if_rum.c revision 1.6.4.6 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.6.4.6 2007/06/25 09:25:04 itohy Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.6.4.6 2007/06/25 09:25:04 itohy Exp $");
28
29 #include "bpfilter.h"
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41
42 #include <machine/bus.h>
43 #include <machine/endian.h>
44 #include <machine/intr.h>
45
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/firmload.h>
67
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72 #include <dev/usb/usb_ethersubr.h>
73
74 #include <dev/usb/if_rumreg.h>
75 #include <dev/usb/if_rumvar.h>
76
77 #ifdef USB_DEBUG
78 #define RUM_DEBUG
79 #endif
80
81 #ifdef RUM_DEBUG
82 #define DPRINTF(x) do { if (rum_debug) logprintf x; } while (0)
83 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) logprintf x; } while (0)
84 int rum_debug = 1;
85 #else
86 #define DPRINTF(x)
87 #define DPRINTFN(n, x)
88 #endif
89
90 /* various supported device vendors/products */
91 static const struct usb_devno rum_devs[] = {
92 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
93 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
94 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
95 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
96 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
97 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
98 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
99 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
100 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
101 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
102 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
103 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
104 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
105 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
106 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
107 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
108 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
109 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
110 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
111 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
112 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
113 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
114 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
115 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
116 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
117 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
118 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
119 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
120 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
121 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
122 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
123 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
124 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
125 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
126 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
127 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
128 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
129 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2573 },
130 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
131 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
132 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
133 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }
134 };
135
136 Static int rum_attachhook(void *);
137 Static void rum_free_tx_list(struct rum_softc *);
138 Static void rum_free_rx_list(struct rum_softc *);
139 Static int rum_media_change(struct ifnet *);
140 Static void rum_next_scan(void *);
141 Static void rum_task(void *);
142 Static int rum_newstate(struct ieee80211com *,
143 enum ieee80211_state, int);
144 Static void rum_txeof(usbd_xfer_handle, usbd_private_handle,
145 usbd_status);
146 Static void rum_rxeof(usbd_xfer_handle, usbd_private_handle,
147 usbd_status);
148 #if NBPFILTER > 0
149 Static uint8_t rum_rxrate(struct rum_rx_desc *);
150 #endif
151 Static int rum_ack_rate(struct ieee80211com *, int);
152 Static uint16_t rum_txtime(int, int, uint32_t);
153 Static uint8_t rum_plcp_signal(int);
154 Static void rum_setup_tx_desc(struct rum_softc *,
155 struct rum_tx_desc *, uint32_t, uint16_t, int,
156 int);
157 Static int rum_tx_mgt(struct rum_softc *, struct mbuf *,
158 struct ieee80211_node *);
159 Static int rum_tx_data(struct rum_softc *, struct mbuf *,
160 struct ieee80211_node *);
161 Static void rum_start(struct ifnet *);
162 Static void rum_watchdog(struct ifnet *);
163 Static int rum_ioctl(struct ifnet *, u_long, usb_ioctlarg_t);
164 Static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
165 int);
166 Static uint32_t rum_read(struct rum_softc *, uint16_t);
167 Static void rum_read_multi(struct rum_softc *, uint16_t, void *,
168 int);
169 Static void rum_write(struct rum_softc *, uint16_t, uint32_t);
170 Static void rum_write_multi(struct rum_softc *, uint16_t, void *,
171 size_t);
172 Static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
173 Static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
174 Static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
175 Static void rum_select_antenna(struct rum_softc *);
176 Static void rum_enable_mrr(struct rum_softc *);
177 Static void rum_set_txpreamble(struct rum_softc *);
178 Static void rum_set_basicrates(struct rum_softc *);
179 Static void rum_select_band(struct rum_softc *,
180 struct ieee80211_channel *);
181 Static void rum_set_chan(struct rum_softc *,
182 struct ieee80211_channel *);
183 Static void rum_enable_tsf_sync(struct rum_softc *);
184 Static void rum_update_slot(struct rum_softc *);
185 Static void rum_set_bssid(struct rum_softc *, const uint8_t *);
186 Static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
187 Static void rum_update_promisc(struct rum_softc *);
188 Static const char *rum_get_rf(int);
189 Static void rum_read_eeprom(struct rum_softc *);
190 Static int rum_bbp_init(struct rum_softc *);
191 Static int rum_init(struct ifnet *);
192 Static void rum_stop(struct ifnet *, int);
193 Static int rum_load_microcode(struct rum_softc *, const u_char *,
194 size_t);
195 Static int rum_prepare_beacon(struct rum_softc *);
196 Static void rum_amrr_start(struct rum_softc *,
197 struct ieee80211_node *);
198 Static void rum_amrr_timeout(void *);
199 Static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
200 usbd_status status);
201
202 /*
203 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
204 */
205 static const struct ieee80211_rateset rum_rateset_11a =
206 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
207
208 static const struct ieee80211_rateset rum_rateset_11b =
209 { 4, { 2, 4, 11, 22 } };
210
211 static const struct ieee80211_rateset rum_rateset_11g =
212 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
213
214 static const struct {
215 uint32_t reg;
216 uint32_t val;
217 } rum_def_mac[] = {
218 RT2573_DEF_MAC
219 };
220
221 static const struct {
222 uint8_t reg;
223 uint8_t val;
224 } rum_def_bbp[] = {
225 RT2573_DEF_BBP
226 };
227
228 static const struct rfprog {
229 uint8_t chan;
230 uint32_t r1, r2, r3, r4;
231 } rum_rf5226[] = {
232 RT2573_RF5226
233 }, rum_rf5225[] = {
234 RT2573_RF5225
235 };
236
237 USB_DECLARE_DRIVER(rum);
238
239 USB_MATCH(rum)
240 {
241 USB_MATCH_START(rum, uaa);
242
243 #ifndef USB_USE_IFATTACH
244 if (uaa->iface != NULL)
245 return UMATCH_NONE;
246 #endif /* USB_USE_IFATTACH */
247
248 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
249 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
250 }
251
252 Static int
253 rum_attachhook(void *xsc)
254 {
255 struct rum_softc *sc = xsc;
256 firmware_handle_t fwh;
257 const char *name = "rum-rt2573";
258 u_char *ucode;
259 size_t size;
260 int error;
261
262 if ((error = firmware_open("rum", name, &fwh)) != 0) {
263 printf("%s: failed loadfirmware of file %s (error %d)\n",
264 USBDEVNAME(sc->sc_dev), name, error);
265 return error;
266 }
267 size = firmware_get_size(fwh);
268 ucode = firmware_malloc(size);
269 if (ucode == NULL) {
270 printf("%s: failed to allocate firmware memory\n",
271 USBDEVNAME(sc->sc_dev));
272 firmware_close(fwh);
273 return ENOMEM;;
274 }
275 error = firmware_read(fwh, 0, ucode, size);
276 firmware_close(fwh);
277 if (error != 0) {
278 printf("%s: failed to read firmware (error %d)\n",
279 USBDEVNAME(sc->sc_dev), error);
280 firmware_free(ucode, 0);
281 return error;
282 }
283
284 if (rum_load_microcode(sc, ucode, size) != 0) {
285 printf("%s: could not load 8051 microcode\n",
286 USBDEVNAME(sc->sc_dev));
287 firmware_free(ucode, 0);
288 return ENXIO;
289 }
290
291 firmware_free(ucode, 0);
292 sc->sc_flags |= RT2573_FWLOADED;
293
294 return 0;
295 }
296
297 USB_ATTACH(rum)
298 {
299 USB_ATTACH_START(rum, sc, uaa);
300 struct ieee80211com *ic = &sc->sc_ic;
301 struct ifnet *ifp = &sc->sc_if;
302 usb_interface_descriptor_t *id;
303 usb_endpoint_descriptor_t *ed;
304 usbd_status error;
305 char *devinfop;
306 int i, ntries;
307 uint32_t tmp;
308
309 sc->sc_udev = uaa->device;
310 sc->sc_flags = 0;
311
312 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
313 USB_ATTACH_SETUP;
314 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
315 usbd_devinfo_free(devinfop);
316
317 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
318 printf("%s: could not set configuration no\n",
319 USBDEVNAME(sc->sc_dev));
320 USB_ATTACH_ERROR_RETURN;
321 }
322
323 /* get the first interface handle */
324 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
325 &sc->sc_iface);
326 if (error != 0) {
327 printf("%s: could not get interface handle\n",
328 USBDEVNAME(sc->sc_dev));
329 USB_ATTACH_ERROR_RETURN;
330 }
331
332 /*
333 * Find endpoints.
