if_rum.c revision 1.68 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.68 2020/03/14 02:35:33 christos Exp $ */
3
4 /*-
5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com.tw/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.68 2020/03/14 02:35:33 christos Exp $");
28
29 #ifdef _KERNEL_OPT
30 #include "opt_usb.h"
31 #endif
32
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/module.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/firmload.h>
67
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72
73 #include <dev/usb/if_rumreg.h>
74 #include <dev/usb/if_rumvar.h>
75
76 #ifdef RUM_DEBUG
77 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0)
78 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0)
79 int rum_debug = 1;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84
85 /* various supported device vendors/products */
86 static const struct usb_devno rum_devs[] = {
87 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
88 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
89 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
90 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
92 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
93 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
94 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
95 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
96 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
97 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C },
98 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 },
99 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
100 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
101 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
102 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_RT2573 },
103 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL },
104 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX },
105 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
106 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
107 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
108 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
109 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 },
110 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 },
111 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 },
112 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 },
113 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
114 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
115 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
116 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
117 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
118 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
119 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
120 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
121 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
122 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG },
123 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG },
124 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
125 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
126 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
127 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
128 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
129 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
130 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
131 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
132 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
133 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
134 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 },
135 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
136 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
137 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
138 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
139 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 },
140 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 },
141 { USB_VENDOR_SYNET, USB_PRODUCT_SYNET_MWP54SS },
142 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 }
143 };
144
145 static int rum_attachhook(void *);
146 static int rum_alloc_tx_list(struct rum_softc *);
147 static void rum_free_tx_list(struct rum_softc *);
148 static int rum_alloc_rx_list(struct rum_softc *);
149 static void rum_free_rx_list(struct rum_softc *);
150 static int rum_media_change(struct ifnet *);
151 static void rum_next_scan(void *);
152 static void rum_task(void *);
153 static int rum_newstate(struct ieee80211com *,
154 enum ieee80211_state, int);
155 static void rum_txeof(struct usbd_xfer *, void *,
156 usbd_status);
157 static void rum_rxeof(struct usbd_xfer *, void *,
158 usbd_status);
159 static uint8_t rum_rxrate(const struct rum_rx_desc *);
160 static int rum_ack_rate(struct ieee80211com *, int);
161 static uint16_t rum_txtime(int, int, uint32_t);
162 static uint8_t rum_plcp_signal(int);
163 static void rum_setup_tx_desc(struct rum_softc *,
164 struct rum_tx_desc *, uint32_t, uint16_t, int,
165 int);
166 static int rum_tx_data(struct rum_softc *, struct mbuf *,
167 struct ieee80211_node *);
168 static void rum_start(struct ifnet *);
169 static void rum_watchdog(struct ifnet *);
170 static int rum_ioctl(struct ifnet *, u_long, void *);
171 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
172 int);
173 static uint32_t rum_read(struct rum_softc *, uint16_t);
174 static void rum_read_multi(struct rum_softc *, uint16_t, void *,
175 int);
176 static void rum_write(struct rum_softc *, uint16_t, uint32_t);
177 static void rum_write_multi(struct rum_softc *, uint16_t, void *,
178 size_t);
179 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
180 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
181 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
182 static void rum_select_antenna(struct rum_softc *);
183 static void rum_enable_mrr(struct rum_softc *);
184 static void rum_set_txpreamble(struct rum_softc *);
185 static void rum_set_basicrates(struct rum_softc *);
186 static void rum_select_band(struct rum_softc *,
187 struct ieee80211_channel *);
188 static void rum_set_chan(struct rum_softc *,
189 struct ieee80211_channel *);
190 static void rum_enable_tsf_sync(struct rum_softc *);
191 static void rum_update_slot(struct rum_softc *);
192 static void rum_set_bssid(struct rum_softc *, const uint8_t *);
193 static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
194 static void rum_update_promisc(struct rum_softc *);
195 static const char *rum_get_rf(int);
196 static void rum_read_eeprom(struct rum_softc *);
197 static int rum_bbp_init(struct rum_softc *);
198 static int rum_init(struct ifnet *);
199 static void rum_stop(struct ifnet *, int);
200 static int rum_load_microcode(struct rum_softc *, const u_char *,
201 size_t);
202 static int rum_prepare_beacon(struct rum_softc *);
203 static void rum_newassoc(struct ieee80211_node *, int);
204 static void rum_amrr_start(struct rum_softc *,
205 struct ieee80211_node *);
206 static void rum_amrr_timeout(void *);
207 static void rum_amrr_update(struct usbd_xfer *, void *,
208 usbd_status);
209
210 static const struct {
211 uint32_t reg;
212 uint32_t val;
213 } rum_def_mac[] = {
214 RT2573_DEF_MAC
215 };
216
217 static const struct {
218 uint8_t reg;
219 uint8_t val;
220 } rum_def_bbp[] = {
221 RT2573_DEF_BBP
222 };
223
224 static const struct rfprog {
225 uint8_t chan;
226 uint32_t r1, r2, r3, r4;
227 } rum_rf5226[] = {
228 RT2573_RF5226
229 }, rum_rf5225[] = {
230 RT2573_RF5225
231 };
232
233 static int rum_match(device_t, cfdata_t, void *);
234 static void rum_attach(device_t, device_t, void *);
235 static int rum_detach(device_t, int);
236 static int rum_activate(device_t, enum devact);
237
238 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
239 rum_detach, rum_activate);
240
241 static int
242 rum_match(device_t parent, cfdata_t match, void *aux)
243 {
244 struct usb_attach_arg *uaa = aux;
245
246 return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
247 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
248 }
249
250 static int
251 rum_attachhook(void *xsc)
252 {
253 struct rum_softc *sc = xsc;
254 firmware_handle_t fwh;
255 const char *name = "rum-rt2573";
256 u_char *ucode;
257 size_t size;
258 int error;
259
260 if ((error = firmware_open("rum", name, &fwh)) != 0) {
261 printf("%s: failed firmware_open of file %s (error %d)\n",
262 device_xname(sc->sc_dev), name, error);
263 return error;
264 }
265 size = firmware_get_size(fwh);
266 ucode = firmware_malloc(size);
267 if (ucode == NULL) {
268 printf("%s: failed to allocate firmware memory\n",
269 device_xname(sc->sc_dev));
270 firmware_close(fwh);
271 return ENOMEM;
272 }
273 error = firmware_read(fwh, 0, ucode, size);
274 firmware_close(fwh);
275 if (error != 0) {
276 printf("%s: failed to read firmware (error %d)\n",
277 device_xname(sc->sc_dev), error);
278 firmware_free(ucode, size);
279 return error;
280 }
281
282 if (rum_load_microcode(sc, ucode, size) != 0) {
283 printf("%s: could not load 8051 microcode\n",
284 device_xname(sc->sc_dev));
285 firmware_free(ucode, size);
286 return ENXIO;
287 }
288
289 firmware_free(ucode, size);
290 sc->sc_flags |= RT2573_FWLOADED;
291
292 return 0;
293 }
294
295 static void
296 rum_attach(device_t parent, device_t self, void *aux)
297 {
298 struct rum_softc *sc = device_private(self);
299 struct usb_attach_arg *uaa = aux;
300 struct ieee80211com *ic = &sc->sc_ic;
301 struct ifnet *ifp = &sc->sc_if;
302 usb_interface_descriptor_t *id;
303 usb_endpoint_descriptor_t *ed;
304 usbd_status error;
305 char *devinfop;
306 int i, ntries;
307 uint32_t tmp;
308
309 sc->sc_dev = self;
310 sc->sc_udev = uaa->uaa_device;
311 sc->sc_flags = 0;
312
313 aprint_naive("\n");
314 aprint_normal("\n");
315
316 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
317 aprint_normal_dev(self, "%s\n", devinfop);
318 usbd_devinfo_free(devinfop);
319
320 error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
321 if (error != 0) {
322 aprint_error_dev(self, "failed to set configuration"
323 ", err=%s\n", usbd_errstr(error));
324 return;
325 }
326
327 /* get the first interface handle */
328 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
329 &sc->sc_iface);
330 if (error != 0) {
331 aprint_error_dev(self, "could not get interface handle\n");
332 return;
333 }
334
335 /*
336 * Find endpoints.
