if_rum.c revision 1.6.4.5 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.6.4.5 2007/06/21 14:58:18 itohy Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.6.4.5 2007/06/21 14:58:18 itohy Exp $");
28
29 #include "bpfilter.h"
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41
42 #include <machine/bus.h>
43 #include <machine/endian.h>
44 #include <machine/intr.h>
45
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/firmload.h>
67
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72 #include <dev/usb/usb_ethersubr.h>
73
74 #include <dev/usb/if_rumreg.h>
75 #include <dev/usb/if_rumvar.h>
76
77 #ifdef USB_DEBUG
78 #define RUM_DEBUG
79 #endif
80
81 #ifdef RUM_DEBUG
82 #define DPRINTF(x) do { if (rum_debug) logprintf x; } while (0)
83 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) logprintf x; } while (0)
84 int rum_debug = 1;
85 #else
86 #define DPRINTF(x)
87 #define DPRINTFN(n, x)
88 #endif
89
90 /* various supported device vendors/products */
91 static const struct usb_devno rum_devs[] = {
92 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
93 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
94 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
95 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
96 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
97 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
98 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
99 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
100 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
101 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
102 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
103 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
104 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
105 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
106 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
107 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
108 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
109 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
110 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
111 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
112 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
113 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
114 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
115 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
116 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
117 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
118 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
119 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
120 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
121 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
122 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
123 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
124 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
125 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
126 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
127 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
128 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2573 },
129 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
130 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
131 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
132 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }
133 };
134
135 Static int rum_attachhook(void *);
136 Static void rum_free_tx_list(struct rum_softc *);
137 Static void rum_free_rx_list(struct rum_softc *);
138 Static int rum_media_change(struct ifnet *);
139 Static void rum_next_scan(void *);
140 Static void rum_task(void *);
141 Static int rum_newstate(struct ieee80211com *,
142 enum ieee80211_state, int);
143 Static void rum_txeof(usbd_xfer_handle, usbd_private_handle,
144 usbd_status);
145 Static void rum_rxeof(usbd_xfer_handle, usbd_private_handle,
146 usbd_status);
147 #if NBPFILTER > 0
148 Static uint8_t rum_rxrate(struct rum_rx_desc *);
149 #endif
150 Static int rum_ack_rate(struct ieee80211com *, int);
151 Static uint16_t rum_txtime(int, int, uint32_t);
152 Static uint8_t rum_plcp_signal(int);
153 Static void rum_setup_tx_desc(struct rum_softc *,
154 struct rum_tx_desc *, uint32_t, uint16_t, int,
155 int);
156 Static int rum_tx_mgt(struct rum_softc *, struct mbuf *,
157 struct ieee80211_node *);
158 Static int rum_tx_data(struct rum_softc *, struct mbuf *,
159 struct ieee80211_node *);
160 Static void rum_start(struct ifnet *);
161 Static void rum_watchdog(struct ifnet *);
162 Static int rum_ioctl(struct ifnet *, u_long, usb_ioctlarg_t);
163 Static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
164 int);
165 Static uint32_t rum_read(struct rum_softc *, uint16_t);
166 Static void rum_read_multi(struct rum_softc *, uint16_t, void *,
167 int);
168 Static void rum_write(struct rum_softc *, uint16_t, uint32_t);
169 Static void rum_write_multi(struct rum_softc *, uint16_t, void *,
170 size_t);
171 Static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
172 Static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
173 Static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
174 Static void rum_select_antenna(struct rum_softc *);
175 Static void rum_enable_mrr(struct rum_softc *);
176 Static void rum_set_txpreamble(struct rum_softc *);
177 Static void rum_set_basicrates(struct rum_softc *);
178 Static void rum_select_band(struct rum_softc *,
179 struct ieee80211_channel *);
180 Static void rum_set_chan(struct rum_softc *,
181 struct ieee80211_channel *);
182 Static void rum_enable_tsf_sync(struct rum_softc *);
183 Static void rum_update_slot(struct rum_softc *);
184 Static void rum_set_bssid(struct rum_softc *, const uint8_t *);
185 Static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
186 Static void rum_update_promisc(struct rum_softc *);
187 Static const char *rum_get_rf(int);
188 Static void rum_read_eeprom(struct rum_softc *);
189 Static int rum_bbp_init(struct rum_softc *);
190 Static int rum_init(struct ifnet *);
191 Static void rum_stop(struct ifnet *, int);
192 Static int rum_load_microcode(struct rum_softc *, const u_char *,
193 size_t);
194 Static int rum_prepare_beacon(struct rum_softc *);
195 Static void rum_amrr_start(struct rum_softc *,
196 struct ieee80211_node *);
197 Static void rum_amrr_timeout(void *);
198 Static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
199 usbd_status status);
200
201 /*
202 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
203 */
204 static const struct ieee80211_rateset rum_rateset_11a =
205 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
206
207 static const struct ieee80211_rateset rum_rateset_11b =
208 { 4, { 2, 4, 11, 22 } };
209
210 static const struct ieee80211_rateset rum_rateset_11g =
211 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
212
213 static const struct {
214 uint32_t reg;
215 uint32_t val;
216 } rum_def_mac[] = {
217 RT2573_DEF_MAC
218 };
219
220 static const struct {
221 uint8_t reg;
222 uint8_t val;
223 } rum_def_bbp[] = {
224 RT2573_DEF_BBP
225 };
226
227 static const struct rfprog {
228 uint8_t chan;
229 uint32_t r1, r2, r3, r4;
230 } rum_rf5226[] = {
231 RT2573_RF5226
232 }, rum_rf5225[] = {
233 RT2573_RF5225
234 };
235
236 USB_DECLARE_DRIVER(rum);
237
238 USB_MATCH(rum)
239 {
240 USB_MATCH_START(rum, uaa);
241
242 #ifndef USB_USE_IFATTACH
243 if (uaa->iface != NULL)
244 return UMATCH_NONE;
245 #endif /* USB_USE_IFATTACH */
246
247 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
248 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
249 }
250
251 Static int
252 rum_attachhook(void *xsc)
253 {
254 struct rum_softc *sc = xsc;
255 firmware_handle_t fwh;
256 const char *name = "rum-rt2573";
257 u_char *ucode;
258 size_t size;
259 int error;
260
261 if ((error = firmware_open("rum", name, &fwh)) != 0) {
262 printf("%s: failed loadfirmware of file %s (error %d)\n",
263 USBDEVNAME(sc->sc_dev), name, error);
264 return error;
265 }
266 size = firmware_get_size(fwh);
267 ucode = firmware_malloc(size);
268 if (ucode == NULL) {
269 printf("%s: failed to allocate firmware memory\n",
270 USBDEVNAME(sc->sc_dev));
271 firmware_close(fwh);
272 return ENOMEM;;
273 }
274 error = firmware_read(fwh, 0, ucode, size);
275 firmware_close(fwh);
276 if (error != 0) {
277 printf("%s: failed to read firmware (error %d)\n",
278 USBDEVNAME(sc->sc_dev), error);
279 firmware_free(ucode, 0);
280 return error;
281 }
282
283 if (rum_load_microcode(sc, ucode, size) != 0) {
284 printf("%s: could not load 8051 microcode\n",
285 USBDEVNAME(sc->sc_dev));
286 firmware_free(ucode, 0);
287 return ENXIO;
288 }
289
290 firmware_free(ucode, 0);
291 sc->sc_flags |= RT2573_FWLOADED;
292
293 return 0;
294 }
295
296 USB_ATTACH(rum)
297 {
298 USB_ATTACH_START(rum, sc, uaa);
299 struct ieee80211com *ic = &sc->sc_ic;
300 struct ifnet *ifp = &sc->sc_if;
301 usb_interface_descriptor_t *id;
302 usb_endpoint_descriptor_t *ed;
303 usbd_status error;
304 char *devinfop;
305 int i, ntries;
306 uint32_t tmp;
307
308 sc->sc_udev = uaa->device;
309 sc->sc_flags = 0;
310
311 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
312 USB_ATTACH_SETUP;
313 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
314 usbd_devinfo_free(devinfop);
315
316 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
317 printf("%s: could not set configuration no\n",
318 USBDEVNAME(sc->sc_dev));
319 USB_ATTACH_ERROR_RETURN;
320 }
321
322 /* get the first interface handle */
323 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
324 &sc->sc_iface);
325 if (error != 0) {
326 printf("%s: could not get interface handle\n",
327 USBDEVNAME(sc->sc_dev));
328 USB_ATTACH_ERROR_RETURN;
329 }
330
331 /*
332 * Find endpoints.