334 */
335 id = usbd_get_interface_descriptor(sc->sc_iface);
336
337 sc->sc_rx_no = sc->sc_tx_no = -1;
338 for (i = 0; i < id->bNumEndpoints; i++) {
339 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
340 if (ed == NULL) {
341 printf("%s: no endpoint descriptor for iface %d\n",
342 USBDEVNAME(sc->sc_dev), i);
343 USB_ATTACH_ERROR_RETURN;
344 }
345
346 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
347 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
348 sc->sc_rx_no = ed->bEndpointAddress;
349 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
350 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
351 sc->sc_tx_no = ed->bEndpointAddress;
352 }
353 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
354 printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
355 USB_ATTACH_ERROR_RETURN;
356 }
357
358 usb_init_task(&sc->sc_task, rum_task, sc);
359 usb_callout_init(sc->sc_scan_ch);
360
361 sc->amrr.amrr_min_success_threshold = 1;
362 sc->amrr.amrr_max_success_threshold = 10;
363 usb_callout_init(sc->sc_amrr_ch);
364
365 /* retrieve RT2573 rev. no */
366 tmp = 0; /* XXX shut up warning */
367 for (ntries = 0; ntries < 1000; ntries++) {
368 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
369 break;
370 DELAY(1000);
371 }
372 if (ntries == 1000) {
373 printf("%s: timeout waiting for chip to settle\n",
374 USBDEVNAME(sc->sc_dev));
375 USB_ATTACH_ERROR_RETURN;
376 }
377
378 /* retrieve MAC address and various other things from EEPROM */
379 rum_read_eeprom(sc);
380
381 printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
382 USBDEVNAME(sc->sc_dev), sc->macbbp_rev, tmp,
383 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
384
385 ic->ic_ifp = ifp;
386 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
387 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
388 ic->ic_state = IEEE80211_S_INIT;
389
390 /* set device capabilities */
391 ic->ic_caps =
392 IEEE80211_C_IBSS | /* IBSS mode supported */
393 IEEE80211_C_MONITOR | /* monitor mode supported */
394 IEEE80211_C_HOSTAP | /* HostAp mode supported */
395 IEEE80211_C_TXPMGT | /* tx power management */
396 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
397 IEEE80211_C_SHSLOT | /* short slot time supported */
398 IEEE80211_C_WPA; /* 802.11i */
399
400 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
401 /* set supported .11a rates */
402 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
403
404 /* set supported .11a channels */
405 for (i = 34; i <= 46; i += 4) {
406 ic->ic_channels[i].ic_freq =
407 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
408 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
409 }
410 for (i = 36; i <= 64; i += 4) {
411 ic->ic_channels[i].ic_freq =
412 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
413 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
414 }
415 for (i = 100; i <= 140; i += 4) {
416 ic->ic_channels[i].ic_freq =
417 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
418 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
419 }
420 for (i = 149; i <= 165; i += 4) {
421 ic->ic_channels[i].ic_freq =
422 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
423 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
424 }
425 }
426
427 /* set supported .11b and .11g rates */
428 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
429 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
430
431 /* set supported .11b and .11g channels (1 through 14) */
432 for (i = 1; i <= 14; i++) {
433 ic->ic_channels[i].ic_freq =
434 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
435 ic->ic_channels[i].ic_flags =
436 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
437 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
438 }
439
440 ifp->if_softc = sc;
441 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
442 ifp->if_init = rum_init;
443 ifp->if_ioctl = rum_ioctl;
444 ifp->if_start = rum_start;
445 ifp->if_watchdog = rum_watchdog;
446 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
447 IFQ_SET_READY(&ifp->if_snd);
448 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
449
450 if_attach(ifp);
451 ieee80211_ifattach(ic);
452
453 /* override state transition machine */
454 sc->sc_newstate = ic->ic_newstate;
455 ic->ic_newstate = rum_newstate;
456 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
457
458 #if NBPFILTER > 0
459 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
460 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf);
461
462 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
463 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
464 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
465
466 sc->sc_txtap_len = sizeof sc->sc_txtapu;
467 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
468 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
469 #endif
470
471 ieee80211_announce(ic);
472
473 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
474 USBDEV(sc->sc_dev));
475
476 USB_ATTACH_SUCCESS_RETURN;
477 }
478
479 USB_DETACH(rum)
480 {
481 USB_DETACH_START(rum, sc);
482 struct ieee80211com *ic = &sc->sc_ic;
483 struct ifnet *ifp = &sc->sc_if;
484 int s;
485
486 s = splusb();
487
488 rum_stop(ifp, 1);
489 usb_rem_task(sc->sc_udev, &sc->sc_task);
490 usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
491 usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
492
493 if (sc->sc_rx_pipeh != NULL)
494 usbd_abort_pipe(sc->sc_rx_pipeh);
495
496 if (sc->sc_tx_pipeh != NULL)
497 usbd_abort_pipe(sc->sc_tx_pipeh);
498
499 rum_free_rx_list(sc);
500 rum_free_tx_list(sc);
501
502 if (sc->amrr_xfer != NULL) {
503 usbd_free_xfer(sc->amrr_xfer);
504 sc->amrr_xfer = NULL;
505 }
506
507 if (sc->sc_rx_pipeh != NULL)
508 usbd_close_pipe(sc->sc_rx_pipeh);
509
510 if (sc->sc_tx_pipeh != NULL)
511 usbd_close_pipe(sc->sc_tx_pipeh);
512
513 #if NBPFILTER > 0
514 bpfdetach(ifp);
515 #endif
516 ieee80211_ifdetach(ic); /* free all nodes */
517 if_detach(ifp);
518
519 splx(s);
520
521 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
522 USBDEV(sc->sc_dev));
523
524 return 0;
525 }
526
527 Static void
528 rum_free_tx_list(struct rum_softc *sc)
529 {
530 int i;
531
532 usb_ether_tx_list_free(sc->tx_data, RT2573_TX_LIST_COUNT);
533
534 for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
535 if (sc->tx_ni[i] != NULL) {
536 ieee80211_free_node(sc->tx_ni[i]);
537 sc->tx_ni[i] = NULL;
538 }
539 }
540 }
541
542 Static void
543 rum_free_rx_list(struct rum_softc *sc)
544 {
545
546 usb_ether_rx_list_free(sc->rx_data, RT2573_RX_LIST_COUNT);
547 }
548
549 Static int
550 rum_media_change(struct ifnet *ifp)
551 {
552 int error;
553
554 error = ieee80211_media_change(ifp);
555 if (error != ENETRESET)
556 return error;
557
558 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
559 rum_init(ifp);
560
561 return 0;
562 }
563
564 /*
565 * This function is called periodically (every 200ms) during scanning to
566 * switch from one channel to another.