337 */
338 id = usbd_get_interface_descriptor(sc->sc_iface);
339
340 sc->sc_rx_no = sc->sc_tx_no = -1;
341 for (i = 0; i < id->bNumEndpoints; i++) {
342 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
343 if (ed == NULL) {
344 aprint_error_dev(self,
345 "no endpoint descriptor for iface %d\n", i);
346 return;
347 }
348
349 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
350 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
351 sc->sc_rx_no = ed->bEndpointAddress;
352 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
353 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
354 sc->sc_tx_no = ed->bEndpointAddress;
355 }
356 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
357 aprint_error_dev(self, "missing endpoint\n");
358 return;
359 }
360
361 usb_init_task(&sc->sc_task, rum_task, sc, 0);
362 callout_init(&sc->sc_scan_ch, 0);
363
364 sc->amrr.amrr_min_success_threshold = 1;
365 sc->amrr.amrr_max_success_threshold = 10;
366 callout_init(&sc->sc_amrr_ch, 0);
367
368 /* retrieve RT2573 rev. no */
369 for (ntries = 0; ntries < 1000; ntries++) {
370 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
371 break;
372 DELAY(1000);
373 }
374 if (ntries == 1000) {
375 aprint_error_dev(self, "timeout waiting for chip to settle\n");
376 return;
377 }
378
379 /* retrieve MAC address and various other things from EEPROM */
380 rum_read_eeprom(sc);
381
382 aprint_normal_dev(self,
383 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
384 sc->macbbp_rev, tmp,
385 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
386
387 ic->ic_ifp = ifp;
388 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
389 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
390 ic->ic_state = IEEE80211_S_INIT;
391
392 /* set device capabilities */
393 ic->ic_caps =
394 IEEE80211_C_IBSS | /* IBSS mode supported */
395 IEEE80211_C_MONITOR | /* monitor mode supported */
396 IEEE80211_C_HOSTAP | /* HostAp mode supported */
397 IEEE80211_C_TXPMGT | /* tx power management */
398 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
399 IEEE80211_C_SHSLOT | /* short slot time supported */
400 IEEE80211_C_WPA; /* 802.11i */
401
402 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
403 /* set supported .11a rates */
404 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
405
406 /* set supported .11a channels */
407 for (i = 34; i <= 46; i += 4) {
408 ic->ic_channels[i].ic_freq =
409 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
410 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
411 }
412 for (i = 36; i <= 64; i += 4) {
413 ic->ic_channels[i].ic_freq =
414 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
415 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
416 }
417 for (i = 100; i <= 140; i += 4) {
418 ic->ic_channels[i].ic_freq =
419 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
420 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
421 }
422 for (i = 149; i <= 165; i += 4) {
423 ic->ic_channels[i].ic_freq =
424 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
425 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
426 }
427 }
428
429 /* set supported .11b and .11g rates */
430 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
431 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
432
433 /* set supported .11b and .11g channels (1 through 14) */
434 for (i = 1; i <= 14; i++) {
435 ic->ic_channels[i].ic_freq =
436 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
437 ic->ic_channels[i].ic_flags =
438 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
439 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
440 }
441
442 ifp->if_softc = sc;
443 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
444 ifp->if_init = rum_init;
445 ifp->if_ioctl = rum_ioctl;
446 ifp->if_start = rum_start;
447 ifp->if_watchdog = rum_watchdog;
448 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
449 IFQ_SET_READY(&ifp->if_snd);
450 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
451
452 if_attach(ifp);
453 ieee80211_ifattach(ic);
454 ic->ic_newassoc = rum_newassoc;
455
456 /* override state transition machine */
457 sc->sc_newstate = ic->ic_newstate;
458 ic->ic_newstate = rum_newstate;
459 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
460
461 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
462 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
463 &sc->sc_drvbpf);
464
465 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
466 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
467 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
468
469 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
470 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
471 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
472
473 ieee80211_announce(ic);
474
475 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
476
477 if (!pmf_device_register(self, NULL, NULL))
478 aprint_error_dev(self, "couldn't establish power handler\n");
479
480 return;
481 }
482
483 static int
484 rum_detach(device_t self, int flags)
485 {
486 struct rum_softc *sc = device_private(self);
487 struct ieee80211com *ic = &sc->sc_ic;
488 struct ifnet *ifp = &sc->sc_if;
489 int s;
490
491 if (!ifp->if_softc)
492 return 0;
493
494 pmf_device_deregister(self);
495
496 s = splusb();
497
498 rum_stop(ifp, 1);
499 callout_halt(&sc->sc_scan_ch, NULL);
500 callout_halt(&sc->sc_amrr_ch, NULL);
501 usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
502
503 bpf_detach(ifp);
504 ieee80211_ifdetach(ic); /* free all nodes */
505 if_detach(ifp);
506
507 splx(s);
508
509 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
510
511 return 0;
512 }
513
514 static int
515 rum_alloc_tx_list(struct rum_softc *sc)
516 {
517 struct rum_tx_data *data;
518 int i, error;
519
520 sc->tx_cur = sc->tx_queued = 0;
521
522 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
523 data = &sc->tx_data[i];
524
525 data->sc = sc;
526
527 error = usbd_create_xfer(sc->sc_tx_pipeh,
528 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN,
529 USBD_FORCE_SHORT_XFER, 0, &data->xfer);
530 if (error) {
531 printf("%s: could not allocate tx xfer\n",
532 device_xname(sc->sc_dev));
533 goto fail;
534 }
535 data->buf = usbd_get_buffer(data->xfer);
536
537 /* clean Tx descriptor */
538 memset(data->buf, 0, RT2573_TX_DESC_SIZE);
539 }
540
541 return 0;
542
543 fail: rum_free_tx_list(sc);
544 return error;
545 }
546
547 static void
548 rum_free_tx_list(struct rum_softc *sc)
549 {
550 struct rum_tx_data *data;
551 int i;
552
553 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
554 data = &sc->tx_data[i];
555
556 if (data->xfer != NULL) {
557 usbd_destroy_xfer(data->xfer);
558 data->xfer = NULL;
559 }
560
561 if (data->ni != NULL) {
562 ieee80211_free_node(data->ni);
563 data->ni = NULL;
564 }
565 }
566 }
567
568 static int
569 rum_alloc_rx_list(struct rum_softc *sc)
570 {
571 struct rum_rx_data *data;
572 int i, error;
573
574 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
575 data = &sc->rx_data[i];
576
577 data->sc = sc;
578
579 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
580 0, 0, &data->xfer);
581 if (error) {
582 printf("%s: could not allocate rx xfer\n",
583 device_xname(sc->sc_dev));
584 goto fail;
585 }
586
587 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
588 if (data->m == NULL) {
589 printf("%s: could not allocate rx mbuf\n",
590 device_xname(sc->sc_dev));
591 error = ENOMEM;
592 goto fail;
593 }
594
595 MCLGET(data->m, M_DONTWAIT);
596 if (!(data->m->m_flags & M_EXT)) {
597 printf("%s: could not allocate rx mbuf cluster\n",
598 device_xname(sc->sc_dev));
599 error = ENOMEM;
600 goto fail;
601 }
602
603 data->buf = mtod(data->m, uint8_t *);
604 }
605
606 return 0;
607
608 fail: rum_free_rx_list(sc);
609 return error;
610 }
611
612 static void
613 rum_free_rx_list(struct rum_softc *sc)
614 {
615 struct rum_rx_data *data;
616 int i;
617
618 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
619 data = &sc->rx_data[i];
620
621 if (data->xfer != NULL) {
622 usbd_destroy_xfer(data->xfer);
623 data->xfer = NULL;
624 }
625
626 if (data->m != NULL) {
627 m_freem(data->m);
628 data->m = NULL;
629 }
630 }
631 }
632
633 static int
634 rum_media_change(struct ifnet *ifp)
635 {
636 int error;
637
638 error = ieee80211_media_change(ifp);
639 if (error != ENETRESET)
640 return error;
641
642 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
643 rum_init(ifp);
644
645 return 0;
646 }
647
648 /*
649 * This function is called periodically (every 200ms) during scanning to
650 * switch from one channel to another.
