if_smsc.c revision 1.22.2.19 1 /* $NetBSD: if_smsc.c,v 1.22.2.19 2017/01/31 08:30:38 skrll Exp $ */
2
3 /* $OpenBSD: if_smsc.c,v 1.4 2012/09/27 12:38:11 jsg Exp $ */
4 /* $FreeBSD: src/sys/dev/usb/net/if_smsc.c,v 1.1 2012/08/15 04:03:55 gonzo Exp $ */
5 /*-
6 * Copyright (c) 2012
7 * Ben Gray <bgray (at) freebsd.org>.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 /*
32 * SMSC LAN9xxx devices (http://www.smsc.com/)
33 *
34 * The LAN9500 & LAN9500A devices are stand-alone USB to Ethernet chips that
35 * support USB 2.0 and 10/100 Mbps Ethernet.
36 *
37 * The LAN951x devices are an integrated USB hub and USB to Ethernet adapter.
38 * The driver only covers the Ethernet part, the standard USB hub driver
39 * supports the hub part.
40 *
41 * This driver is closely modelled on the Linux driver written and copyrighted
42 * by SMSC.
43 *
44 * H/W TCP & UDP Checksum Offloading
45 * ---------------------------------
46 * The chip supports both tx and rx offloading of UDP & TCP checksums, this
47 * feature can be dynamically enabled/disabled.
48 *
49 * RX checksuming is performed across bytes after the IPv4 header to the end of
50 * the Ethernet frame, this means if the frame is padded with non-zero values
51 * the H/W checksum will be incorrect, however the rx code compensates for this.
52 *
53 * TX checksuming is more complicated, the device requires a special header to
54 * be prefixed onto the start of the frame which indicates the start and end
55 * positions of the UDP or TCP frame. This requires the driver to manually
56 * go through the packet data and decode the headers prior to sending.
57 * On Linux they generally provide cues to the location of the csum and the
58 * area to calculate it over, on FreeBSD we seem to have to do it all ourselves,
59 * hence this is not as optimal and therefore h/w TX checksum is currently not
60 * implemented.
61 */
62
63 #ifdef _KERNEL_OPT
64 #include "opt_usb.h"
65 #include "opt_inet.h"
66 #endif
67
68 #include <sys/param.h>
69 #include <sys/bus.h>
70 #include <sys/device.h>
71 #include <sys/kernel.h>
72 #include <sys/mbuf.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/rndsource.h>
76 #include <sys/socket.h>
77 #include <sys/sockio.h>
78 #include <sys/systm.h>
79
80 #include <net/if.h>
81 #include <net/if_dl.h>
82 #include <net/if_media.h>
83 #include <net/if_ether.h>
84
85 #include <net/bpf.h>
86
87 #ifdef INET
88 #include <netinet/in.h>
89 #include <netinet/if_inarp.h>
90 #endif
91
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94
95 #include <dev/usb/usb.h>
96 #include <dev/usb/usbdi.h>
97 #include <dev/usb/usbdi_util.h>
98 #include <dev/usb/usbdivar.h>
99 #include <dev/usb/usbdevs.h>
100
101 #include <dev/usb/if_smscreg.h>
102 #include <dev/usb/if_smscvar.h>
103
104 #include "ioconf.h"
105
106 #ifdef USB_DEBUG
107 int smsc_debug = 0;
108 #endif
109
110 #define ETHER_ALIGN 2
111 /*
112 * Various supported device vendors/products.
113 */
114 static const struct usb_devno smsc_devs[] = {
115 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN89530 },
116 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN9530 },
117 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN9730 },
118 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500 },
119 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A },
120 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_ALT },
121 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_HAL },
122 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_SAL10 },
123 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500_ALT },
124 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500_SAL10 },
125 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505 },
126 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A },
127 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A_HAL },
128 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A_SAL10 },
129 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505_SAL10 },
130 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14 },
131 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14_ALT },
132 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14_SAL10 }
133 };
134
135 #ifdef USB_DEBUG
136 #define smsc_dbg_printf(sc, fmt, args...) \
137 do { \
138 if (smsc_debug > 0) \
139 printf("debug: " fmt, ##args); \
140 } while(0)
141 #else
142 #define smsc_dbg_printf(sc, fmt, args...)