333 */
334 id = usbd_get_interface_descriptor(sc->sc_iface);
335
336 sc->sc_rx_no = sc->sc_tx_no = -1;
337 for (i = 0; i < id->bNumEndpoints; i++) {
338 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
339 if (ed == NULL) {
340 printf("%s: no endpoint descriptor for iface %d\n",
341 USBDEVNAME(sc->sc_dev), i);
342 USB_ATTACH_ERROR_RETURN;
343 }
344
345 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
346 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
347 sc->sc_rx_no = ed->bEndpointAddress;
348 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
349 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
350 sc->sc_tx_no = ed->bEndpointAddress;
351 }
352 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
353 printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
354 USB_ATTACH_ERROR_RETURN;
355 }
356
357 usb_init_task(&sc->sc_task, rum_task, sc);
358 usb_callout_init(sc->sc_scan_ch);
359
360 sc->amrr.amrr_min_success_threshold = 1;
361 sc->amrr.amrr_max_success_threshold = 10;
362 usb_callout_init(sc->sc_amrr_ch);
363
364 /* retrieve RT2573 rev. no */
365 tmp = 0; /* XXX shut up warning */
366 for (ntries = 0; ntries < 1000; ntries++) {
367 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
368 break;
369 DELAY(1000);
370 }
371 if (ntries == 1000) {
372 printf("%s: timeout waiting for chip to settle\n",
373 USBDEVNAME(sc->sc_dev));
374 USB_ATTACH_ERROR_RETURN;
375 }
376
377 /* retrieve MAC address and various other things from EEPROM */
378 rum_read_eeprom(sc);
379
380 printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
381 USBDEVNAME(sc->sc_dev), sc->macbbp_rev, tmp,
382 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
383
384 ic->ic_ifp = ifp;
385 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
386 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
387 ic->ic_state = IEEE80211_S_INIT;
388
389 /* set device capabilities */
390 ic->ic_caps =
391 IEEE80211_C_IBSS | /* IBSS mode supported */
392 IEEE80211_C_MONITOR | /* monitor mode supported */
393 IEEE80211_C_HOSTAP | /* HostAp mode supported */
394 IEEE80211_C_TXPMGT | /* tx power management */
395 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
396 IEEE80211_C_SHSLOT | /* short slot time supported */
397 IEEE80211_C_WPA; /* 802.11i */
398
399 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
400 /* set supported .11a rates */
401 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
402
403 /* set supported .11a channels */
404 for (i = 34; i <= 46; i += 4) {
405 ic->ic_channels[i].ic_freq =
406 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
407 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
408 }
409 for (i = 36; i <= 64; i += 4) {
410 ic->ic_channels[i].ic_freq =
411 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
412 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
413 }
414 for (i = 100; i <= 140; i += 4) {
415 ic->ic_channels[i].ic_freq =
416 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
417 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
418 }
419 for (i = 149; i <= 165; i += 4) {
420 ic->ic_channels[i].ic_freq =
421 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
422 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
423 }
424 }
425
426 /* set supported .11b and .11g rates */
427 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
428 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
429
430 /* set supported .11b and .11g channels (1 through 14) */
431 for (i = 1; i <= 14; i++) {
432 ic->ic_channels[i].ic_freq =
433 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
434 ic->ic_channels[i].ic_flags =
435 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
436 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
437 }
438
439 ifp->if_softc = sc;
440 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
441 ifp->if_init = rum_init;
442 ifp->if_ioctl = rum_ioctl;
443 ifp->if_start = rum_start;
444 ifp->if_watchdog = rum_watchdog;
445 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
446 IFQ_SET_READY(&ifp->if_snd);
447 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
448
449 if_attach(ifp);
450 ieee80211_ifattach(ic);
451
452 /* override state transition machine */
453 sc->sc_newstate = ic->ic_newstate;
454 ic->ic_newstate = rum_newstate;
455 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
456
457 #if NBPFILTER > 0
458 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
459 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf);
460
461 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
462 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
463 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
464
465 sc->sc_txtap_len = sizeof sc->sc_txtapu;
466 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
467 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
468 #endif
469
470 ieee80211_announce(ic);
471
472 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
473 USBDEV(sc->sc_dev));
474
475 USB_ATTACH_SUCCESS_RETURN;
476 }
477
478 USB_DETACH(rum)
479 {
480 USB_DETACH_START(rum, sc);
481 struct ieee80211com *ic = &sc->sc_ic;
482 struct ifnet *ifp = &sc->sc_if;
483 int s;
484
485 s = splusb();
486
487 rum_stop(ifp, 1);
488 usb_rem_task(sc->sc_udev, &sc->sc_task);
489 usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
490 usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
491
492 if (sc->sc_rx_pipeh != NULL)
493 usbd_abort_pipe(sc->sc_rx_pipeh);
494
495 if (sc->sc_tx_pipeh != NULL)
496 usbd_abort_pipe(sc->sc_tx_pipeh);
497
498 rum_free_rx_list(sc);
499 rum_free_tx_list(sc);
500
501 if (sc->amrr_xfer != NULL) {
502 usbd_free_xfer(sc->amrr_xfer);
503 sc->amrr_xfer = NULL;
504 }
505
506 if (sc->sc_rx_pipeh != NULL)
507 usbd_close_pipe(sc->sc_rx_pipeh);
508
509 if (sc->sc_tx_pipeh != NULL)
510 usbd_close_pipe(sc->sc_tx_pipeh);
511
512 #if NBPFILTER > 0
513 bpfdetach(ifp);
514 #endif
515 ieee80211_ifdetach(ic); /* free all nodes */
516 if_detach(ifp);
517
518 splx(s);
519
520 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
521 USBDEV(sc->sc_dev));
522
523 return 0;
524 }
525
526 Static void
527 rum_free_tx_list(struct rum_softc *sc)
528 {
529 int i;
530
531 usb_ether_tx_list_free(sc->tx_data, RT2573_TX_LIST_COUNT);
532
533 for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
534 if (sc->tx_ni[i] != NULL) {
535 ieee80211_free_node(sc->tx_ni[i]);
536 sc->tx_ni[i] = NULL;
537 }
538 }
539 }
540
541 Static void
542 rum_free_rx_list(struct rum_softc *sc)
543 {
544
545 usb_ether_rx_list_free(sc->rx_data, RT2573_RX_LIST_COUNT);
546 }
547
548 Static int
549 rum_media_change(struct ifnet *ifp)
550 {
551 int error;
552
553 error = ieee80211_media_change(ifp);
554 if (error != ENETRESET)
555 return error;
556
557 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
558 rum_init(ifp);
559
560 return 0;
561 }
562
563 /*
564 * This function is called periodically (every 200ms) during scanning to
565 * switch from one channel to another.