651 */
652 static void
653 rum_next_scan(void *arg)
654 {
655 struct rum_softc *sc = arg;
656 struct ieee80211com *ic = &sc->sc_ic;
657 int s;
658
659 s = splnet();
660 if (ic->ic_state == IEEE80211_S_SCAN)
661 ieee80211_next_scan(ic);
662 splx(s);
663 }
664
665 static void
666 rum_task(void *arg)
667 {
668 struct rum_softc *sc = arg;
669 struct ieee80211com *ic = &sc->sc_ic;
670 enum ieee80211_state ostate;
671 struct ieee80211_node *ni;
672 uint32_t tmp;
673
674 ostate = ic->ic_state;
675
676 switch (sc->sc_state) {
677 case IEEE80211_S_INIT:
678 if (ostate == IEEE80211_S_RUN) {
679 /* abort TSF synchronization */
680 tmp = rum_read(sc, RT2573_TXRX_CSR9);
681 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
682 }
683 break;
684
685 case IEEE80211_S_SCAN:
686 rum_set_chan(sc, ic->ic_curchan);
687 callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
688 break;
689
690 case IEEE80211_S_AUTH:
691 rum_set_chan(sc, ic->ic_curchan);
692 break;
693
694 case IEEE80211_S_ASSOC:
695 rum_set_chan(sc, ic->ic_curchan);
696 break;
697
698 case IEEE80211_S_RUN:
699 rum_set_chan(sc, ic->ic_curchan);
700
701 ni = ic->ic_bss;
702
703 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
704 rum_update_slot(sc);
705 rum_enable_mrr(sc);
706 rum_set_txpreamble(sc);
707 rum_set_basicrates(sc);
708 rum_set_bssid(sc, ni->ni_bssid);
709 }
710
711 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
712 ic->ic_opmode == IEEE80211_M_IBSS)
713 rum_prepare_beacon(sc);
714
715 if (ic->ic_opmode != IEEE80211_M_MONITOR)
716 rum_enable_tsf_sync(sc);
717
718 if (ic->ic_opmode == IEEE80211_M_STA) {
719 /* fake a join to init the tx rate */
720 rum_newassoc(ic->ic_bss, 1);
721
722 /* enable automatic rate adaptation in STA mode */
723 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
724 rum_amrr_start(sc, ni);
725 }
726
727 break;
728 }
729
730 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
731 }
732
733 static int
734 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
735 {
736 struct rum_softc *sc = ic->ic_ifp->if_softc;
737
738 /*
739 * XXXSMP: This does not wait for the task, if it is in flight,
740 * to complete. If this code works at all, it must rely on the
741 * kernel lock to serialize with the USB task thread.
742 */
743 usb_rem_task(sc->sc_udev, &sc->sc_task);
744 callout_stop(&sc->sc_scan_ch);
745 callout_stop(&sc->sc_amrr_ch);
746
747 /* do it in a process context */
748 sc->sc_state = nstate;
749 sc->sc_arg = arg;
750 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
751
752 return 0;
753 }
754
755 /* quickly determine if a given rate is CCK or OFDM */
756 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
757
758 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
759 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
760
761 static void
762 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
763 {
764 struct rum_tx_data *data = priv;
765 struct rum_softc *sc = data->sc;
766 struct ifnet *ifp = &sc->sc_if;
767 int s;
768
769 if (status != USBD_NORMAL_COMPLETION) {
770 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
771 return;
772
773 printf("%s: could not transmit buffer: %s\n",
774 device_xname(sc->sc_dev), usbd_errstr(status));
775
776 if (status == USBD_STALLED)
777 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
778
779 if_statinc(ifp, if_oerrors);
780 return;
781 }
782
783 s = splnet();
784
785 ieee80211_free_node(data->ni);
786 data->ni = NULL;
787
788 sc->tx_queued--;
789 if_statinc(ifp, if_opackets);
790
791 DPRINTFN(10, ("tx done\n"));
792
793 sc->sc_tx_timer = 0;
794 ifp->if_flags &= ~IFF_OACTIVE;
795 rum_start(ifp);
796
797 splx(s);
798 }
799
800 static void
801 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
802 {
803 struct rum_rx_data *data = priv;
804 struct rum_softc *sc = data->sc;
805 struct ieee80211com *ic = &sc->sc_ic;
806 struct ifnet *ifp = &sc->sc_if;
807 struct rum_rx_desc *desc;
808 struct ieee80211_frame *wh;
809 struct ieee80211_node *ni;
810 struct mbuf *mnew, *m;
811 int s, len;
812
813 if (status != USBD_NORMAL_COMPLETION) {
814 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
815 return;
816
817 if (status == USBD_STALLED)
818 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
819 goto skip;
820 }
821
822 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
823
824 if (len < (int)(RT2573_RX_DESC_SIZE +
825 sizeof(struct ieee80211_frame_min))) {
826 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
827 len));
828 if_statinc(ifp, if_ierrors);
829 goto skip;
830 }
831
832 desc = (struct rum_rx_desc *)data->buf;
833
834 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
835 /*
836 * This should not happen since we did not request to receive
837 * those frames when we filled RT2573_TXRX_CSR0.
838 */
839 DPRINTFN(5, ("CRC error\n"));
840 if_statinc(ifp, if_ierrors);
841 goto skip;
842 }
843
844 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
845 if (mnew == NULL) {
846 printf("%s: could not allocate rx mbuf\n",
847 device_xname(sc->sc_dev));
848 if_statinc(ifp, if_ierrors);
849 goto skip;
850 }
851
852 MCLGET(mnew, M_DONTWAIT);
853 if (!(mnew->m_flags & M_EXT)) {
854 printf("%s: could not allocate rx mbuf cluster\n",
855 device_xname(sc->sc_dev));
856 m_freem(mnew);
857 if_statinc(ifp, if_ierrors);
858 goto skip;
859 }
860
861 m = data->m;
862 data->m = mnew;
863 data->buf = mtod(data->m, uint8_t *);
864
865 /* finalize mbuf */
866 m_set_rcvif(m, ifp);
867 m->m_data = (void *)(desc + 1);
868 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
869
870 s = splnet();
871
872 if (sc->sc_drvbpf != NULL) {
873 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
874
875 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
876 tap->wr_rate = rum_rxrate(desc);
877 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
878 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
879 tap->wr_antenna = sc->rx_ant;
880 tap->wr_antsignal = desc->rssi;
881
882 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
883 }
884
885 wh = mtod(m, struct ieee80211_frame *);
886 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
887
888 /* send the frame to the 802.11 layer */
889 ieee80211_input(ic, m, ni, desc->rssi, 0);
890
891 /* node is no longer needed */
892 ieee80211_free_node(ni);
893
894 splx(s);
895
896 DPRINTFN(15, ("rx done\n"));
897
898 skip: /* setup a new transfer */
899 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK,
900 USBD_NO_TIMEOUT, rum_rxeof);
901 usbd_transfer(xfer);
902 }
903
904 /*
905 * This function is only used by the Rx radiotap code. It returns the rate at
906 * which a given frame was received.
