if_rum.c revision 1.69 1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2 /* $NetBSD: if_rum.c,v 1.69 2020/03/15 23:04:50 thorpej Exp $ */
3
4 /*-
5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com.tw/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.69 2020/03/15 23:04:50 thorpej Exp $");
28
29 #ifdef _KERNEL_OPT
30 #include "opt_usb.h"
31 #endif
32
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/module.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/firmload.h>
67
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72
73 #include <dev/usb/if_rumreg.h>
74 #include <dev/usb/if_rumvar.h>
75
76 #ifdef RUM_DEBUG
77 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0)
78 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0)
79 int rum_debug = 1;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84
85 /* various supported device vendors/products */
86 static const struct usb_devno rum_devs[] = {
87 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
88 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
89 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
90 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
92 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
93 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
94 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
95 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
96 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
97 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C },
98 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 },
99 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
100 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
101 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
102 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_RT2573 },
103 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL },
104 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX },
105 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
106 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
107 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
108 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
109 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 },
110 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 },
111 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 },
112 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 },
113 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
114 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
115 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
116 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
117 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
118 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
119 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
120 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
121 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
122 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG },
123 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG },
124 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
125 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
126 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
127 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
128 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
129 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
130 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
131 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
132 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
133 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
134 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 },
135 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
136 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
137 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
138 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
139 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 },
140 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 },
141 { USB_VENDOR_SYNET, USB_PRODUCT_SYNET_MWP54SS },
142 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 }
143 };
144
145 static int rum_attachhook(void *);
146 static int rum_alloc_tx_list(struct rum_softc *);
147 static void rum_free_tx_list(struct rum_softc *);
148 static int rum_alloc_rx_list(struct rum_softc *);
149 static void rum_free_rx_list(struct rum_softc *);
150 static int rum_media_change(struct ifnet *);
151 static void rum_next_scan(void *);
152 static void rum_task(void *);
153 static int rum_newstate(struct ieee80211com *,
154 enum ieee80211_state, int);
155 static void rum_txeof(struct usbd_xfer *, void *,
156 usbd_status);
157 static void rum_rxeof(struct usbd_xfer *, void *,
158 usbd_status);
159 static uint8_t rum_rxrate(const struct rum_rx_desc *);
160 static int rum_ack_rate(struct ieee80211com *, int);
161 static uint16_t rum_txtime(int, int, uint32_t);
162 static uint8_t rum_plcp_signal(int);
163 static void rum_setup_tx_desc(struct rum_softc *,
164 struct rum_tx_desc *, uint32_t, uint16_t, int,
165 int);
166 static int rum_tx_data(struct rum_softc *, struct mbuf *,
167 struct ieee80211_node *);
168 static void rum_start(struct ifnet *);
169 static void rum_watchdog(struct ifnet *);
170 static int rum_ioctl(struct ifnet *, u_long, void *);
171 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
172 int);
173 static uint32_t rum_read(struct rum_softc *, uint16_t);
174 static void rum_read_multi(struct rum_softc *, uint16_t, void *,
175 int);
176 static void rum_write(struct rum_softc *, uint16_t, uint32_t);
177 static void rum_write_multi(struct rum_softc *, uint16_t, void *,
178 size_t);
179 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
180 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
181 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
182 static void rum_select_antenna(struct rum_softc *);
183 static void rum_enable_mrr(struct rum_softc *);
184 static void rum_set_txpreamble(struct rum_softc *);
185 static void rum_set_basicrates(struct rum_softc *);
186 static void rum_select_band(struct rum_softc *,
187 struct ieee80211_channel *);
188 static void rum_set_chan(struct rum_softc *,
189 struct ieee80211_channel *);
190 static void rum_enable_tsf_sync(struct rum_softc *);
191 static void rum_update_slot(struct rum_softc *);
192 static void rum_set_bssid(struct rum_softc *, const uint8_t *);
193 static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
194 static void rum_update_promisc(struct rum_softc *);
195 static const char *rum_get_rf(int);
196 static void rum_read_eeprom(struct rum_softc *);
197 static int rum_bbp_init(struct rum_softc *);
198 static int rum_init(struct ifnet *);
199 static void rum_stop(struct ifnet *, int);
200 static int rum_load_microcode(struct rum_softc *, const u_char *,
201 size_t);
202 static int rum_prepare_beacon(struct rum_softc *);
203 static void rum_newassoc(struct ieee80211_node *, int);
204 static void rum_amrr_start(struct rum_softc *,
205 struct ieee80211_node *);
206 static void rum_amrr_timeout(void *);
207 static void rum_amrr_update(struct usbd_xfer *, void *,
208 usbd_status);
209
210 static const struct {
211 uint32_t reg;
212 uint32_t val;
213 } rum_def_mac[] = {
214 RT2573_DEF_MAC
215 };
216
217 static const struct {
218 uint8_t reg;
219 uint8_t val;
220 } rum_def_bbp[] = {
221 RT2573_DEF_BBP
222 };
223
224 static const struct rfprog {
225 uint8_t chan;
226 uint32_t r1, r2, r3, r4;
227 } rum_rf5226[] = {
228 RT2573_RF5226
229 }, rum_rf5225[] = {
230 RT2573_RF5225
231 };
232
233 static int rum_match(device_t, cfdata_t, void *);
234 static void rum_attach(device_t, device_t, void *);
235 static int rum_detach(device_t, int);
236 static int rum_activate(device_t, enum devact);
237
238 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
239 rum_detach, rum_activate);
240
241 static int
242 rum_match(device_t parent, cfdata_t match, void *aux)
243 {
244 struct usb_attach_arg *uaa = aux;
245
246 return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
247 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
248 }
249
250 static int
251 rum_attachhook(void *xsc)
252 {
253 struct rum_softc *sc = xsc;
254 firmware_handle_t fwh;
255 const char *name = "rum-rt2573";
256 u_char *ucode;
257 size_t size;
258 int error;
259
260 if ((error = firmware_open("rum", name, &fwh)) != 0) {
261 printf("%s: failed firmware_open of file %s (error %d)\n",
262 device_xname(sc->sc_dev), name, error);
263 return error;
264 }
265 size = firmware_get_size(fwh);
266 ucode = firmware_malloc(size);
267 if (ucode == NULL) {
268 printf("%s: failed to allocate firmware memory\n",
269 device_xname(sc->sc_dev));
270 firmware_close(fwh);
271 return ENOMEM;
272 }
273 error = firmware_read(fwh, 0, ucode, size);
274 firmware_close(fwh);
275 if (error != 0) {
276 printf("%s: failed to read firmware (error %d)\n",
277 device_xname(sc->sc_dev), error);
278 firmware_free(ucode, size);
279 return error;
280 }
281
282 if (rum_load_microcode(sc, ucode, size) != 0) {
283 printf("%s: could not load 8051 microcode\n",
284 device_xname(sc->sc_dev));
285 firmware_free(ucode, size);
286 return ENXIO;
287 }
288
289 firmware_free(ucode, size);
290 sc->sc_flags |= RT2573_FWLOADED;
291
292 return 0;
293 }
294
295 static void
296 rum_attach(device_t parent, device_t self, void *aux)
297 {
298 struct rum_softc *sc = device_private(self);
299 struct usb_attach_arg *uaa = aux;
300 struct ieee80211com *ic = &sc->sc_ic;
301 struct ifnet *ifp = &sc->sc_if;
302 usb_interface_descriptor_t *id;
303 usb_endpoint_descriptor_t *ed;
304 usbd_status error;
305 char *devinfop;
306 int i, ntries;
307 uint32_t tmp;
308
309 sc->sc_dev = self;
310 sc->sc_udev = uaa->uaa_device;
311 sc->sc_flags = 0;
312
313 aprint_naive("\n");
314 aprint_normal("\n");
315
316 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
317 aprint_normal_dev(self, "%s\n", devinfop);
318 usbd_devinfo_free(devinfop);
319
320 error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
321 if (error != 0) {
322 aprint_error_dev(self, "failed to set configuration"
323 ", err=%s\n", usbd_errstr(error));
324 return;
325 }
326
327 /* get the first interface handle */
328 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
329 &sc->sc_iface);
330 if (error != 0) {
331 aprint_error_dev(self, "could not get interface handle\n");
332 return;
333 }
334
335 /*
336 * Find endpoints.