143 #endif
144
145 #define smsc_warn_printf(sc, fmt, args...) \
146 printf("%s: warning: " fmt, device_xname((sc)->sc_dev), ##args)
147
148 #define smsc_err_printf(sc, fmt, args...) \
149 printf("%s: error: " fmt, device_xname((sc)->sc_dev), ##args)
150
151 /* Function declarations */
152 int smsc_chip_init(struct smsc_softc *);
153 void smsc_setmulti(struct smsc_softc *);
154 int smsc_setmacaddress(struct smsc_softc *, const uint8_t *);
155
156 int smsc_match(device_t, cfdata_t, void *);
157 void smsc_attach(device_t, device_t, void *);
158 int smsc_detach(device_t, int);
159 int smsc_activate(device_t, enum devact);
160
161 int smsc_init(struct ifnet *);
162 int smsc_init_locked(struct ifnet *);
163 void smsc_start(struct ifnet *);
164 void smsc_start_locked(struct ifnet *);
165 int smsc_ioctl(struct ifnet *, u_long, void *);
166 void smsc_stop(struct ifnet *, int);
167 void smsc_stop_locked(struct ifnet *, int);
168
169 void smsc_reset(struct smsc_softc *);
170 struct mbuf *smsc_newbuf(void);
171
172 void smsc_tick(void *);
173 void smsc_tick_task(void *);
174 void smsc_miibus_statchg(struct ifnet *);
175 int smsc_miibus_readreg(device_t, int, int);
176 void smsc_miibus_writereg(device_t, int, int, int);
177 int smsc_ifmedia_upd(struct ifnet *);
178 void smsc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
179 void smsc_lock_mii(struct smsc_softc *);
180 void smsc_unlock_mii(struct smsc_softc *);
181
182 int smsc_tx_list_init(struct smsc_softc *);
183 void smsc_tx_list_free(struct smsc_softc *);
184 int smsc_rx_list_init(struct smsc_softc *);
185 void smsc_rx_list_free(struct smsc_softc *);
186 int smsc_encap(struct smsc_softc *, struct mbuf *, int);
187 void smsc_rxeof(struct usbd_xfer *, void *, usbd_status);
188 void smsc_txeof(struct usbd_xfer *, void *, usbd_status);
189
190 int smsc_read_reg(struct smsc_softc *, uint32_t, uint32_t *);
191 int smsc_write_reg(struct smsc_softc *, uint32_t, uint32_t);
192 int smsc_wait_for_bits(struct smsc_softc *, uint32_t, uint32_t);
193 int smsc_sethwcsum(struct smsc_softc *);
194
195 CFATTACH_DECL_NEW(usmsc, sizeof(struct smsc_softc), smsc_match, smsc_attach,
196 smsc_detach, smsc_activate);
197
198 int
199 smsc_read_reg(struct smsc_softc *sc, uint32_t off, uint32_t *data)
200 {
201 usb_device_request_t req;
202 uint32_t buf;
203 usbd_status err;
204
205 req.bmRequestType = UT_READ_VENDOR_DEVICE;
206 req.bRequest = SMSC_UR_READ_REG;
207 USETW(req.wValue, 0);
208 USETW(req.wIndex, off);
209 USETW(req.wLength, 4);
210
211 err = usbd_do_request(sc->sc_udev, &req, &buf);
212 if (err != 0)
213 smsc_warn_printf(sc, "Failed to read register 0x%0x\n", off);
214
215 *data = le32toh(buf);
216
217 return err;
218 }
219
220 int
221 smsc_write_reg(struct smsc_softc *sc, uint32_t off, uint32_t data)
222 {
223 usb_device_request_t req;
224 uint32_t buf;
225 usbd_status err;
226
227 buf = htole32(data);
228
229 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
230 req.bRequest = SMSC_UR_WRITE_REG;
231 USETW(req.wValue, 0);