907 */
908 static uint8_t
909 rum_rxrate(const struct rum_rx_desc *desc)
910 {
911 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
912 /* reverse function of rum_plcp_signal */
913 switch (desc->rate) {
914 case 0xb: return 12;
915 case 0xf: return 18;
916 case 0xa: return 24;
917 case 0xe: return 36;
918 case 0x9: return 48;
919 case 0xd: return 72;
920 case 0x8: return 96;
921 case 0xc: return 108;
922 }
923 } else {
924 if (desc->rate == 10)
925 return 2;
926 if (desc->rate == 20)
927 return 4;
928 if (desc->rate == 55)
929 return 11;
930 if (desc->rate == 110)
931 return 22;
932 }
933 return 2; /* should not get there */
934 }
935
936 /*
937 * Return the expected ack rate for a frame transmitted at rate `rate'.
938 * XXX: this should depend on the destination node basic rate set.
939 */
940 static int
941 rum_ack_rate(struct ieee80211com *ic, int rate)
942 {
943 switch (rate) {
944 /* CCK rates */
945 case 2:
946 return 2;
947 case 4:
948 case 11:
949 case 22:
950 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
951
952 /* OFDM rates */
953 case 12:
954 case 18:
955 return 12;
956 case 24:
957 case 36:
958 return 24;
959 case 48:
960 case 72:
961 case 96:
962 case 108:
963 return 48;
964 }
965
966 /* default to 1Mbps */
967 return 2;
968 }
969
970 /*
971 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
972 * The function automatically determines the operating mode depending on the
973 * given rate. `flags' indicates whether short preamble is in use or not.
974 */
975 static uint16_t
976 rum_txtime(int len, int rate, uint32_t flags)
977 {
978 uint16_t txtime;
979
980 if (RUM_RATE_IS_OFDM(rate)) {
981 /* IEEE Std 802.11a-1999, pp. 37 */
982 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
983 txtime = 16 + 4 + 4 * txtime + 6;
984 } else {
985 /* IEEE Std 802.11b-1999, pp. 28 */
986 txtime = (16 * len + rate - 1) / rate;
987 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
988 txtime += 72 + 24;
989 else
990 txtime += 144 + 48;
991 }
992 return txtime;
993 }
994
995 static uint8_t
996 rum_plcp_signal(int rate)
997 {
998 switch (rate) {
999 /* CCK rates (returned values are device-dependent) */
1000 case 2: return 0x0;
1001 case 4: return 0x1;
1002 case 11: return 0x2;
1003 case 22: return 0x3;
1004
1005 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1006 case 12: return 0xb;
1007 case 18: return 0xf;
1008 case 24: return 0xa;
1009 case 36: return 0xe;
1010 case 48: return 0x9;
1011 case 72: return 0xd;
1012 case 96: return 0x8;
1013 case 108: return 0xc;
1014
1015 /* unsupported rates (should not get there) */
1016 default: return 0xff;
1017 }
1018 }
1019
1020 static void
1021 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1022 uint32_t flags, uint16_t xflags, int len, int rate)
1023 {
1024 struct ieee80211com *ic = &sc->sc_ic;
1025 uint16_t plcp_length;
1026 int remainder;
1027
1028 desc->flags = htole32(flags);
1029 desc->flags |= htole32(RT2573_TX_VALID);
1030 desc->flags |= htole32(len << 16);
1031
1032 desc->xflags = htole16(xflags);
1033
1034 desc->wme = htole16(
1035 RT2573_QID(0) |
1036 RT2573_AIFSN(2) |
1037 RT2573_LOGCWMIN(4) |
1038 RT2573_LOGCWMAX(10));
1039
1040 /* setup PLCP fields */
1041 desc->plcp_signal = rum_plcp_signal(rate);
1042 desc->plcp_service = 4;
1043
1044 len += IEEE80211_CRC_LEN;
1045 if (RUM_RATE_IS_OFDM(rate)) {
1046 desc->flags |= htole32(RT2573_TX_OFDM);
1047
1048 plcp_length = len & 0xfff;
1049 desc->plcp_length_hi = plcp_length >> 6;
1050 desc->plcp_length_lo = plcp_length & 0x3f;
1051 } else {
1052 plcp_length = (16 * len + rate - 1) / rate;
1053 if (rate == 22) {
1054 remainder = (16 * len) % 22;
1055 if (remainder != 0 && remainder < 7)
1056 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1057 }
1058 desc->plcp_length_hi = plcp_length >> 8;
1059 desc->plcp_length_lo = plcp_length & 0xff;
1060
1061 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1062 desc->plcp_signal |= 0x08;
1063 }
1064 }
1065
1066 #define RUM_TX_TIMEOUT 5000
1067
1068 static int
1069 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1070 {
1071 struct ieee80211com *ic = &sc->sc_ic;
1072 struct rum_tx_desc *desc;
1073 struct rum_tx_data *data;
1074 struct ieee80211_frame *wh;
1075 struct ieee80211_key *k;
1076 uint32_t flags = 0;
1077 uint16_t dur;
1078 usbd_status error;
1079 int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1080
1081 wh = mtod(m0, struct ieee80211_frame *);
1082
1083 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1084 k = ieee80211_crypto_encap(ic, ni, m0);
1085 if (k == NULL) {
1086 m_freem(m0);
1087 return ENOBUFS;
1088 }
1089
1090 /* packet header may have moved, reset our local pointer */
1091 wh = mtod(m0, struct ieee80211_frame *);
1092 }
1093
1094 /* compute actual packet length (including CRC and crypto overhead) */
1095 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1096
1097 /* pickup a rate */
1098 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1099 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1100 IEEE80211_FC0_TYPE_MGT)) {
1101 /* mgmt/multicast frames are sent at the lowest avail. rate */
1102 rate = ni->ni_rates.rs_rates[0];
1103 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1104 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1105 } else
1106 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1107 if (rate == 0)
1108 rate = 2; /* XXX should not happen */
1109 rate &= IEEE80211_RATE_VAL;
1110
1111 /* check if RTS/CTS or CTS-to-self protection must be used */
1112 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1113 /* multicast frames are not sent at OFDM rates in 802.11b/g */
1114 if (pktlen > ic->ic_rtsthreshold) {
1115 needrts = 1; /* RTS/CTS based on frame length */
1116 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1117 RUM_RATE_IS_OFDM(rate)) {
1118 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1119 needcts = 1; /* CTS-to-self */
1120 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1121 needrts = 1; /* RTS/CTS */
1122 }
1123 }
1124 if (needrts || needcts) {
1125 struct mbuf *mprot;
1126 int protrate, ackrate;
1127
1128 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1129 ackrate = rum_ack_rate(ic, rate);
1130
1131 dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1132 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1133 2 * sc->sifs;
1134 if (needrts) {
1135 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1136 protrate), ic->ic_flags) + sc->sifs;
1137 mprot = ieee80211_get_rts(ic, wh, dur);
1138 } else {
1139 mprot = ieee80211_get_cts_to_self(ic, dur);
1140 }
1141 if (mprot == NULL) {
1142 aprint_error_dev(sc->sc_dev,
1143 "couldn't allocate protection frame\n");
1144 m_freem(m0);
1145 return ENOBUFS;
1146 }
1147
1148 data = &sc->tx_data[sc->tx_cur];
1149 desc = (struct rum_tx_desc *)data->buf;
1150
1151 /* avoid multiple free() of the same node for each fragment */
1152 data->ni = ieee80211_ref_node(ni);
1153
1154 m_copydata(mprot, 0, mprot->m_pkthdr.len,
1155 data->buf + RT2573_TX_DESC_SIZE);
1156 rum_setup_tx_desc(sc, desc,
1157 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1158 0, mprot->m_pkthdr.len, protrate);
1159
1160 /* no roundup necessary here */
1161 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1162
1163 /* XXX may want to pass the protection frame to BPF */
1164
1165 /* mbuf is no longer needed */
1166 m_freem(mprot);
1167
1168 usbd_setup_xfer(data->xfer, data, data->buf,
1169 xferlen, USBD_FORCE_SHORT_XFER,
1170 RUM_TX_TIMEOUT, rum_txeof);
1171 error = usbd_transfer(data->xfer);
1172 if (error != USBD_NORMAL_COMPLETION &&
1173 error != USBD_IN_PROGRESS) {
1174 m_freem(m0);
1175 return error;
1176 }
1177
1178 sc->tx_queued++;
1179 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1180
1181 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1182 }
1183
1184 data = &sc->tx_data[sc->tx_cur];
1185 desc = (struct rum_tx_desc *)data->buf;
1186
1187 data->ni = ni;
1188
1189 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1190 flags |= RT2573_TX_NEED_ACK;
1191
1192 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1193 ic->ic_flags) + sc->sifs;
1194 *(uint16_t *)wh->i_dur = htole16(dur);
1195
1196 /* tell hardware to set timestamp in probe responses */
1197 if ((wh->i_fc[0] &
1198 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1199 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1200 flags |= RT2573_TX_TIMESTAMP;
1201 }
1202
1203 if (sc->sc_drvbpf != NULL) {
1204 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1205
1206 tap->wt_flags = 0;
1207 tap->wt_rate = rate;
1208 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1209 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1210 tap->wt_antenna = sc->tx_ant;
1211
1212 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1213 }
1214
1215 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1216 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1217
1218 /* align end on a 4-bytes boundary */
1219 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1220
1221 /*
1222 * No space left in the last URB to store the extra 4 bytes, force
1223 * sending of another URB.
