh(val);
1797 if ((val & 0xff) != 0xff)
1798 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1799
1800 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1801 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1802
1803 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1804 val = le16toh(val);
1805 if ((val & 0xff) != 0xff)
1806 sc->rffreq = val & 0xff;
1807
1808 DPRINTF(("RF freq=%d\n", sc->rffreq));
1809
1810 /* read Tx power for all a/b/g channels */
1811 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1812 /* XXX default Tx power for 802.11a channels */
1813 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1814 #ifdef RUM_DEBUG
1815 for (i = 0; i < 14; i++)
1816 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1817 #endif
1818
1819 /* read default values for BBP registers */
1820 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1821 #ifdef RUM_DEBUG
1822 for (i = 0; i < 14; i++) {
1823 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1824 continue;
1825 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1826 sc->bbp_prom[i].val));
1827 }
1828 #endif
1829 }
1830
1831 Static int
1832 rum_bbp_init(struct rum_softc *sc)
1833 {
1834 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1835 int i, ntries;
1836 uint8_t val;
1837
1838 /* wait for BBP to be ready */
1839 for (ntries = 0; ntries < 100; ntries++) {
1840 val = rum_bbp_read(sc, 0);
1841 if (val != 0 && val != 0xff)
1842 break;
1843 DELAY(1000);
1844 }
1845 if (ntries == 100) {
1846 printf("%s: timeout waiting for BBP\n",
1847 USBDEVNAME(sc->sc_dev));
1848 return EIO;
1849 }
1850
1851 /* initialize BBP registers to default values */
1852 for (i = 0; i < N(rum_def_bbp); i++)
1853 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1854
1855 /* write vendor-specific BBP values (from EEPROM) */
1856 for (i = 0; i < 16; i++) {
1857 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1858 continue;
1859 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1860 }
1861
1862 return 0;
1863 #undef N
1864 }
1865
1866 Static int
1867 rum_init(struct ifnet *ifp)
1868 {
1869 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1870 struct rum_softc *sc = ifp->if_softc;
1871 struct ieee80211com *ic = &sc->sc_ic;
1872 struct ue_chain *data;
1873 uint32_t tmp;
1874 usbd_status uerror;
1875 int error;
1876 int i, ntries;
1877
1878 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1879 if (rum_attachhook(sc)) {
1880 error = EIO;
1881 goto fail;
1882 }
1883 }
1884
1885 rum_stop(ifp, 0);
1886
1887 /* initialize MAC registers to default values */
1888 for (i = 0; i < N(rum_def_mac); i++)
1889 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1890
1891 /* set host ready */
1892 rum_write(sc, RT2573_MAC_CSR1, 3);
1893 rum_write(sc, RT2573_MAC_CSR1, 0);
1894
1895 /* wait for BBP/RF to wakeup */
1896 for (ntries = 0; ntries < 1000; ntries++) {
1897 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1898 break;
1899 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1900 DELAY(1000);
1901 }
1902 if (ntries == 1000) {
1903 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1904 USBDEVNAME(sc->sc_dev));
1905 error = EIO;
1906 goto fail;
1907 }
1908
1909 if ((error = rum_bbp_init(sc)) != 0)
1910 goto fail;
1911
1912 /* select default channel */
1913 rum_select_band(sc, ic->ic_curchan);
1914 rum_select_antenna(sc);
1915 rum_set_chan(sc, ic->ic_curchan);
1916
1917 /* clear STA registers */
1918 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1919
1920 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1921 rum_set_macaddr(sc, ic->ic_myaddr);
1922
1923 /* initialize ASIC */
1924 rum_write(sc, RT2573_MAC_CSR1, 4);
1925
1926 /*
1927 * Allocate xfer for AMRR statistics requests.
1928 */
1929 sc->amrr_xfer = usbd_alloc_default_xfer(sc->sc_udev);
1930 if (sc->amrr_xfer == NULL) {
1931 printf("%s: could not allocate AMRR xfer\n",
1932 USBDEVNAME(sc->sc_dev));
1933 goto fail;
1934 }
1935
1936 /*
1937 * Open Tx and Rx USB bulk pipes.
