if_rum.c revision 1.60 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.60 2018/05/01 16:18:13 maya Exp $ */
3
4 /*-
5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com.tw/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.60 2018/05/01 16:18:13 maya Exp $");
28
29 #ifdef _KERNEL_OPT
30 #include "opt_usb.h"
31 #endif
32
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/module.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/firmload.h>
67
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72
73 #include <dev/usb/if_rumreg.h>
74 #include <dev/usb/if_rumvar.h>
75
76 #ifdef RUM_DEBUG
77 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0)
78 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0)
79 int rum_debug = 1;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84
85 /* various supported device vendors/products */
86 static const struct usb_devno rum_devs[] = {
87 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
88 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
89 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
90 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
92 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
93 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
94 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
95 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
96 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
97 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C },
98 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 },
99 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
100 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
101 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
102 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_RT2573 },
103 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL },
104 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX },
105 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
106 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
107 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
108 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
109 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 },
110 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 },
111 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 },
112 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 },
113 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
114 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
115 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
116 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
117 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
118 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
119 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
120 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
121 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
122 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG },
123 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG },
124 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
125 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
126 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
127 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
128 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
129 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
130 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
131 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
132 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
133 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
134 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 },
135 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
136 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
137 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
138 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
139 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 },
140 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 },
141 { USB_VENDOR_SYNET, USB_PRODUCT_SYNET_MWP54SS },
142 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 }
143 };
144
145 static int rum_attachhook(void *);
146 static int rum_alloc_tx_list(struct rum_softc *);
147 static void rum_free_tx_list(struct rum_softc *);
148 static int rum_alloc_rx_list(struct rum_softc *);
149 static void rum_free_rx_list(struct rum_softc *);
150 static int rum_media_change(struct ifnet *);
151 static void rum_next_scan(void *);
152 static void rum_task(void *);
153 static int rum_newstate(struct ieee80211com *,
154 enum ieee80211_state, int);
155 static void rum_txeof(struct usbd_xfer *, void *,
156 usbd_status);
157 static void rum_rxeof(struct usbd_xfer *, void *,
158 usbd_status);
159 static uint8_t rum_rxrate(const struct rum_rx_desc *);
160 static int rum_ack_rate(struct ieee80211com *, int);
161 static uint16_t rum_txtime(int, int, uint32_t);
162 static uint8_t rum_plcp_signal(int);
163 static void rum_setup_tx_desc(struct rum_softc *,
164 struct rum_tx_desc *, uint32_t, uint16_t, int,
165 int);
166 static int rum_tx_data(struct rum_softc *, struct mbuf *,
167 struct ieee80211_node *);
168 static void rum_start(struct ifnet *);
169 static void rum_watchdog(struct ifnet *);
170 static int rum_ioctl(struct ifnet *, u_long, void *);
171 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
172 int);
173 static uint32_t rum_read(struct rum_softc *, uint16_t);
174 static void rum_read_multi(struct rum_softc *, uint16_t, void *,
175 int);
176 static void rum_write(struct rum_softc *, uint16_t, uint32_t);
177 static void rum_write_multi(struct rum_softc *, uint16_t, void *,
178 size_t);
179 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
180 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
181 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
182 static void rum_select_antenna(struct rum_softc *);
183 static void rum_enable_mrr(struct rum_softc *);
184 static void rum_set_txpreamble(struct rum_softc *);
185 static void rum_set_basicrates(struct rum_softc *);
186 static void rum_select_band(struct rum_softc *,
187 struct ieee80211_channel *);
188 static void rum_set_chan(struct rum_softc *,
189 struct ieee80211_channel *);
190 static void rum_enable_tsf_sync(struct rum_softc *);
191 static void rum_update_slot(struct rum_softc *);
192 static void rum_set_bssid(struct rum_softc *, const uint8_t *);
193 static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
194 static void rum_update_promisc(struct rum_softc *);
195 static const char *rum_get_rf(int);
196 static void rum_read_eeprom(struct rum_softc *);
197 static int rum_bbp_init(struct rum_softc *);
198 static int rum_init(struct ifnet *);
199 static void rum_stop(struct ifnet *, int);
200 static int rum_load_microcode(struct rum_softc *, const u_char *,
201 size_t);
202 static int rum_prepare_beacon(struct rum_softc *);
203 static void rum_newassoc(struct ieee80211_node *, int);
204 static void rum_amrr_start(struct rum_softc *,
205 struct ieee80211_node *);
206 static void rum_amrr_timeout(void *);
207 static void rum_amrr_update(struct usbd_xfer *, void *,
208 usbd_status);
209
210 static const struct {
211 uint32_t reg;
212 uint32_t val;
213 } rum_def_mac[] = {
214 RT2573_DEF_MAC
215 };
216
217 static const struct {
218 uint8_t reg;
219 uint8_t val;
220 } rum_def_bbp[] = {
221 RT2573_DEF_BBP
222 };
223
224 static const struct rfprog {
225 uint8_t chan;
226 uint32_t r1, r2, r3, r4;
227 } rum_rf5226[] = {
228 RT2573_RF5226
229 }, rum_rf5225[] = {
230 RT2573_RF5225
231 };
232
233 static int rum_match(device_t, cfdata_t, void *);
234 static void rum_attach(device_t, device_t, void *);
235 static int rum_detach(device_t, int);
236 static int rum_activate(device_t, enum devact);
237 extern struct cfdriver rum_cd;
238 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
239 rum_detach, rum_activate);
240
241 static int
242 rum_match(device_t parent, cfdata_t match, void *aux)
243 {
244 struct usb_attach_arg *uaa = aux;
245
246 return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
247 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
248 }
249
250 static int
251 rum_attachhook(void *xsc)
252 {
253 struct rum_softc *sc = xsc;
254 firmware_handle_t fwh;
255 const char *name = "rum-rt2573";
256 u_char *ucode;
257 size_t size;
258 int error;
259
260 if ((error = firmware_open("rum", name, &fwh)) != 0) {
261 printf("%s: failed firmware_open of file %s (error %d)\n",
262 device_xname(sc->sc_dev), name, error);
263 return error;
264 }
265 size = firmware_get_size(fwh);
266 ucode = firmware_malloc(size);
267 if (ucode == NULL) {
268 printf("%s: failed to allocate firmware memory\n",
269 device_xname(sc->sc_dev));
270 firmware_close(fwh);
271 return ENOMEM;
272 }
273 error = firmware_read(fwh, 0, ucode, size);
274 firmware_close(fwh);
275 if (error != 0) {
276 printf("%s: failed to read firmware (error %d)\n",
277 device_xname(sc->sc_dev), error);
278 firmware_free(ucode, size);
279 return error;
280 }
281
282 if (rum_load_microcode(sc, ucode, size) != 0) {
283 printf("%s: could not load 8051 microcode\n",
284 device_xname(sc->sc_dev));
285 firmware_free(ucode, size);
286 return ENXIO;
287 }
288
289 firmware_free(ucode, size);
290 sc->sc_flags |= RT2573_FWLOADED;
291
292 return 0;
293 }
294
295 static void
296 rum_attach(device_t parent, device_t self, void *aux)
297 {
298 struct rum_softc *sc = device_private(self);
299 struct usb_attach_arg *uaa = aux;
300 struct ieee80211com *ic = &sc->sc_ic;
301 struct ifnet *ifp = &sc->sc_if;
302 usb_interface_descriptor_t *id;
303 usb_endpoint_descriptor_t *ed;
304 usbd_status error;
305 char *devinfop;
306 int i, ntries;
307 uint32_t tmp;
308
309 sc->sc_dev = self;
310 sc->sc_udev = uaa->uaa_device;
311 sc->sc_flags = 0;
312
313 aprint_naive("\n");
314 aprint_normal("\n");
315
316 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
317 aprint_normal_dev(self, "%s\n", devinfop);
318 usbd_devinfo_free(devinfop);
319
320 error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
321 if (error != 0) {
322 aprint_error_dev(self, "failed to set configuration"
323 ", err=%s\n", usbd_errstr(error));
324 return;
325 }
326
327 /* get the first interface handle */
328 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
329 &sc->sc_iface);
330 if (error != 0) {
331 aprint_error_dev(self, "could not get interface handle\n");
332 return;
333 }
334
335 /*
336 * Find endpoints.