1224 */
1225 if ((xferlen % 64) == 0)
1226 xferlen += 4;
1227
1228 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1229 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1230 rate, xferlen));
1231
1232 /* mbuf is no longer needed */
1233 m_freem(m0);
1234
1235 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1236 USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof);
1237 error = usbd_transfer(data->xfer);
1238 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1239 return error;
1240
1241 sc->tx_queued++;
1242 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1243
1244 return 0;
1245 }
1246
1247 static void
1248 rum_start(struct ifnet *ifp)
1249 {
1250 struct rum_softc *sc = ifp->if_softc;
1251 struct ieee80211com *ic = &sc->sc_ic;
1252 struct ether_header *eh;
1253 struct ieee80211_node *ni;
1254 struct mbuf *m0;
1255
1256 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1257 return;
1258
1259 for (;;) {
1260 IF_POLL(&ic->ic_mgtq, m0);
1261 if (m0 != NULL) {
1262 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1263 ifp->if_flags |= IFF_OACTIVE;
1264 break;
1265 }
1266 IF_DEQUEUE(&ic->ic_mgtq, m0);
1267
1268 ni = M_GETCTX(m0, struct ieee80211_node *);
1269 M_CLEARCTX(m0);
1270 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1271 if (rum_tx_data(sc, m0, ni) != 0)
1272 break;
1273
1274 } else {
1275 if (ic->ic_state != IEEE80211_S_RUN)
1276 break;
1277 IFQ_POLL(&ifp->if_snd, m0);
1278 if (m0 == NULL)
1279 break;
1280 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1281 ifp->if_flags |= IFF_OACTIVE;
1282 break;
1283 }
1284 IFQ_DEQUEUE(&ifp->if_snd, m0);
1285 if (m0->m_len < (int)sizeof(struct ether_header) &&
1286 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1287 continue;
1288
1289 eh = mtod(m0, struct ether_header *);
1290 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1291 if (ni == NULL) {
1292 m_freem(m0);
1293 continue;
1294 }
1295 bpf_mtap(ifp, m0, BPF_D_OUT);
1296 m0 = ieee80211_encap(ic, m0, ni);
1297 if (m0 == NULL) {
1298 ieee80211_free_node(ni);
1299 continue;
1300 }
1301 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1302 if (rum_tx_data(sc, m0, ni) != 0) {
1303 ieee80211_free_node(ni);
1304 if_statinc(ifp, if_oerrors);
1305 break;
1306 }
1307 }
1308
1309 sc->sc_tx_timer = 5;
1310 ifp->if_timer = 1;
1311 }
1312 }
1313
1314 static void
1315 rum_watchdog(struct ifnet *ifp)
1316 {
1317 struct rum_softc *sc = ifp->if_softc;
1318 struct ieee80211com *ic = &sc->sc_ic;
1319
1320 ifp->if_timer = 0;
1321
1322 if (sc->sc_tx_timer > 0) {
1323 if (--sc->sc_tx_timer == 0) {
1324 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1325 /*rum_init(ifp); XXX needs a process context! */
1326 if_statinc(ifp, if_oerrors);
1327 return;
1328 }
1329 ifp->if_timer = 1;
1330 }
1331
1332 ieee80211_watchdog(ic);
1333 }
1334
1335 static int
1336 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1337 {
1338 #define IS_RUNNING(ifp) \
1339 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1340
1341 struct rum_softc *sc = ifp->if_softc;
1342 struct ieee80211com *ic = &sc->sc_ic;
1343 int s, error = 0;
1344
1345 s = splnet();
1346
1347 switch (cmd) {
1348 case SIOCSIFFLAGS:
1349 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1350 break;
1351 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1352 case IFF_UP|IFF_RUNNING:
1353 rum_update_promisc(sc);
1354 break;
1355 case IFF_UP:
1356 rum_init(ifp);
1357 break;
1358 case IFF_RUNNING:
1359 rum_stop(ifp, 1);
1360 break;
1361 case 0:
1362 break;
1363 }
1364 break;
1365
1366 case SIOCADDMULTI:
1367 case SIOCDELMULTI:
1368 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1369 error = 0;
1370 }
1371 break;
1372
1373 default:
1374 error = ieee80211_ioctl(ic, cmd, data);
1375 }
1376
1377 if (error == ENETRESET) {
1378 if (IS_RUNNING(ifp) &&
1379 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1380 rum_init(ifp);
1381 error = 0;
1382 }
1383
1384 splx(s);
1385
1386 return error;
1387 #undef IS_RUNNING
1388 }
1389
1390 static void
1391 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1392 {
1393 usb_device_request_t req;
1394 usbd_status error;
1395
1396 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1397 req.bRequest = RT2573_READ_EEPROM;
1398 USETW(req.wValue, 0);
1399 USETW(req.wIndex, addr);
1400 USETW(req.wLength, len);
1401
1402 error = usbd_do_request(sc->sc_udev, &req, buf);
1403 if (error != 0) {
1404 printf("%s: could not read EEPROM: %s\n",
1405 device_xname(sc->sc_dev), usbd_errstr(error));
1406 }
1407 }
1408
1409 static uint32_t
1410 rum_read(struct rum_softc *sc, uint16_t reg)
1411 {
1412 uint32_t val;
1413
1414 rum_read_multi(sc, reg, &val, sizeof(val));
1415
1416 return le32toh(val);
1417 }
1418
1419 static void
1420 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1421 {
1422 usb_device_request_t req;
1423 usbd_status error;
1424
1425 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1426 req.bRequest = RT2573_READ_MULTI_MAC;
1427 USETW(req.wValue, 0);
1428 USETW(req.wIndex, reg);
1429 USETW(req.wLength, len);
1430
1431 error = usbd_do_request(sc->sc_udev, &req, buf);
1432 if (error != 0) {
1433 printf("%s: could not multi read MAC register: %s\n",
1434 device_xname(sc->sc_dev), usbd_errstr(error));
1435 }
1436 }
1437
1438 static void
1439 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1440 {
1441 uint32_t tmp = htole32(val);
1442
1443 rum_write_multi(sc, reg, &tmp, sizeof(tmp));
1444 }
1445
1446 static void
1447 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1448 {
1449 usb_device_request_t req;
1450 usbd_status error;
1451 int offset;
1452
1453 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1454 req.bRequest = RT2573_WRITE_MULTI_MAC;
1455 USETW(req.wValue, 0);
1456
1457 /* write at most 64 bytes at a time */
1458 for (offset = 0; offset < len; offset += 64) {
1459 USETW(req.wIndex, reg + offset);
1460 USETW(req.wLength, MIN(len - offset, 64));
1461
1462 error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
1463 if (error != 0) {
1464 printf("%s: could not multi write MAC register: %s\n",
1465 device_xname(sc->sc_dev), usbd_errstr(error));
1466 }
1467 }
1468 }
1469
1470 static void
1471 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1472 {
1473 uint32_t tmp;
1474 int ntries;
1475
1476 for (ntries = 0; ntries < 5; ntries++) {
1477 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1478 break;
1479 }
1480 if (ntries == 5) {
1481 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1482 return;
1483 }
1484
1485 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1486 rum_write(sc, RT2573_PHY_CSR3, tmp);
1487 }
1488
1489 static uint8_t
1490 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1491 {
1492 uint32_t val;
1493 int ntries;
1494
1495 for (ntries = 0; ntries < 5; ntries++) {
1496 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1497 break;
1498 }
1499 if (ntries == 5) {
1500 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1501 return 0;
1502 }
1503
1504 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1505 rum_write(sc, RT2573_PHY_CSR3, val);
1506
1507 for (ntries = 0; ntries < 100; ntries++) {
1508 val = rum_read(sc, RT2573_PHY_CSR3);
1509 if (!(val & RT2573_BBP_BUSY))