337 */
338 id = usbd_get_interface_descriptor(sc->sc_iface);
339
340 sc->sc_rx_no = sc->sc_tx_no = -1;
341 for (i = 0; i < id->bNumEndpoints; i++) {
342 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
343 if (ed == NULL) {
344 aprint_error_dev(self,
345 "no endpoint descriptor for iface %d\n", i);
346 return;
347 }
348
349 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
350 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
351 sc->sc_rx_no = ed->bEndpointAddress;
352 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
353 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
354 sc->sc_tx_no = ed->bEndpointAddress;
355 }
356 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
357 aprint_error_dev(self, "missing endpoint\n");
358 return;
359 }
360
361 usb_init_task(&sc->sc_task, rum_task, sc, 0);
362 callout_init(&sc->sc_scan_ch, 0);
363
364 sc->amrr.amrr_min_success_threshold = 1;
365 sc->amrr.amrr_max_success_threshold = 10;
366 callout_init(&sc->sc_amrr_ch, 0);
367
368 /* retrieve RT2573 rev. no */
369 for (ntries = 0; ntries < 1000; ntries++) {
370 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
371 break;
372 DELAY(1000);
373 }
374 if (ntries == 1000) {
375 aprint_error_dev(self, "timeout waiting for chip to settle\n");
376 return;
377 }
378
379 /* retrieve MAC address and various other things from EEPROM */
380 rum_read_eeprom(sc);
381
382 aprint_normal_dev(self,
383 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
384 sc->macbbp_rev, tmp,
385 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
386
387 ic->ic_ifp = ifp;
388 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
389 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
390 ic->ic_state = IEEE80211_S_INIT;
391
392 /* set device capabilities */
393 ic->ic_caps =
394 IEEE80211_C_IBSS | /* IBSS mode supported */
395 IEEE80211_C_MONITOR | /* monitor mode supported */
396 IEEE80211_C_HOSTAP | /* HostAp mode supported */
397 IEEE80211_C_TXPMGT | /* tx power management */
398 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
399 IEEE80211_C_SHSLOT | /* short slot time supported */
400 IEEE80211_C_WPA; /* 802.11i */
401
402 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
403 /* set supported .11a rates */
404 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
405
406 /* set supported .11a channels */
407 for (i = 34; i <= 46; i += 4) {
408 ic->ic_channels[i].ic_freq =
409 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
410 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
411 }
412 for (i = 36; i <= 64; i += 4) {
413 ic->ic_channels[i].ic_freq =
414 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
415 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
416 }
417 for (i = 100; i <= 140; i += 4) {
418 ic->ic_channels[i].ic_freq =
419 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
420 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
421 }
422 for (i = 149; i <= 165; i += 4) {
423 ic->ic_channels[i].ic_freq =
424 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
425 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
426 }
427 }
428
429 /* set supported .11b and .11g rates */
430 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
431 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
432
433 /* set supported .11b and .11g channels (1 through 14) */
434 for (i = 1; i <= 14; i++) {
435 ic->ic_channels[i].ic_freq =
436 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
437 ic->ic_channels[i].ic_flags =
438 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
439 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
440 }
441
442 ifp->if_softc = sc;
443 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
444 ifp->if_init = rum_init;
445 ifp->if_ioctl = rum_ioctl;
446 ifp->if_start = rum_start;
447 ifp->if_watchdog = rum_watchdog;
448 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
449 IFQ_SET_READY(&ifp->if_snd);
450 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
451
452 if_attach(ifp);
453 ieee80211_ifattach(ic);
454 ic->ic_newassoc = rum_newassoc;
455
456 /* override state transition machine */
457 sc->sc_newstate = ic->ic_newstate;
458 ic->ic_newstate = rum_newstate;
459
460 /* XXX media locking needs revisiting */
461 mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB);
462 ieee80211_media_init_with_lock(ic,
463 rum_media_change, ieee80211_media_status, &sc->sc_media_mtx);
464
465 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
466 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
467 &sc->sc_drvbpf);
468
469 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
470 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
471 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
472
473 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
474 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
475 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
476
477 ieee80211_announce(ic);
478
479 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
480
481 if (!pmf_device_register(self, NULL, NULL))
482 aprint_error_dev(self, "couldn't establish power handler\n");
483
484 return;
485 }
486
487 static int
488 rum_detach(device_t self, int flags)
489 {
490 struct rum_softc *sc = device_private(self);
491 struct ieee80211com *ic = &sc->sc_ic;
492 struct ifnet *ifp = &sc->sc_if;
493 int s;
494
495 if (!ifp->if_softc)
496 return 0;
497
498 pmf_device_deregister(self);
499
500 s = splusb();
501
502 rum_stop(ifp, 1);
503 callout_halt(&sc->sc_scan_ch, NULL);
504 callout_halt(&sc->sc_amrr_ch, NULL);
505 usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
506
507 bpf_detach(ifp);
508 ieee80211_ifdetach(ic); /* free all nodes */
509 if_detach(ifp);
510
511 splx(s);
512
513 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
514
515 return 0;
516 }
517
518 static int
519 rum_alloc_tx_list(struct rum_softc *sc)
520 {
521 struct rum_tx_data *data;
522 int i, error;
523
524 sc->tx_cur = sc->tx_queued = 0;
525
526 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
527 data = &sc->tx_data[i];
528
529 data->sc = sc;
530
531 error = usbd_create_xfer(sc->sc_tx_pipeh,
532 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN,
533 USBD_FORCE_SHORT_XFER, 0, &data->xfer);
534 if (error) {
535 printf("%s: could not allocate tx xfer\n",
536 device_xname(sc->sc_dev));
537 goto fail;
538 }
539 data->buf = usbd_get_buffer(data->xfer);
540
541 /* clean Tx descriptor */
542 memset(data->buf, 0, RT2573_TX_DESC_SIZE);
543 }
544
545 return 0;
546
547 fail: rum_free_tx_list(sc);
548 return error;
549 }
550
551 static void
552 rum_free_tx_list(struct rum_softc *sc)
553 {
554 struct rum_tx_data *data;
555 int i;
556
557 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
558 data = &sc->tx_data[i];
559
560 if (data->xfer != NULL) {
561 usbd_destroy_xfer(data->xfer);
562 data->xfer = NULL;
563 }
564
565 if (data->ni != NULL) {
566 ieee80211_free_node(data->ni);
567 data->ni = NULL;
568 }
569 }
570 }
571
572 static int
573 rum_alloc_rx_list(struct rum_softc *sc)
574 {
575 struct rum_rx_data *data;
576 int i, error;
577
578 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
579 data = &sc->rx_data[i];
580
581 data->sc = sc;
582
583 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
584 0, 0, &data->xfer);
585 if (error) {
586 printf("%s: could not allocate rx xfer\n",
587 device_xname(sc->sc_dev));
588 goto fail;
589 }
590
591 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
592 if (data->m == NULL) {
593 printf("%s: could not allocate rx mbuf\n",
594 device_xname(sc->sc_dev));
595 error = ENOMEM;
596 goto fail;
597 }
598
599 MCLGET(data->m, M_DONTWAIT);
600 if (!(data->m->m_flags & M_EXT)) {
601 printf("%s: could not allocate rx mbuf cluster\n",
602 device_xname(sc->sc_dev));
603 error = ENOMEM;
604 goto fail;
605 }
606
607 data->buf = mtod(data->m, uint8_t *);
608 }
609
610 return 0;
611
612 fail: rum_free_rx_list(sc);
613 return error;
614 }
615
616 static void
617 rum_free_rx_list(struct rum_softc *sc)
618 {
619 struct rum_rx_data *data;
620 int i;
621
622 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
623 data = &sc->rx_data[i];
624
625 if (data->xfer != NULL) {
626 usbd_destroy_xfer(data->xfer);
627 data->xfer = NULL;
628 }
629
630 if (data->m != NULL) {
631 m_freem(data->m);
632 data->m = NULL;
633 }
634 }
635 }
636
637 static int
638 rum_media_change(struct ifnet *ifp)
639 {
640 int error;
641
642 error = ieee80211_media_change(ifp);
643 if (error != ENETRESET)
644 return error;
645
646 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
647 rum_init(ifp);
648
649 return 0;
650 }
651
652 /*
653 * This function is called periodically (every 200ms) during scanning to
654 * switch from one channel to another.