567 */
568 Static void
569 rum_next_scan(void *arg)
570 {
571 struct rum_softc *sc = arg;
572 struct ieee80211com *ic = &sc->sc_ic;
573
574 if (ic->ic_state == IEEE80211_S_SCAN)
575 ieee80211_next_scan(ic);
576 }
577
578 Static void
579 rum_task(void *arg)
580 {
581 struct rum_softc *sc = arg;
582 struct ieee80211com *ic = &sc->sc_ic;
583 enum ieee80211_state ostate;
584 struct ieee80211_node *ni;
585 uint32_t tmp;
586
587 ostate = ic->ic_state;
588
589 switch (sc->sc_state) {
590 case IEEE80211_S_INIT:
591 if (ostate == IEEE80211_S_RUN) {
592 /* abort TSF synchronization */
593 tmp = rum_read(sc, RT2573_TXRX_CSR9);
594 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
595 }
596 break;
597
598 case IEEE80211_S_SCAN:
599 rum_set_chan(sc, ic->ic_curchan);
600 usb_callout(sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
601 break;
602
603 case IEEE80211_S_AUTH:
604 rum_set_chan(sc, ic->ic_curchan);
605 break;
606
607 case IEEE80211_S_ASSOC:
608 rum_set_chan(sc, ic->ic_curchan);
609 break;
610
611 case IEEE80211_S_RUN:
612 rum_set_chan(sc, ic->ic_curchan);
613
614 ni = ic->ic_bss;
615
616 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
617 rum_update_slot(sc);
618 rum_enable_mrr(sc);
619 rum_set_txpreamble(sc);
620 rum_set_basicrates(sc);
621 rum_set_bssid(sc, ni->ni_bssid);
622 }
623
624 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
625 ic->ic_opmode == IEEE80211_M_IBSS)
626 rum_prepare_beacon(sc);
627
628 if (ic->ic_opmode != IEEE80211_M_MONITOR)
629 rum_enable_tsf_sync(sc);
630
631 /* enable automatic rate adaptation in STA mode */
632 if (ic->ic_opmode == IEEE80211_M_STA &&
633 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
634 rum_amrr_start(sc, ni);
635
636 break;
637 }
638
639 sc->sc_newstate(ic, sc->sc_state, -1);
640 }
641
642 Static int
643 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
644 {
645 struct rum_softc *sc = ic->ic_ifp->if_softc;
646
647 usb_rem_task(sc->sc_udev, &sc->sc_task);
648 usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
649 usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
650
651 /* do it in a process context */
652 sc->sc_state = nstate;
653 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
654
655 return 0;
656 }
657
658 /* quickly determine if a given rate is CCK or OFDM */
659 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
660
661 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
662 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
663
664 Static void
665 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
666 {
667 struct ue_chain *data = priv;
668 struct rum_softc *sc = (void *)data->ue_dev;
669 struct ifnet *ifp = &sc->sc_if;
670 int s;
671
672 usbd_unmap_buffer(xfer);
673
674 if (status != USBD_NORMAL_COMPLETION) {
675 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
676 return;
677
678 printf("%s: could not transmit buffer: %s\n",
679 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
680
681 if (status == USBD_STALLED)
682 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
683
684 ifp->if_oerrors++;
685 return;
686 }
687
688 s = splnet();
689
690 m_freem(data->ue_mbuf);
691 data->ue_mbuf = NULL;
692 ieee80211_free_node(sc->tx_ni[data->ue_idx]);
693 sc->tx_ni[data->ue_idx] = NULL;
694
695 sc->tx_queued--;
696 ifp->if_opackets++;
697
698 DPRINTFN(10, ("tx done\n"));
699
700 sc->sc_tx_timer = 0;
701 ifp->if_flags &= ~IFF_OACTIVE;
702 rum_start(ifp);
703
704 splx(s);
705 }
706
707 Static void
708 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
709 {
710 struct ue_chain *data = priv;
711 struct rum_softc *sc = (void *)data->ue_dev;
712 struct ieee80211com *ic = &sc->sc_ic;
713 struct ifnet *ifp = &sc->sc_if;
714 struct rum_rx_desc *desc;
715 struct ieee80211_frame *wh;
716 struct ieee80211_node *ni;
717 struct mbuf *m;
718 int s, len;
719
720 usbd_unmap_buffer(xfer);
721
722 if (status != USBD_NORMAL_COMPLETION) {
723 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
724 return;
725
726 if (status == USBD_STALLED)
727 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
728 goto skip;
729 }
730
731 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
732
733 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
734 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
735 len));
736 ifp->if_ierrors++;
737 goto skip;
738 }
739
740 m = data->ue_mbuf;
741 desc = mtod(m, struct rum_rx_desc *);
742
743 if (UGETDW((u_int8_t *)&desc->flags) & RT2573_RX_CRC_ERROR) {
744 /*
745 * This should not happen since we did not request to receive
746 * those frames when we filled RT2573_TXRX_CSR0.
747 */
748 DPRINTFN(5, ("CRC error\n"));
749 ifp->if_ierrors++;
750 goto skip;
751 }
752
753 /*
754 * Allocate new mbuf cluster for the next transfer.
755 * If that failed, discard current packet and recycle the mbuf.
756 */
757 if ((data->ue_mbuf = usb_ether_newbuf(NULL)) == NULL) {
758 printf("%s: no memory for rx list -- packet dropped!\n",
759 USBDEVNAME(sc->sc_dev));
760 ifp->if_ierrors++;
761 data->ue_mbuf = usb_ether_newbuf(m);
762 goto skip;
763 }
764
765 /* finalize mbuf */
766 m->m_pkthdr.rcvif = ifp;
767 m->m_data = (void *)(desc + 1);
768 m->m_pkthdr.len = m->m_len = UGETW((u_int8_t *)&desc->flags + 2);
769
770 s = splnet();
771
772 #if NBPFILTER > 0
773 if (sc->sc_drvbpf != NULL) {
774 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
775
776 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
777 tap->wr_rate = rum_rxrate(desc);
778 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
779 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
780 tap->wr_antenna = sc->rx_ant;
781 tap->wr_antsignal = desc->rssi;
782
783 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
784 }
785 #endif
786
787 wh = mtod(m, struct ieee80211_frame *);
788 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
789
790 /* send the frame to the 802.11 layer */
791 ieee80211_input(ic, m, ni, desc->rssi, 0);
792
793 /* node is no longer needed */
794 ieee80211_free_node(ni);
795
796 splx(s);
797
798 DPRINTFN(15, ("rx done\n"));
799
800 skip: /* setup a new transfer */
801 (void)usbd_map_buffer_mbuf(xfer, data->ue_mbuf);
802 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, NULL /* XXX buf */, MCLBYTES,
803 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
804 usbd_transfer(xfer);
805 }
806
807 /*
808 * This function is only used by the Rx radiotap code. It returns the rate at
809 * which a given frame was received.
810 */
811 #if NBPFILTER > 0
812 Static uint8_t
813 rum_rxrate(struct rum_rx_desc *desc)
814 {
815 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
816 /* reverse function of rum_plcp_signal */
817 switch (desc->rate) {
818 case 0xb: return 12;
819 case 0xf: return 18;
820 case 0xa: return 24;
821 case 0xe: return 36;
822 case 0x9: return 48;
823 case 0xd: return 72;
824 case 0x8: return 96;
825 case 0xc: return 108;
826 }
827 } else {
828 if (desc->rate == 10)
829 return 2;
830 if (desc->rate == 20)
831 return 4;
832 if (desc->rate == 55)
833 return 11;
834 if (desc->rate == 110)
835 return 22;
836 }
837 return 2; /* should not get there */
838 }
839 #endif
840
841 /*
842 * Return the expected ack rate for a frame transmitted at rate `rate'.
843 * XXX: this should depend on the destination node basic rate set.