1510 return val & 0xff;
1511 DELAY(1);
1512 }
1513
1514 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1515 return 0;
1516 }
1517
1518 static void
1519 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1520 {
1521 uint32_t tmp;
1522 int ntries;
1523
1524 for (ntries = 0; ntries < 5; ntries++) {
1525 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1526 break;
1527 }
1528 if (ntries == 5) {
1529 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1530 return;
1531 }
1532
1533 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1534 (reg & 3);
1535 rum_write(sc, RT2573_PHY_CSR4, tmp);
1536
1537 /* remember last written value in sc */
1538 sc->rf_regs[reg] = val;
1539
1540 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1541 }
1542
1543 static void
1544 rum_select_antenna(struct rum_softc *sc)
1545 {
1546 uint8_t bbp4, bbp77;
1547 uint32_t tmp;
1548
1549 bbp4 = rum_bbp_read(sc, 4);
1550 bbp77 = rum_bbp_read(sc, 77);
1551
1552 /* TBD */
1553
1554 /* make sure Rx is disabled before switching antenna */
1555 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1556 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1557
1558 rum_bbp_write(sc, 4, bbp4);
1559 rum_bbp_write(sc, 77, bbp77);
1560
1561 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1562 }
1563
1564 /*
1565 * Enable multi-rate retries for frames sent at OFDM rates.
1566 * In 802.11b/g mode, allow fallback to CCK rates.
1567 */
1568 static void
1569 rum_enable_mrr(struct rum_softc *sc)
1570 {
1571 struct ieee80211com *ic = &sc->sc_ic;
1572 uint32_t tmp;
1573
1574 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1575
1576 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1577 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1578 tmp |= RT2573_MRR_CCK_FALLBACK;
1579 tmp |= RT2573_MRR_ENABLED;
1580
1581 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1582 }
1583
1584 static void
1585 rum_set_txpreamble(struct rum_softc *sc)
1586 {
1587 uint32_t tmp;
1588
1589 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1590
1591 tmp &= ~RT2573_SHORT_PREAMBLE;
1592 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1593 tmp |= RT2573_SHORT_PREAMBLE;
1594
1595 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1596 }
1597
1598 static void
1599 rum_set_basicrates(struct rum_softc *sc)
1600 {
1601 struct ieee80211com *ic = &sc->sc_ic;
1602
1603 /* update basic rate set */
1604 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1605 /* 11b basic rates: 1, 2Mbps */
1606 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1607 } else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1608 /* 11a basic rates: 6, 12, 24Mbps */
1609 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1610 } else {
1611 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1612 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1613 }
1614 }
1615
1616 /*
1617 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1618 * driver.
1619 */
1620 static void
1621 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1622 {
1623 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1624 uint32_t tmp;
1625
1626 /* update all BBP registers that depend on the band */
1627 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1628 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1629 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1630 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1631 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1632 }
1633 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1634 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1635 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1636 }
1637
1638 sc->bbp17 = bbp17;
1639 rum_bbp_write(sc, 17, bbp17);
1640 rum_bbp_write(sc, 96, bbp96);
1641 rum_bbp_write(sc, 104, bbp104);
1642
1643 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1644 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1645 rum_bbp_write(sc, 75, 0x80);
1646 rum_bbp_write(sc, 86, 0x80);
1647 rum_bbp_write(sc, 88, 0x80);
1648 }
1649
1650 rum_bbp_write(sc, 35, bbp35);
1651 rum_bbp_write(sc, 97, bbp97);
1652 rum_bbp_write(sc, 98, bbp98);
1653
1654 tmp = rum_read(sc, RT2573_PHY_CSR0);
1655 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1656 if (IEEE80211_IS_CHAN_2GHZ(c))
1657 tmp |= RT2573_PA_PE_2GHZ;
1658 else
1659 tmp |= RT2573_PA_PE_5GHZ;
1660 rum_write(sc, RT2573_PHY_CSR0, tmp);
1661
1662 /* 802.11a uses a 16 microseconds short interframe space */
1663 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1664 }
1665
1666 static void
1667 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1668 {
1669 struct ieee80211com *ic = &sc->sc_ic;
1670 const struct rfprog *rfprog;
1671 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1672 int8_t power;
1673 u_int i, chan;
1674
1675 chan = ieee80211_chan2ieee(ic, c);
1676 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1677 return;
1678
1679 /* select the appropriate RF settings based on what EEPROM says */
1680 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1681 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1682
1683 /* find the settings for this channel (we know it exists) */
1684 for (i = 0; rfprog[i].chan != chan; i++);
1685
1686 power = sc->txpow[i];
1687 if (power < 0) {
1688 bbp94 += power;
1689 power = 0;
1690 } else if (power > 31) {
1691 bbp94 += power - 31;
1692 power = 31;
1693 }
1694
1695 /*
1696 * If we are switching from the 2GHz band to the 5GHz band or
1697 * vice-versa, BBP registers need to be reprogrammed.
1698 */
1699 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1700 rum_select_band(sc, c);
1701 rum_select_antenna(sc);
1702 }
1703 ic->ic_curchan = c;
1704
1705 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1706 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1707 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1708 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1709
1710 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1711 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1712 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1713 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1714
1715 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1716 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1717 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1718 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1719
1720 DELAY(10);
1721
1722 /* enable smart mode for MIMO-capable RFs */
1723 bbp3 = rum_bbp_read(sc, 3);
1724
1725 bbp3 &= ~RT2573_SMART_MODE;
1726 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1727 bbp3 |= RT2573_SMART_MODE;
1728
1729 rum_bbp_write(sc, 3, bbp3);
1730
1731 if (bbp94 != RT2573_BBPR94_DEFAULT)
1732 rum_bbp_write(sc, 94, bbp94);
1733 }
1734
1735 /*
1736 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1737 * and HostAP operating modes.
1738 */
1739 static void
1740 rum_enable_tsf_sync(struct rum_softc *sc)
1741 {
1742 struct ieee80211com *ic = &sc->sc_ic;
1743 uint32_t tmp;
1744
1745 if (ic->ic_opmode != IEEE80211_M_STA) {
1746 /*
1747 * Change default 16ms TBTT adjustment to 8ms.
1748 * Must be done before enabling beacon generation.