655 */
656 static void
657 rum_next_scan(void *arg)
658 {
659 struct rum_softc *sc = arg;
660 struct ieee80211com *ic = &sc->sc_ic;
661 int s;
662
663 s = splnet();
664 if (ic->ic_state == IEEE80211_S_SCAN)
665 ieee80211_next_scan(ic);
666 splx(s);
667 }
668
669 static void
670 rum_task(void *arg)
671 {
672 struct rum_softc *sc = arg;
673 struct ieee80211com *ic = &sc->sc_ic;
674 enum ieee80211_state ostate;
675 struct ieee80211_node *ni;
676 uint32_t tmp;
677
678 ostate = ic->ic_state;
679
680 switch (sc->sc_state) {
681 case IEEE80211_S_INIT:
682 if (ostate == IEEE80211_S_RUN) {
683 /* abort TSF synchronization */
684 tmp = rum_read(sc, RT2573_TXRX_CSR9);
685 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
686 }
687 break;
688
689 case IEEE80211_S_SCAN:
690 rum_set_chan(sc, ic->ic_curchan);
691 callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
692 break;
693
694 case IEEE80211_S_AUTH:
695 rum_set_chan(sc, ic->ic_curchan);
696 break;
697
698 case IEEE80211_S_ASSOC:
699 rum_set_chan(sc, ic->ic_curchan);
700 break;
701
702 case IEEE80211_S_RUN:
703 rum_set_chan(sc, ic->ic_curchan);
704
705 ni = ic->ic_bss;
706
707 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
708 rum_update_slot(sc);
709 rum_enable_mrr(sc);
710 rum_set_txpreamble(sc);
711 rum_set_basicrates(sc);
712 rum_set_bssid(sc, ni->ni_bssid);
713 }
714
715 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
716 ic->ic_opmode == IEEE80211_M_IBSS)
717 rum_prepare_beacon(sc);
718
719 if (ic->ic_opmode != IEEE80211_M_MONITOR)
720 rum_enable_tsf_sync(sc);
721
722 if (ic->ic_opmode == IEEE80211_M_STA) {
723 /* fake a join to init the tx rate */
724 rum_newassoc(ic->ic_bss, 1);
725
726 /* enable automatic rate adaptation in STA mode */
727 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
728 rum_amrr_start(sc, ni);
729 }
730
731 break;
732 }
733
734 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
735 }
736
737 static int
738 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
739 {
740 struct rum_softc *sc = ic->ic_ifp->if_softc;
741
742 /*
743 * XXXSMP: This does not wait for the task, if it is in flight,
744 * to complete. If this code works at all, it must rely on the
745 * kernel lock to serialize with the USB task thread.
746 */
747 usb_rem_task(sc->sc_udev, &sc->sc_task);
748 callout_stop(&sc->sc_scan_ch);
749 callout_stop(&sc->sc_amrr_ch);
750
751 /* do it in a process context */
752 sc->sc_state = nstate;
753 sc->sc_arg = arg;
754 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
755
756 return 0;
757 }
758
759 /* quickly determine if a given rate is CCK or OFDM */
760 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
761
762 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
763 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
764
765 static void
766 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
767 {
768 struct rum_tx_data *data = priv;
769 struct rum_softc *sc = data->sc;
770 struct ifnet *ifp = &sc->sc_if;
771 int s;
772
773 if (status != USBD_NORMAL_COMPLETION) {
774 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
775 return;
776
777 printf("%s: could not transmit buffer: %s\n",
778 device_xname(sc->sc_dev), usbd_errstr(status));
779
780 if (status == USBD_STALLED)
781 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
782
783 if_statinc(ifp, if_oerrors);
784 return;
785 }
786
787 s = splnet();
788
789 ieee80211_free_node(data->ni);
790 data->ni = NULL;
791
792 sc->tx_queued--;
793 if_statinc(ifp, if_opackets);
794
795 DPRINTFN(10, ("tx done\n"));
796
797 sc->sc_tx_timer = 0;
798 ifp->if_flags &= ~IFF_OACTIVE;
799 rum_start(ifp);
800
801 splx(s);
802 }
803
804 static void
805 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
806 {
807 struct rum_rx_data *data = priv;
808 struct rum_softc *sc = data->sc;
809 struct ieee80211com *ic = &sc->sc_ic;
810 struct ifnet *ifp = &sc->sc_if;
811 struct rum_rx_desc *desc;
812 struct ieee80211_frame *wh;
813 struct ieee80211_node *ni;
814 struct mbuf *mnew, *m;
815 int s, len;
816
817 if (status != USBD_NORMAL_COMPLETION) {
818 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
819 return;
820
821 if (status == USBD_STALLED)
822 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
823 goto skip;
824 }
825
826 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
827
828 if (len < (int)(RT2573_RX_DESC_SIZE +
829 sizeof(struct ieee80211_frame_min))) {
830 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
831 len));
832 if_statinc(ifp, if_ierrors);
833 goto skip;
834 }
835
836 desc = (struct rum_rx_desc *)data->buf;
837
838 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
839 /*
840 * This should not happen since we did not request to receive
841 * those frames when we filled RT2573_TXRX_CSR0.
842 */
843 DPRINTFN(5, ("CRC error\n"));
844 if_statinc(ifp, if_ierrors);
845 goto skip;
846 }
847
848 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
849 if (mnew == NULL) {
850 printf("%s: could not allocate rx mbuf\n",
851 device_xname(sc->sc_dev));
852 if_statinc(ifp, if_ierrors);
853 goto skip;
854 }
855
856 MCLGET(mnew, M_DONTWAIT);
857 if (!(mnew->m_flags & M_EXT)) {
858 printf("%s: could not allocate rx mbuf cluster\n",
859 device_xname(sc->sc_dev));
860 m_freem(mnew);
861 if_statinc(ifp, if_ierrors);
862 goto skip;
863 }
864
865 m = data->m;
866 data->m = mnew;
867 data->buf = mtod(data->m, uint8_t *);
868
869 /* finalize mbuf */
870 m_set_rcvif(m, ifp);
871 m->m_data = (void *)(desc + 1);
872 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
873
874 s = splnet();
875
876 if (sc->sc_drvbpf != NULL) {
877 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
878
879 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
880 tap->wr_rate = rum_rxrate(desc);
881 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
882 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
883 tap->wr_antenna = sc->rx_ant;
884 tap->wr_antsignal = desc->rssi;
885
886 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
887 }
888
889 wh = mtod(m, struct ieee80211_frame *);
890 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
891
892 /* send the frame to the 802.11 layer */
893 ieee80211_input(ic, m, ni, desc->rssi, 0);
894
895 /* node is no longer needed */
896 ieee80211_free_node(ni);
897
898 splx(s);
899
900 DPRINTFN(15, ("rx done\n"));
901
902 skip: /* setup a new transfer */
903 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK,
904 USBD_NO_TIMEOUT, rum_rxeof);
905 usbd_transfer(xfer);
906 }
907
908 /*
909 * This function is only used by the Rx radiotap code. It returns the rate at
910 * which a given frame was received.