232 USETW(req.wIndex, off);
233 USETW(req.wLength, 4);
234
235 err = usbd_do_request(sc->sc_udev, &req, &buf);
236 if (err != 0)
237 smsc_warn_printf(sc, "Failed to write register 0x%0x\n", off);
238
239 return err;
240 }
241
242 int
243 smsc_wait_for_bits(struct smsc_softc *sc, uint32_t reg, uint32_t bits)
244 {
245 uint32_t val;
246 int err, i;
247
248 for (i = 0; i < 100; i++) {
249 if ((err = smsc_read_reg(sc, reg, &val)) != 0)
250 return err;
251 if (!(val & bits))
252 return 0;
253 DELAY(5);
254 }
255
256 return 1;
257 }
258
259 int
260 smsc_miibus_readreg(device_t dev, int phy, int reg)
261 {
262 struct smsc_softc *sc = device_private(dev);
263 uint32_t addr;
264 uint32_t val = 0;
265
266 smsc_lock_mii(sc);
267 if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
268 smsc_warn_printf(sc, "MII is busy\n");
269 goto done;
270 }
271
272 addr = (phy << 11) | (reg << 6) | SMSC_MII_READ;
273 smsc_write_reg(sc, SMSC_MII_ADDR, addr);
274
275 if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0)
276 smsc_warn_printf(sc, "MII read timeout\n");
277
278 smsc_read_reg(sc, SMSC_MII_DATA, &val);
279
280 done:
281 smsc_unlock_mii(sc);
282
283 return val & 0xFFFF;
284 }
285
286 void
287 smsc_miibus_writereg(device_t dev, int phy, int reg, int val)
288 {
289 struct smsc_softc *sc = device_private(dev);
290 uint32_t addr;
291
292 if (sc->sc_phyno != phy)
293 return;
294
295 smsc_lock_mii(sc);
296 if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
297 smsc_warn_printf(sc, "MII is busy\n");
298 smsc_unlock_mii(sc);
299 return;
300 }
301
302 smsc_write_reg(sc, SMSC_MII_DATA, val);
303
304 addr = (phy << 11) | (reg << 6) | SMSC_MII_WRITE;
305 smsc_write_reg(sc, SMSC_MII_ADDR, addr);
306 smsc_unlock_mii(sc);
307
308 if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0)
309 smsc_warn_printf(sc, "MII write timeout\n");
310 }
311
312 void
313 smsc_miibus_statchg(struct ifnet *ifp)
314 {
315 struct smsc_softc *sc = ifp->if_softc;
316 struct mii_data *mii = &sc->sc_mii;
317 int err;
318 uint32_t flow;
319 uint32_t afc_cfg;
320
321 if (mii == NULL || ifp == NULL ||
322 (ifp->if_flags & IFF_RUNNING) == 0)
323 return;
324
325 /* Use the MII status to determine link status */
326 sc->sc_flags &= ~SMSC_FLAG_LINK;
327 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
328 (IFM_ACTIVE | IFM_AVALID)) {
329 switch (IFM_SUBTYPE(mii->mii_media_active)) {
330 case IFM_10_T:
331 case IFM_100_TX:
332 sc->sc_flags |= SMSC_FLAG_LINK;
333 break;
334 case IFM_1000_T:
335 /* Gigabit ethernet not supported by chipset */
336 break;
337 default:
338 break;
339 }
340 }
341
342 /* Lost link, do nothing. */
343 if ((sc->sc_flags & SMSC_FLAG_LINK) == 0) {
344 smsc_dbg_printf(sc, "link flag not set\n");
345 return;
346 }
347
348 err = smsc_read_reg(sc, SMSC_AFC_CFG, &afc_cfg);
349 if (err) {
350 smsc_warn_printf(sc, "failed to read initial AFC_CFG, "
351 "error %d\n", err);
352 return;
353 }
354
355 /* Enable/disable full duplex operation and TX/RX pause */