1938 */
1939 uerror = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
1940 &sc->sc_tx_pipeh);
1941 if (uerror != USBD_NORMAL_COMPLETION) {
1942 printf("%s: could not open Tx pipe: %s\n",
1943 USBDEVNAME(sc->sc_dev), usbd_errstr(uerror));
1944 error = EIO;
1945 goto fail;
1946 }
1947
1948 uerror = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
1949 &sc->sc_rx_pipeh);
1950 if (uerror != USBD_NORMAL_COMPLETION) {
1951 printf("%s: could not open Rx pipe: %s\n",
1952 USBDEVNAME(sc->sc_dev), usbd_errstr(uerror));
1953 error = EIO;
1954 goto fail;
1955 }
1956
1957 /*
1958 * Allocate Tx and Rx xfer queues.
1959 */
1960 sc->tx_queued = 0;
1961 error = usb_ether_tx_list_init(USBDEV(sc->sc_dev),
1962 sc->tx_data, RT2573_TX_LIST_COUNT,
1963 sc->sc_udev, sc->sc_tx_pipeh, NULL);
1964 if (error != 0) {
1965 printf("%s: could not allocate Tx list\n",
1966 USBDEVNAME(sc->sc_dev));
1967 goto fail;
1968 }
1969
1970 error = usb_ether_rx_list_init(USBDEV(sc->sc_dev),
1971 sc->rx_data, RT2573_RX_LIST_COUNT,
1972 sc->sc_udev, sc->sc_rx_pipeh);
1973 if (error != 0) {
1974 printf("%s: could not allocate Rx list\n",
1975 USBDEVNAME(sc->sc_dev));
1976 goto fail;
1977 }
1978
1979 /*
1980 * Start up the receive pipe.
1981 */
1982 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
1983 data = &sc->rx_data[i];
1984
1985 (void)usbd_map_buffer_mbuf(data->ue_xfer, data->ue_mbuf);
1986 usbd_setup_xfer(data->ue_xfer, sc->sc_rx_pipeh, data, NULL /* XXX buf */,
1987 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
1988 usbd_transfer(data->ue_xfer);
1989 }
1990
1991 /* update Rx filter */
1992 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
1993
1994 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
1995 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1996 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
1997 RT2573_DROP_ACKCTS;
1998 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
1999 tmp |= RT2573_DROP_TODS;
2000 if (!(ifp->if_flags & IFF_PROMISC))
2001 tmp |= RT2573_DROP_NOT_TO_ME;
2002 }
2003 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2004
2005 ifp->if_flags &= ~IFF_OACTIVE;
2006 ifp->if_flags |= IFF_RUNNING;
2007
2008 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2009 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2010 else
2011 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2012
2013 return 0;
2014
2015 fail: rum_stop(ifp, 1);
2016 return error;
2017 #undef N
2018 }
2019
2020 Static void
2021 rum_stop(struct ifnet *ifp, int disable)
2022 {
2023 struct rum_softc *sc = ifp->if_softc;
2024 struct ieee80211com *ic = &sc->sc_ic;
2025 uint32_t tmp;
2026
2027 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2028
2029 sc->sc_tx_timer = 0;
2030 ifp->if_timer = 0;
2031 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2032
2033 /* disable Rx */
2034 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2035 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2036
2037 /* reset ASIC */
2038 rum_write(sc, RT2573_MAC_CSR1, 3);
2039 rum_write(sc, RT2573_MAC_CSR1, 0);
2040
2041 /* Stop transfers. */
2042 if (sc->sc_rx_pipeh != NULL)
2043 usbd_abort_pipe(sc->sc_rx_pipeh);
2044 if (sc->sc_tx_pipeh != NULL)
2045 usbd_abort_pipe(sc->sc_tx_pipeh);
2046
2047 /* Free RX/TX resources. */
2048 rum_free_rx_list(sc);
2049 rum_free_tx_list(sc);
2050
2051 /* Close pipes. */
2052 if (sc->sc_rx_pipeh != NULL) {
2053 usbd_close_pipe(sc->sc_rx_pipeh);
2054 sc->sc_rx_pipeh = NULL;
2055 }
2056
2057 if (sc->sc_tx_pipeh != NULL) {
2058 usbd_close_pipe(sc->sc_tx_pipeh);
2059 sc->sc_tx_pipeh = NULL;
2060 }
2061 }
2062
2063 Static int
2064 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2065 {
2066 usb_device_request_t req;
2067 uint16_t reg = RT2573_MCU_CODE_BASE;
2068 usbd_status error;
2069
2070 /* copy firmware image into NIC */