566 */
567 Static void
568 rum_next_scan(void *arg)
569 {
570 struct rum_softc *sc = arg;
571 struct ieee80211com *ic = &sc->sc_ic;
572
573 if (ic->ic_state == IEEE80211_S_SCAN)
574 ieee80211_next_scan(ic);
575 }
576
577 Static void
578 rum_task(void *arg)
579 {
580 struct rum_softc *sc = arg;
581 struct ieee80211com *ic = &sc->sc_ic;
582 enum ieee80211_state ostate;
583 struct ieee80211_node *ni;
584 uint32_t tmp;
585
586 ostate = ic->ic_state;
587
588 switch (sc->sc_state) {
589 case IEEE80211_S_INIT:
590 if (ostate == IEEE80211_S_RUN) {
591 /* abort TSF synchronization */
592 tmp = rum_read(sc, RT2573_TXRX_CSR9);
593 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
594 }
595 break;
596
597 case IEEE80211_S_SCAN:
598 rum_set_chan(sc, ic->ic_curchan);
599 usb_callout(sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
600 break;
601
602 case IEEE80211_S_AUTH:
603 rum_set_chan(sc, ic->ic_curchan);
604 break;
605
606 case IEEE80211_S_ASSOC:
607 rum_set_chan(sc, ic->ic_curchan);
608 break;
609
610 case IEEE80211_S_RUN:
611 rum_set_chan(sc, ic->ic_curchan);
612
613 ni = ic->ic_bss;
614
615 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
616 rum_update_slot(sc);
617 rum_enable_mrr(sc);
618 rum_set_txpreamble(sc);
619 rum_set_basicrates(sc);
620 rum_set_bssid(sc, ni->ni_bssid);
621 }
622
623 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
624 ic->ic_opmode == IEEE80211_M_IBSS)
625 rum_prepare_beacon(sc);
626
627 if (ic->ic_opmode != IEEE80211_M_MONITOR)
628 rum_enable_tsf_sync(sc);
629
630 /* enable automatic rate adaptation in STA mode */
631 if (ic->ic_opmode == IEEE80211_M_STA &&
632 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
633 rum_amrr_start(sc, ni);
634
635 break;
636 }
637
638 sc->sc_newstate(ic, sc->sc_state, -1);
639 }
640
641 Static int
642 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
643 {
644 struct rum_softc *sc = ic->ic_ifp->if_softc;
645
646 usb_rem_task(sc->sc_udev, &sc->sc_task);
647 usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
648 usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
649
650 /* do it in a process context */
651 sc->sc_state = nstate;
652 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
653
654 return 0;
655 }
656
657 /* quickly determine if a given rate is CCK or OFDM */
658 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
659
660 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
661 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
662
663 Static void
664 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
665 {
666 struct ue_chain *data = priv;
667 struct rum_softc *sc = (void *)data->ue_dev;
668 struct ifnet *ifp = &sc->sc_if;
669 int s;
670
671 usbd_unmap_buffer(xfer);
672
673 if (status != USBD_NORMAL_COMPLETION) {
674 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
675 return;
676
677 printf("%s: could not transmit buffer: %s\n",
678 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
679
680 if (status == USBD_STALLED)
681 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
682
683 ifp->if_oerrors++;
684 return;
685 }
686
687 s = splnet();
688
689 m_freem(data->ue_mbuf);
690 data->ue_mbuf = NULL;
691 ieee80211_free_node(sc->tx_ni[data->ue_idx]);
692 sc->tx_ni[data->ue_idx] = NULL;
693
694 sc->tx_queued--;
695 ifp->if_opackets++;
696
697 DPRINTFN(10, ("tx done\n"));
698
699 sc->sc_tx_timer = 0;
700 ifp->if_flags &= ~IFF_OACTIVE;
701 rum_start(ifp);
702
703 splx(s);
704 }
705
706 Static void
707 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
708 {
709 struct ue_chain *data = priv;
710 struct rum_softc *sc = (void *)data->ue_dev;
711 struct ieee80211com *ic = &sc->sc_ic;
712 struct ifnet *ifp = &sc->sc_if;
713 struct rum_rx_desc *desc;
714 struct ieee80211_frame *wh;
715 struct ieee80211_node *ni;
716 struct mbuf *m;
717 int s, len;
718
719 usbd_unmap_buffer(xfer);
720
721 if (status != USBD_NORMAL_COMPLETION) {
722 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
723 return;
724
725 if (status == USBD_STALLED)
726 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
727 goto skip;
728 }
729
730 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
731
732 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
733 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
734 len));
735 ifp->if_ierrors++;
736 goto skip;
737 }
738
739 m = data->ue_mbuf;
740 desc = mtod(m, struct rum_rx_desc *);
741
742 if (UGETDW((u_int8_t *)&desc->flags) & RT2573_RX_CRC_ERROR) {
743 /*
744 * This should not happen since we did not request to receive
745 * those frames when we filled RT2573_TXRX_CSR0.
746 */
747 DPRINTFN(5, ("CRC error\n"));
748 ifp->if_ierrors++;
749 goto skip;
750 }
751
752 /*
753 * Allocate new mbuf cluster for the next transfer.
754 * If that failed, discard current packet and recycle the mbuf.
755 */
756 if ((data->ue_mbuf = usb_ether_newbuf(NULL)) == NULL) {
757 printf("%s: no memory for rx list -- packet dropped!\n",
758 USBDEVNAME(sc->sc_dev));
759 ifp->if_ierrors++;
760 data->ue_mbuf = usb_ether_newbuf(m);
761 goto skip;
762 }
763
764 /* finalize mbuf */
765 m->m_pkthdr.rcvif = ifp;
766 m->m_data = (void *)(desc + 1);
767 m->m_pkthdr.len = m->m_len = UGETW((u_int8_t *)&desc->flags + 2);
768
769 s = splnet();
770
771 #if NBPFILTER > 0
772 if (sc->sc_drvbpf != NULL) {
773 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
774
775 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
776 tap->wr_rate = rum_rxrate(desc);
777 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
778 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
779 tap->wr_antenna = sc->rx_ant;
780 tap->wr_antsignal = desc->rssi;
781
782 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
783 }
784 #endif
785
786 wh = mtod(m, struct ieee80211_frame *);
787 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
788
789 /* send the frame to the 802.11 layer */
790 ieee80211_input(ic, m, ni, desc->rssi, 0);
791
792 /* node is no longer needed */
793 ieee80211_free_node(ni);
794
795 splx(s);
796
797 DPRINTFN(15, ("rx done\n"));
798
799 skip: /* setup a new transfer */
800 (void)usbd_map_buffer_mbuf(xfer, data->ue_mbuf);
801 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, NULL /* XXX buf */, MCLBYTES,
802 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
803 usbd_transfer(xfer);
804 }
805
806 /*
807 * This function is only used by the Rx radiotap code. It returns the rate at
808 * which a given frame was received.
809 */
810 #if NBPFILTER > 0
811 Static uint8_t
812 rum_rxrate(struct rum_rx_desc *desc)
813 {
814 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
815 /* reverse function of rum_plcp_signal */
816 switch (desc->rate) {
817 case 0xb: return 12;
818 case 0xf: return 18;
819 case 0xa: return 24;
820 case 0xe: return 36;
821 case 0x9: return 48;
822 case 0xd: return 72;
823 case 0x8: return 96;
824 case 0xc: return 108;
825 }
826 } else {
827 if (desc->rate == 10)
828 return 2;
829 if (desc->rate == 20)
830 return 4;
831 if (desc->rate == 55)
832 return 11;
833 if (desc->rate == 110)
834 return 22;
835 }
836 return 2; /* should not get there */
837 }
838 #endif
839
840 /*
841 * Return the expected ack rate for a frame transmitted at rate `rate'.
842 * XXX: this should depend on the destination node basic rate set.