337 */
338 id = usbd_get_interface_descriptor(sc->sc_iface);
339
340 sc->sc_rx_no = sc->sc_tx_no = -1;
341 for (i = 0; i < id->bNumEndpoints; i++) {
342 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
343 if (ed == NULL) {
344 aprint_error_dev(self,
345 "no endpoint descriptor for iface %d\n", i);
346 return;
347 }
348
349 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
350 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
351 sc->sc_rx_no = ed->bEndpointAddress;
352 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
353 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
354 sc->sc_tx_no = ed->bEndpointAddress;
355 }
356 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
357 aprint_error_dev(self, "missing endpoint\n");
358 return;
359 }
360
361 usb_init_task(&sc->sc_task, rum_task, sc, 0);
362 callout_init(&sc->sc_scan_ch, 0);
363
364 sc->amrr.amrr_min_success_threshold = 1;
365 sc->amrr.amrr_max_success_threshold = 10;
366 callout_init(&sc->sc_amrr_ch, 0);
367
368 /* retrieve RT2573 rev. no */
369 for (ntries = 0; ntries < 1000; ntries++) {
370 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
371 break;
372 DELAY(1000);
373 }
374 if (ntries == 1000) {
375 aprint_error_dev(self, "timeout waiting for chip to settle\n");
376 return;
377 }
378
379 /* retrieve MAC address and various other things from EEPROM */
380 rum_read_eeprom(sc);
381
382 aprint_normal_dev(self,
383 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
384 sc->macbbp_rev, tmp,
385 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
386
387 ic->ic_ifp = ifp;
388 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
389 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
390 ic->ic_state = IEEE80211_S_INIT;
391
392 /* set device capabilities */
393 ic->ic_caps =
394 IEEE80211_C_IBSS | /* IBSS mode supported */
395 IEEE80211_C_MONITOR | /* monitor mode supported */
396 IEEE80211_C_HOSTAP | /* HostAp mode supported */
397 IEEE80211_C_TXPMGT | /* tx power management */
398 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
399 IEEE80211_C_SHSLOT | /* short slot time supported */
400 IEEE80211_C_WPA; /* 802.11i */
401
402 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
403 /* set supported .11a rates */
404 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
405
406 /* set supported .11a channels */
407 for (i = 34; i <= 46; i += 4) {
408 ic->ic_channels[i].ic_freq =
409 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
410 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
411 }
412 for (i = 36; i <= 64; i += 4) {
413 ic->ic_channels[i].ic_freq =
414 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
415 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
416 }
417 for (i = 100; i <= 140; i += 4) {
418 ic->ic_channels[i].ic_freq =
419 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
420 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
421 }
422 for (i = 149; i <= 165; i += 4) {
423 ic->ic_channels[i].ic_freq =
424 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
425 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
426 }
427 }
428
429 /* set supported .11b and .11g rates */
430 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
431 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
432
433 /* set supported .11b and .11g channels (1 through 14) */
434 for (i = 1; i <= 14; i++) {
435 ic->ic_channels[i].ic_freq =
436 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
437 ic->ic_channels[i].ic_flags =
438 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
439 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
440 }
441
442 ifp->if_softc = sc;
443 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
444 ifp->if_init = rum_init;
445 ifp->if_ioctl = rum_ioctl;
446 ifp->if_start = rum_start;
447 ifp->if_watchdog = rum_watchdog;
448 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
449 IFQ_SET_READY(&ifp->if_snd);
450 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
451
452 if_attach(ifp);
453 ieee80211_ifattach(ic);
454 ic->ic_newassoc = rum_newassoc;
455
456 /* override state transition machine */
457 sc->sc_newstate = ic->ic_newstate;
458 ic->ic_newstate = rum_newstate;
459 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
460
461 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
462 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
463 &sc->sc_drvbpf);
464
465 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
466 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
467 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
468
469 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
470 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
471 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
472
473 ieee80211_announce(ic);
474
475 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
476
477 if (!pmf_device_register(self, NULL, NULL))
478 aprint_error_dev(self, "couldn't establish power handler\n");
479
480 return;
481 }
482
483 static int
484 rum_detach(device_t self, int flags)
485 {
486 struct rum_softc *sc = device_private(self);
487 struct ieee80211com *ic = &sc->sc_ic;
488 struct ifnet *ifp = &sc->sc_if;
489 int s;
490
491 if (!ifp->if_softc)
492 return 0;
493
494 pmf_device_deregister(self);
495
496 s = splusb();
497
498 rum_stop(ifp, 1);
499 usb_rem_task(sc->sc_udev, &sc->sc_task);
500 callout_stop(&sc->sc_scan_ch);
501 callout_stop(&sc->sc_amrr_ch);
502
503 bpf_detach(ifp);
504 ieee80211_ifdetach(ic); /* free all nodes */
505 if_detach(ifp);
506
507 splx(s);
508
509 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
510
511 return 0;
512 }
513
514 static int
515 rum_alloc_tx_list(struct rum_softc *sc)
516 {
517 struct rum_tx_data *data;
518 int i, error;
519
520 sc->tx_cur = sc->tx_queued = 0;
521
522 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
523 data = &sc->tx_data[i];
524
525 data->sc = sc;
526
527 error = usbd_create_xfer(sc->sc_tx_pipeh,
528 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN,
529 USBD_FORCE_SHORT_XFER, 0, &data->xfer);
530 if (error) {
531 printf("%s: could not allocate tx xfer\n",
532 device_xname(sc->sc_dev));
533 goto fail;
534 }
535 data->buf = usbd_get_buffer(data->xfer);
536
537 /* clean Tx descriptor */
538 memset(data->buf, 0, RT2573_TX_DESC_SIZE);
539 }
540
541 return 0;
542
543 fail: rum_free_tx_list(sc);
544 return error;
545 }
546
547 static void
548 rum_free_tx_list(struct rum_softc *sc)
549 {
550 struct rum_tx_data *data;
551 int i;
552
553 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
554 data = &sc->tx_data[i];
555
556 if (data->xfer != NULL) {
557 usbd_destroy_xfer(data->xfer);
558 data->xfer = NULL;
559 }
560
561 if (data->ni != NULL) {
562 ieee80211_free_node(data->ni);
563 data->ni = NULL;
564 }
565 }
566 }
567
568 static int
569 rum_alloc_rx_list(struct rum_softc *sc)
570 {
571 struct rum_rx_data *data;
572 int i, error;
573
574 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
575 data = &sc->rx_data[i];
576
577 data->sc = sc;
578
579 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
580 0, 0, &data->xfer);
581 if (error) {
582 printf("%s: could not allocate rx xfer\n",
583 device_xname(sc->sc_dev));
584 goto fail;
585 }
586
587 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
588 if (data->m == NULL) {
589 printf("%s: could not allocate rx mbuf\n",
590 device_xname(sc->sc_dev));
591 error = ENOMEM;
592 goto fail;
593 }
594
595 MCLGET(data->m, M_DONTWAIT);
596 if (!(data->m->m_flags & M_EXT)) {
597 printf("%s: could not allocate rx mbuf cluster\n",
598 device_xname(sc->sc_dev));
599 error = ENOMEM;
600 goto fail;
601 }
602
603 data->buf = mtod(data->m, uint8_t *);
604 }
605
606 return 0;
607
608 fail: rum_free_rx_list(sc);
609 return error;
610 }
611
612 static void
613 rum_free_rx_list(struct rum_softc *sc)
614 {
615 struct rum_rx_data *data;
616 int i;
617
618 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
619 data = &sc->rx_data[i];
620
621 if (data->xfer != NULL) {
622 usbd_destroy_xfer(data->xfer);
623 data->xfer = NULL;
624 }
625
626 if (data->m != NULL) {
627 m_freem(data->m);
628 data->m = NULL;
629 }
630 }
631 }
632
633 static int
634 rum_media_change(struct ifnet *ifp)
635 {
636 int error;
637
638 error = ieee80211_media_change(ifp);
639 if (error != ENETRESET)
640 return error;
641
642 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
643 rum_init(ifp);
644
645 return 0;
646 }
647
648 /*
649 * This function is called periodically (every 200ms) during scanning to
650 * switch from one channel to another.