911 */
912 static uint8_t
913 rum_rxrate(const struct rum_rx_desc *desc)
914 {
915 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
916 /* reverse function of rum_plcp_signal */
917 switch (desc->rate) {
918 case 0xb: return 12;
919 case 0xf: return 18;
920 case 0xa: return 24;
921 case 0xe: return 36;
922 case 0x9: return 48;
923 case 0xd: return 72;
924 case 0x8: return 96;
925 case 0xc: return 108;
926 }
927 } else {
928 if (desc->rate == 10)
929 return 2;
930 if (desc->rate == 20)
931 return 4;
932 if (desc->rate == 55)
933 return 11;
934 if (desc->rate == 110)
935 return 22;
936 }
937 return 2; /* should not get there */
938 }
939
940 /*
941 * Return the expected ack rate for a frame transmitted at rate `rate'.
942 * XXX: this should depend on the destination node basic rate set.
943 */
944 static int
945 rum_ack_rate(struct ieee80211com *ic, int rate)
946 {
947 switch (rate) {
948 /* CCK rates */
949 case 2:
950 return 2;
951 case 4:
952 case 11:
953 case 22:
954 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
955
956 /* OFDM rates */
957 case 12:
958 case 18:
959 return 12;
960 case 24:
961 case 36:
962 return 24;
963 case 48:
964 case 72:
965 case 96:
966 case 108:
967 return 48;
968 }
969
970 /* default to 1Mbps */
971 return 2;
972 }
973
974 /*
975 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
976 * The function automatically determines the operating mode depending on the
977 * given rate. `flags' indicates whether short preamble is in use or not.
978 */
979 static uint16_t
980 rum_txtime(int len, int rate, uint32_t flags)
981 {
982 uint16_t txtime;
983
984 if (RUM_RATE_IS_OFDM(rate)) {
985 /* IEEE Std 802.11a-1999, pp. 37 */
986 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
987 txtime = 16 + 4 + 4 * txtime + 6;
988 } else {
989 /* IEEE Std 802.11b-1999, pp. 28 */
990 txtime = (16 * len + rate - 1) / rate;
991 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
992 txtime += 72 + 24;
993 else
994 txtime += 144 + 48;
995 }
996 return txtime;
997 }
998
999 static uint8_t
1000 rum_plcp_signal(int rate)
1001 {
1002 switch (rate) {
1003 /* CCK rates (returned values are device-dependent) */
1004 case 2: return 0x0;
1005 case 4: return 0x1;
1006 case 11: return 0x2;
1007 case 22: return 0x3;
1008
1009 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1010 case 12: return 0xb;
1011 case 18: return 0xf;
1012 case 24: return 0xa;
1013 case 36: return 0xe;
1014 case 48: return 0x9;
1015 case 72: return 0xd;
1016 case 96: return 0x8;
1017 case 108: return 0xc;
1018
1019 /* unsupported rates (should not get there) */
1020 default: return 0xff;
1021 }
1022 }
1023
1024 static void
1025 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1026 uint32_t flags, uint16_t xflags, int len, int rate)
1027 {
1028 struct ieee80211com *ic = &sc->sc_ic;
1029 uint16_t plcp_length;
1030 int remainder;
1031
1032 desc->flags = htole32(flags);
1033 desc->flags |= htole32(RT2573_TX_VALID);
1034 desc->flags |= htole32(len << 16);
1035
1036 desc->xflags = htole16(xflags);
1037
1038 desc->wme = htole16(
1039 RT2573_QID(0) |
1040 RT2573_AIFSN(2) |
1041 RT2573_LOGCWMIN(4) |
1042 RT2573_LOGCWMAX(10));
1043
1044 /* setup PLCP fields */
1045 desc->plcp_signal = rum_plcp_signal(rate);
1046 desc->plcp_service = 4;
1047
1048 len += IEEE80211_CRC_LEN;
1049 if (RUM_RATE_IS_OFDM(rate)) {
1050 desc->flags |= htole32(RT2573_TX_OFDM);
1051
1052 plcp_length = len & 0xfff;
1053 desc->plcp_length_hi = plcp_length >> 6;
1054 desc->plcp_length_lo = plcp_length & 0x3f;
1055 } else {
1056 plcp_length = (16 * len + rate - 1) / rate;
1057 if (rate == 22) {
1058 remainder = (16 * len) % 22;
1059 if (remainder != 0 && remainder < 7)
1060 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1061 }
1062 desc->plcp_length_hi = plcp_length >> 8;
1063 desc->plcp_length_lo = plcp_length & 0xff;
1064
1065 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1066 desc->plcp_signal |= 0x08;
1067 }
1068 }
1069
1070 #define RUM_TX_TIMEOUT 5000
1071
1072 static int
1073 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1074 {
1075 struct ieee80211com *ic = &sc->sc_ic;
1076 struct rum_tx_desc *desc;
1077 struct rum_tx_data *data;
1078 struct ieee80211_frame *wh;
1079 struct ieee80211_key *k;
1080 uint32_t flags = 0;
1081 uint16_t dur;
1082 usbd_status error;
1083 int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1084
1085 wh = mtod(m0, struct ieee80211_frame *);
1086
1087 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1088 k = ieee80211_crypto_encap(ic, ni, m0);
1089 if (k == NULL) {
1090 m_freem(m0);
1091 return ENOBUFS;
1092 }
1093
1094 /* packet header may have moved, reset our local pointer */
1095 wh = mtod(m0, struct ieee80211_frame *);
1096 }
1097
1098 /* compute actual packet length (including CRC and crypto overhead) */
1099 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1100
1101 /* pickup a rate */
1102 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1103 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1104 IEEE80211_FC0_TYPE_MGT)) {
1105 /* mgmt/multicast frames are sent at the lowest avail. rate */
1106 rate = ni->ni_rates.rs_rates[0];
1107 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1108 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1109 } else
1110 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1111 if (rate == 0)
1112 rate = 2; /* XXX should not happen */
1113 rate &= IEEE80211_RATE_VAL;
1114
1115 /* check if RTS/CTS or CTS-to-self protection must be used */
1116 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1117 /* multicast frames are not sent at OFDM rates in 802.11b/g */
1118 if (pktlen > ic->ic_rtsthreshold) {
1119 needrts = 1; /* RTS/CTS based on frame length */
1120 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1121 RUM_RATE_IS_OFDM(rate)) {
1122 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1123 needcts = 1; /* CTS-to-self */
1124 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1125 needrts = 1; /* RTS/CTS */
1126 }
1127 }
1128 if (needrts || needcts) {
1129 struct mbuf *mprot;
1130 int protrate, ackrate;
1131
1132 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1133 ackrate = rum_ack_rate(ic, rate);
1134
1135 dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1136 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1137 2 * sc->sifs;
1138 if (needrts) {
1139 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1140 protrate), ic->ic_flags) + sc->sifs;
1141 mprot = ieee80211_get_rts(ic, wh, dur);
1142 } else {
1143 mprot = ieee80211_get_cts_to_self(ic, dur);
1144 }
1145 if (mprot == NULL) {
1146 aprint_error_dev(sc->sc_dev,
1147 "couldn't allocate protection frame\n");
1148 m_freem(m0);
1149 return ENOBUFS;
1150 }
1151
1152 data = &sc->tx_data[sc->tx_cur];
1153 desc = (struct rum_tx_desc *)data->buf;
1154
1155 /* avoid multiple free() of the same node for each fragment */
1156 data->ni = ieee80211_ref_node(ni);
1157
1158 m_copydata(mprot, 0, mprot->m_pkthdr.len,
1159 data->buf + RT2573_TX_DESC_SIZE);
1160 rum_setup_tx_desc(sc, desc,
1161 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1162 0, mprot->m_pkthdr.len, protrate);
1163
1164 /* no roundup necessary here */
1165 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1166
1167 /* XXX may want to pass the protection frame to BPF */
1168
1169 /* mbuf is no longer needed */
1170 m_freem(mprot);
1171
1172 usbd_setup_xfer(data->xfer, data, data->buf,
1173 xferlen, USBD_FORCE_SHORT_XFER,
1174 RUM_TX_TIMEOUT, rum_txeof);
1175 error = usbd_transfer(data->xfer);
1176 if (error != USBD_NORMAL_COMPLETION &&
1177 error != USBD_IN_PROGRESS) {
1178 m_freem(m0);
1179 return error;
1180 }
1181
1182 sc->tx_queued++;
1183 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1184
1185 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1186 }
1187
1188 data = &sc->tx_data[sc->tx_cur];
1189 desc = (struct rum_tx_desc *)data->buf;
1190
1191 data->ni = ni;
1192
1193 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1194 flags |= RT2573_TX_NEED_ACK;
1195
1196 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1197 ic->ic_flags) + sc->sifs;
1198 *(uint16_t *)wh->i_dur = htole16(dur);
1199
1200 /* tell hardware to set timestamp in probe responses */
1201 if ((wh->i_fc[0] &
1202 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1203 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1204 flags |= RT2573_TX_TIMESTAMP;
1205 }
1206
1207 if (sc->sc_drvbpf != NULL) {
1208 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1209
1210 tap->wt_flags = 0;
1211 tap->wt_rate = rate;
1212 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1213 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1214 tap->wt_antenna = sc->tx_ant;
1215
1216 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1217 }
1218
1219 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1220 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1221
1222 /* align end on a 4-bytes boundary */
1223 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1224
1225 /*
1226 * No space left in the last URB to store the extra 4 bytes, force
1227 * sending of another URB.