843 */
844 Static int
845 rum_ack_rate(struct ieee80211com *ic, int rate)
846 {
847 switch (rate) {
848 /* CCK rates */
849 case 2:
850 return 2;
851 case 4:
852 case 11:
853 case 22:
854 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
855
856 /* OFDM rates */
857 case 12:
858 case 18:
859 return 12;
860 case 24:
861 case 36:
862 return 24;
863 case 48:
864 case 72:
865 case 96:
866 case 108:
867 return 48;
868 }
869
870 /* default to 1Mbps */
871 return 2;
872 }
873
874 /*
875 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
876 * The function automatically determines the operating mode depending on the
877 * given rate. `flags' indicates whether short preamble is in use or not.
878 */
879 Static uint16_t
880 rum_txtime(int len, int rate, uint32_t flags)
881 {
882 uint16_t txtime;
883
884 if (RUM_RATE_IS_OFDM(rate)) {
885 /* IEEE Std 802.11a-1999, pp. 37 */
886 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
887 txtime = 16 + 4 + 4 * txtime + 6;
888 } else {
889 /* IEEE Std 802.11b-1999, pp. 28 */
890 txtime = (16 * len + rate - 1) / rate;
891 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
892 txtime += 72 + 24;
893 else
894 txtime += 144 + 48;
895 }
896 return txtime;
897 }
898
899 Static uint8_t
900 rum_plcp_signal(int rate)
901 {
902 switch (rate) {
903 /* CCK rates (returned values are device-dependent) */
904 case 2: return 0x0;
905 case 4: return 0x1;
906 case 11: return 0x2;
907 case 22: return 0x3;
908
909 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
910 case 12: return 0xb;
911 case 18: return 0xf;
912 case 24: return 0xa;
913 case 36: return 0xe;
914 case 48: return 0x9;
915 case 72: return 0xd;
916 case 96: return 0x8;
917 case 108: return 0xc;
918
919 /* unsupported rates (should not get there) */
920 default: return 0xff;
921 }
922 }
923
924 Static void
925 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
926 uint32_t flags, uint16_t xflags, int len, int rate)
927 {
928 struct ieee80211com *ic = &sc->sc_ic;
929 uint16_t plcp_length;
930 int remainder;
931
932 desc->flags = htole32(flags);
933 desc->flags |= htole32(RT2573_TX_VALID);
934 desc->flags |= htole32(len << 16);
935
936 desc->xflags = htole16(xflags);
937
938 desc->wme = htole16(
939 RT2573_QID(0) |
940 RT2573_AIFSN(2) |
941 RT2573_LOGCWMIN(4) |
942 RT2573_LOGCWMAX(10));
943
944 /* setup PLCP fields */
945 desc->plcp_signal = rum_plcp_signal(rate);
946 desc->plcp_service = 4;
947
948 len += IEEE80211_CRC_LEN;
949 if (RUM_RATE_IS_OFDM(rate)) {
950 desc->flags |= htole32(RT2573_TX_OFDM);
951
952 plcp_length = len & 0xfff;
953 desc->plcp_length_hi = plcp_length >> 6;
954 desc->plcp_length_lo = plcp_length & 0x3f;
955 } else {
956 plcp_length = (16 * len + rate - 1) / rate;
957 if (rate == 22) {
958 remainder = (16 * len) % 22;
959 if (remainder != 0 && remainder < 7)
960 desc->plcp_service |= RT2573_PLCP_LENGEXT;
961 }
962 desc->plcp_length_hi = plcp_length >> 8;
963 desc->plcp_length_lo = plcp_length & 0xff;
964
965 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
966 desc->plcp_signal |= 0x08;
967 }
968 }
969
970 #define RUM_TX_TIMEOUT 5000
971
972 Static int
973 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
974 {
975 struct ieee80211com *ic = &sc->sc_ic;
976 struct rum_tx_desc *desc;
977 struct ue_chain *data;
978 struct ieee80211_frame *wh;
979 uint32_t flags = 0;
980 uint16_t dur;
981 usbd_status error;
982 int xferlen, rate;
983 int ret;
984
985 data = &sc->tx_data[0];
986
987 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
988
989 data->ue_mbuf = m0;
990 sc->tx_ni[data->ue_idx] = ni;
991
992 wh = mtod(m0, struct ieee80211_frame *);
993
994 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
995 flags |= RT2573_TX_ACK;
996
997 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
998 ic->ic_flags) + sc->sifs;
999 *(uint16_t *)wh->i_dur = htole16(dur);
1000
1001 /* tell hardware to set timestamp in probe responses */
1002 if ((wh->i_fc[0] &
1003 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1004 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1005 flags |= RT2573_TX_TIMESTAMP;
1006 }
1007
1008 #if NBPFILTER > 0
1009 if (sc->sc_drvbpf != NULL) {
1010 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1011
1012 tap->wt_flags = 0;
1013 tap->wt_rate = rate;
1014 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1015 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1016 tap->wt_antenna = sc->tx_ant;
1017
1018 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1019 }
1020 #endif
1021
1022 /* Prepend Tx descriptor */
1023 M_PREPEND(m0, RT2573_TX_DESC_SIZE, M_DONTWAIT);
1024 if (m0 != NULL)
1025 m0 = m_pullup(m0, RT2573_TX_DESC_SIZE); /* just in case */
1026 if (m0 == NULL) {
1027 return ENOBUFS;
1028 }
1029 desc = mtod(m0, struct rum_tx_desc *);
1030
1031 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1032
1033 /* align end on a 4-bytes boundary */
1034 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1035
1036 /*
1037 * No space left in the last URB to store the extra 4 bytes, force
1038 * sending of another URB.
1039 */
1040 if ((xferlen % 64) == 0)
1041 xferlen += 4;
1042
1043 if (m0->m_pkthdr.len != xferlen) {
1044 m_copyback(m0, xferlen - 1, 1, ""); /* expand mbuf chain */
1045 if (m0->m_pkthdr.len != xferlen) {
1046 m_freem(m0);
1047 return ENOBUFS;
1048 }
1049 }
1050
1051 ret = usb_ether_map_tx_buffer_mbuf(data, m0);
1052 if (ret) {
1053 m_freem(m0);
1054 return ret;
1055 }
1056
1057 DPRINTFN(10, ("sending msg frame len=%lu rate=%u xfer len=%u\n",
1058 (long unsigned int)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1059 rate, xferlen));
1060
1061 usbd_setup_xfer(data->ue_xfer, sc->sc_tx_pipeh, data, NULL /* XXX buf */, xferlen,
1062 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1063
1064 error = usbd_transfer(data->ue_xfer);
1065 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1066 data->ue_mbuf = NULL;
1067 m_freem(m0);
1068 return error;
1069 }
1070
1071 sc->tx_queued++;
1072
1073 return 0;
1074 }
1075
1076 Static int
1077 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1078 {
1079 struct ieee80211com *ic = &sc->sc_ic;
1080 struct rum_tx_desc *desc;
1081 struct ue_chain *data;
1082 struct ieee80211_frame *wh;
1083 struct ieee80211_key *k;
1084 uint32_t flags = 0;
1085 uint16_t dur;
1086 usbd_status error;
1087 int xferlen, rate;
1088 int ret;
1089
1090 wh = mtod(m0, struct ieee80211_frame *);
1091
1092 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1093 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1094 else
1095 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1096 rate &= IEEE80211_RATE_VAL;
1097
1098 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1099 k = ieee80211_crypto_encap(ic, ni, m0);
1100 if (k == NULL) {
1101 m_freem(m0);
1102 return ENOBUFS;
1103 }
1104
1105 /* packet header may have moved, reset our local pointer */
1106 wh = mtod(m0, struct ieee80211_frame *);
1107 }
1108
1109 data = &sc->tx_data[0];
1110
1111 data->ue_mbuf = m0;
1112 sc->tx_ni[data->ue_idx] = ni;
1113
1114 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1115 flags |= RT2573_TX_ACK;
1116
1117 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1118 ic->ic_flags) + sc->sifs;
1119 *(uint16_t *)wh->i_dur = htole16(dur);
1120 }
1121
1122 #if NBPFILTER > 0
1123 if (sc->sc_drvbpf != NULL) {
1124 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1125
1126 tap->wt_flags = 0;
1127 tap->wt_rate = rate;
1128 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1129 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1130 tap->wt_antenna = sc->tx_ant;
1131
1132 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1133 }
1134 #endif
1135
1136 /* Prepend Tx descriptor */
1137 M_PREPEND(m0, RT2573_TX_DESC_SIZE, M_DONTWAIT);
1138 if (m0 != NULL)
1139 m0 = m_pullup(m0, RT2573_TX_DESC_SIZE); /* just in case */
1140 if (m0 == NULL) {
1141 return ENOBUFS;
1142 }
1143 desc = mtod(m0, struct rum_tx_desc *);
1144
1145 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1146
1147 /* align end on a 4-bytes boundary */
1148 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1149
1150 /*
1151 * No space left in the last URB to store the extra 4 bytes, force
1152 * sending of another URB.