844 */
845 Static int
846 rum_ack_rate(struct ieee80211com *ic, int rate)
847 {
848 switch (rate) {
849 /* CCK rates */
850 case 2:
851 return 2;
852 case 4:
853 case 11:
854 case 22:
855 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
856
857 /* OFDM rates */
858 case 12:
859 case 18:
860 return 12;
861 case 24:
862 case 36:
863 return 24;
864 case 48:
865 case 72:
866 case 96:
867 case 108:
868 return 48;
869 }
870
871 /* default to 1Mbps */
872 return 2;
873 }
874
875 /*
876 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
877 * The function automatically determines the operating mode depending on the
878 * given rate. `flags' indicates whether short preamble is in use or not.
879 */
880 Static uint16_t
881 rum_txtime(int len, int rate, uint32_t flags)
882 {
883 uint16_t txtime;
884
885 if (RUM_RATE_IS_OFDM(rate)) {
886 /* IEEE Std 802.11a-1999, pp. 37 */
887 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
888 txtime = 16 + 4 + 4 * txtime + 6;
889 } else {
890 /* IEEE Std 802.11b-1999, pp. 28 */
891 txtime = (16 * len + rate - 1) / rate;
892 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
893 txtime += 72 + 24;
894 else
895 txtime += 144 + 48;
896 }
897 return txtime;
898 }
899
900 Static uint8_t
901 rum_plcp_signal(int rate)
902 {
903 switch (rate) {
904 /* CCK rates (returned values are device-dependent) */
905 case 2: return 0x0;
906 case 4: return 0x1;
907 case 11: return 0x2;
908 case 22: return 0x3;
909
910 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
911 case 12: return 0xb;
912 case 18: return 0xf;
913 case 24: return 0xa;
914 case 36: return 0xe;
915 case 48: return 0x9;
916 case 72: return 0xd;
917 case 96: return 0x8;
918 case 108: return 0xc;
919
920 /* unsupported rates (should not get there) */
921 default: return 0xff;
922 }
923 }
924
925 Static void
926 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
927 uint32_t flags, uint16_t xflags, int len, int rate)
928 {
929 struct ieee80211com *ic = &sc->sc_ic;
930 uint16_t plcp_length;
931 int remainder;
932
933 desc->flags = htole32(flags);
934 desc->flags |= htole32(RT2573_TX_VALID);
935 desc->flags |= htole32(len << 16);
936
937 desc->xflags = htole16(xflags);
938
939 desc->wme = htole16(
940 RT2573_QID(0) |
941 RT2573_AIFSN(2) |
942 RT2573_LOGCWMIN(4) |
943 RT2573_LOGCWMAX(10));
944
945 /* setup PLCP fields */
946 desc->plcp_signal = rum_plcp_signal(rate);
947 desc->plcp_service = 4;
948
949 len += IEEE80211_CRC_LEN;
950 if (RUM_RATE_IS_OFDM(rate)) {
951 desc->flags |= htole32(RT2573_TX_OFDM);
952
953 plcp_length = len & 0xfff;
954 desc->plcp_length_hi = plcp_length >> 6;
955 desc->plcp_length_lo = plcp_length & 0x3f;
956 } else {
957 plcp_length = (16 * len + rate - 1) / rate;
958 if (rate == 22) {
959 remainder = (16 * len) % 22;
960 if (remainder != 0 && remainder < 7)
961 desc->plcp_service |= RT2573_PLCP_LENGEXT;
962 }
963 desc->plcp_length_hi = plcp_length >> 8;
964 desc->plcp_length_lo = plcp_length & 0xff;
965
966 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
967 desc->plcp_signal |= 0x08;
968 }
969 }
970
971 #define RUM_TX_TIMEOUT 5000
972
973 Static int
974 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
975 {
976 struct ieee80211com *ic = &sc->sc_ic;
977 struct rum_tx_desc *desc;
978 struct ue_chain *data;
979 struct ieee80211_frame *wh;
980 uint32_t flags = 0;
981 uint16_t dur;
982 usbd_status error;
983 int xferlen, rate;
984 int ret;
985
986 data = &sc->tx_data[0];
987
988 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
989
990 data->ue_mbuf = m0;
991 sc->tx_ni[data->ue_idx] = ni;
992
993 wh = mtod(m0, struct ieee80211_frame *);
994
995 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
996 flags |= RT2573_TX_ACK;
997
998 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
999 ic->ic_flags) + sc->sifs;
1000 *(uint16_t *)wh->i_dur = htole16(dur);
1001
1002 /* tell hardware to set timestamp in probe responses */
1003 if ((wh->i_fc[0] &
1004 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1005 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1006 flags |= RT2573_TX_TIMESTAMP;
1007 }
1008
1009 #if NBPFILTER > 0
1010 if (sc->sc_drvbpf != NULL) {
1011 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1012
1013 tap->wt_flags = 0;
1014 tap->wt_rate = rate;
1015 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1016 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1017 tap->wt_antenna = sc->tx_ant;
1018
1019 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1020 }
1021 #endif
1022
1023 /* Prepend Tx descriptor */
1024 M_PREPEND(m0, RT2573_TX_DESC_SIZE, M_DONTWAIT);
1025 if (m0 != NULL)
1026 m0 = m_pullup(m0, RT2573_TX_DESC_SIZE); /* just in case */
1027 if (m0 == NULL) {
1028 return ENOBUFS;
1029 }
1030 desc = mtod(m0, struct rum_tx_desc *);
1031
1032 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1033
1034 /* align end on a 4-bytes boundary */
1035 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1036
1037 /*
1038 * No space left in the last URB to store the extra 4 bytes, force
1039 * sending of another URB.
1040 */
1041 if ((xferlen % 64) == 0)
1042 xferlen += 4;
1043
1044 if (m0->m_pkthdr.len != xferlen) {
1045 m_copyback(m0, xferlen - 1, 1, ""); /* expand mbuf chain */
1046 if (m0->m_pkthdr.len != xferlen) {
1047 m_freem(m0);
1048 return ENOBUFS;
1049 }
1050 }
1051
1052 ret = usb_ether_map_tx_buffer_mbuf(data, m0);
1053 if (ret) {
1054 m_freem(m0);
1055 return ret;
1056 }
1057
1058 DPRINTFN(10, ("sending msg frame len=%lu rate=%u xfer len=%u\n",
1059 (long unsigned int)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1060 rate, xferlen));
1061
1062 usbd_setup_xfer(data->ue_xfer, sc->sc_tx_pipeh, data, NULL /* XXX buf */, xferlen,
1063 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1064
1065 error = usbd_transfer(data->ue_xfer);
1066 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1067 data->ue_mbuf = NULL;
1068 m_freem(m0);
1069 return error;
1070 }
1071
1072 sc->tx_queued++;
1073
1074 return 0;
1075 }
1076
1077 Static int
1078 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1079 {
1080 struct ieee80211com *ic = &sc->sc_ic;
1081 struct rum_tx_desc *desc;
1082 struct ue_chain *data;
1083 struct ieee80211_frame *wh;
1084 struct ieee80211_key *k;
1085 uint32_t flags = 0;
1086 uint16_t dur;
1087 usbd_status error;
1088 int xferlen, rate;
1089 int ret;
1090
1091 wh = mtod(m0, struct ieee80211_frame *);
1092
1093 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1094 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1095 else
1096 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1097 rate &= IEEE80211_RATE_VAL;
1098
1099 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1100 k = ieee80211_crypto_encap(ic, ni, m0);
1101 if (k == NULL) {
1102 m_freem(m0);
1103 return ENOBUFS;
1104 }
1105
1106 /* packet header may have moved, reset our local pointer */
1107 wh = mtod(m0, struct ieee80211_frame *);
1108 }
1109
1110 data = &sc->tx_data[0];
1111
1112 data->ue_mbuf = m0;
1113 sc->tx_ni[data->ue_idx] = ni;
1114
1115 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1116 flags |= RT2573_TX_ACK;
1117
1118 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1119 ic->ic_flags) + sc->sifs;
1120 *(uint16_t *)wh->i_dur = htole16(dur);
1121 }
1122
1123 #if NBPFILTER > 0
1124 if (sc->sc_drvbpf != NULL) {
1125 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1126
1127 tap->wt_flags = 0;
1128 tap->wt_rate = rate;
1129 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1130 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1131 tap->wt_antenna = sc->tx_ant;
1132
1133 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1134 }
1135 #endif
1136
1137 /* Prepend Tx descriptor */
1138 M_PREPEND(m0, RT2573_TX_DESC_SIZE, M_DONTWAIT);
1139 if (m0 != NULL)
1140 m0 = m_pullup(m0, RT2573_TX_DESC_SIZE); /* just in case */
1141 if (m0 == NULL) {
1142 return ENOBUFS;
1143 }
1144 desc = mtod(m0, struct rum_tx_desc *);
1145
1146 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1147
1148 /* align end on a 4-bytes boundary */
1149 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1150
1151 /*
1152 * No space left in the last URB to store the extra 4 bytes, force
1153 * sending of another URB.