1228 */
1229 if ((xferlen % 64) == 0)
1230 xferlen += 4;
1231
1232 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1233 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1234 rate, xferlen));
1235
1236 /* mbuf is no longer needed */
1237 m_freem(m0);
1238
1239 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1240 USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof);
1241 error = usbd_transfer(data->xfer);
1242 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1243 return error;
1244
1245 sc->tx_queued++;
1246 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1247
1248 return 0;
1249 }
1250
1251 static void
1252 rum_start(struct ifnet *ifp)
1253 {
1254 struct rum_softc *sc = ifp->if_softc;
1255 struct ieee80211com *ic = &sc->sc_ic;
1256 struct ether_header *eh;
1257 struct ieee80211_node *ni;
1258 struct mbuf *m0;
1259
1260 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1261 return;
1262
1263 for (;;) {
1264 IF_POLL(&ic->ic_mgtq, m0);
1265 if (m0 != NULL) {
1266 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1267 ifp->if_flags |= IFF_OACTIVE;
1268 break;
1269 }
1270 IF_DEQUEUE(&ic->ic_mgtq, m0);
1271
1272 ni = M_GETCTX(m0, struct ieee80211_node *);
1273 M_CLEARCTX(m0);
1274 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1275 if (rum_tx_data(sc, m0, ni) != 0)
1276 break;
1277
1278 } else {
1279 if (ic->ic_state != IEEE80211_S_RUN)
1280 break;
1281 IFQ_POLL(&ifp->if_snd, m0);
1282 if (m0 == NULL)
1283 break;
1284 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1285 ifp->if_flags |= IFF_OACTIVE;
1286 break;
1287 }
1288 IFQ_DEQUEUE(&ifp->if_snd, m0);
1289 if (m0->m_len < (int)sizeof(struct ether_header) &&
1290 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1291 continue;
1292
1293 eh = mtod(m0, struct ether_header *);
1294 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1295 if (ni == NULL) {
1296 m_freem(m0);
1297 continue;
1298 }
1299 bpf_mtap(ifp, m0, BPF_D_OUT);
1300 m0 = ieee80211_encap(ic, m0, ni);
1301 if (m0 == NULL) {
1302 ieee80211_free_node(ni);
1303 continue;
1304 }
1305 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1306 if (rum_tx_data(sc, m0, ni) != 0) {
1307 ieee80211_free_node(ni);
1308 if_statinc(ifp, if_oerrors);
1309 break;
1310 }
1311 }
1312
1313 sc->sc_tx_timer = 5;
1314 ifp->if_timer = 1;
1315 }
1316 }
1317
1318 static void
1319 rum_watchdog(struct ifnet *ifp)
1320 {
1321 struct rum_softc *sc = ifp->if_softc;
1322 struct ieee80211com *ic = &sc->sc_ic;
1323
1324 ifp->if_timer = 0;
1325
1326 if (sc->sc_tx_timer > 0) {
1327 if (--sc->sc_tx_timer == 0) {
1328 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1329 /*rum_init(ifp); XXX needs a process context! */
1330 if_statinc(ifp, if_oerrors);
1331 return;
1332 }
1333 ifp->if_timer = 1;
1334 }
1335
1336 ieee80211_watchdog(ic);
1337 }
1338
1339 static int
1340 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1341 {
1342 #define IS_RUNNING(ifp) \
1343 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1344
1345 struct rum_softc *sc = ifp->if_softc;
1346 struct ieee80211com *ic = &sc->sc_ic;
1347 int s, error = 0;
1348
1349 s = splnet();
1350
1351 switch (cmd) {
1352 case SIOCSIFFLAGS:
1353 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1354 break;
1355 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1356 case IFF_UP|IFF_RUNNING:
1357 rum_update_promisc(sc);
1358 break;
1359 case IFF_UP:
1360 rum_init(ifp);
1361 break;
1362 case IFF_RUNNING:
1363 rum_stop(ifp, 1);
1364 break;
1365 case 0:
1366 break;
1367 }
1368 break;
1369
1370 case SIOCADDMULTI:
1371 case SIOCDELMULTI:
1372 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1373 error = 0;
1374 }
1375 break;
1376
1377 default:
1378 error = ieee80211_ioctl(ic, cmd, data);
1379 }
1380
1381 if (error == ENETRESET) {
1382 if (IS_RUNNING(ifp) &&
1383 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1384 rum_init(ifp);
1385 error = 0;
1386 }
1387
1388 splx(s);
1389
1390 return error;
1391 #undef IS_RUNNING
1392 }
1393
1394 static void
1395 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1396 {
1397 usb_device_request_t req;
1398 usbd_status error;
1399
1400 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1401 req.bRequest = RT2573_READ_EEPROM;
1402 USETW(req.wValue, 0);
1403 USETW(req.wIndex, addr);
1404 USETW(req.wLength, len);
1405
1406 error = usbd_do_request(sc->sc_udev, &req, buf);
1407 if (error != 0) {
1408 printf("%s: could not read EEPROM: %s\n",
1409 device_xname(sc->sc_dev), usbd_errstr(error));
1410 }
1411 }
1412
1413 static uint32_t
1414 rum_read(struct rum_softc *sc, uint16_t reg)
1415 {
1416 uint32_t val;
1417
1418 rum_read_multi(sc, reg, &val, sizeof(val));
1419
1420 return le32toh(val);
1421 }
1422
1423 static void
1424 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1425 {
1426 usb_device_request_t req;
1427 usbd_status error;
1428
1429 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1430 req.bRequest = RT2573_READ_MULTI_MAC;
1431 USETW(req.wValue, 0);
1432 USETW(req.wIndex, reg);
1433 USETW(req.wLength, len);
1434
1435 error = usbd_do_request(sc->sc_udev, &req, buf);
1436 if (error != 0) {
1437 printf("%s: could not multi read MAC register: %s\n",
1438 device_xname(sc->sc_dev), usbd_errstr(error));
1439 }
1440 }
1441
1442 static void
1443 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1444 {
1445 uint32_t tmp = htole32(val);
1446
1447 rum_write_multi(sc, reg, &tmp, sizeof(tmp));
1448 }
1449
1450 static void
1451 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1452 {
1453 usb_device_request_t req;
1454 usbd_status error;
1455 int offset;
1456
1457 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1458 req.bRequest = RT2573_WRITE_MULTI_MAC;
1459 USETW(req.wValue, 0);
1460
1461 /* write at most 64 bytes at a time */
1462 for (offset = 0; offset < len; offset += 64) {
1463 USETW(req.wIndex, reg + offset);
1464 USETW(req.wLength, MIN(len - offset, 64));
1465
1466 error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
1467 if (error != 0) {
1468 printf("%s: could not multi write MAC register: %s\n",
1469 device_xname(sc->sc_dev), usbd_errstr(error));
1470 }
1471 }
1472 }
1473
1474 static void
1475 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1476 {
1477 uint32_t tmp;
1478 int ntries;
1479
1480 for (ntries = 0; ntries < 5; ntries++) {
1481 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1482 break;
1483 }
1484 if (ntries == 5) {
1485 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1486 return;
1487 }
1488
1489 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1490 rum_write(sc, RT2573_PHY_CSR3, tmp);
1491 }
1492
1493 static uint8_t
1494 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1495 {
1496 uint32_t val;
1497 int ntries;
1498
1499 for (ntries = 0; ntries < 5; ntries++) {
1500 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1501 break;
1502 }
1503 if (ntries == 5) {
1504 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1505 return 0;
1506 }
1507
1508 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1509 rum_write(sc, RT2573_PHY_CSR3, val);
1510
1511 for (ntries = 0; ntries < 100; ntries++) {
1512 val = rum_read(sc, RT2573_PHY_CSR3);
1513 if (!(val & RT2573_BBP_BUSY))