1153 */
1154 if ((xferlen % 64) == 0)
1155 xferlen += 4;
1156
1157 if (m0->m_pkthdr.len != xferlen) {
1158 m_copyback(m0, xferlen - 1, 1, ""); /* expand mbuf chain */
1159 if (m0->m_pkthdr.len != xferlen) {
1160 m_freem(m0);
1161 return ENOBUFS;
1162 }
1163 }
1164
1165 ret = usb_ether_map_tx_buffer_mbuf(data, m0);
1166 if (ret) {
1167 m_freem(m0);
1168 return ret;
1169 }
1170
1171 DPRINTFN(10, ("sending data frame len=%lu rate=%u xfer len=%u\n",
1172 (long unsigned int)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1173 rate, xferlen));
1174
1175 usbd_setup_xfer(data->ue_xfer, sc->sc_tx_pipeh, data, NULL /* XXX buf */, xferlen,
1176 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1177
1178 error = usbd_transfer(data->ue_xfer);
1179 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1180 data->ue_mbuf = NULL;
1181 m_freem(m0);
1182 return error;
1183 }
1184
1185 sc->tx_queued++;
1186
1187 return 0;
1188 }
1189
1190 Static void
1191 rum_start(struct ifnet *ifp)
1192 {
1193 struct rum_softc *sc = ifp->if_softc;
1194 struct ieee80211com *ic = &sc->sc_ic;
1195 struct ether_header *eh;
1196 struct ieee80211_node *ni;
1197 struct mbuf *m0;
1198
1199 for (;;) {
1200 IF_POLL(&ic->ic_mgtq, m0);
1201 if (m0 != NULL) {
1202 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1203 ifp->if_flags |= IFF_OACTIVE;
1204 break;
1205 }
1206 IF_DEQUEUE(&ic->ic_mgtq, m0);
1207
1208 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1209 m0->m_pkthdr.rcvif = NULL;
1210 #if NBPFILTER > 0
1211 if (ic->ic_rawbpf != NULL)
1212 bpf_mtap(ic->ic_rawbpf, m0);
1213 #endif
1214 if (rum_tx_mgt(sc, m0, ni) != 0)
1215 break;
1216
1217 } else {
1218 if (ic->ic_state != IEEE80211_S_RUN)
1219 break;
1220 IFQ_POLL(&ifp->if_snd, m0);
1221 if (m0 == NULL)
1222 break;
1223 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1224 ifp->if_flags |= IFF_OACTIVE;
1225 break;
1226 }
1227 IFQ_DEQUEUE(&ifp->if_snd, m0);
1228 if (m0->m_len < sizeof(struct ether_header) &&
1229 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1230 continue;
1231
1232 eh = mtod(m0, struct ether_header *);
1233 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1234 if (ni == NULL) {
1235 m_freem(m0);
1236 continue;
1237 }
1238 #if NBPFILTER > 0
1239 if (ifp->if_bpf != NULL)
1240 bpf_mtap(ifp->if_bpf, m0);
1241 #endif
1242 m0 = ieee80211_encap(ic, m0, ni);
1243 if (m0 == NULL) {
1244 ieee80211_free_node(ni);
1245 continue;
1246 }
1247 #if NBPFILTER > 0
1248 if (ic->ic_rawbpf != NULL)
1249 bpf_mtap(ic->ic_rawbpf, m0);
1250 #endif
1251 if (rum_tx_data(sc, m0, ni) != 0) {
1252 ieee80211_free_node(ni);
1253 ifp->if_oerrors++;
1254 break;
1255 }
1256 }
1257
1258 sc->sc_tx_timer = 5;
1259 ifp->if_timer = 1;
1260 }
1261 }
1262
1263 Static void
1264 rum_watchdog(struct ifnet *ifp)
1265 {
1266 struct rum_softc *sc = ifp->if_softc;
1267 struct ieee80211com *ic = &sc->sc_ic;
1268
1269 ifp->if_timer = 0;
1270
1271 if (sc->sc_tx_timer > 0) {
1272 if (--sc->sc_tx_timer == 0) {
1273 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1274 /*rum_init(ifp); XXX needs a process context! */
1275 ifp->if_oerrors++;
1276 return;
1277 }
1278 ifp->if_timer = 1;
1279 }
1280
1281 ieee80211_watchdog(ic);
1282 }
1283
1284 Static int
1285 rum_ioctl(struct ifnet *ifp, u_long cmd, usb_ioctlarg_t data)
1286 {
1287 struct rum_softc *sc = ifp->if_softc;
1288 struct ieee80211com *ic = &sc->sc_ic;
1289 int s, error = 0;
1290
1291 s = splnet();
1292
1293 switch (cmd) {
1294 case SIOCSIFFLAGS:
1295 if (ifp->if_flags & IFF_UP) {
1296 if (ifp->if_flags & IFF_RUNNING)
1297 rum_update_promisc(sc);
1298 else
1299 rum_init(ifp);
1300 } else {
1301 if (ifp->if_flags & IFF_RUNNING)
1302 rum_stop(ifp, 1);
1303 }
1304 break;
1305
1306 default:
1307 error = ieee80211_ioctl(ic, cmd, data);
1308 }
1309
1310 if (error == ENETRESET) {
1311 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1312 (IFF_UP | IFF_RUNNING))
1313 rum_init(ifp);
1314 error = 0;
1315 }
1316
1317 splx(s);
1318
1319 return error;
1320 }
1321
1322 Static void
1323 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1324 {
1325 usb_device_request_t req;
1326 usbd_status error;
1327
1328 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1329 req.bRequest = RT2573_READ_EEPROM;
1330 USETW(req.wValue, 0);
1331 USETW(req.wIndex, addr);
1332 USETW(req.wLength, len);
1333
1334 error = usbd_do_request(sc->sc_udev, &req, buf);
1335 if (error != 0) {
1336 printf("%s: could not read EEPROM: %s\n",
1337 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1338 }
1339 }
1340
1341 Static uint32_t
1342 rum_read(struct rum_softc *sc, uint16_t reg)
1343 {
1344 uint32_t val;
1345
1346 rum_read_multi(sc, reg, &val, sizeof val);
1347
1348 return le32toh(val);
1349 }
1350
1351 Static void
1352 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1353 {
1354 usb_device_request_t req;
1355 usbd_status error;
1356
1357 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1358 req.bRequest = RT2573_READ_MULTI_MAC;
1359 USETW(req.wValue, 0);
1360 USETW(req.wIndex, reg);
1361 USETW(req.wLength, len);
1362
1363 error = usbd_do_request(sc->sc_udev, &req, buf);
1364 if (error != 0) {
1365 printf("%s: could not multi read MAC register: %s\n",
1366 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1367 }
1368 }
1369
1370 Static void
1371 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1372 {
1373 uint32_t tmp = htole32(val);
1374
1375 rum_write_multi(sc, reg, &tmp, sizeof tmp);
1376 }
1377
1378 Static void
1379 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1380 {
1381 usb_device_request_t req;
1382 usbd_status error;
1383
1384 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1385 req.bRequest = RT2573_WRITE_MULTI_MAC;
1386 USETW(req.wValue, 0);
1387 USETW(req.wIndex, reg);
1388 USETW(req.wLength, len);
1389
1390 error = usbd_do_request(sc->sc_udev, &req, buf);
1391 if (error != 0) {
1392 printf("%s: could not multi write MAC register: %s\n",
1393 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1394 }
1395 }
1396
1397 Static void
1398 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1399 {
1400 uint32_t tmp;
1401 int ntries;
1402
1403 for (ntries = 0; ntries < 5; ntries++) {
1404 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1405 break;
1406 }
1407 if (ntries == 5) {
1408 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1409 return;
1410 }
1411
1412 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1413 rum_write(sc, RT2573_PHY_CSR3, tmp);
1414 }
1415
1416 Static uint8_t
1417 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1418 {
1419 uint32_t val;
1420 int ntries;
1421
1422 for (ntries = 0; ntries < 5; ntries++) {
1423 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1424 break;
1425 }
1426 if (ntries == 5) {
1427 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1428 return 0;
1429 }
1430
1431 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1432 rum_write(sc, RT2573_PHY_CSR3, val);
1433
1434 for (ntries = 0; ntries < 100; ntries++) {
1435 val = rum_read(sc, RT2573_PHY_CSR3);
1436 if (!(val & RT2573_BBP_BUSY))
1437 return val & 0xff;