1154 */
1155 if ((xferlen % 64) == 0)
1156 xferlen += 4;
1157
1158 if (m0->m_pkthdr.len != xferlen) {
1159 m_copyback(m0, xferlen - 1, 1, ""); /* expand mbuf chain */
1160 if (m0->m_pkthdr.len != xferlen) {
1161 m_freem(m0);
1162 return ENOBUFS;
1163 }
1164 }
1165
1166 ret = usb_ether_map_tx_buffer_mbuf(data, m0);
1167 if (ret) {
1168 m_freem(m0);
1169 return ret;
1170 }
1171
1172 DPRINTFN(10, ("sending data frame len=%lu rate=%u xfer len=%u\n",
1173 (long unsigned int)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1174 rate, xferlen));
1175
1176 usbd_setup_xfer(data->ue_xfer, sc->sc_tx_pipeh, data, NULL /* XXX buf */, xferlen,
1177 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1178
1179 error = usbd_transfer(data->ue_xfer);
1180 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1181 data->ue_mbuf = NULL;
1182 m_freem(m0);
1183 return error;
1184 }
1185
1186 sc->tx_queued++;
1187
1188 return 0;
1189 }
1190
1191 Static void
1192 rum_start(struct ifnet *ifp)
1193 {
1194 struct rum_softc *sc = ifp->if_softc;
1195 struct ieee80211com *ic = &sc->sc_ic;
1196 struct ether_header *eh;
1197 struct ieee80211_node *ni;
1198 struct mbuf *m0;
1199
1200 for (;;) {
1201 IF_POLL(&ic->ic_mgtq, m0);
1202 if (m0 != NULL) {
1203 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1204 ifp->if_flags |= IFF_OACTIVE;
1205 break;
1206 }
1207 IF_DEQUEUE(&ic->ic_mgtq, m0);
1208
1209 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1210 m0->m_pkthdr.rcvif = NULL;
1211 #if NBPFILTER > 0
1212 if (ic->ic_rawbpf != NULL)
1213 bpf_mtap(ic->ic_rawbpf, m0);
1214 #endif
1215 if (rum_tx_mgt(sc, m0, ni) != 0)
1216 break;
1217
1218 } else {
1219 if (ic->ic_state != IEEE80211_S_RUN)
1220 break;
1221 IFQ_POLL(&ifp->if_snd, m0);
1222 if (m0 == NULL)
1223 break;
1224 if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1225 ifp->if_flags |= IFF_OACTIVE;
1226 break;
1227 }
1228 IFQ_DEQUEUE(&ifp->if_snd, m0);
1229 if (m0->m_len < sizeof(struct ether_header) &&
1230 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1231 continue;
1232
1233 eh = mtod(m0, struct ether_header *);
1234 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1235 if (ni == NULL) {
1236 m_freem(m0);
1237 continue;
1238 }
1239 #if NBPFILTER > 0
1240 if (ifp->if_bpf != NULL)
1241 bpf_mtap(ifp->if_bpf, m0);
1242 #endif
1243 m0 = ieee80211_encap(ic, m0, ni);
1244 if (m0 == NULL) {
1245 ieee80211_free_node(ni);
1246 continue;
1247 }
1248 #if NBPFILTER > 0
1249 if (ic->ic_rawbpf != NULL)
1250 bpf_mtap(ic->ic_rawbpf, m0);
1251 #endif
1252 if (rum_tx_data(sc, m0, ni) != 0) {
1253 ieee80211_free_node(ni);
1254 ifp->if_oerrors++;
1255 break;
1256 }
1257 }
1258
1259 sc->sc_tx_timer = 5;
1260 ifp->if_timer = 1;
1261 }
1262 }
1263
1264 Static void
1265 rum_watchdog(struct ifnet *ifp)
1266 {
1267 struct rum_softc *sc = ifp->if_softc;
1268 struct ieee80211com *ic = &sc->sc_ic;
1269
1270 ifp->if_timer = 0;
1271
1272 if (sc->sc_tx_timer > 0) {
1273 if (--sc->sc_tx_timer == 0) {
1274 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1275 /*rum_init(ifp); XXX needs a process context! */
1276 ifp->if_oerrors++;
1277 return;
1278 }
1279 ifp->if_timer = 1;
1280 }
1281
1282 ieee80211_watchdog(ic);
1283 }
1284
1285 Static int
1286 rum_ioctl(struct ifnet *ifp, u_long cmd, usb_ioctlarg_t data)
1287 {
1288 struct rum_softc *sc = ifp->if_softc;
1289 struct ieee80211com *ic = &sc->sc_ic;
1290 int s, error = 0;
1291
1292 s = splnet();
1293
1294 switch (cmd) {
1295 case SIOCSIFFLAGS:
1296 if (ifp->if_flags & IFF_UP) {
1297 if (ifp->if_flags & IFF_RUNNING)
1298 rum_update_promisc(sc);
1299 else
1300 rum_init(ifp);
1301 } else {
1302 if (ifp->if_flags & IFF_RUNNING)
1303 rum_stop(ifp, 1);
1304 }
1305 break;
1306
1307 default:
1308 error = ieee80211_ioctl(ic, cmd, data);
1309 }
1310
1311 if (error == ENETRESET) {
1312 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1313 (IFF_UP | IFF_RUNNING))
1314 rum_init(ifp);
1315 error = 0;
1316 }
1317
1318 splx(s);
1319
1320 return error;
1321 }
1322
1323 Static void
1324 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1325 {
1326 usb_device_request_t req;
1327 usbd_status error;
1328
1329 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1330 req.bRequest = RT2573_READ_EEPROM;
1331 USETW(req.wValue, 0);
1332 USETW(req.wIndex, addr);
1333 USETW(req.wLength, len);
1334
1335 error = usbd_do_request(sc->sc_udev, &req, buf);
1336 if (error != 0) {
1337 printf("%s: could not read EEPROM: %s\n",
1338 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1339 }
1340 }
1341
1342 Static uint32_t
1343 rum_read(struct rum_softc *sc, uint16_t reg)
1344 {
1345 uint32_t val;
1346
1347 rum_read_multi(sc, reg, &val, sizeof val);
1348
1349 return le32toh(val);
1350 }
1351
1352 Static void
1353 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1354 {
1355 usb_device_request_t req;
1356 usbd_status error;
1357
1358 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1359 req.bRequest = RT2573_READ_MULTI_MAC;
1360 USETW(req.wValue, 0);
1361 USETW(req.wIndex, reg);
1362 USETW(req.wLength, len);
1363
1364 error = usbd_do_request(sc->sc_udev, &req, buf);
1365 if (error != 0) {
1366 printf("%s: could not multi read MAC register: %s\n",
1367 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1368 }
1369 }
1370
1371 Static void
1372 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1373 {
1374 uint32_t tmp = htole32(val);
1375
1376 rum_write_multi(sc, reg, &tmp, sizeof tmp);
1377 }
1378
1379 Static void
1380 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1381 {
1382 usb_device_request_t req;
1383 usbd_status error;
1384
1385 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1386 req.bRequest = RT2573_WRITE_MULTI_MAC;
1387 USETW(req.wValue, 0);
1388 USETW(req.wIndex, reg);
1389 USETW(req.wLength, len);
1390
1391 error = usbd_do_request(sc->sc_udev, &req, buf);
1392 if (error != 0) {
1393 printf("%s: could not multi write MAC register: %s\n",
1394 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1395 }
1396 }
1397
1398 Static void
1399 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1400 {
1401 uint32_t tmp;
1402 int ntries;
1403
1404 for (ntries = 0; ntries < 5; ntries++) {
1405 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1406 break;
1407 }
1408 if (ntries == 5) {
1409 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1410 return;
1411 }
1412
1413 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1414 rum_write(sc, RT2573_PHY_CSR3, tmp);
1415 }
1416
1417 Static uint8_t
1418 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1419 {
1420 uint32_t val;
1421 int ntries;
1422
1423 for (ntries = 0; ntries < 5; ntries++) {
1424 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1425 break;
1426 }
1427 if (ntries == 5) {
1428 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1429 return 0;
1430 }
1431
1432 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1433 rum_write(sc, RT2573_PHY_CSR3, val);
1434
1435 for (ntries = 0; ntries < 100; ntries++) {
1436 val = rum_read(sc, RT2573_PHY_CSR3);
1437 if (!(val & RT2573_BBP_BUSY))
1438 return val & 0xff;