1514 return val & 0xff;
1515 DELAY(1);
1516 }
1517
1518 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1519 return 0;
1520 }
1521
1522 static void
1523 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1524 {
1525 uint32_t tmp;
1526 int ntries;
1527
1528 for (ntries = 0; ntries < 5; ntries++) {
1529 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1530 break;
1531 }
1532 if (ntries == 5) {
1533 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1534 return;
1535 }
1536
1537 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1538 (reg & 3);
1539 rum_write(sc, RT2573_PHY_CSR4, tmp);
1540
1541 /* remember last written value in sc */
1542 sc->rf_regs[reg] = val;
1543
1544 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1545 }
1546
1547 static void
1548 rum_select_antenna(struct rum_softc *sc)
1549 {
1550 uint8_t bbp4, bbp77;
1551 uint32_t tmp;
1552
1553 bbp4 = rum_bbp_read(sc, 4);
1554 bbp77 = rum_bbp_read(sc, 77);
1555
1556 /* TBD */
1557
1558 /* make sure Rx is disabled before switching antenna */
1559 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1560 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1561
1562 rum_bbp_write(sc, 4, bbp4);
1563 rum_bbp_write(sc, 77, bbp77);
1564
1565 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1566 }
1567
1568 /*
1569 * Enable multi-rate retries for frames sent at OFDM rates.
1570 * In 802.11b/g mode, allow fallback to CCK rates.
1571 */
1572 static void
1573 rum_enable_mrr(struct rum_softc *sc)
1574 {
1575 struct ieee80211com *ic = &sc->sc_ic;
1576 uint32_t tmp;
1577
1578 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1579
1580 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1581 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1582 tmp |= RT2573_MRR_CCK_FALLBACK;
1583 tmp |= RT2573_MRR_ENABLED;
1584
1585 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1586 }
1587
1588 static void
1589 rum_set_txpreamble(struct rum_softc *sc)
1590 {
1591 uint32_t tmp;
1592
1593 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1594
1595 tmp &= ~RT2573_SHORT_PREAMBLE;
1596 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1597 tmp |= RT2573_SHORT_PREAMBLE;
1598
1599 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1600 }
1601
1602 static void
1603 rum_set_basicrates(struct rum_softc *sc)
1604 {
1605 struct ieee80211com *ic = &sc->sc_ic;
1606
1607 /* update basic rate set */
1608 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1609 /* 11b basic rates: 1, 2Mbps */
1610 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1611 } else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1612 /* 11a basic rates: 6, 12, 24Mbps */
1613 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1614 } else {
1615 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1616 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1617 }
1618 }
1619
1620 /*
1621 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1622 * driver.
1623 */
1624 static void
1625 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1626 {
1627 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1628 uint32_t tmp;
1629
1630 /* update all BBP registers that depend on the band */
1631 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1632 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1633 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1634 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1635 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1636 }
1637 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1638 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1639 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1640 }
1641
1642 sc->bbp17 = bbp17;
1643 rum_bbp_write(sc, 17, bbp17);
1644 rum_bbp_write(sc, 96, bbp96);
1645 rum_bbp_write(sc, 104, bbp104);
1646
1647 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1648 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1649 rum_bbp_write(sc, 75, 0x80);
1650 rum_bbp_write(sc, 86, 0x80);
1651 rum_bbp_write(sc, 88, 0x80);
1652 }
1653
1654 rum_bbp_write(sc, 35, bbp35);
1655 rum_bbp_write(sc, 97, bbp97);
1656 rum_bbp_write(sc, 98, bbp98);
1657
1658 tmp = rum_read(sc, RT2573_PHY_CSR0);
1659 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1660 if (IEEE80211_IS_CHAN_2GHZ(c))
1661 tmp |= RT2573_PA_PE_2GHZ;
1662 else
1663 tmp |= RT2573_PA_PE_5GHZ;
1664 rum_write(sc, RT2573_PHY_CSR0, tmp);
1665
1666 /* 802.11a uses a 16 microseconds short interframe space */
1667 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1668 }
1669
1670 static void
1671 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1672 {
1673 struct ieee80211com *ic = &sc->sc_ic;
1674 const struct rfprog *rfprog;
1675 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1676 int8_t power;
1677 u_int i, chan;
1678
1679 chan = ieee80211_chan2ieee(ic, c);
1680 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1681 return;
1682
1683 /* select the appropriate RF settings based on what EEPROM says */
1684 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1685 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1686
1687 /* find the settings for this channel (we know it exists) */
1688 for (i = 0; rfprog[i].chan != chan; i++);
1689
1690 power = sc->txpow[i];
1691 if (power < 0) {
1692 bbp94 += power;
1693 power = 0;
1694 } else if (power > 31) {
1695 bbp94 += power - 31;
1696 power = 31;
1697 }
1698
1699 /*
1700 * If we are switching from the 2GHz band to the 5GHz band or
1701 * vice-versa, BBP registers need to be reprogrammed.
1702 */
1703 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1704 rum_select_band(sc, c);
1705 rum_select_antenna(sc);
1706 }
1707 ic->ic_curchan = c;
1708
1709 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1710 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1711 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1712 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1713
1714 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1715 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1716 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1717 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1718
1719 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1720 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1721 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1722 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1723
1724 DELAY(10);
1725
1726 /* enable smart mode for MIMO-capable RFs */
1727 bbp3 = rum_bbp_read(sc, 3);
1728
1729 bbp3 &= ~RT2573_SMART_MODE;
1730 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1731 bbp3 |= RT2573_SMART_MODE;
1732
1733 rum_bbp_write(sc, 3, bbp3);
1734
1735 if (bbp94 != RT2573_BBPR94_DEFAULT)
1736 rum_bbp_write(sc, 94, bbp94);
1737 }
1738
1739 /*
1740 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1741 * and HostAP operating modes.
1742 */
1743 static void
1744 rum_enable_tsf_sync(struct rum_softc *sc)
1745 {
1746 struct ieee80211com *ic = &sc->sc_ic;
1747 uint32_t tmp;
1748
1749 if (ic->ic_opmode != IEEE80211_M_STA) {
1750 /*
1751 * Change default 16ms TBTT adjustment to 8ms.
1752 * Must be done before enabling beacon generation.