651 */
652 static void
653 rum_next_scan(void *arg)
654 {
655 struct rum_softc *sc = arg;
656 struct ieee80211com *ic = &sc->sc_ic;
657 int s;
658
659 s = splnet();
660 if (ic->ic_state == IEEE80211_S_SCAN)
661 ieee80211_next_scan(ic);
662 splx(s);
663 }
664
665 static void
666 rum_task(void *arg)
667 {
668 struct rum_softc *sc = arg;
669 struct ieee80211com *ic = &sc->sc_ic;
670 enum ieee80211_state ostate;
671 struct ieee80211_node *ni;
672 uint32_t tmp;
673
674 ostate = ic->ic_state;
675
676 switch (sc->sc_state) {
677 case IEEE80211_S_INIT:
678 if (ostate == IEEE80211_S_RUN) {
679 /* abort TSF synchronization */
680 tmp = rum_read(sc, RT2573_TXRX_CSR9);
681 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
682 }
683 break;
684
685 case IEEE80211_S_SCAN:
686 rum_set_chan(sc, ic->ic_curchan);
687 callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
688 break;
689
690 case IEEE80211_S_AUTH:
691 rum_set_chan(sc, ic->ic_curchan);
692 break;
693
694 case IEEE80211_S_ASSOC:
695 rum_set_chan(sc, ic->ic_curchan);
696 break;
697
698 case IEEE80211_S_RUN:
699 rum_set_chan(sc, ic->ic_curchan);
700
701 ni = ic->ic_bss;
702
703 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
704 rum_update_slot(sc);
705 rum_enable_mrr(sc);
706 rum_set_txpreamble(sc);
707 rum_set_basicrates(sc);
708 rum_set_bssid(sc, ni->ni_bssid);
709 }
710
711 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
712 ic->ic_opmode == IEEE80211_M_IBSS)
713 rum_prepare_beacon(sc);
714
715 if (ic->ic_opmode != IEEE80211_M_MONITOR)
716 rum_enable_tsf_sync(sc);
717
718 if (ic->ic_opmode == IEEE80211_M_STA) {
719 /* fake a join to init the tx rate */
720 rum_newassoc(ic->ic_bss, 1);
721
722 /* enable automatic rate adaptation in STA mode */
723 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
724 rum_amrr_start(sc, ni);
725 }
726
727 break;
728 }
729
730 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
731 }
732
733 static int
734 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
735 {
736 struct rum_softc *sc = ic->ic_ifp->if_softc;
737
738 usb_rem_task(sc->sc_udev, &sc->sc_task);
739 callout_stop(&sc->sc_scan_ch);
740 callout_stop(&sc->sc_amrr_ch);
741
742 /* do it in a process context */
743 sc->sc_state = nstate;
744 sc->sc_arg = arg;
745 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
746
747 return 0;
748 }
749
750 /* quickly determine if a given rate is CCK or OFDM */
751 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
752
753 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
754 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
755
756 static void
757 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
758 {
759 struct rum_tx_data *data = priv;
760 struct rum_softc *sc = data->sc;
761 struct ifnet *ifp = &sc->sc_if;
762 int s;
763
764 if (status != USBD_NORMAL_COMPLETION) {
765 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
766 return;
767
768 printf("%s: could not transmit buffer: %s\n",
769 device_xname(sc->sc_dev), usbd_errstr(status));
770
771 if (status == USBD_STALLED)
772 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
773
774 ifp->if_oerrors++;
775 return;
776 }
777
778 s = splnet();
779
780 ieee80211_free_node(data->ni);
781 data->ni = NULL;
782
783 sc->tx_queued--;
784 ifp->if_opackets++;
785
786 DPRINTFN(10, ("tx done\n"));
787
788 sc->sc_tx_timer = 0;
789 ifp->if_flags &= ~IFF_OACTIVE;
790 rum_start(ifp);
791
792 splx(s);
793 }
794
795 static void
796 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
797 {
798 struct rum_rx_data *data = priv;
799 struct rum_softc *sc = data->sc;
800 struct ieee80211com *ic = &sc->sc_ic;
801 struct ifnet *ifp = &sc->sc_if;
802 struct rum_rx_desc *desc;
803 struct ieee80211_frame *wh;
804 struct ieee80211_node *ni;
805 struct mbuf *mnew, *m;
806 int s, len;
807
808 if (status != USBD_NORMAL_COMPLETION) {
809 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
810 return;
811
812 if (status == USBD_STALLED)
813 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
814 goto skip;
815 }
816
817 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
818
819 if (len < (int)(RT2573_RX_DESC_SIZE +
820 sizeof(struct ieee80211_frame_min))) {
821 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
822 len));
823 ifp->if_ierrors++;
824 goto skip;
825 }
826
827 desc = (struct rum_rx_desc *)data->buf;
828
829 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
830 /*
831 * This should not happen since we did not request to receive
832 * those frames when we filled RT2573_TXRX_CSR0.
833 */
834 DPRINTFN(5, ("CRC error\n"));
835 ifp->if_ierrors++;
836 goto skip;
837 }
838
839 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
840 if (mnew == NULL) {
841 printf("%s: could not allocate rx mbuf\n",
842 device_xname(sc->sc_dev));
843 ifp->if_ierrors++;
844 goto skip;
845 }
846
847 MCLGET(mnew, M_DONTWAIT);
848 if (!(mnew->m_flags & M_EXT)) {
849 printf("%s: could not allocate rx mbuf cluster\n",
850 device_xname(sc->sc_dev));
851 m_freem(mnew);
852 ifp->if_ierrors++;
853 goto skip;
854 }
855
856 m = data->m;
857 data->m = mnew;
858 data->buf = mtod(data->m, uint8_t *);
859
860 /* finalize mbuf */
861 m_set_rcvif(m, ifp);
862 m->m_data = (void *)(desc + 1);
863 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
864
865 s = splnet();
866
867 if (sc->sc_drvbpf != NULL) {
868 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
869
870 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
871 tap->wr_rate = rum_rxrate(desc);
872 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
873 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
874 tap->wr_antenna = sc->rx_ant;
875 tap->wr_antsignal = desc->rssi;
876
877 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
878 }
879
880 wh = mtod(m, struct ieee80211_frame *);
881 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
882
883 /* send the frame to the 802.11 layer */
884 ieee80211_input(ic, m, ni, desc->rssi, 0);
885
886 /* node is no longer needed */
887 ieee80211_free_node(ni);
888
889 splx(s);
890
891 DPRINTFN(15, ("rx done\n"));
892
893 skip: /* setup a new transfer */
894 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK,
895 USBD_NO_TIMEOUT, rum_rxeof);
896 usbd_transfer(xfer);
897 }
898
899 /*
900 * This function is only used by the Rx radiotap code. It returns the rate at
901 * which a given frame was received.