356 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
357 smsc_dbg_printf(sc, "full duplex operation\n");
358 sc->sc_mac_csr &= ~SMSC_MAC_CSR_RCVOWN;
359 sc->sc_mac_csr |= SMSC_MAC_CSR_FDPX;
360
361 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
362 flow = 0xffff0002;
363 else
364 flow = 0;
365
366 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
367 afc_cfg |= 0xf;
368 else
369 afc_cfg &= ~0xf;
370
371 } else {
372 smsc_dbg_printf(sc, "half duplex operation\n");
373 sc->sc_mac_csr &= ~SMSC_MAC_CSR_FDPX;
374 sc->sc_mac_csr |= SMSC_MAC_CSR_RCVOWN;
375
376 flow = 0;
377 afc_cfg |= 0xf;
378 }
379
380 err = smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
381 err += smsc_write_reg(sc, SMSC_FLOW, flow);
382 err += smsc_write_reg(sc, SMSC_AFC_CFG, afc_cfg);
383 if (err)
384 smsc_warn_printf(sc, "media change failed, error %d\n", err);
385 }
386
387 int
388 smsc_ifmedia_upd(struct ifnet *ifp)
389 {
390 struct smsc_softc *sc = ifp->if_softc;
391 struct mii_data *mii = &sc->sc_mii;
392 int err;
393
394 if (mii->mii_instance) {
395 struct mii_softc *miisc;
396
397 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
398 mii_phy_reset(miisc);
399 }
400 err = mii_mediachg(mii);
401 return err;
402 }
403
404 void
405 smsc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
406 {
407 struct smsc_softc *sc = ifp->if_softc;
408 struct mii_data *mii = &sc->sc_mii;
409
410 mii_pollstat(mii);
411
412 ifmr->ifm_active = mii->mii_media_active;
413 ifmr->ifm_status = mii->mii_media_status;
414 }
415
416 static inline uint32_t
417 smsc_hash(uint8_t addr[ETHER_ADDR_LEN])
418 {
419 return (ether_crc32_be(addr, ETHER_ADDR_LEN) >> 26) & 0x3f;
420 }
421
422 void
423 smsc_setmulti(struct smsc_softc *sc)
424 {
425 struct ifnet *ifp = &sc->sc_ec.ec_if;
426 struct ether_multi *enm;
427 struct ether_multistep step;
428 uint32_t hashtbl[2] = { 0, 0 };
429 uint32_t hash;
430
431 if (sc->sc_dying)
432 return;
433
434 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
435 allmulti:
436 smsc_dbg_printf(sc, "receive all multicast enabled\n");
437 sc->sc_mac_csr |= SMSC_MAC_CSR_MCPAS;
438 sc->sc_mac_csr &= ~SMSC_MAC_CSR_HPFILT;
439 smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
440 return;
441 } else {
442 sc->sc_mac_csr |= SMSC_MAC_CSR_HPFILT;
443 sc->sc_mac_csr &= ~(SMSC_MAC_CSR_PRMS | SMSC_MAC_CSR_MCPAS);
444 }
445
446 ETHER_FIRST_MULTI(step, &sc->sc_ec, enm);
447 while (enm != NULL) {
448 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
449 ETHER_ADDR_LEN) != 0)
450 goto allmulti;
451
452 hash = smsc_hash(enm->enm_addrlo);
453 hashtbl[hash >> 5] |= 1 << (hash & 0x1F);
454 ETHER_NEXT_MULTI(step, enm);
455 }
456
457 /* Debug */
458 if (sc->sc_mac_csr & SMSC_MAC_CSR_HPFILT) {
459 smsc_dbg_printf(sc, "receive select group of macs\n");
460 } else {
461 smsc_dbg_printf(sc, "receive own packets only\n");
462 }
463
464 /* Write the hash table and mac control registers */
465 ifp->if_flags &= ~IFF_ALLMULTI;
466 smsc_write_reg(sc, SMSC_HASHH, hashtbl[1]);
467 smsc_write_reg(sc, SMSC_HASHL, hashtbl[0]);