1753 */
1754 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1755 }
1756
1757 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1758
1759 /* set beacon interval (in 1/16ms unit) */
1760 tmp |= ic->ic_bss->ni_intval * 16;
1761
1762 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1763 if (ic->ic_opmode == IEEE80211_M_STA)
1764 tmp |= RT2573_TSF_MODE(1);
1765 else
1766 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1767
1768 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1769 }
1770
1771 static void
1772 rum_update_slot(struct rum_softc *sc)
1773 {
1774 struct ieee80211com *ic = &sc->sc_ic;
1775 uint8_t slottime;
1776 uint32_t tmp;
1777
1778 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1779
1780 tmp = rum_read(sc, RT2573_MAC_CSR9);
1781 tmp = (tmp & ~0xff) | slottime;
1782 rum_write(sc, RT2573_MAC_CSR9, tmp);
1783
1784 DPRINTF(("setting slot time to %uus\n", slottime));
1785 }
1786
1787 static void
1788 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1789 {
1790 uint32_t tmp;
1791
1792 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1793 rum_write(sc, RT2573_MAC_CSR4, tmp);
1794
1795 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1796 rum_write(sc, RT2573_MAC_CSR5, tmp);
1797 }
1798
1799 static void
1800 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1801 {
1802 uint32_t tmp;
1803
1804 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1805 rum_write(sc, RT2573_MAC_CSR2, tmp);
1806
1807 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1808 rum_write(sc, RT2573_MAC_CSR3, tmp);
1809 }
1810
1811 static void
1812 rum_update_promisc(struct rum_softc *sc)
1813 {
1814 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1815 uint32_t tmp;
1816
1817 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1818
1819 tmp &= ~RT2573_DROP_NOT_TO_ME;
1820 if (!(ifp->if_flags & IFF_PROMISC))
1821 tmp |= RT2573_DROP_NOT_TO_ME;
1822
1823 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1824
1825 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1826 "entering" : "leaving"));
1827 }
1828
1829 static const char *
1830 rum_get_rf(int rev)
1831 {
1832 switch (rev) {
1833 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1834 case RT2573_RF_2528: return "RT2528";
1835 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1836 case RT2573_RF_5226: return "RT5226";
1837 default: return "unknown";
1838 }
1839 }
1840
1841 static void
1842 rum_read_eeprom(struct rum_softc *sc)
1843 {
1844 struct ieee80211com *ic = &sc->sc_ic;
1845 uint16_t val;
1846 #ifdef RUM_DEBUG
1847 int i;
1848 #endif
1849
1850 /* read MAC/BBP type */
1851 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1852 sc->macbbp_rev = le16toh(val);
1853
1854 /* read MAC address */
1855 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1856
1857 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1858 val = le16toh(val);
1859 sc->rf_rev = (val >> 11) & 0x1f;
1860 sc->hw_radio = (val >> 10) & 0x1;
1861 sc->rx_ant = (val >> 4) & 0x3;
1862 sc->tx_ant = (val >> 2) & 0x3;
1863 sc->nb_ant = val & 0x3;
1864
1865 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1866
1867 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1868 val = le16toh(val);
1869 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1870 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1871
1872 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1873 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1874
1875 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1876 val = le16toh(val);
1877 if ((val & 0xff) != 0xff)
1878 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1879
1880 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1881 val = le16toh(val);
1882 if ((val & 0xff) != 0xff)
1883 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1884
1885 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1886 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1887
1888 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1889 val = le16toh(val);
1890 if ((val & 0xff) != 0xff)
1891 sc->rffreq = val & 0xff;
1892
1893 DPRINTF(("RF freq=%d\n", sc->rffreq));
1894
1895 /* read Tx power for all a/b/g channels */
1896 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1897 /* XXX default Tx power for 802.11a channels */
1898 memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14);
1899 #ifdef RUM_DEBUG
1900 for (i = 0; i < 14; i++)
1901 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1902 #endif
1903
1904 /* read default values for BBP registers */
1905 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1906 #ifdef RUM_DEBUG
1907 for (i = 0; i < 14; i++) {
1908 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1909 continue;
1910 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1911 sc->bbp_prom[i].val));
1912 }
1913 #endif
1914 }
1915
1916 static int
1917 rum_bbp_init(struct rum_softc *sc)
1918 {
1919 unsigned int i, ntries;
1920 uint8_t val;
1921
1922 /* wait for BBP to be ready */
1923 for (ntries = 0; ntries < 100; ntries++) {
1924 val = rum_bbp_read(sc, 0);
1925 if (val != 0 && val != 0xff)
1926 break;
1927 DELAY(1000);
1928 }
1929 if (ntries == 100) {
1930 printf("%s: timeout waiting for BBP\n",
1931 device_xname(sc->sc_dev));
1932 return EIO;
1933 }
1934
1935 /* initialize BBP registers to default values */
1936 for (i = 0; i < __arraycount(rum_def_bbp); i++)
1937 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1938
1939 /* write vendor-specific BBP values (from EEPROM) */
1940 for (i = 0; i < 16; i++) {
1941 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1942 continue;
1943 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1944 }
1945
1946 return 0;
1947 }
1948
1949 static int
1950 rum_init(struct ifnet *ifp)
1951 {
1952 struct rum_softc *sc = ifp->if_softc;
1953 struct ieee80211com *ic = &sc->sc_ic;
1954 uint32_t tmp;
1955 usbd_status error = 0;
1956 unsigned int i, ntries;
1957
1958 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1959 if (rum_attachhook(sc))
1960 goto fail;
1961 }
1962
1963 rum_stop(ifp, 0);
1964
1965 /* initialize MAC registers to default values */
1966 for (i = 0; i < __arraycount(rum_def_mac); i++)
1967 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1968
1969 /* set host ready */
1970 rum_write(sc, RT2573_MAC_CSR1, 3);
1971 rum_write(sc, RT2573_MAC_CSR1, 0);
1972
1973 /* wait for BBP/RF to wakeup */
1974 for (ntries = 0; ntries < 1000; ntries++) {
1975 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1976 break;
1977 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1978 DELAY(1000);
1979 }
1980 if (ntries == 1000) {
1981 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1982 device_xname(sc->sc_dev));
1983 goto fail;
1984 }
1985
1986 if ((error = rum_bbp_init(sc)) != 0)
1987 goto fail;
1988
1989 /* select default channel */
1990 rum_select_band(sc, ic->ic_curchan);
1991 rum_select_antenna(sc);
1992 rum_set_chan(sc, ic->ic_curchan);
1993
1994 /* clear STA registers */
1995 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
1996
1997 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1998 rum_set_macaddr(sc, ic->ic_myaddr);
1999
2000 /* initialize ASIC */
2001 rum_write(sc, RT2573_MAC_CSR1, 4);
2002
2003 /*
2004 * Allocate xfer for AMRR statistics requests.
2005 */
2006 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2007 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0,
2008 &sc->amrr_xfer);
2009 if (error) {
2010 printf("%s: could not allocate AMRR xfer\n",
2011 device_xname(sc->sc_dev));
2012 goto fail;
2013 }
2014
2015 /*
2016 * Open Tx and Rx USB bulk pipes.
2017 */
2018 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2019 &sc->sc_tx_pipeh);
2020 if (error != 0) {
2021 printf("%s: could not open Tx pipe: %s\n",
2022 device_xname(sc->sc_dev), usbd_errstr(error));
2023 goto fail;
2024 }
2025
2026 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2027 &sc->sc_rx_pipeh);
2028 if (error != 0) {
2029 printf("%s: could not open Rx pipe: %s\n",
2030 device_xname(sc->sc_dev), usbd_errstr(error));
2031 goto fail;
2032 }
2033
2034 /*
2035 * Allocate Tx and Rx xfer queues.
2036 */
2037 error = rum_alloc_tx_list(sc);
2038 if (error != 0) {
2039 printf("%s: could not allocate Tx list\n",
2040 device_xname(sc->sc_dev));
2041 goto fail;
2042 }
2043
2044 error = rum_alloc_rx_list(sc);
2045 if (error != 0) {
2046 printf("%s: could not allocate Rx list\n",
2047 device_xname(sc->sc_dev));
2048 goto fail;
2049 }
2050
2051 /*
2052 * Start up the receive pipe.