902 */
903 static uint8_t
904 rum_rxrate(const struct rum_rx_desc *desc)
905 {
906 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
907 /* reverse function of rum_plcp_signal */
908 switch (desc->rate) {
909 case 0xb: return 12;
910 case 0xf: return 18;
911 case 0xa: return 24;
912 case 0xe: return 36;
913 case 0x9: return 48;
914 case 0xd: return 72;
915 case 0x8: return 96;
916 case 0xc: return 108;
917 }
918 } else {
919 if (desc->rate == 10)
920 return 2;
921 if (desc->rate == 20)
922 return 4;
923 if (desc->rate == 55)
924 return 11;
925 if (desc->rate == 110)
926 return 22;
927 }
928 return 2; /* should not get there */
929 }
930
931 /*
932 * Return the expected ack rate for a frame transmitted at rate `rate'.
933 * XXX: this should depend on the destination node basic rate set.
934 */
935 static int
936 rum_ack_rate(struct ieee80211com *ic, int rate)
937 {
938 switch (rate) {
939 /* CCK rates */
940 case 2:
941 return 2;
942 case 4:
943 case 11:
944 case 22:
945 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
946
947 /* OFDM rates */
948 case 12:
949 case 18:
950 return 12;
951 case 24:
952 case 36:
953 return 24;
954 case 48:
955 case 72:
956 case 96:
957 case 108:
958 return 48;
959 }
960
961 /* default to 1Mbps */
962 return 2;
963 }
964
965 /*
966 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
967 * The function automatically determines the operating mode depending on the
968 * given rate. `flags' indicates whether short preamble is in use or not.
969 */
970 static uint16_t
971 rum_txtime(int len, int rate, uint32_t flags)
972 {
973 uint16_t txtime;
974
975 if (RUM_RATE_IS_OFDM(rate)) {
976 /* IEEE Std 802.11a-1999, pp. 37 */
977 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
978 txtime = 16 + 4 + 4 * txtime + 6;
979 } else {
980 /* IEEE Std 802.11b-1999, pp. 28 */
981 txtime = (16 * len + rate - 1) / rate;
982 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
983 txtime += 72 + 24;
984 else
985 txtime += 144 + 48;
986 }
987 return txtime;
988 }
989
990 static uint8_t
991 rum_plcp_signal(int rate)
992 {
993 switch (rate) {
994 /* CCK rates (returned values are device-dependent) */
995 case 2: return 0x0;
996 case 4: return 0x1;
997 case 11: return 0x2;
998 case 22: return 0x3;
999
1000 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1001 case 12: return 0xb;
1002 case 18: return 0xf;
1003 case 24: return 0xa;
1004 case 36: return 0xe;
1005 case 48: return 0x9;
1006 case 72: return 0xd;
1007 case 96: return 0x8;
1008 case 108: return 0xc;
1009
1010 /* unsupported rates (should not get there) */
1011 default: return 0xff;
1012 }
1013 }
1014
1015 static void
1016 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1017 uint32_t flags, uint16_t xflags, int len, int rate)
1018 {
1019 struct ieee80211com *ic = &sc->sc_ic;
1020 uint16_t plcp_length;
1021 int remainder;
1022
1023 desc->flags = htole32(flags);
1024 desc->flags |= htole32(RT2573_TX_VALID);
1025 desc->flags |= htole32(len << 16);
1026
1027 desc->xflags = htole16(xflags);
1028
1029 desc->wme = htole16(
1030 RT2573_QID(0) |
1031 RT2573_AIFSN(2) |
1032 RT2573_LOGCWMIN(4) |
1033 RT2573_LOGCWMAX(10));
1034
1035 /* setup PLCP fields */
1036 desc->plcp_signal = rum_plcp_signal(rate);
1037 desc->plcp_service = 4;
1038
1039 len += IEEE80211_CRC_LEN;
1040 if (RUM_RATE_IS_OFDM(rate)) {
1041 desc->flags |= htole32(RT2573_TX_OFDM);
1042
1043 plcp_length = len & 0xfff;
1044 desc->plcp_length_hi = plcp_length >> 6;
1045 desc->plcp_length_lo = plcp_length & 0x3f;
1046 } else {
1047 plcp_length = (16 * len + rate - 1) / rate;
1048 if (rate == 22) {
1049 remainder = (16 * len) % 22;
1050 if (remainder != 0 && remainder < 7)
1051 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1052 }
1053 desc->plcp_length_hi = plcp_length >> 8;
1054 desc->plcp_length_lo = plcp_length & 0xff;
1055
1056 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1057 desc->plcp_signal |= 0x08;
1058 }
1059 }
1060
1061 #define RUM_TX_TIMEOUT 5000
1062
1063 static int
1064 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1065 {
1066 struct ieee80211com *ic = &sc->sc_ic;
1067 struct rum_tx_desc *desc;
1068 struct rum_tx_data *data;
1069 struct ieee80211_frame *wh;
1070 struct ieee80211_key *k;
1071 uint32_t flags = 0;
1072 uint16_t dur;
1073 usbd_status error;
1074 int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1075
1076 wh = mtod(m0, struct ieee80211_frame *);
1077
1078 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1079 k = ieee80211_crypto_encap(ic, ni, m0);
1080 if (k == NULL) {
1081 m_freem(m0);
1082 return ENOBUFS;
1083 }
1084
1085 /* packet header may have moved, reset our local pointer */
1086 wh = mtod(m0, struct ieee80211_frame *);
1087 }
1088
1089 /* compute actual packet length (including CRC and crypto overhead) */
1090 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1091
1092 /* pickup a rate */
1093 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1094 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1095 IEEE80211_FC0_TYPE_MGT)) {
1096 /* mgmt/multicast frames are sent at the lowest avail. rate */
1097 rate = ni->ni_rates.rs_rates[0];
1098 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1099 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1100 } else
1101 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1102 if (rate == 0)
1103 rate = 2; /* XXX should not happen */
1104 rate &= IEEE80211_RATE_VAL;
1105
1106 /* check if RTS/CTS or CTS-to-self protection must be used */
1107 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1108 /* multicast frames are not sent at OFDM rates in 802.11b/g */
1109 if (pktlen > ic->ic_rtsthreshold) {
1110 needrts = 1; /* RTS/CTS based on frame length */
1111 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1112 RUM_RATE_IS_OFDM(rate)) {
1113 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1114 needcts = 1; /* CTS-to-self */
1115 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1116 needrts = 1; /* RTS/CTS */
1117 }
1118 }
1119 if (needrts || needcts) {
1120 struct mbuf *mprot;
1121 int protrate, ackrate;
1122
1123 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1124 ackrate = rum_ack_rate(ic, rate);
1125
1126 dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1127 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1128 2 * sc->sifs;
1129 if (needrts) {
1130 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1131 protrate), ic->ic_flags) + sc->sifs;
1132 mprot = ieee80211_get_rts(ic, wh, dur);
1133 } else {
1134 mprot = ieee80211_get_cts_to_self(ic, dur);
1135 }
1136 if (mprot == NULL) {
1137 aprint_error_dev(sc->sc_dev,
1138 "couldn't allocate protection frame\n");
1139 m_freem(m0);
1140 return ENOBUFS;
1141 }
1142
1143 data = &sc->tx_data[sc->tx_cur];
1144 desc = (struct rum_tx_desc *)data->buf;
1145
1146 /* avoid multiple free() of the same node for each fragment */
1147 data->ni = ieee80211_ref_node(ni);
1148
1149 m_copydata(mprot, 0, mprot->m_pkthdr.len,
1150 data->buf + RT2573_TX_DESC_SIZE);
1151 rum_setup_tx_desc(sc, desc,
1152 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1153 0, mprot->m_pkthdr.len, protrate);
1154
1155 /* no roundup necessary here */
1156 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1157
1158 /* XXX may want to pass the protection frame to BPF */
1159
1160 /* mbuf is no longer needed */
1161 m_freem(mprot);
1162
1163 usbd_setup_xfer(data->xfer, data, data->buf,
1164 xferlen, USBD_FORCE_SHORT_XFER,
1165 RUM_TX_TIMEOUT, rum_txeof);
1166 error = usbd_transfer(data->xfer);
1167 if (error != USBD_NORMAL_COMPLETION &&
1168 error != USBD_IN_PROGRESS) {
1169 m_freem(m0);
1170 return error;
1171 }
1172
1173 sc->tx_queued++;
1174 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1175
1176 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1177 }
1178
1179 data = &sc->tx_data[sc->tx_cur];
1180 desc = (struct rum_tx_desc *)data->buf;
1181
1182 data->ni = ni;
1183
1184 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1185 flags |= RT2573_TX_NEED_ACK;
1186
1187 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1188 ic->ic_flags) + sc->sifs;
1189 *(uint16_t *)wh->i_dur = htole16(dur);
1190
1191 /* tell hardware to set timestamp in probe responses */
1192 if ((wh->i_fc[0] &
1193 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1194 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1195 flags |= RT2573_TX_TIMESTAMP;
1196 }
1197
1198 if (sc->sc_drvbpf != NULL) {
1199 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1200
1201 tap->wt_flags = 0;
1202 tap->wt_rate = rate;
1203 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1204 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1205 tap->wt_antenna = sc->tx_ant;
1206
1207 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1208 }
1209
1210 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1211 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1212
1213 /* align end on a 4-bytes boundary */
1214 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1215
1216 /*
1217 * No space left in the last URB to store the extra 4 bytes, force
1218 * sending of another URB.