1438 DELAY(1);
1439 }
1440
1441 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1442 return 0;
1443 }
1444
1445 Static void
1446 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1447 {
1448 uint32_t tmp;
1449 int ntries;
1450
1451 for (ntries = 0; ntries < 5; ntries++) {
1452 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1453 break;
1454 }
1455 if (ntries == 5) {
1456 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1457 return;
1458 }
1459
1460 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1461 (reg & 3);
1462 rum_write(sc, RT2573_PHY_CSR4, tmp);
1463
1464 /* remember last written value in sc */
1465 sc->rf_regs[reg] = val;
1466
1467 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1468 }
1469
1470 Static void
1471 rum_select_antenna(struct rum_softc *sc)
1472 {
1473 uint8_t bbp4, bbp77;
1474 uint32_t tmp;
1475
1476 bbp4 = rum_bbp_read(sc, 4);
1477 bbp77 = rum_bbp_read(sc, 77);
1478
1479 /* TBD */
1480
1481 /* make sure Rx is disabled before switching antenna */
1482 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1483 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1484
1485 rum_bbp_write(sc, 4, bbp4);
1486 rum_bbp_write(sc, 77, bbp77);
1487
1488 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1489 }
1490
1491 /*
1492 * Enable multi-rate retries for frames sent at OFDM rates.
1493 * In 802.11b/g mode, allow fallback to CCK rates.
1494 */
1495 Static void
1496 rum_enable_mrr(struct rum_softc *sc)
1497 {
1498 struct ieee80211com *ic = &sc->sc_ic;
1499 uint32_t tmp;
1500
1501 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1502
1503 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1504 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1505 tmp |= RT2573_MRR_CCK_FALLBACK;
1506 tmp |= RT2573_MRR_ENABLED;
1507
1508 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1509 }
1510
1511 Static void
1512 rum_set_txpreamble(struct rum_softc *sc)
1513 {
1514 uint32_t tmp;
1515
1516 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1517
1518 tmp &= ~RT2573_SHORT_PREAMBLE;
1519 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1520 tmp |= RT2573_SHORT_PREAMBLE;
1521
1522 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1523 }
1524
1525 Static void
1526 rum_set_basicrates(struct rum_softc *sc)
1527 {
1528 struct ieee80211com *ic = &sc->sc_ic;
1529
1530 /* update basic rate set */
1531 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1532 /* 11b basic rates: 1, 2Mbps */
1533 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1534 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1535 /* 11a basic rates: 6, 12, 24Mbps */
1536 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1537 } else {
1538 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1539 rum_write(sc, RT2573_TXRX_CSR5, 0x15f);
1540 }
1541 }
1542
1543 /*
1544 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1545 * driver.
1546 */
1547 Static void
1548 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1549 {
1550 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1551 uint32_t tmp;
1552
1553 /* update all BBP registers that depend on the band */
1554 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1555 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1556 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1557 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1558 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1559 }
1560 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1561 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1562 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1563 }
1564
1565 sc->bbp17 = bbp17;
1566 rum_bbp_write(sc, 17, bbp17);
1567 rum_bbp_write(sc, 96, bbp96);
1568 rum_bbp_write(sc, 104, bbp104);
1569
1570 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1571 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1572 rum_bbp_write(sc, 75, 0x80);
1573 rum_bbp_write(sc, 86, 0x80);
1574 rum_bbp_write(sc, 88, 0x80);
1575 }
1576
1577 rum_bbp_write(sc, 35, bbp35);
1578 rum_bbp_write(sc, 97, bbp97);
1579 rum_bbp_write(sc, 98, bbp98);
1580
1581 tmp = rum_read(sc, RT2573_PHY_CSR0);
1582 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1583 if (IEEE80211_IS_CHAN_2GHZ(c))
1584 tmp |= RT2573_PA_PE_2GHZ;
1585 else
1586 tmp |= RT2573_PA_PE_5GHZ;
1587 rum_write(sc, RT2573_PHY_CSR0, tmp);
1588
1589 /* 802.11a uses a 16 microseconds short interframe space */
1590 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1591 }
1592
1593 Static void
1594 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1595 {
1596 struct ieee80211com *ic = &sc->sc_ic;
1597 const struct rfprog *rfprog;
1598 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1599 int8_t power;
1600 u_int i, chan;
1601
1602 chan = ieee80211_chan2ieee(ic, c);
1603 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1604 return;
1605
1606 /* select the appropriate RF settings based on what EEPROM says */
1607 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1608 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1609
1610 /* find the settings for this channel (we know it exists) */
1611 for (i = 0; rfprog[i].chan != chan; i++);
1612
1613 power = sc->txpow[i];
1614 if (power < 0) {
1615 bbp94 += power;
1616 power = 0;
1617 } else if (power > 31) {
1618 bbp94 += power - 31;
1619 power = 31;
1620 }
1621
1622 /*
1623 * If we are switching from the 2GHz band to the 5GHz band or
1624 * vice-versa, BBP registers need to be reprogrammed.
1625 */
1626 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1627 rum_select_band(sc, c);
1628 rum_select_antenna(sc);
1629 }
1630 ic->ic_curchan = c;
1631
1632 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1633 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1634 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1635 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1636
1637 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1638 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1639 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1640 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1641
1642 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1643 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1644 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1645 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1646
1647 DELAY(10);
1648
1649 /* enable smart mode for MIMO-capable RFs */
1650 bbp3 = rum_bbp_read(sc, 3);
1651
1652 bbp3 &= ~RT2573_SMART_MODE;
1653 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1654 bbp3 |= RT2573_SMART_MODE;
1655
1656 rum_bbp_write(sc, 3, bbp3);
1657
1658 if (bbp94 != RT2573_BBPR94_DEFAULT)
1659 rum_bbp_write(sc, 94, bbp94);
1660 }
1661
1662 /*
1663 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1664 * and HostAP operating modes.
1665 */
1666 Static void
1667 rum_enable_tsf_sync(struct rum_softc *sc)
1668 {
1669 struct ieee80211com *ic = &sc->sc_ic;
1670 uint32_t tmp;
1671
1672 if (ic->ic_opmode != IEEE80211_M_STA) {
1673 /*
1674 * Change default 16ms TBTT adjustment to 8ms.