2053 */
2054 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2055 struct rum_rx_data *data;
2056
2057 data = &sc->rx_data[i];
2058
2059 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2060 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2061 error = usbd_transfer(data->xfer);
2062 if (error != USBD_NORMAL_COMPLETION &&
2063 error != USBD_IN_PROGRESS) {
2064 printf("%s: could not queue Rx transfer\n",
2065 device_xname(sc->sc_dev));
2066 goto fail;
2067 }
2068 }
2069
2070 /* update Rx filter */
2071 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2072
2073 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2074 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2075 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2076 RT2573_DROP_ACKCTS;
2077 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2078 tmp |= RT2573_DROP_TODS;
2079 if (!(ifp->if_flags & IFF_PROMISC))
2080 tmp |= RT2573_DROP_NOT_TO_ME;
2081 }
2082 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2083
2084 ifp->if_flags &= ~IFF_OACTIVE;
2085 ifp->if_flags |= IFF_RUNNING;
2086
2087 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2088 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2089 else
2090 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2091
2092 return 0;
2093
2094 fail: rum_stop(ifp, 1);
2095 return error;
2096 }
2097
2098 static void
2099 rum_stop(struct ifnet *ifp, int disable)
2100 {
2101 struct rum_softc *sc = ifp->if_softc;
2102 struct ieee80211com *ic = &sc->sc_ic;
2103 uint32_t tmp;
2104
2105 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2106
2107 sc->sc_tx_timer = 0;
2108 ifp->if_timer = 0;
2109 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2110
2111 /* disable Rx */
2112 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2113 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2114
2115 /* reset ASIC */
2116 rum_write(sc, RT2573_MAC_CSR1, 3);
2117 rum_write(sc, RT2573_MAC_CSR1, 0);
2118
2119 if (sc->amrr_xfer != NULL) {
2120 usbd_destroy_xfer(sc->amrr_xfer);
2121 sc->amrr_xfer = NULL;
2122 }
2123
2124 if (sc->sc_rx_pipeh != NULL) {
2125 usbd_abort_pipe(sc->sc_rx_pipeh);
2126 }
2127
2128 if (sc->sc_tx_pipeh != NULL) {
2129 usbd_abort_pipe(sc->sc_tx_pipeh);
2130 }
2131
2132 rum_free_rx_list(sc);
2133 rum_free_tx_list(sc);
2134
2135 if (sc->sc_rx_pipeh != NULL) {
2136 usbd_close_pipe(sc->sc_rx_pipeh);
2137 sc->sc_rx_pipeh = NULL;
2138 }
2139
2140 if (sc->sc_tx_pipeh != NULL) {
2141 usbd_close_pipe(sc->sc_tx_pipeh);
2142 sc->sc_tx_pipeh = NULL;
2143 }
2144 }
2145
2146 static int
2147 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2148 {
2149 usb_device_request_t req;
2150 uint16_t reg = RT2573_MCU_CODE_BASE;
2151 usbd_status error;
2152
2153 /* copy firmware image into NIC */
2154 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2155 rum_write(sc, reg, UGETDW(ucode));
2156
2157 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2158 req.bRequest = RT2573_MCU_CNTL;
2159 USETW(req.wValue, RT2573_MCU_RUN);
2160 USETW(req.wIndex, 0);
2161 USETW(req.wLength, 0);
2162
2163 error = usbd_do_request(sc->sc_udev, &req, NULL);
2164 if (error != 0) {
2165 printf("%s: could not run firmware: %s\n",
2166 device_xname(sc->sc_dev), usbd_errstr(error));
2167 }
2168 return error;
2169 }
2170
2171 static int
2172 rum_prepare_beacon(struct rum_softc *sc)
2173 {
2174 struct ieee80211com *ic = &sc->sc_ic;
2175 struct rum_tx_desc desc;
2176 struct mbuf *m0;
2177 int rate;
2178
2179 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2180 if (m0 == NULL) {
2181 aprint_error_dev(sc->sc_dev,
2182 "could not allocate beacon frame\n");
2183 return ENOBUFS;
2184 }
2185
2186 /* send beacons at the lowest available rate */
2187 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2188
2189 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2190 m0->m_pkthdr.len, rate);
2191
2192 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2193 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2194
2195 /* copy beacon header and payload into NIC memory */
2196 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2197 m0->m_pkthdr.len);
2198
2199 m_freem(m0);
2200
2201 return 0;
2202 }
2203
2204 static void
2205 rum_newassoc(struct ieee80211_node *ni, int isnew)
2206 {
2207 /* start with lowest Tx rate */
2208 ni->ni_txrate = 0;
2209 }
2210
2211 static void
2212 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2213 {
2214 int i;
2215
2216 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2217 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
2218
2219 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2220
2221 /* set rate to some reasonable initial value */
2222 for (i = ni->ni_rates.rs_nrates - 1;
2223 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2224 i--);
2225 ni->ni_txrate = i;
2226
2227 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2228 }
2229
2230 static void
2231 rum_amrr_timeout(void *arg)
2232 {
2233 struct rum_softc *sc = arg;
2234 usb_device_request_t req;
2235
2236 /*
2237 * Asynchronously read statistic registers (cleared by read).
2238 */
2239 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2240 req.bRequest = RT2573_READ_MULTI_MAC;
2241 USETW(req.wValue, 0);
2242 USETW(req.wIndex, RT2573_STA_CSR0);
2243 USETW(req.wLength, sizeof(sc->sta));
2244
2245 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2246 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2247 rum_amrr_update);
2248 (void)usbd_transfer(sc->amrr_xfer);
2249 }
2250
2251 static void
2252 rum_amrr_update(struct usbd_xfer *xfer, void *priv,
2253 usbd_status status)
2254 {
2255 struct rum_softc *sc = (struct rum_softc *)priv;
2256 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2257
2258 if (status != USBD_NORMAL_COMPLETION) {
2259 printf("%s: could not retrieve Tx statistics - cancelling "
2260 "automatic rate control\n", device_xname(sc->sc_dev));
2261 return;
2262 }
2263
2264 /* count TX retry-fail as Tx errors */
2265 if_statadd(ifp, if_oerrors, le32toh(sc->sta[5]) >> 16);
2266
2267 sc->amn.amn_retrycnt =
2268 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2269 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2270 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2271
2272 sc->amn.amn_txcnt =
2273 sc->amn.amn_retrycnt +
2274 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2275
2276 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2277
2278 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2279 }
2280
2281 static int
2282 rum_activate(device_t self, enum devact act)
2283 {
2284 switch (act) {
2285 case DVACT_DEACTIVATE:
2286 /*if_deactivate(&sc->sc_ic.ic_if);*/
2287 return 0;
2288 default:
2289 return 0;
2290 }
2291 }
2292
2293 MODULE(MODULE_CLASS_DRIVER, if_rum, NULL);
2294
2295 #ifdef _MODULE
2296 #include "ioconf.c"
2297 #endif
2298
2299 static int
2300 if_rum_modcmd(modcmd_t cmd, void *aux)
2301 {
2302 int error = 0;
2303
2304 switch (cmd) {
2305 case MODULE_CMD_INIT:
2306 #ifdef _MODULE
2307 error = config_init_component(cfdriver_ioconf_rum,
2308 cfattach_ioconf_rum, cfdata_ioconf_rum);
2309 #endif
2310 return error;
2311 case MODULE_CMD_FINI:
2312 #ifdef _MODULE
2313 error = config_fini_component(cfdriver_ioconf_rum,
2314 cfattach_ioconf_rum, cfdata_ioconf_rum);
2315 #endif
2316 return error;
2317 default:
2318 return ENOTTY;
2319 }
2320 }
2321