1219 */
1220 if ((xferlen % 64) == 0)
1221 xferlen += 4;
1222
1223 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1224 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1225 rate, xferlen));
1226
1227 /* mbuf is no longer needed */
1228 m_freem(m0);
1229
1230 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1231 USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof);
1232 error = usbd_transfer(data->xfer);
1233 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1234 return error;
1235
1236 sc->tx_queued++;
1237 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1238
1239 return 0;
1240 }
1241
1242 static void
1243 rum_start(struct ifnet *ifp)
1244 {
1245 struct rum_softc *sc = ifp->if_softc;
1246 struct ieee80211com *ic = &sc->sc_ic;
1247 struct ether_header *eh;
1248 struct ieee80211_node *ni;
1249 struct mbuf *m0;
1250
1251 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1252 return;
1253
1254 for (;;) {
1255 IF_POLL(&ic->ic_mgtq, m0);
1256 if (m0 != NULL) {
1257 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1258 ifp->if_flags |= IFF_OACTIVE;
1259 break;
1260 }
1261 IF_DEQUEUE(&ic->ic_mgtq, m0);
1262
1263 ni = M_GETCTX(m0, struct ieee80211_node *);
1264 M_CLEARCTX(m0);
1265 bpf_mtap3(ic->ic_rawbpf, m0);
1266 if (rum_tx_data(sc, m0, ni) != 0)
1267 break;
1268
1269 } else {
1270 if (ic->ic_state != IEEE80211_S_RUN)
1271 break;
1272 IFQ_POLL(&ifp->if_snd, m0);
1273 if (m0 == NULL)
1274 break;
1275 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1276 ifp->if_flags |= IFF_OACTIVE;
1277 break;
1278 }
1279 IFQ_DEQUEUE(&ifp->if_snd, m0);
1280 if (m0->m_len < (int)sizeof(struct ether_header) &&
1281 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1282 continue;
1283
1284 eh = mtod(m0, struct ether_header *);
1285 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1286 if (ni == NULL) {
1287 m_freem(m0);
1288 continue;
1289 }
1290 bpf_mtap(ifp, m0);
1291 m0 = ieee80211_encap(ic, m0, ni);
1292 if (m0 == NULL) {
1293 ieee80211_free_node(ni);
1294 continue;
1295 }
1296 bpf_mtap3(ic->ic_rawbpf, m0);
1297 if (rum_tx_data(sc, m0, ni) != 0) {
1298 ieee80211_free_node(ni);
1299 ifp->if_oerrors++;
1300 break;
1301 }
1302 }
1303
1304 sc->sc_tx_timer = 5;
1305 ifp->if_timer = 1;
1306 }
1307 }
1308
1309 static void
1310 rum_watchdog(struct ifnet *ifp)
1311 {
1312 struct rum_softc *sc = ifp->if_softc;
1313 struct ieee80211com *ic = &sc->sc_ic;
1314
1315 ifp->if_timer = 0;
1316
1317 if (sc->sc_tx_timer > 0) {
1318 if (--sc->sc_tx_timer == 0) {
1319 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1320 /*rum_init(ifp); XXX needs a process context! */
1321 ifp->if_oerrors++;
1322 return;
1323 }
1324 ifp->if_timer = 1;
1325 }
1326
1327 ieee80211_watchdog(ic);
1328 }
1329
1330 static int
1331 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1332 {
1333 #define IS_RUNNING(ifp) \
1334 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1335
1336 struct rum_softc *sc = ifp->if_softc;
1337 struct ieee80211com *ic = &sc->sc_ic;
1338 int s, error = 0;
1339
1340 s = splnet();
1341
1342 switch (cmd) {
1343 case SIOCSIFFLAGS:
1344 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1345 break;
1346 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1347 case IFF_UP|IFF_RUNNING:
1348 rum_update_promisc(sc);
1349 break;
1350 case IFF_UP:
1351 rum_init(ifp);
1352 break;
1353 case IFF_RUNNING:
1354 rum_stop(ifp, 1);
1355 break;
1356 case 0:
1357 break;
1358 }
1359 break;
1360
1361 case SIOCADDMULTI:
1362 case SIOCDELMULTI:
1363 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1364 error = 0;
1365 }
1366 break;
1367
1368 default:
1369 error = ieee80211_ioctl(ic, cmd, data);
1370 }
1371
1372 if (error == ENETRESET) {
1373 if (IS_RUNNING(ifp) &&
1374 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1375 rum_init(ifp);
1376 error = 0;
1377 }
1378
1379 splx(s);
1380
1381 return error;
1382 #undef IS_RUNNING
1383 }
1384
1385 static void
1386 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1387 {
1388 usb_device_request_t req;
1389 usbd_status error;
1390
1391 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1392 req.bRequest = RT2573_READ_EEPROM;
1393 USETW(req.wValue, 0);
1394 USETW(req.wIndex, addr);
1395 USETW(req.wLength, len);
1396
1397 error = usbd_do_request(sc->sc_udev, &req, buf);
1398 if (error != 0) {
1399 printf("%s: could not read EEPROM: %s\n",
1400 device_xname(sc->sc_dev), usbd_errstr(error));
1401 }
1402 }
1403
1404 static uint32_t
1405 rum_read(struct rum_softc *sc, uint16_t reg)
1406 {
1407 uint32_t val;
1408
1409 rum_read_multi(sc, reg, &val, sizeof(val));
1410
1411 return le32toh(val);
1412 }
1413
1414 static void
1415 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1416 {
1417 usb_device_request_t req;
1418 usbd_status error;
1419
1420 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1421 req.bRequest = RT2573_READ_MULTI_MAC;
1422 USETW(req.wValue, 0);
1423 USETW(req.wIndex, reg);
1424 USETW(req.wLength, len);
1425
1426 error = usbd_do_request(sc->sc_udev, &req, buf);
1427 if (error != 0) {
1428 printf("%s: could not multi read MAC register: %s\n",
1429 device_xname(sc->sc_dev), usbd_errstr(error));
1430 }
1431 }
1432
1433 static void
1434 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1435 {
1436 uint32_t tmp = htole32(val);
1437
1438 rum_write_multi(sc, reg, &tmp, sizeof(tmp));
1439 }
1440
1441 static void
1442 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1443 {
1444 usb_device_request_t req;
1445 usbd_status error;
1446 int offset;
1447
1448 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1449 req.bRequest = RT2573_WRITE_MULTI_MAC;
1450 USETW(req.wValue, 0);
1451
1452 /* write at most 64 bytes at a time */
1453 for (offset = 0; offset < len; offset += 64) {
1454 USETW(req.wIndex, reg + offset);
1455 USETW(req.wLength, MIN(len - offset, 64));
1456
1457 error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
1458 if (error != 0) {
1459 printf("%s: could not multi write MAC register: %s\n",
1460 device_xname(sc->sc_dev), usbd_errstr(error));
1461 }
1462 }
1463 }
1464
1465 static void
1466 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1467 {
1468 uint32_t tmp;
1469 int ntries;
1470
1471 for (ntries = 0; ntries < 5; ntries++) {
1472 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1473 break;
1474 }
1475 if (ntries == 5) {
1476 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1477 return;
1478 }
1479
1480 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1481 rum_write(sc, RT2573_PHY_CSR3, tmp);
1482 }
1483
1484 static uint8_t
1485 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1486 {
1487 uint32_t val;
1488 int ntries;
1489
1490 for (ntries = 0; ntries < 5; ntries++) {
1491 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1492 break;
1493 }
1494 if (ntries == 5) {
1495 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1496 return 0;
1497 }
1498
1499 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1500 rum_write(sc, RT2573_PHY_CSR3, val);
1501
1502 for (ntries = 0; ntries < 100; ntries++) {
1503 val = rum_read(sc, RT2573_PHY_CSR3);
1504 if (!(val & RT2573_BBP_BUSY))
1505 return val & 0xff;