1749 */
1750 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1751 }
1752
1753 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1754
1755 /* set beacon interval (in 1/16ms unit) */
1756 tmp |= ic->ic_bss->ni_intval * 16;
1757
1758 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1759 if (ic->ic_opmode == IEEE80211_M_STA)
1760 tmp |= RT2573_TSF_MODE(1);
1761 else
1762 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1763
1764 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1765 }
1766
1767 static void
1768 rum_update_slot(struct rum_softc *sc)
1769 {
1770 struct ieee80211com *ic = &sc->sc_ic;
1771 uint8_t slottime;
1772 uint32_t tmp;
1773
1774 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1775
1776 tmp = rum_read(sc, RT2573_MAC_CSR9);
1777 tmp = (tmp & ~0xff) | slottime;
1778 rum_write(sc, RT2573_MAC_CSR9, tmp);
1779
1780 DPRINTF(("setting slot time to %uus\n", slottime));
1781 }
1782
1783 static void
1784 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1785 {
1786 uint32_t tmp;
1787
1788 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1789 rum_write(sc, RT2573_MAC_CSR4, tmp);
1790
1791 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1792 rum_write(sc, RT2573_MAC_CSR5, tmp);
1793 }
1794
1795 static void
1796 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1797 {
1798 uint32_t tmp;
1799
1800 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1801 rum_write(sc, RT2573_MAC_CSR2, tmp);
1802
1803 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1804 rum_write(sc, RT2573_MAC_CSR3, tmp);
1805 }
1806
1807 static void
1808 rum_update_promisc(struct rum_softc *sc)
1809 {
1810 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1811 uint32_t tmp;
1812
1813 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1814
1815 tmp &= ~RT2573_DROP_NOT_TO_ME;
1816 if (!(ifp->if_flags & IFF_PROMISC))
1817 tmp |= RT2573_DROP_NOT_TO_ME;
1818
1819 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1820
1821 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1822 "entering" : "leaving"));
1823 }
1824
1825 static const char *
1826 rum_get_rf(int rev)
1827 {
1828 switch (rev) {
1829 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1830 case RT2573_RF_2528: return "RT2528";
1831 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1832 case RT2573_RF_5226: return "RT5226";
1833 default: return "unknown";
1834 }
1835 }
1836
1837 static void
1838 rum_read_eeprom(struct rum_softc *sc)
1839 {
1840 struct ieee80211com *ic = &sc->sc_ic;
1841 uint16_t val;
1842 #ifdef RUM_DEBUG
1843 int i;
1844 #endif
1845
1846 /* read MAC/BBP type */
1847 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1848 sc->macbbp_rev = le16toh(val);
1849
1850 /* read MAC address */
1851 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1852
1853 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1854 val = le16toh(val);
1855 sc->rf_rev = (val >> 11) & 0x1f;
1856 sc->hw_radio = (val >> 10) & 0x1;
1857 sc->rx_ant = (val >> 4) & 0x3;
1858 sc->tx_ant = (val >> 2) & 0x3;
1859 sc->nb_ant = val & 0x3;
1860
1861 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1862
1863 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1864 val = le16toh(val);
1865 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1866 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1867
1868 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1869 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1870
1871 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1872 val = le16toh(val);
1873 if ((val & 0xff) != 0xff)
1874 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1875
1876 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1877 val = le16toh(val);
1878 if ((val & 0xff) != 0xff)
1879 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1880
1881 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1882 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1883
1884 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1885 val = le16toh(val);
1886 if ((val & 0xff) != 0xff)
1887 sc->rffreq = val & 0xff;
1888
1889 DPRINTF(("RF freq=%d\n", sc->rffreq));
1890
1891 /* read Tx power for all a/b/g channels */
1892 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1893 /* XXX default Tx power for 802.11a channels */
1894 memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14);
1895 #ifdef RUM_DEBUG
1896 for (i = 0; i < 14; i++)
1897 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1898 #endif
1899
1900 /* read default values for BBP registers */
1901 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1902 #ifdef RUM_DEBUG
1903 for (i = 0; i < 14; i++) {
1904 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1905 continue;
1906 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1907 sc->bbp_prom[i].val));
1908 }
1909 #endif
1910 }
1911
1912 static int
1913 rum_bbp_init(struct rum_softc *sc)
1914 {
1915 unsigned int i, ntries;
1916 uint8_t val;
1917
1918 /* wait for BBP to be ready */
1919 for (ntries = 0; ntries < 100; ntries++) {
1920 val = rum_bbp_read(sc, 0);
1921 if (val != 0 && val != 0xff)
1922 break;
1923 DELAY(1000);
1924 }
1925 if (ntries == 100) {
1926 printf("%s: timeout waiting for BBP\n",
1927 device_xname(sc->sc_dev));
1928 return EIO;
1929 }
1930
1931 /* initialize BBP registers to default values */
1932 for (i = 0; i < __arraycount(rum_def_bbp); i++)
1933 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1934
1935 /* write vendor-specific BBP values (from EEPROM) */
1936 for (i = 0; i < 16; i++) {
1937 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1938 continue;
1939 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1940 }
1941
1942 return 0;
1943 }
1944
1945 static int
1946 rum_init(struct ifnet *ifp)
1947 {
1948 struct rum_softc *sc = ifp->if_softc;
1949 struct ieee80211com *ic = &sc->sc_ic;
1950 uint32_t tmp;
1951 usbd_status error = 0;
1952 unsigned int i, ntries;
1953
1954 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1955 if (rum_attachhook(sc))
1956 goto fail;
1957 }
1958
1959 rum_stop(ifp, 0);
1960
1961 /* initialize MAC registers to default values */
1962 for (i = 0; i < __arraycount(rum_def_mac); i++)
1963 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1964
1965 /* set host ready */
1966 rum_write(sc, RT2573_MAC_CSR1, 3);
1967 rum_write(sc, RT2573_MAC_CSR1, 0);
1968
1969 /* wait for BBP/RF to wakeup */
1970 for (ntries = 0; ntries < 1000; ntries++) {
1971 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1972 break;
1973 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1974 DELAY(1000);
1975 }
1976 if (ntries == 1000) {
1977 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1978 device_xname(sc->sc_dev));
1979 goto fail;
1980 }
1981
1982 if ((error = rum_bbp_init(sc)) != 0)
1983 goto fail;
1984
1985 /* select default channel */
1986 rum_select_band(sc, ic->ic_curchan);
1987 rum_select_antenna(sc);
1988 rum_set_chan(sc, ic->ic_curchan);
1989
1990 /* clear STA registers */
1991 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
1992
1993 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1994 rum_set_macaddr(sc, ic->ic_myaddr);
1995
1996 /* initialize ASIC */
1997 rum_write(sc, RT2573_MAC_CSR1, 4);
1998
1999 /*
2000 * Allocate xfer for AMRR statistics requests.
2001 */
2002 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2003 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0,
2004 &sc->amrr_xfer);
2005 if (error) {
2006 printf("%s: could not allocate AMRR xfer\n",
2007 device_xname(sc->sc_dev));
2008 goto fail;
2009 }
2010
2011 /*
2012 * Open Tx and Rx USB bulk pipes.
2013 */
2014 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2015 &sc->sc_tx_pipeh);
2016 if (error != 0) {
2017 printf("%s: could not open Tx pipe: %s\n",
2018 device_xname(sc->sc_dev), usbd_errstr(error));
2019 goto fail;
2020 }
2021
2022 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2023 &sc->sc_rx_pipeh);
2024 if (error != 0) {
2025 printf("%s: could not open Rx pipe: %s\n",
2026 device_xname(sc->sc_dev), usbd_errstr(error));
2027 goto fail;
2028 }
2029
2030 /*
2031 * Allocate Tx and Rx xfer queues.
2032 */
2033 error = rum_alloc_tx_list(sc);
2034 if (error != 0) {
2035 printf("%s: could not allocate Tx list\n",
2036 device_xname(sc->sc_dev));
2037 goto fail;
2038 }
2039
2040 error = rum_alloc_rx_list(sc);
2041 if (error != 0) {
2042 printf("%s: could not allocate Rx list\n",
2043 device_xname(sc->sc_dev));
2044 goto fail;
2045 }
2046
2047 /*
2048 * Start up the receive pipe.