1675 * Must be done before enabling beacon generation.
1676 */
1677 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1678 }
1679
1680 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1681
1682 /* set beacon interval (in 1/16ms unit) */
1683 tmp |= ic->ic_bss->ni_intval * 16;
1684
1685 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1686 if (ic->ic_opmode == IEEE80211_M_STA)
1687 tmp |= RT2573_TSF_MODE(1);
1688 else
1689 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1690
1691 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1692 }
1693
1694 Static void
1695 rum_update_slot(struct rum_softc *sc)
1696 {
1697 struct ieee80211com *ic = &sc->sc_ic;
1698 uint8_t slottime;
1699 uint32_t tmp;
1700
1701 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1702
1703 tmp = rum_read(sc, RT2573_MAC_CSR9);
1704 tmp = (tmp & ~0xff) | slottime;
1705 rum_write(sc, RT2573_MAC_CSR9, tmp);
1706
1707 DPRINTF(("setting slot time to %uus\n", slottime));
1708 }
1709
1710 Static void
1711 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1712 {
1713 uint32_t tmp;
1714
1715 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1716 rum_write(sc, RT2573_MAC_CSR4, tmp);
1717
1718 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1719 rum_write(sc, RT2573_MAC_CSR5, tmp);
1720 }
1721
1722 Static void
1723 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1724 {
1725 uint32_t tmp;
1726
1727 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1728 rum_write(sc, RT2573_MAC_CSR2, tmp);
1729
1730 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1731 rum_write(sc, RT2573_MAC_CSR3, tmp);
1732 }
1733
1734 Static void
1735 rum_update_promisc(struct rum_softc *sc)
1736 {
1737 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1738 uint32_t tmp;
1739
1740 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1741
1742 tmp &= ~RT2573_DROP_NOT_TO_ME;
1743 if (!(ifp->if_flags & IFF_PROMISC))
1744 tmp |= RT2573_DROP_NOT_TO_ME;
1745
1746 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1747
1748 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1749 "entering" : "leaving"));
1750 }
1751
1752 Static const char *
1753 rum_get_rf(int rev)
1754 {
1755 switch (rev) {
1756 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1757 case RT2573_RF_2528: return "RT2528";
1758 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1759 case RT2573_RF_5226: return "RT5226";
1760 default: return "unknown";
1761 }
1762 }
1763
1764 Static void
1765 rum_read_eeprom(struct rum_softc *sc)
1766 {
1767 struct ieee80211com *ic = &sc->sc_ic;
1768 uint16_t val;
1769 #ifdef RUM_DEBUG
1770 int i;
1771 #endif
1772
1773 /* read MAC/BBP type */
1774 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1775 sc->macbbp_rev = le16toh(val);
1776
1777 /* read MAC address */
1778 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1779
1780 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1781 val = le16toh(val);
1782 sc->rf_rev = (val >> 11) & 0x1f;
1783 sc->hw_radio = (val >> 10) & 0x1;
1784 sc->rx_ant = (val >> 4) & 0x3;
1785 sc->tx_ant = (val >> 2) & 0x3;
1786 sc->nb_ant = val & 0x3;
1787
1788 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1789
1790 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1791 val = le16toh(val);
1792 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1793 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1794
1795 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1796 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1797
1798 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1799 val = le16toh(val);
1800 if ((val & 0xff) != 0xff)
1801 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1802
1803 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1804 val = le16toh(val);
1805 if ((val & 0xff) != 0xff)
1806 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1807
1808 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1809 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1810
1811 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1812 val = le16toh(val);
1813 if ((val & 0xff) != 0xff)
1814 sc->rffreq = val & 0xff;
1815
1816 DPRINTF(("RF freq=%d\n", sc->rffreq));
1817
1818 /* read Tx power for all a/b/g channels */
1819 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1820 /* XXX default Tx power for 802.11a channels */
1821 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1822 #ifdef RUM_DEBUG
1823 for (i = 0; i < 14; i++)
1824 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1825 #endif
1826
1827 /* read default values for BBP registers */
1828 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1829 #ifdef RUM_DEBUG
1830 for (i = 0; i < 14; i++) {
1831 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1832 continue;
1833 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1834 sc->bbp_prom[i].val));
1835 }
1836 #endif
1837 }
1838
1839 Static int
1840 rum_bbp_init(struct rum_softc *sc)
1841 {
1842 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1843 int i, ntries;
1844 uint8_t val;
1845
1846 /* wait for BBP to be ready */
1847 for (ntries = 0; ntries < 100; ntries++) {
1848 val = rum_bbp_read(sc, 0);
1849 if (val != 0 && val != 0xff)
1850 break;
1851 DELAY(1000);
1852 }
1853 if (ntries == 100) {
1854 printf("%s: timeout waiting for BBP\n",
1855 USBDEVNAME(sc->sc_dev));
1856 return EIO;
1857 }
1858
1859 /* initialize BBP registers to default values */
1860 for (i = 0; i < N(rum_def_bbp); i++)
1861 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1862
1863 /* write vendor-specific BBP values (from EEPROM) */
1864 for (i = 0; i < 16; i++) {
1865 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1866 continue;
1867 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1868 }
1869
1870 return 0;
1871 #undef N
1872 }
1873
1874 Static int
1875 rum_init(struct ifnet *ifp)
1876 {
1877 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1878 struct rum_softc *sc = ifp->if_softc;
1879 struct ieee80211com *ic = &sc->sc_ic;
1880 struct ue_chain *data;
1881 uint32_t tmp;
1882 usbd_status uerror;
1883 int error;
1884 int i, ntries;
1885
1886 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1887 if (rum_attachhook(sc)) {
1888 error = EIO;
1889 goto fail;
1890 }
1891 }
1892
1893 rum_stop(ifp, 0);
1894
1895 /* initialize MAC registers to default values */
1896 for (i = 0; i < N(rum_def_mac); i++)
1897 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1898
1899 /* set host ready */
1900 rum_write(sc, RT2573_MAC_CSR1, 3);
1901 rum_write(sc, RT2573_MAC_CSR1, 0);
1902
1903 /* wait for BBP/RF to wakeup */
1904 for (ntries = 0; ntries < 1000; ntries++) {
1905 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1906 break;
1907 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1908 DELAY(1000);
1909 }
1910 if (ntries == 1000) {
1911 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1912 USBDEVNAME(sc->sc_dev));
1913 error = EIO;
1914 goto fail;
1915 }
1916
1917 if ((error = rum_bbp_init(sc)) != 0)
1918 goto fail;
1919
1920 /* select default channel */
1921 rum_select_band(sc, ic->ic_curchan);
1922 rum_select_antenna(sc);
1923 rum_set_chan(sc, ic->ic_curchan);
1924
1925 /* clear STA registers */
1926 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1927
1928 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1929 rum_set_macaddr(sc, ic->ic_myaddr);
1930
1931 /* initialize ASIC */
1932 rum_write(sc, RT2573_MAC_CSR1, 4);
1933
1934 /*
1935 * Allocate xfer for AMRR statistics requests.
1936 */
1937 sc->amrr_xfer = usbd_alloc_default_xfer(sc->sc_udev);
1938 if (sc->amrr_xfer == NULL) {
1939 printf("%s: could not allocate AMRR xfer\n",
1940 USBDEVNAME(sc->sc_dev));
1941 goto fail;
1942 }
1943
1944 /*
1945 * Open Tx and Rx USB bulk pipes.