1506 DELAY(1);
1507 }
1508
1509 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1510 return 0;
1511 }
1512
1513 static void
1514 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1515 {
1516 uint32_t tmp;
1517 int ntries;
1518
1519 for (ntries = 0; ntries < 5; ntries++) {
1520 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1521 break;
1522 }
1523 if (ntries == 5) {
1524 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1525 return;
1526 }
1527
1528 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1529 (reg & 3);
1530 rum_write(sc, RT2573_PHY_CSR4, tmp);
1531
1532 /* remember last written value in sc */
1533 sc->rf_regs[reg] = val;
1534
1535 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1536 }
1537
1538 static void
1539 rum_select_antenna(struct rum_softc *sc)
1540 {
1541 uint8_t bbp4, bbp77;
1542 uint32_t tmp;
1543
1544 bbp4 = rum_bbp_read(sc, 4);
1545 bbp77 = rum_bbp_read(sc, 77);
1546
1547 /* TBD */
1548
1549 /* make sure Rx is disabled before switching antenna */
1550 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1551 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1552
1553 rum_bbp_write(sc, 4, bbp4);
1554 rum_bbp_write(sc, 77, bbp77);
1555
1556 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1557 }
1558
1559 /*
1560 * Enable multi-rate retries for frames sent at OFDM rates.
1561 * In 802.11b/g mode, allow fallback to CCK rates.
1562 */
1563 static void
1564 rum_enable_mrr(struct rum_softc *sc)
1565 {
1566 struct ieee80211com *ic = &sc->sc_ic;
1567 uint32_t tmp;
1568
1569 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1570
1571 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1572 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1573 tmp |= RT2573_MRR_CCK_FALLBACK;
1574 tmp |= RT2573_MRR_ENABLED;
1575
1576 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1577 }
1578
1579 static void
1580 rum_set_txpreamble(struct rum_softc *sc)
1581 {
1582 uint32_t tmp;
1583
1584 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1585
1586 tmp &= ~RT2573_SHORT_PREAMBLE;
1587 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1588 tmp |= RT2573_SHORT_PREAMBLE;
1589
1590 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1591 }
1592
1593 static void
1594 rum_set_basicrates(struct rum_softc *sc)
1595 {
1596 struct ieee80211com *ic = &sc->sc_ic;
1597
1598 /* update basic rate set */
1599 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1600 /* 11b basic rates: 1, 2Mbps */
1601 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1602 } else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1603 /* 11a basic rates: 6, 12, 24Mbps */
1604 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1605 } else {
1606 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1607 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1608 }
1609 }
1610
1611 /*
1612 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1613 * driver.
1614 */
1615 static void
1616 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1617 {
1618 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1619 uint32_t tmp;
1620
1621 /* update all BBP registers that depend on the band */
1622 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1623 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1624 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1625 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1626 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1627 }
1628 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1629 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1630 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1631 }
1632
1633 sc->bbp17 = bbp17;
1634 rum_bbp_write(sc, 17, bbp17);
1635 rum_bbp_write(sc, 96, bbp96);
1636 rum_bbp_write(sc, 104, bbp104);
1637
1638 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1639 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1640 rum_bbp_write(sc, 75, 0x80);
1641 rum_bbp_write(sc, 86, 0x80);
1642 rum_bbp_write(sc, 88, 0x80);
1643 }
1644
1645 rum_bbp_write(sc, 35, bbp35);
1646 rum_bbp_write(sc, 97, bbp97);
1647 rum_bbp_write(sc, 98, bbp98);
1648
1649 tmp = rum_read(sc, RT2573_PHY_CSR0);
1650 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1651 if (IEEE80211_IS_CHAN_2GHZ(c))
1652 tmp |= RT2573_PA_PE_2GHZ;
1653 else
1654 tmp |= RT2573_PA_PE_5GHZ;
1655 rum_write(sc, RT2573_PHY_CSR0, tmp);
1656
1657 /* 802.11a uses a 16 microseconds short interframe space */
1658 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1659 }
1660
1661 static void
1662 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1663 {
1664 struct ieee80211com *ic = &sc->sc_ic;
1665 const struct rfprog *rfprog;
1666 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1667 int8_t power;
1668 u_int i, chan;
1669
1670 chan = ieee80211_chan2ieee(ic, c);
1671 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1672 return;
1673
1674 /* select the appropriate RF settings based on what EEPROM says */
1675 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1676 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1677
1678 /* find the settings for this channel (we know it exists) */
1679 for (i = 0; rfprog[i].chan != chan; i++);
1680
1681 power = sc->txpow[i];
1682 if (power < 0) {
1683 bbp94 += power;
1684 power = 0;
1685 } else if (power > 31) {
1686 bbp94 += power - 31;
1687 power = 31;
1688 }
1689
1690 /*
1691 * If we are switching from the 2GHz band to the 5GHz band or
1692 * vice-versa, BBP registers need to be reprogrammed.
1693 */
1694 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1695 rum_select_band(sc, c);
1696 rum_select_antenna(sc);
1697 }
1698 ic->ic_curchan = c;
1699
1700 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1701 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1702 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1703 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1704
1705 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1706 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1707 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1708 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1709
1710 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1711 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1712 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1713 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1714
1715 DELAY(10);
1716
1717 /* enable smart mode for MIMO-capable RFs */
1718 bbp3 = rum_bbp_read(sc, 3);
1719
1720 bbp3 &= ~RT2573_SMART_MODE;
1721 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1722 bbp3 |= RT2573_SMART_MODE;
1723
1724 rum_bbp_write(sc, 3, bbp3);
1725
1726 if (bbp94 != RT2573_BBPR94_DEFAULT)
1727 rum_bbp_write(sc, 94, bbp94);
1728 }
1729
1730 /*
1731 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1732 * and HostAP operating modes.
1733 */
1734 static void
1735 rum_enable_tsf_sync(struct rum_softc *sc)
1736 {
1737 struct ieee80211com *ic = &sc->sc_ic;
1738 uint32_t tmp;
1739
1740 if (ic->ic_opmode != IEEE80211_M_STA) {
1741 /*
1742 * Change default 16ms TBTT adjustment to 8ms.
1743 * Must be done before enabling beacon generation.