468 smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
469 }
470
471 int
472 smsc_sethwcsum(struct smsc_softc *sc)
473 {
474 struct ifnet *ifp = &sc->sc_ec.ec_if;
475 uint32_t val;
476 int err;
477
478 if (!ifp)
479 return EIO;
480
481 err = smsc_read_reg(sc, SMSC_COE_CTRL, &val);
482 if (err != 0) {
483 smsc_warn_printf(sc, "failed to read SMSC_COE_CTRL (err=%d)\n",
484 err);
485 return err;
486 }
487
488 /* Enable/disable the Rx checksum */
489 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
490 val |= (SMSC_COE_CTRL_RX_EN | SMSC_COE_CTRL_RX_MODE);
491 else
492 val &= ~(SMSC_COE_CTRL_RX_EN | SMSC_COE_CTRL_RX_MODE);
493
494 /* Enable/disable the Tx checksum (currently not supported) */
495 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
496 val |= SMSC_COE_CTRL_TX_EN;
497 else
498 val &= ~SMSC_COE_CTRL_TX_EN;
499
500 sc->sc_coe_ctrl = val;
501
502 err = smsc_write_reg(sc, SMSC_COE_CTRL, val);
503 if (err != 0) {
504 smsc_warn_printf(sc, "failed to write SMSC_COE_CTRL (err=%d)\n",
505 err);
506 return err;
507 }
508
509 return 0;
510 }
511
512 int
513 smsc_setmacaddress(struct smsc_softc *sc, const uint8_t *addr)
514 {
515 int err;
516 uint32_t val;
517
518 smsc_dbg_printf(sc, "setting mac address to "
519 "%02x:%02x:%02x:%02x:%02x:%02x\n",
520 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
521
522 val = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
523 if ((err = smsc_write_reg(sc, SMSC_MAC_ADDRL, val)) != 0)
524 goto done;
525
526 val = (addr[5] << 8) | addr[4];
527 err = smsc_write_reg(sc, SMSC_MAC_ADDRH, val);
528
529 done:
530 return err;
531 }
532
533 void
534 smsc_reset(struct smsc_softc *sc)
535 {
536 if (sc->sc_dying)
537 return;
538
539 /* Wait a little while for the chip to get its brains in order. */
540 DELAY(1000);
541
542 /* Reinitialize controller to achieve full reset. */
543 smsc_chip_init(sc);
544 }
545
546 int
547 smsc_init(struct ifnet *ifp)
548 {
549 struct smsc_softc *sc = ifp->if_softc;
550
551 mutex_enter(&sc->sc_lock);
552 int ret = smsc_init_locked(ifp);
553 mutex_exit(&sc->sc_lock);
554
555 return ret;
556 }
557
558 int
559 smsc_init_locked(struct ifnet *ifp)
560 {
561 struct smsc_softc * const sc = ifp->if_softc;
562 usbd_status err;
563
564 if (sc->sc_dying)
565 return EIO;
566
567 /* Cancel pending I/O */
568 smsc_stop_locked(ifp, 1);
569
570 /* Reset the ethernet interface. */
571 smsc_reset(sc);
572
573 /* Load the multicast filter. */
574 smsc_setmulti(sc);
575
576 /* TCP/UDP checksum offload engines. */
577 smsc_sethwcsum(sc);
578
579 /* Open RX and TX pipes. */
580 err = usbd_open_pipe(sc->sc_iface, sc->sc_ed[SMSC_ENDPT_RX],
581 USBD_EXCLUSIVE_USE | USBD_MPSAFE, &sc->sc_ep[SMSC_ENDPT_RX]);
582 if (err) {
583 printf("%s: open rx pipe failed: %s\n",
584 device_xname(sc->sc_dev), usbd_errstr(err));
585 goto fail;
586 }
587
588 err = usbd_open_pipe(sc->sc_iface, sc->sc_ed[SMSC_ENDPT_TX],
589 USBD_EXCLUSIVE_USE | USBD_MPSAFE, &sc->sc_ep[SMSC_ENDPT_TX]);
590 if (err) {