2049 */
2050 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2051 struct rum_rx_data *data;
2052
2053 data = &sc->rx_data[i];
2054
2055 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2056 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2057 error = usbd_transfer(data->xfer);
2058 if (error != USBD_NORMAL_COMPLETION &&
2059 error != USBD_IN_PROGRESS) {
2060 printf("%s: could not queue Rx transfer\n",
2061 device_xname(sc->sc_dev));
2062 goto fail;
2063 }
2064 }
2065
2066 /* update Rx filter */
2067 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2068
2069 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2070 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2071 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2072 RT2573_DROP_ACKCTS;
2073 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2074 tmp |= RT2573_DROP_TODS;
2075 if (!(ifp->if_flags & IFF_PROMISC))
2076 tmp |= RT2573_DROP_NOT_TO_ME;
2077 }
2078 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2079
2080 ifp->if_flags &= ~IFF_OACTIVE;
2081 ifp->if_flags |= IFF_RUNNING;
2082
2083 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2084 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2085 else
2086 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2087
2088 return 0;
2089
2090 fail: rum_stop(ifp, 1);
2091 return error;
2092 }
2093
2094 static void
2095 rum_stop(struct ifnet *ifp, int disable)
2096 {
2097 struct rum_softc *sc = ifp->if_softc;
2098 struct ieee80211com *ic = &sc->sc_ic;
2099 uint32_t tmp;
2100
2101 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2102
2103 sc->sc_tx_timer = 0;
2104 ifp->if_timer = 0;
2105 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2106
2107 /* disable Rx */
2108 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2109 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2110
2111 /* reset ASIC */
2112 rum_write(sc, RT2573_MAC_CSR1, 3);
2113 rum_write(sc, RT2573_MAC_CSR1, 0);
2114
2115 if (sc->amrr_xfer != NULL) {
2116 usbd_destroy_xfer(sc->amrr_xfer);
2117 sc->amrr_xfer = NULL;
2118 }
2119
2120 if (sc->sc_rx_pipeh != NULL) {
2121 usbd_abort_pipe(sc->sc_rx_pipeh);
2122 }
2123
2124 if (sc->sc_tx_pipeh != NULL) {
2125 usbd_abort_pipe(sc->sc_tx_pipeh);
2126 }
2127
2128 rum_free_rx_list(sc);
2129 rum_free_tx_list(sc);
2130
2131 if (sc->sc_rx_pipeh != NULL) {
2132 usbd_close_pipe(sc->sc_rx_pipeh);
2133 sc->sc_rx_pipeh = NULL;
2134 }
2135
2136 if (sc->sc_tx_pipeh != NULL) {
2137 usbd_close_pipe(sc->sc_tx_pipeh);
2138 sc->sc_tx_pipeh = NULL;
2139 }
2140 }
2141
2142 static int
2143 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2144 {
2145 usb_device_request_t req;
2146 uint16_t reg = RT2573_MCU_CODE_BASE;
2147 usbd_status error;
2148
2149 /* copy firmware image into NIC */
2150 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2151 rum_write(sc, reg, UGETDW(ucode));
2152
2153 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2154 req.bRequest = RT2573_MCU_CNTL;
2155 USETW(req.wValue, RT2573_MCU_RUN);
2156 USETW(req.wIndex, 0);
2157 USETW(req.wLength, 0);
2158
2159 error = usbd_do_request(sc->sc_udev, &req, NULL);
2160 if (error != 0) {
2161 printf("%s: could not run firmware: %s\n",
2162 device_xname(sc->sc_dev), usbd_errstr(error));
2163 }
2164 return error;
2165 }
2166
2167 static int
2168 rum_prepare_beacon(struct rum_softc *sc)
2169 {
2170 struct ieee80211com *ic = &sc->sc_ic;
2171 struct rum_tx_desc desc;
2172 struct mbuf *m0;
2173 int rate;
2174
2175 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2176 if (m0 == NULL) {
2177 aprint_error_dev(sc->sc_dev,
2178 "could not allocate beacon frame\n");
2179 return ENOBUFS;
2180 }
2181
2182 /* send beacons at the lowest available rate */
2183 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2184
2185 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2186 m0->m_pkthdr.len, rate);
2187
2188 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2189 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2190
2191 /* copy beacon header and payload into NIC memory */
2192 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2193 m0->m_pkthdr.len);
2194
2195 m_freem(m0);
2196
2197 return 0;
2198 }
2199
2200 static void
2201 rum_newassoc(struct ieee80211_node *ni, int isnew)
2202 {
2203 /* start with lowest Tx rate */
2204 ni->ni_txrate = 0;
2205 }
2206
2207 static void
2208 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2209 {
2210 int i;
2211
2212 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2213 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
2214
2215 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2216
2217 /* set rate to some reasonable initial value */
2218 for (i = ni->ni_rates.rs_nrates - 1;
2219 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2220 i--);
2221 ni->ni_txrate = i;
2222
2223 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2224 }
2225
2226 static void
2227 rum_amrr_timeout(void *arg)
2228 {
2229 struct rum_softc *sc = arg;
2230 usb_device_request_t req;
2231
2232 /*
2233 * Asynchronously read statistic registers (cleared by read).
2234 */
2235 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2236 req.bRequest = RT2573_READ_MULTI_MAC;
2237 USETW(req.wValue, 0);
2238 USETW(req.wIndex, RT2573_STA_CSR0);
2239 USETW(req.wLength, sizeof(sc->sta));
2240
2241 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2242 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2243 rum_amrr_update);
2244 (void)usbd_transfer(sc->amrr_xfer);
2245 }
2246
2247 static void
2248 rum_amrr_update(struct usbd_xfer *xfer, void *priv,
2249 usbd_status status)
2250 {
2251 struct rum_softc *sc = (struct rum_softc *)priv;
2252 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2253
2254 if (status != USBD_NORMAL_COMPLETION) {
2255 printf("%s: could not retrieve Tx statistics - cancelling "
2256 "automatic rate control\n", device_xname(sc->sc_dev));
2257 return;
2258 }
2259
2260 /* count TX retry-fail as Tx errors */
2261 if_statadd(ifp, if_oerrors, le32toh(sc->sta[5]) >> 16);
2262
2263 sc->amn.amn_retrycnt =
2264 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2265 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2266 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2267
2268 sc->amn.amn_txcnt =
2269 sc->amn.amn_retrycnt +
2270 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2271
2272 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2273
2274 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2275 }
2276
2277 static int
2278 rum_activate(device_t self, enum devact act)
2279 {
2280 switch (act) {
2281 case DVACT_DEACTIVATE:
2282 /*if_deactivate(&sc->sc_ic.ic_if);*/
2283 return 0;
2284 default:
2285 return 0;
2286 }
2287 }
2288
2289 MODULE(MODULE_CLASS_DRIVER, if_rum, NULL);
2290
2291 #ifdef _MODULE
2292 #include "ioconf.c"
2293 #endif
2294
2295 static int
2296 if_rum_modcmd(modcmd_t cmd, void *aux)
2297 {
2298 int error = 0;
2299
2300 switch (cmd) {
2301 case MODULE_CMD_INIT:
2302 #ifdef _MODULE
2303 error = config_init_component(cfdriver_ioconf_rum,
2304 cfattach_ioconf_rum, cfdata_ioconf_rum);
2305 #endif
2306 return error;
2307 case MODULE_CMD_FINI:
2308 #ifdef _MODULE
2309 error = config_fini_component(cfdriver_ioconf_rum,
2310 cfattach_ioconf_rum, cfdata_ioconf_rum);
2311 #endif
2312 return error;
2313 default:
2314 return ENOTTY;
2315 }
2316 }
2317