2071 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2072 rum_write(sc, reg, UGETDW(ucode));
2073
2074 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2075 req.bRequest = RT2573_MCU_CNTL;
2076 USETW(req.wValue, RT2573_MCU_RUN);
2077 USETW(req.wIndex, 0);
2078 USETW(req.wLength, 0);
2079
2080 error = usbd_do_request(sc->sc_udev, &req, NULL);
2081 if (error != 0) {
2082 printf("%s: could not run firmware: %s\n",
2083 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2084 }
2085 return error;
2086 }
2087
2088 Static int
2089 rum_prepare_beacon(struct rum_softc *sc)
2090 {
2091 struct ieee80211com *ic = &sc->sc_ic;
2092 struct rum_tx_desc desc;
2093 struct mbuf *m0;
2094 int rate;
2095
2096 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2097 if (m0 == NULL) {
2098 printf("%s: could not allocate beacon frame\n",
2099 sc->sc_dev.dv_xname);
2100 return ENOBUFS;
2101 }
2102
2103 /* send beacons at the lowest available rate */
2104 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2105
2106 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2107 m0->m_pkthdr.len, rate);
2108
2109 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2110 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2111
2112 /* copy beacon header and payload into NIC memory */
2113 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2114 m0->m_pkthdr.len);
2115
2116 m_freem(m0);
2117
2118 return 0;
2119 }
2120
2121 Static void
2122 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2123 {
2124 int i;
2125
2126 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2127 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2128
2129 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2130
2131 /* set rate to some reasonable initial value */
2132 for (i = ni->ni_rates.rs_nrates - 1;
2133 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2134 i--);
2135 ni->ni_txrate = i;
2136
2137 callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
2138 }
2139
2140 Static void
2141 rum_amrr_timeout(void *arg)
2142 {
2143 struct rum_softc *sc = arg;
2144 usb_device_request_t req;
2145 int s;
2146
2147 s = splusb();
2148
2149 /*
2150 * Asynchronously read statistic registers (cleared by read).
2151 */
2152 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2153 req.bRequest = RT2573_READ_MULTI_MAC;
2154 USETW(req.wValue, 0);
2155 USETW(req.wIndex, RT2573_STA_CSR0);
2156 USETW(req.wLength, sizeof sc->sta);
2157
2158 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2159 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2160 rum_amrr_update);
2161 (void)usbd_transfer(sc->amrr_xfer);
2162
2163 splx(s);
2164 }
2165
2166 Static void
2167 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2168 usbd_status status)
2169 {
2170 struct rum_softc *sc = (struct rum_softc *)priv;
2171 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2172
2173 if (status != USBD_NORMAL_COMPLETION) {
2174 printf("%s: could not retrieve Tx statistics - cancelling "
2175 "automatic rate control\n", USBDEVNAME(sc->sc_dev));
2176 return;
2177 }
2178
2179 /* count TX retry-fail as Tx errors */
2180 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2181
2182 sc->amn.amn_retrycnt =
2183 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2184 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2185 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2186
2187 sc->amn.amn_txcnt =
2188 sc->amn.amn_retrycnt +
2189 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2190
2191 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2192
2193 callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
2194 }
2195
2196 int
2197 rum_activate(device_ptr_t self, enum devact act)
2198 {
2199 switch (act) {
2200 case DVACT_ACTIVATE:
2201 return EOPNOTSUPP;
2202
2203 case DVACT_DEACTIVATE:
2204 /*if_deactivate(&sc->sc_ic.ic_if);*/
2205 break;
2206 }
2207
2208 return 0;
2209 }
2210