1439 DELAY(1);
1440 }
1441
1442 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1443 return 0;
1444 }
1445
1446 Static void
1447 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1448 {
1449 uint32_t tmp;
1450 int ntries;
1451
1452 for (ntries = 0; ntries < 5; ntries++) {
1453 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1454 break;
1455 }
1456 if (ntries == 5) {
1457 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1458 return;
1459 }
1460
1461 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1462 (reg & 3);
1463 rum_write(sc, RT2573_PHY_CSR4, tmp);
1464
1465 /* remember last written value in sc */
1466 sc->rf_regs[reg] = val;
1467
1468 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1469 }
1470
1471 Static void
1472 rum_select_antenna(struct rum_softc *sc)
1473 {
1474 uint8_t bbp4, bbp77;
1475 uint32_t tmp;
1476
1477 bbp4 = rum_bbp_read(sc, 4);
1478 bbp77 = rum_bbp_read(sc, 77);
1479
1480 /* TBD */
1481
1482 /* make sure Rx is disabled before switching antenna */
1483 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1484 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1485
1486 rum_bbp_write(sc, 4, bbp4);
1487 rum_bbp_write(sc, 77, bbp77);
1488
1489 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1490 }
1491
1492 /*
1493 * Enable multi-rate retries for frames sent at OFDM rates.
1494 * In 802.11b/g mode, allow fallback to CCK rates.
1495 */
1496 Static void
1497 rum_enable_mrr(struct rum_softc *sc)
1498 {
1499 struct ieee80211com *ic = &sc->sc_ic;
1500 uint32_t tmp;
1501
1502 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1503
1504 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1505 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1506 tmp |= RT2573_MRR_CCK_FALLBACK;
1507 tmp |= RT2573_MRR_ENABLED;
1508
1509 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1510 }
1511
1512 Static void
1513 rum_set_txpreamble(struct rum_softc *sc)
1514 {
1515 uint32_t tmp;
1516
1517 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1518
1519 tmp &= ~RT2573_SHORT_PREAMBLE;
1520 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1521 tmp |= RT2573_SHORT_PREAMBLE;
1522
1523 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1524 }
1525
1526 Static void
1527 rum_set_basicrates(struct rum_softc *sc)
1528 {
1529 struct ieee80211com *ic = &sc->sc_ic;
1530
1531 /* update basic rate set */
1532 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1533 /* 11b basic rates: 1, 2Mbps */
1534 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1535 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1536 /* 11a basic rates: 6, 12, 24Mbps */
1537 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1538 } else {
1539 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1540 rum_write(sc, RT2573_TXRX_CSR5, 0x15f);
1541 }
1542 }
1543
1544 /*
1545 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1546 * driver.
1547 */
1548 Static void
1549 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1550 {
1551 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1552 uint32_t tmp;
1553
1554 /* update all BBP registers that depend on the band */
1555 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1556 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1557 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1558 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1559 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1560 }
1561 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1562 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1563 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1564 }
1565
1566 sc->bbp17 = bbp17;
1567 rum_bbp_write(sc, 17, bbp17);
1568 rum_bbp_write(sc, 96, bbp96);
1569 rum_bbp_write(sc, 104, bbp104);
1570
1571 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1572 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1573 rum_bbp_write(sc, 75, 0x80);
1574 rum_bbp_write(sc, 86, 0x80);
1575 rum_bbp_write(sc, 88, 0x80);
1576 }
1577
1578 rum_bbp_write(sc, 35, bbp35);
1579 rum_bbp_write(sc, 97, bbp97);
1580 rum_bbp_write(sc, 98, bbp98);
1581
1582 tmp = rum_read(sc, RT2573_PHY_CSR0);
1583 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1584 if (IEEE80211_IS_CHAN_2GHZ(c))
1585 tmp |= RT2573_PA_PE_2GHZ;
1586 else
1587 tmp |= RT2573_PA_PE_5GHZ;
1588 rum_write(sc, RT2573_PHY_CSR0, tmp);
1589
1590 /* 802.11a uses a 16 microseconds short interframe space */
1591 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1592 }
1593
1594 Static void
1595 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1596 {
1597 struct ieee80211com *ic = &sc->sc_ic;
1598 const struct rfprog *rfprog;
1599 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1600 int8_t power;
1601 u_int i, chan;
1602
1603 chan = ieee80211_chan2ieee(ic, c);
1604 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1605 return;
1606
1607 /* select the appropriate RF settings based on what EEPROM says */
1608 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1609 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1610
1611 /* find the settings for this channel (we know it exists) */
1612 for (i = 0; rfprog[i].chan != chan; i++);
1613
1614 power = sc->txpow[i];
1615 if (power < 0) {
1616 bbp94 += power;
1617 power = 0;
1618 } else if (power > 31) {
1619 bbp94 += power - 31;
1620 power = 31;
1621 }
1622
1623 /*
1624 * If we are switching from the 2GHz band to the 5GHz band or
1625 * vice-versa, BBP registers need to be reprogrammed.
1626 */
1627 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1628 rum_select_band(sc, c);
1629 rum_select_antenna(sc);
1630 }
1631 ic->ic_curchan = c;
1632
1633 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1634 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1635 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1636 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1637
1638 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1639 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1640 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1641 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1642
1643 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1644 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1645 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1646 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1647
1648 DELAY(10);
1649
1650 /* enable smart mode for MIMO-capable RFs */
1651 bbp3 = rum_bbp_read(sc, 3);
1652
1653 bbp3 &= ~RT2573_SMART_MODE;
1654 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1655 bbp3 |= RT2573_SMART_MODE;
1656
1657 rum_bbp_write(sc, 3, bbp3);
1658
1659 if (bbp94 != RT2573_BBPR94_DEFAULT)
1660 rum_bbp_write(sc, 94, bbp94);
1661 }
1662
1663 /*
1664 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1665 * and HostAP operating modes.
1666 */
1667 Static void
1668 rum_enable_tsf_sync(struct rum_softc *sc)
1669 {
1670 struct ieee80211com *ic = &sc->sc_ic;
1671 uint32_t tmp;
1672
1673 if (ic->ic_opmode != IEEE80211_M_STA) {
1674 /*
1675 * Change default 16ms TBTT adjustment to 8ms.