1744 */
1745 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1746 }
1747
1748 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1749
1750 /* set beacon interval (in 1/16ms unit) */
1751 tmp |= ic->ic_bss->ni_intval * 16;
1752
1753 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1754 if (ic->ic_opmode == IEEE80211_M_STA)
1755 tmp |= RT2573_TSF_MODE(1);
1756 else
1757 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1758
1759 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1760 }
1761
1762 static void
1763 rum_update_slot(struct rum_softc *sc)
1764 {
1765 struct ieee80211com *ic = &sc->sc_ic;
1766 uint8_t slottime;
1767 uint32_t tmp;
1768
1769 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1770
1771 tmp = rum_read(sc, RT2573_MAC_CSR9);
1772 tmp = (tmp & ~0xff) | slottime;
1773 rum_write(sc, RT2573_MAC_CSR9, tmp);
1774
1775 DPRINTF(("setting slot time to %uus\n", slottime));
1776 }
1777
1778 static void
1779 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1780 {
1781 uint32_t tmp;
1782
1783 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1784 rum_write(sc, RT2573_MAC_CSR4, tmp);
1785
1786 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1787 rum_write(sc, RT2573_MAC_CSR5, tmp);
1788 }
1789
1790 static void
1791 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1792 {
1793 uint32_t tmp;
1794
1795 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1796 rum_write(sc, RT2573_MAC_CSR2, tmp);
1797
1798 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1799 rum_write(sc, RT2573_MAC_CSR3, tmp);
1800 }
1801
1802 static void
1803 rum_update_promisc(struct rum_softc *sc)
1804 {
1805 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1806 uint32_t tmp;
1807
1808 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1809
1810 tmp &= ~RT2573_DROP_NOT_TO_ME;
1811 if (!(ifp->if_flags & IFF_PROMISC))
1812 tmp |= RT2573_DROP_NOT_TO_ME;
1813
1814 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1815
1816 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1817 "entering" : "leaving"));
1818 }
1819
1820 static const char *
1821 rum_get_rf(int rev)
1822 {
1823 switch (rev) {
1824 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1825 case RT2573_RF_2528: return "RT2528";
1826 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1827 case RT2573_RF_5226: return "RT5226";
1828 default: return "unknown";
1829 }
1830 }
1831
1832 static void
1833 rum_read_eeprom(struct rum_softc *sc)
1834 {
1835 struct ieee80211com *ic = &sc->sc_ic;
1836 uint16_t val;
1837 #ifdef RUM_DEBUG
1838 int i;
1839 #endif
1840
1841 /* read MAC/BBP type */
1842 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1843 sc->macbbp_rev = le16toh(val);
1844
1845 /* read MAC address */
1846 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1847
1848 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1849 val = le16toh(val);
1850 sc->rf_rev = (val >> 11) & 0x1f;
1851 sc->hw_radio = (val >> 10) & 0x1;
1852 sc->rx_ant = (val >> 4) & 0x3;
1853 sc->tx_ant = (val >> 2) & 0x3;
1854 sc->nb_ant = val & 0x3;
1855
1856 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1857
1858 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1859 val = le16toh(val);
1860 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1861 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1862
1863 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1864 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1865
1866 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1867 val = le16toh(val);
1868 if ((val & 0xff) != 0xff)
1869 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1870
1871 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1872 val = le16toh(val);
1873 if ((val & 0xff) != 0xff)
1874 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1875
1876 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1877 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1878
1879 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1880 val = le16toh(val);
1881 if ((val & 0xff) != 0xff)
1882 sc->rffreq = val & 0xff;
1883
1884 DPRINTF(("RF freq=%d\n", sc->rffreq));
1885
1886 /* read Tx power for all a/b/g channels */
1887 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1888 /* XXX default Tx power for 802.11a channels */
1889 memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14);
1890 #ifdef RUM_DEBUG
1891 for (i = 0; i < 14; i++)
1892 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1893 #endif
1894
1895 /* read default values for BBP registers */
1896 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1897 #ifdef RUM_DEBUG
1898 for (i = 0; i < 14; i++) {
1899 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1900 continue;
1901 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1902 sc->bbp_prom[i].val));
1903 }
1904 #endif
1905 }
1906
1907 static int
1908 rum_bbp_init(struct rum_softc *sc)
1909 {
1910 unsigned int i, ntries;
1911 uint8_t val;
1912
1913 /* wait for BBP to be ready */
1914 for (ntries = 0; ntries < 100; ntries++) {
1915 val = rum_bbp_read(sc, 0);
1916 if (val != 0 && val != 0xff)
1917 break;
1918 DELAY(1000);
1919 }
1920 if (ntries == 100) {
1921 printf("%s: timeout waiting for BBP\n",
1922 device_xname(sc->sc_dev));
1923 return EIO;
1924 }
1925
1926 /* initialize BBP registers to default values */
1927 for (i = 0; i < __arraycount(rum_def_bbp); i++)
1928 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1929
1930 /* write vendor-specific BBP values (from EEPROM) */
1931 for (i = 0; i < 16; i++) {
1932 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1933 continue;
1934 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1935 }
1936
1937 return 0;
1938 }
1939
1940 static int
1941 rum_init(struct ifnet *ifp)
1942 {
1943 struct rum_softc *sc = ifp->if_softc;
1944 struct ieee80211com *ic = &sc->sc_ic;
1945 uint32_t tmp;
1946 usbd_status error = 0;
1947 unsigned int i, ntries;
1948
1949 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1950 if (rum_attachhook(sc))
1951 goto fail;
1952 }
1953
1954 rum_stop(ifp, 0);
1955
1956 /* initialize MAC registers to default values */
1957 for (i = 0; i < __arraycount(rum_def_mac); i++)
1958 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1959
1960 /* set host ready */
1961 rum_write(sc, RT2573_MAC_CSR1, 3);
1962 rum_write(sc, RT2573_MAC_CSR1, 0);
1963
1964 /* wait for BBP/RF to wakeup */
1965 for (ntries = 0; ntries < 1000; ntries++) {
1966 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1967 break;
1968 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1969 DELAY(1000);
1970 }
1971 if (ntries == 1000) {
1972 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1973 device_xname(sc->sc_dev));
1974 goto fail;
1975 }
1976
1977 if ((error = rum_bbp_init(sc)) != 0)
1978 goto fail;
1979
1980 /* select default channel */
1981 rum_select_band(sc, ic->ic_curchan);
1982 rum_select_antenna(sc);
1983 rum_set_chan(sc, ic->ic_curchan);
1984
1985 /* clear STA registers */
1986 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
1987
1988 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1989 rum_set_macaddr(sc, ic->ic_myaddr);
1990
1991 /* initialize ASIC */
1992 rum_write(sc, RT2573_MAC_CSR1, 4);
1993
1994 /*
1995 * Allocate xfer for AMRR statistics requests.
1996 */
1997 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
1998 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0,
1999 &sc->amrr_xfer);
2000 if (error) {
2001 printf("%s: could not allocate AMRR xfer\n",
2002 device_xname(sc->sc_dev));
2003 goto fail;
2004 }
2005
2006 /*
2007 * Open Tx and Rx USB bulk pipes.
2008 */
2009 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2010 &sc->sc_tx_pipeh);
2011 if (error != 0) {
2012 printf("%s: could not open Tx pipe: %s\n",
2013 device_xname(sc->sc_dev), usbd_errstr(error));
2014 goto fail;
2015 }
2016
2017 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2018 &sc->sc_rx_pipeh);
2019 if (error != 0) {
2020 printf("%s: could not open Rx pipe: %s\n",
2021 device_xname(sc->sc_dev), usbd_errstr(error));
2022 goto fail;
2023 }
2024
2025 /*
2026 * Allocate Tx and Rx xfer queues.