591 printf("%s: open tx pipe failed: %s\n",
592 device_xname(sc->sc_dev), usbd_errstr(err));
593 goto fail1;
594 }
595
596 /* Init RX ring. */
597 if (smsc_rx_list_init(sc)) {
598 aprint_error_dev(sc->sc_dev, "rx list init failed\n");
599 goto fail2;
600 }
601
602 /* Init TX ring. */
603 if (smsc_tx_list_init(sc)) {
604 aprint_error_dev(sc->sc_dev, "tx list init failed\n");
605 goto fail3;
606 }
607
608 /* Start up the receive pipe. */
609 for (size_t i = 0; i < SMSC_RX_LIST_CNT; i++) {
610 struct smsc_chain *c = &sc->sc_cdata.rx_chain[i];
611 usbd_setup_xfer(c->sc_xfer, c, c->sc_buf, sc->sc_bufsz,
612 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, smsc_rxeof);
613 usbd_transfer(c->sc_xfer);
614 }
615
616 sc->sc_stopping = false;
617
618 /* Indicate we are up and running. */
619 ifp->if_flags |= IFF_RUNNING;
620 ifp->if_flags &= ~IFF_OACTIVE;
621
622 callout_reset(&sc->sc_stat_ch, hz, smsc_tick, sc);
623
624 return 0;
625
626 fail3:
627 smsc_rx_list_free(sc);
628 fail2:
629 usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_TX]);
630 fail1:
631 usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_RX]);
632 fail:
633 return EIO;
634 }
635
636 void
637 smsc_start(struct ifnet *ifp)
638 {
639 struct smsc_softc * const sc = ifp->if_softc;
640 KASSERT(ifp->if_extflags & IFEF_START_MPSAFE);
641
642 mutex_enter(&sc->sc_txlock);
643 if (!sc->sc_stopping)
644 smsc_start_locked(ifp);
645 mutex_exit(&sc->sc_txlock);
646 }
647
648 void
649 smsc_start_locked(struct ifnet *ifp)
650 {
651 struct smsc_softc * const sc = ifp->if_softc;
652 struct mbuf *m_head = NULL;
653
654 KASSERT(mutex_owned(&sc->sc_txlock));
655
656 /* Don't send anything if there is no link or controller is busy. */
657 if ((sc->sc_flags & SMSC_FLAG_LINK) == 0) {
658 return;
659 }
660
661 if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING)
662 return;
663
664 IFQ_POLL(&ifp->if_snd, m_head);
665 if (m_head == NULL)
666 return;
667
668 if (smsc_encap(sc, m_head, 0)) {
669 return;
670 }
671 IFQ_DEQUEUE(&ifp->if_snd, m_head);
672
673 bpf_mtap(ifp, m_head);
674
675 ifp->if_flags |= IFF_OACTIVE;
676
677 /*
678 * Set a timeout in case the chip goes out to lunch.
679 */
680 ifp->if_timer = 5;
681 }
682
683 void
684 smsc_tick(void *xsc)
685 {
686 struct smsc_softc *sc = xsc;
687
688 if (sc == NULL)
689 return;
690
691 if (sc->sc_dying)
692 return;
693
694 usb_add_task(sc->sc_udev, &sc->sc_tick_task, USB_TASKQ_DRIVER);
695 }
696
697 void
698 smsc_stop(struct ifnet *ifp, int disable)
699 {
700 struct smsc_softc * const sc = ifp->if_softc;
701
702 mutex_enter(&sc->sc_lock);
703 smsc_stop_locked(ifp, disable);
704 mutex_exit(&sc->sc_lock);
705 }
706
707 void
708 smsc_stop_locked(struct ifnet *ifp, int disable)
709 {
710 struct smsc_softc * const sc = ifp->if_softc;
711 usbd_status err;
712
713 // smsc_reset(sc);
714
715 KASSERT(mutex_owned(&sc->sc_lock));
716 mutex_enter(&sc->sc_rxlock);
717 mutex_enter(&sc->sc_txlock);
718 sc->sc_stopping = true;
719 mutex_exit(&sc->sc_txlock);
720 mutex_exit(&sc->sc_rxlock);