1676 * Must be done before enabling beacon generation.
1677 */
1678 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1679 }
1680
1681 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1682
1683 /* set beacon interval (in 1/16ms unit) */
1684 tmp |= ic->ic_bss->ni_intval * 16;
1685
1686 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1687 if (ic->ic_opmode == IEEE80211_M_STA)
1688 tmp |= RT2573_TSF_MODE(1);
1689 else
1690 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1691
1692 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1693 }
1694
1695 Static void
1696 rum_update_slot(struct rum_softc *sc)
1697 {
1698 struct ieee80211com *ic = &sc->sc_ic;
1699 uint8_t slottime;
1700 uint32_t tmp;
1701
1702 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1703
1704 tmp = rum_read(sc, RT2573_MAC_CSR9);
1705 tmp = (tmp & ~0xff) | slottime;
1706 rum_write(sc, RT2573_MAC_CSR9, tmp);
1707
1708 DPRINTF(("setting slot time to %uus\n", slottime));
1709 }
1710
1711 Static void
1712 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1713 {
1714 uint32_t tmp;
1715
1716 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1717 rum_write(sc, RT2573_MAC_CSR4, tmp);
1718
1719 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1720 rum_write(sc, RT2573_MAC_CSR5, tmp);
1721 }
1722
1723 Static void
1724 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1725 {
1726 uint32_t tmp;
1727
1728 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1729 rum_write(sc, RT2573_MAC_CSR2, tmp);
1730
1731 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1732 rum_write(sc, RT2573_MAC_CSR3, tmp);
1733 }
1734
1735 Static void
1736 rum_update_promisc(struct rum_softc *sc)
1737 {
1738 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1739 uint32_t tmp;
1740
1741 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1742
1743 tmp &= ~RT2573_DROP_NOT_TO_ME;
1744 if (!(ifp->if_flags & IFF_PROMISC))
1745 tmp |= RT2573_DROP_NOT_TO_ME;
1746
1747 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1748
1749 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1750 "entering" : "leaving"));
1751 }
1752
1753 Static const char *
1754 rum_get_rf(int rev)
1755 {
1756 switch (rev) {
1757 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1758 case RT2573_RF_2528: return "RT2528";
1759 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1760 case RT2573_RF_5226: return "RT5226";
1761 default: return "unknown";
1762 }
1763 }
1764
1765 Static void
1766 rum_read_eeprom(struct rum_softc *sc)
1767 {
1768 struct ieee80211com *ic = &sc->sc_ic;
1769 uint16_t val;
1770 #ifdef RUM_DEBUG
1771 int i;
1772 #endif
1773
1774 /* read MAC/BBP type */
1775 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1776 sc->macbbp_rev = le16toh(val);
1777
1778 /* read MAC address */
1779 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1780
1781 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1782 val = le16toh(val);
1783 sc->rf_rev = (val >> 11) & 0x1f;
1784 sc->hw_radio = (val >> 10) & 0x1;
1785 sc->rx_ant = (val >> 4) & 0x3;
1786 sc->tx_ant = (val >> 2) & 0x3;
1787 sc->nb_ant = val & 0x3;
1788
1789 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1790
1791 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1792 val = le16toh(val);
1793 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1794 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1795
1796 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1797 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1798
1799 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1800 val = le16toh(val);
1801 if ((val & 0xff) != 0xff)
1802 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1803
1804 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1805 val = le16toh(val);
1806 if ((val & 0xff) != 0xff)
1807 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1808
1809 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1810 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1811
1812 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1813 val = le16toh(val);
1814 if ((val & 0xff) != 0xff)
1815 sc->rffreq = val & 0xff;
1816
1817 DPRINTF(("RF freq=%d\n", sc->rffreq));
1818
1819 /* read Tx power for all a/b/g channels */
1820 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1821 /* XXX default Tx power for 802.11a channels */
1822 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1823 #ifdef RUM_DEBUG
1824 for (i = 0; i < 14; i++)
1825 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1826 #endif
1827
1828 /* read default values for BBP registers */
1829 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1830 #ifdef RUM_DEBUG
1831 for (i = 0; i < 14; i++) {
1832 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1833 continue;
1834 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1835 sc->bbp_prom[i].val));
1836 }
1837 #endif
1838 }
1839
1840 Static int
1841 rum_bbp_init(struct rum_softc *sc)
1842 {
1843 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1844 int i, ntries;
1845 uint8_t val;
1846
1847 /* wait for BBP to be ready */
1848 for (ntries = 0; ntries < 100; ntries++) {
1849 val = rum_bbp_read(sc, 0);
1850 if (val != 0 && val != 0xff)
1851 break;
1852 DELAY(1000);
1853 }
1854 if (ntries == 100) {
1855 printf("%s: timeout waiting for BBP\n",
1856 USBDEVNAME(sc->sc_dev));
1857 return EIO;
1858 }
1859
1860 /* initialize BBP registers to default values */
1861 for (i = 0; i < N(rum_def_bbp); i++)
1862 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1863
1864 /* write vendor-specific BBP values (from EEPROM) */
1865 for (i = 0; i < 16; i++) {
1866 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1867 continue;
1868 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1869 }
1870
1871 return 0;
1872 #undef N
1873 }
1874
1875 Static int
1876 rum_init(struct ifnet *ifp)
1877 {
1878 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1879 struct rum_softc *sc = ifp->if_softc;
1880 struct ieee80211com *ic = &sc->sc_ic;
1881 struct ue_chain *data;
1882 uint32_t tmp;
1883 usbd_status uerror;
1884 int error;
1885 int i, ntries;
1886
1887 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1888 if (rum_attachhook(sc)) {
1889 error = EIO;
1890 goto fail;
1891 }
1892 }
1893
1894 rum_stop(ifp, 0);
1895
1896 /* initialize MAC registers to default values */
1897 for (i = 0; i < N(rum_def_mac); i++)
1898 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1899
1900 /* set host ready */
1901 rum_write(sc, RT2573_MAC_CSR1, 3);
1902 rum_write(sc, RT2573_MAC_CSR1, 0);
1903
1904 /* wait for BBP/RF to wakeup */
1905 for (ntries = 0; ntries < 1000; ntries++) {
1906 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1907 break;
1908 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1909 DELAY(1000);
1910 }
1911 if (ntries == 1000) {
1912 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1913 USBDEVNAME(sc->sc_dev));
1914 error = EIO;
1915 goto fail;
1916 }
1917
1918 if ((error = rum_bbp_init(sc)) != 0)
1919 goto fail;
1920
1921 /* select default channel */
1922 rum_select_band(sc, ic->ic_curchan);
1923 rum_select_antenna(sc);
1924 rum_set_chan(sc, ic->ic_curchan);
1925
1926 /* clear STA registers */
1927 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1928
1929 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1930 rum_set_macaddr(sc, ic->ic_myaddr);
1931
1932 /* initialize ASIC */
1933 rum_write(sc, RT2573_MAC_CSR1, 4);
1934
1935 /*
1936 * Allocate xfer for AMRR statistics requests.
1937 */
1938 sc->amrr_xfer = usbd_alloc_default_xfer(sc->sc_udev);
1939 if (sc->amrr_xfer == NULL) {
1940 printf("%s: could not allocate AMRR xfer\n",
1941 USBDEVNAME(sc->sc_dev));
1942 goto fail;
1943 }
1944
1945 /*
1946 * Open Tx and Rx USB bulk pipes.