2027 */
2028 error = rum_alloc_tx_list(sc);
2029 if (error != 0) {
2030 printf("%s: could not allocate Tx list\n",
2031 device_xname(sc->sc_dev));
2032 goto fail;
2033 }
2034
2035 error = rum_alloc_rx_list(sc);
2036 if (error != 0) {
2037 printf("%s: could not allocate Rx list\n",
2038 device_xname(sc->sc_dev));
2039 goto fail;
2040 }
2041
2042 /*
2043 * Start up the receive pipe.
2044 */
2045 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2046 struct rum_rx_data *data;
2047
2048 data = &sc->rx_data[i];
2049
2050 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2051 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2052 error = usbd_transfer(data->xfer);
2053 if (error != USBD_NORMAL_COMPLETION &&
2054 error != USBD_IN_PROGRESS) {
2055 printf("%s: could not queue Rx transfer\n",
2056 device_xname(sc->sc_dev));
2057 goto fail;
2058 }
2059 }
2060
2061 /* update Rx filter */
2062 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2063
2064 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2065 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2066 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2067 RT2573_DROP_ACKCTS;
2068 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2069 tmp |= RT2573_DROP_TODS;
2070 if (!(ifp->if_flags & IFF_PROMISC))
2071 tmp |= RT2573_DROP_NOT_TO_ME;
2072 }
2073 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2074
2075 ifp->if_flags &= ~IFF_OACTIVE;
2076 ifp->if_flags |= IFF_RUNNING;
2077
2078 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2079 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2080 else
2081 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2082
2083 return 0;
2084
2085 fail: rum_stop(ifp, 1);
2086 return error;
2087 }
2088
2089 static void
2090 rum_stop(struct ifnet *ifp, int disable)
2091 {
2092 struct rum_softc *sc = ifp->if_softc;
2093 struct ieee80211com *ic = &sc->sc_ic;
2094 uint32_t tmp;
2095
2096 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2097
2098 sc->sc_tx_timer = 0;
2099 ifp->if_timer = 0;
2100 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2101
2102 /* disable Rx */
2103 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2104 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2105
2106 /* reset ASIC */
2107 rum_write(sc, RT2573_MAC_CSR1, 3);
2108 rum_write(sc, RT2573_MAC_CSR1, 0);
2109
2110 if (sc->amrr_xfer != NULL) {
2111 usbd_destroy_xfer(sc->amrr_xfer);
2112 sc->amrr_xfer = NULL;
2113 }
2114
2115 if (sc->sc_rx_pipeh != NULL) {
2116 usbd_abort_pipe(sc->sc_rx_pipeh);
2117 }
2118
2119 if (sc->sc_tx_pipeh != NULL) {
2120 usbd_abort_pipe(sc->sc_tx_pipeh);
2121 }
2122
2123 rum_free_rx_list(sc);
2124 rum_free_tx_list(sc);
2125
2126 if (sc->sc_rx_pipeh != NULL) {
2127 usbd_close_pipe(sc->sc_rx_pipeh);
2128 sc->sc_rx_pipeh = NULL;
2129 }
2130
2131 if (sc->sc_tx_pipeh != NULL) {
2132 usbd_close_pipe(sc->sc_tx_pipeh);
2133 sc->sc_tx_pipeh = NULL;
2134 }
2135 }
2136
2137 static int
2138 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2139 {
2140 usb_device_request_t req;
2141 uint16_t reg = RT2573_MCU_CODE_BASE;
2142 usbd_status error;
2143
2144 /* copy firmware image into NIC */
2145 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2146 rum_write(sc, reg, UGETDW(ucode));
2147
2148 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2149 req.bRequest = RT2573_MCU_CNTL;
2150 USETW(req.wValue, RT2573_MCU_RUN);
2151 USETW(req.wIndex, 0);
2152 USETW(req.wLength, 0);
2153
2154 error = usbd_do_request(sc->sc_udev, &req, NULL);
2155 if (error != 0) {
2156 printf("%s: could not run firmware: %s\n",
2157 device_xname(sc->sc_dev), usbd_errstr(error));
2158 }
2159 return error;
2160 }
2161
2162 static int
2163 rum_prepare_beacon(struct rum_softc *sc)
2164 {
2165 struct ieee80211com *ic = &sc->sc_ic;
2166 struct rum_tx_desc desc;
2167 struct mbuf *m0;
2168 int rate;
2169
2170 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2171 if (m0 == NULL) {
2172 aprint_error_dev(sc->sc_dev,
2173 "could not allocate beacon frame\n");
2174 return ENOBUFS;
2175 }
2176
2177 /* send beacons at the lowest available rate */
2178 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2179
2180 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2181 m0->m_pkthdr.len, rate);
2182
2183 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2184 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2185
2186 /* copy beacon header and payload into NIC memory */
2187 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2188 m0->m_pkthdr.len);
2189
2190 m_freem(m0);
2191
2192 return 0;
2193 }
2194
2195 static void
2196 rum_newassoc(struct ieee80211_node *ni, int isnew)
2197 {
2198 /* start with lowest Tx rate */
2199 ni->ni_txrate = 0;
2200 }
2201
2202 static void
2203 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2204 {
2205 int i;
2206
2207 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2208 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
2209
2210 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2211
2212 /* set rate to some reasonable initial value */
2213 for (i = ni->ni_rates.rs_nrates - 1;
2214 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2215 i--);
2216 ni->ni_txrate = i;
2217
2218 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2219 }
2220
2221 static void
2222 rum_amrr_timeout(void *arg)
2223 {
2224 struct rum_softc *sc = arg;
2225 usb_device_request_t req;
2226
2227 /*
2228 * Asynchronously read statistic registers (cleared by read).
2229 */
2230 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2231 req.bRequest = RT2573_READ_MULTI_MAC;
2232 USETW(req.wValue, 0);
2233 USETW(req.wIndex, RT2573_STA_CSR0);
2234 USETW(req.wLength, sizeof(sc->sta));
2235
2236 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2237 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2238 rum_amrr_update);
2239 (void)usbd_transfer(sc->amrr_xfer);
2240 }
2241
2242 static void
2243 rum_amrr_update(struct usbd_xfer *xfer, void *priv,
2244 usbd_status status)
2245 {
2246 struct rum_softc *sc = (struct rum_softc *)priv;
2247 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2248
2249 if (status != USBD_NORMAL_COMPLETION) {
2250 printf("%s: could not retrieve Tx statistics - cancelling "
2251 "automatic rate control\n", device_xname(sc->sc_dev));
2252 return;
2253 }
2254
2255 /* count TX retry-fail as Tx errors */
2256 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2257
2258 sc->amn.amn_retrycnt =
2259 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2260 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2261 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2262
2263 sc->amn.amn_txcnt =
2264 sc->amn.amn_retrycnt +
2265 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2266
2267 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2268
2269 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2270 }
2271
2272 static int
2273 rum_activate(device_t self, enum devact act)
2274 {
2275 switch (act) {
2276 case DVACT_DEACTIVATE:
2277 /*if_deactivate(&sc->sc_ic.ic_if);*/
2278 return 0;
2279 default:
2280 return 0;
2281 }
2282 }
2283
2284 MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf");
2285
2286 #ifdef _MODULE
2287 #include "ioconf.c"
2288 #endif
2289
2290 static int
2291 if_rum_modcmd(modcmd_t cmd, void *aux)
2292 {
2293 int error = 0;
2294
2295 switch (cmd) {
2296 case MODULE_CMD_INIT:
2297 #ifdef _MODULE
2298 error = config_init_component(cfdriver_ioconf_rum,
2299 cfattach_ioconf_rum, cfdata_ioconf_rum);
2300 #endif
2301 return error;
2302 case MODULE_CMD_FINI:
2303 #ifdef _MODULE
2304 error = config_fini_component(cfdriver_ioconf_rum,
2305 cfattach_ioconf_rum, cfdata_ioconf_rum);
2306 #endif
2307 return error;
2308 default:
2309 return ENOTTY;
2310 }
2311 }
2312