1946 */
1947 uerror = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
1948 &sc->sc_tx_pipeh);
1949 if (uerror != USBD_NORMAL_COMPLETION) {
1950 printf("%s: could not open Tx pipe: %s\n",
1951 USBDEVNAME(sc->sc_dev), usbd_errstr(uerror));
1952 error = EIO;
1953 goto fail;
1954 }
1955
1956 uerror = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
1957 &sc->sc_rx_pipeh);
1958 if (uerror != USBD_NORMAL_COMPLETION) {
1959 printf("%s: could not open Rx pipe: %s\n",
1960 USBDEVNAME(sc->sc_dev), usbd_errstr(uerror));
1961 error = EIO;
1962 goto fail;
1963 }
1964
1965 /*
1966 * Allocate Tx and Rx xfer queues.
1967 */
1968 sc->tx_queued = 0;
1969 error = usb_ether_tx_list_init(USBDEV(sc->sc_dev),
1970 sc->tx_data, RT2573_TX_LIST_COUNT,
1971 sc->sc_udev, sc->sc_tx_pipeh, NULL);
1972 if (error != 0) {
1973 printf("%s: could not allocate Tx list\n",
1974 USBDEVNAME(sc->sc_dev));
1975 goto fail;
1976 }
1977
1978 error = usb_ether_rx_list_init(USBDEV(sc->sc_dev),
1979 sc->rx_data, RT2573_RX_LIST_COUNT,
1980 sc->sc_udev, sc->sc_rx_pipeh);
1981 if (error != 0) {
1982 printf("%s: could not allocate Rx list\n",
1983 USBDEVNAME(sc->sc_dev));
1984 goto fail;
1985 }
1986
1987 /*
1988 * Start up the receive pipe.
1989 */
1990 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
1991 data = &sc->rx_data[i];
1992
1993 (void)usbd_map_buffer_mbuf(data->ue_xfer, data->ue_mbuf);
1994 usbd_setup_xfer(data->ue_xfer, sc->sc_rx_pipeh, data, NULL /* XXX buf */,
1995 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
1996 usbd_transfer(data->ue_xfer);
1997 }
1998
1999 /* update Rx filter */
2000 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2001
2002 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2003 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2004 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2005 RT2573_DROP_ACKCTS;
2006 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2007 tmp |= RT2573_DROP_TODS;
2008 if (!(ifp->if_flags & IFF_PROMISC))
2009 tmp |= RT2573_DROP_NOT_TO_ME;
2010 }
2011 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2012
2013 ifp->if_flags &= ~IFF_OACTIVE;
2014 ifp->if_flags |= IFF_RUNNING;
2015
2016 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2017 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2018 else
2019 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2020
2021 return 0;
2022
2023 fail: rum_stop(ifp, 1);
2024 return error;
2025 #undef N
2026 }
2027
2028 Static void
2029 rum_stop(struct ifnet *ifp, int disable)
2030 {
2031 struct rum_softc *sc = ifp->if_softc;
2032 struct ieee80211com *ic = &sc->sc_ic;
2033 uint32_t tmp;
2034
2035 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2036
2037 sc->sc_tx_timer = 0;
2038 ifp->if_timer = 0;
2039 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2040
2041 /* disable Rx */
2042 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2043 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2044
2045 /* reset ASIC */
2046 rum_write(sc, RT2573_MAC_CSR1, 3);
2047 rum_write(sc, RT2573_MAC_CSR1, 0);
2048
2049 /* Stop transfers. */
2050 if (sc->sc_rx_pipeh != NULL)
2051 usbd_abort_pipe(sc->sc_rx_pipeh);
2052 if (sc->sc_tx_pipeh != NULL)
2053 usbd_abort_pipe(sc->sc_tx_pipeh);
2054
2055 /* Free RX/TX resources. */
2056 rum_free_rx_list(sc);
2057 rum_free_tx_list(sc);
2058
2059 /* Close pipes. */
2060 if (sc->sc_rx_pipeh != NULL) {
2061 usbd_close_pipe(sc->sc_rx_pipeh);
2062 sc->sc_rx_pipeh = NULL;
2063 }
2064
2065 if (sc->sc_tx_pipeh != NULL) {
2066 usbd_close_pipe(sc->sc_tx_pipeh);
2067 sc->sc_tx_pipeh = NULL;
2068 }
2069 }
2070
2071 Static int
2072 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2073 {
2074 usb_device_request_t req;
2075 uint16_t reg = RT2573_MCU_CODE_BASE;
2076 usbd_status error;
2077
2078 /* copy firmware image into NIC */
2079 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2080 rum_write(sc, reg, UGETDW(ucode));
2081
2082 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2083 req.bRequest = RT2573_MCU_CNTL;
2084 USETW(req.wValue, RT2573_MCU_RUN);
2085 USETW(req.wIndex, 0);
2086 USETW(req.wLength, 0);
2087
2088 error = usbd_do_request(sc->sc_udev, &req, NULL);
2089 if (error != 0) {
2090 printf("%s: could not run firmware: %s\n",
2091 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2092 }
2093 return error;
2094 }
2095
2096 Static int
2097 rum_prepare_beacon(struct rum_softc *sc)
2098 {
2099 struct ieee80211com *ic = &sc->sc_ic;
2100 struct rum_tx_desc desc;
2101 struct mbuf *m0;
2102 int rate;
2103
2104 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2105 if (m0 == NULL) {
2106 printf("%s: could not allocate beacon frame\n",
2107 sc->sc_dev.dv_xname);
2108 return ENOBUFS;
2109 }
2110
2111 /* send beacons at the lowest available rate */
2112 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2113
2114 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2115 m0->m_pkthdr.len, rate);
2116
2117 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2118 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2119
2120 /* copy beacon header and payload into NIC memory */
2121 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2122 m0->m_pkthdr.len);
2123
2124 m_freem(m0);
2125
2126 return 0;
2127 }
2128
2129 Static void
2130 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2131 {
2132 int i;
2133
2134 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2135 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2136
2137 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2138
2139 /* set rate to some reasonable initial value */
2140 for (i = ni->ni_rates.rs_nrates - 1;
2141 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2142 i--);
2143 ni->ni_txrate = i;
2144
2145 usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2146 }
2147
2148 Static void
2149 rum_amrr_timeout(void *arg)
2150 {
2151 struct rum_softc *sc = arg;
2152 usb_device_request_t req;
2153 int s;
2154
2155 s = splusb();
2156
2157 /*
2158 * Asynchronously read statistic registers (cleared by read).
2159 */
2160 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2161 req.bRequest = RT2573_READ_MULTI_MAC;
2162 USETW(req.wValue, 0);
2163 USETW(req.wIndex, RT2573_STA_CSR0);
2164 USETW(req.wLength, sizeof sc->sta);
2165
2166 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2167 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2168 rum_amrr_update);
2169 (void)usbd_transfer(sc->amrr_xfer);
2170
2171 splx(s);
2172 }
2173
2174 Static void
2175 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2176 usbd_status status)
2177 {
2178 struct rum_softc *sc = (struct rum_softc *)priv;
2179 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2180
2181 if (status != USBD_NORMAL_COMPLETION) {
2182 printf("%s: could not retrieve Tx statistics - cancelling "
2183 "automatic rate control\n", USBDEVNAME(sc->sc_dev));
2184 return;
2185 }
2186
2187 /* count TX retry-fail as Tx errors */
2188 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2189
2190 sc->amn.amn_retrycnt =
2191 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2192 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2193 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2194
2195 sc->amn.amn_txcnt =
2196 sc->amn.amn_retrycnt +
2197 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2198
2199 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2200
2201 usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2202 }
2203
2204 int
2205 rum_activate(device_ptr_t self, enum devact act)
2206 {
2207 switch (act) {
2208 case DVACT_ACTIVATE:
2209 return EOPNOTSUPP;
2210
2211 case DVACT_DEACTIVATE:
2212 /*if_deactivate(&sc->sc_ic.ic_if);*/
2213 break;
2214 }
2215
2216 return 0;
2217 }
2218