1947 */
1948 uerror = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
1949 &sc->sc_tx_pipeh);
1950 if (uerror != USBD_NORMAL_COMPLETION) {
1951 printf("%s: could not open Tx pipe: %s\n",
1952 USBDEVNAME(sc->sc_dev), usbd_errstr(uerror));
1953 error = EIO;
1954 goto fail;
1955 }
1956
1957 uerror = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
1958 &sc->sc_rx_pipeh);
1959 if (uerror != USBD_NORMAL_COMPLETION) {
1960 printf("%s: could not open Rx pipe: %s\n",
1961 USBDEVNAME(sc->sc_dev), usbd_errstr(uerror));
1962 error = EIO;
1963 goto fail;
1964 }
1965
1966 /*
1967 * Allocate Tx and Rx xfer queues.
1968 */
1969 sc->tx_queued = 0;
1970 error = usb_ether_tx_list_init(USBDEV(sc->sc_dev),
1971 sc->tx_data, RT2573_TX_LIST_COUNT,
1972 sc->sc_udev, sc->sc_tx_pipeh, NULL);
1973 if (error != 0) {
1974 printf("%s: could not allocate Tx list\n",
1975 USBDEVNAME(sc->sc_dev));
1976 goto fail;
1977 }
1978
1979 error = usb_ether_rx_list_init(USBDEV(sc->sc_dev),
1980 sc->rx_data, RT2573_RX_LIST_COUNT,
1981 sc->sc_udev, sc->sc_rx_pipeh);
1982 if (error != 0) {
1983 printf("%s: could not allocate Rx list\n",
1984 USBDEVNAME(sc->sc_dev));
1985 goto fail;
1986 }
1987
1988 /*
1989 * Start up the receive pipe.
1990 */
1991 for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
1992 data = &sc->rx_data[i];
1993
1994 (void)usbd_map_buffer_mbuf(data->ue_xfer, data->ue_mbuf);
1995 usbd_setup_xfer(data->ue_xfer, sc->sc_rx_pipeh, data, NULL /* XXX buf */,
1996 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
1997 usbd_transfer(data->ue_xfer);
1998 }
1999
2000 /* update Rx filter */
2001 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2002
2003 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2004 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2005 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2006 RT2573_DROP_ACKCTS;
2007 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2008 tmp |= RT2573_DROP_TODS;
2009 if (!(ifp->if_flags & IFF_PROMISC))
2010 tmp |= RT2573_DROP_NOT_TO_ME;
2011 }
2012 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2013
2014 ifp->if_flags &= ~IFF_OACTIVE;
2015 ifp->if_flags |= IFF_RUNNING;
2016
2017 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2018 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2019 else
2020 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2021
2022 return 0;
2023
2024 fail: rum_stop(ifp, 1);
2025 return error;
2026 #undef N
2027 }
2028
2029 Static void
2030 rum_stop(struct ifnet *ifp, int disable)
2031 {
2032 struct rum_softc *sc = ifp->if_softc;
2033 struct ieee80211com *ic = &sc->sc_ic;
2034 uint32_t tmp;
2035
2036 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2037
2038 sc->sc_tx_timer = 0;
2039 ifp->if_timer = 0;
2040 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2041
2042 /* disable Rx */
2043 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2044 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2045
2046 /* reset ASIC */
2047 rum_write(sc, RT2573_MAC_CSR1, 3);
2048 rum_write(sc, RT2573_MAC_CSR1, 0);
2049
2050 /* Stop transfers. */
2051 if (sc->sc_rx_pipeh != NULL)
2052 usbd_abort_pipe(sc->sc_rx_pipeh);
2053 if (sc->sc_tx_pipeh != NULL)
2054 usbd_abort_pipe(sc->sc_tx_pipeh);
2055
2056 /* Free RX/TX resources. */
2057 rum_free_rx_list(sc);
2058 rum_free_tx_list(sc);
2059
2060 /* Close pipes. */
2061 if (sc->sc_rx_pipeh != NULL) {
2062 usbd_close_pipe(sc->sc_rx_pipeh);
2063 sc->sc_rx_pipeh = NULL;
2064 }
2065
2066 if (sc->sc_tx_pipeh != NULL) {
2067 usbd_close_pipe(sc->sc_tx_pipeh);
2068 sc->sc_tx_pipeh = NULL;
2069 }
2070 }
2071
2072 Static int
2073 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2074 {
2075 usb_device_request_t req;
2076 uint16_t reg = RT2573_MCU_CODE_BASE;
2077 usbd_status error;
2078
2079 /* copy firmware image into NIC */
2080 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2081 rum_write(sc, reg, UGETDW(ucode));
2082
2083 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2084 req.bRequest = RT2573_MCU_CNTL;
2085 USETW(req.wValue, RT2573_MCU_RUN);
2086 USETW(req.wIndex, 0);
2087 USETW(req.wLength, 0);
2088
2089 error = usbd_do_request(sc->sc_udev, &req, NULL);
2090 if (error != 0) {
2091 printf("%s: could not run firmware: %s\n",
2092 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2093 }
2094 return error;
2095 }
2096
2097 Static int
2098 rum_prepare_beacon(struct rum_softc *sc)
2099 {
2100 struct ieee80211com *ic = &sc->sc_ic;
2101 struct rum_tx_desc desc;
2102 struct mbuf *m0;
2103 int rate;
2104
2105 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2106 if (m0 == NULL) {
2107 printf("%s: could not allocate beacon frame\n",
2108 sc->sc_dev.dv_xname);
2109 return ENOBUFS;
2110 }
2111
2112 /* send beacons at the lowest available rate */
2113 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2114
2115 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2116 m0->m_pkthdr.len, rate);
2117
2118 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2119 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2120
2121 /* copy beacon header and payload into NIC memory */
2122 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2123 m0->m_pkthdr.len);
2124
2125 m_freem(m0);
2126
2127 return 0;
2128 }
2129
2130 Static void
2131 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2132 {
2133 int i;
2134
2135 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2136 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2137
2138 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2139
2140 /* set rate to some reasonable initial value */
2141 for (i = ni->ni_rates.rs_nrates - 1;
2142 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2143 i--);
2144 ni->ni_txrate = i;
2145
2146 usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2147 }
2148
2149 Static void
2150 rum_amrr_timeout(void *arg)
2151 {
2152 struct rum_softc *sc = arg;
2153 usb_device_request_t req;
2154 int s;
2155
2156 s = splusb();
2157
2158 /*
2159 * Asynchronously read statistic registers (cleared by read).
2160 */
2161 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2162 req.bRequest = RT2573_READ_MULTI_MAC;
2163 USETW(req.wValue, 0);
2164 USETW(req.wIndex, RT2573_STA_CSR0);
2165 USETW(req.wLength, sizeof sc->sta);
2166
2167 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2168 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2169 rum_amrr_update);
2170 (void)usbd_transfer(sc->amrr_xfer);
2171
2172 splx(s);
2173 }
2174
2175 Static void
2176 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2177 usbd_status status)
2178 {
2179 struct rum_softc *sc = (struct rum_softc *)priv;
2180 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2181
2182 if (status != USBD_NORMAL_COMPLETION) {
2183 printf("%s: could not retrieve Tx statistics - cancelling "
2184 "automatic rate control\n", USBDEVNAME(sc->sc_dev));
2185 return;
2186 }
2187
2188 /* count TX retry-fail as Tx errors */
2189 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2190
2191 sc->amn.amn_retrycnt =
2192 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2193 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2194 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2195
2196 sc->amn.amn_txcnt =
2197 sc->amn.amn_retrycnt +
2198 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2199
2200 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2201
2202 usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2203 }
2204
2205 int
2206 rum_activate(device_ptr_t self, enum devact act)
2207 {
2208 switch (act) {
2209 case DVACT_ACTIVATE:
2210 return EOPNOTSUPP;
2211
2212 case DVACT_DEACTIVATE:
2213 /*if_deactivate(&sc->sc_ic.ic_if);*/
2214 break;
2215 }
2216
2217 return 0;
2218 }
2219