721
722 callout_stop(&sc->sc_stat_ch);
723
724 /* Stop transfers. */
725 if (sc->sc_ep[SMSC_ENDPT_RX] != NULL) {
726 err = usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_RX]);
727 if (err) {
728 printf("%s: abort rx pipe failed: %s\n",
729 device_xname(sc->sc_dev), usbd_errstr(err));
730 }
731 }
732
733 if (sc->sc_ep[SMSC_ENDPT_TX] != NULL) {
734 err = usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_TX]);
735 if (err) {
736 printf("%s: abort tx pipe failed: %s\n",
737 device_xname(sc->sc_dev), usbd_errstr(err));
738 }
739 }
740
741 if (sc->sc_ep[SMSC_ENDPT_INTR] != NULL) {
742 err = usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_INTR]);
743 if (err) {
744 printf("%s: abort intr pipe failed: %s\n",
745 device_xname(sc->sc_dev), usbd_errstr(err));
746 }
747 }
748
749 smsc_rx_list_free(sc);
750
751 smsc_tx_list_free(sc);
752
753 /* Close pipes */
754 if (sc->sc_ep[SMSC_ENDPT_RX] != NULL) {
755 err = usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_RX]);
756 if (err) {
757 printf("%s: close rx pipe failed: %s\n",
758 device_xname(sc->sc_dev), usbd_errstr(err));
759 }
760 sc->sc_ep[SMSC_ENDPT_RX] = NULL;
761 }
762
763 if (sc->sc_ep[SMSC_ENDPT_TX] != NULL) {
764 err = usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_TX]);
765 if (err) {
766 printf("%s: close tx pipe failed: %s\n",
767 device_xname(sc->sc_dev), usbd_errstr(err));
768 }
769 sc->sc_ep[SMSC_ENDPT_TX] = NULL;
770 }
771
772 if (sc->sc_ep[SMSC_ENDPT_INTR] != NULL) {
773 err = usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_INTR]);
774 if (err) {
775 printf("%s: close intr pipe failed: %s\n",
776 device_xname(sc->sc_dev), usbd_errstr(err));
777 }
778 sc->sc_ep[SMSC_ENDPT_INTR] = NULL;
779 }
780
781 ifp->if_timer = 0;
782 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
783
784 if (disable) {
785 /* drain */
786 }
787 }
788
789 int
790 smsc_chip_init(struct smsc_softc *sc)
791 {
792 int err;
793 uint32_t reg_val;
794 int burst_cap;
795
796 /* Enter H/W config mode */
797 smsc_write_reg(sc, SMSC_HW_CFG, SMSC_HW_CFG_LRST);
798
799 if ((err = smsc_wait_for_bits(sc, SMSC_HW_CFG,
800 SMSC_HW_CFG_LRST)) != 0) {
801 smsc_warn_printf(sc, "timed-out waiting for reset to "
802 "complete\n");
803 goto init_failed;
804 }
805
806 /* Reset the PHY */
807 smsc_write_reg(sc, SMSC_PM_CTRL, SMSC_PM_CTRL_PHY_RST);
808
809 if ((err = smsc_wait_for_bits(sc, SMSC_PM_CTRL,
810 SMSC_PM_CTRL_PHY_RST)) != 0) {
811 smsc_warn_printf(sc, "timed-out waiting for phy reset to "
812 "complete\n");
813 goto init_failed;
814 }
815 usbd_delay_ms(sc->sc_udev, 40);
816
817 /* Set the mac address */
818 struct ifnet * const ifp = &sc->sc_ec.ec_if;
819 const char *eaddr = CLLADDR(ifp->if_sadl);
820 if ((err = smsc_setmacaddress(sc, eaddr)) != 0) {
821 smsc_warn_printf(sc, "failed to set the MAC address\n");
822 goto init_failed;
823 }
824
825 /*
826 * Don't know what the HW_CFG_BIR bit is, but following the reset
827 * sequence as used in the Linux driver.
828 */
829 if ((err = smsc_read_reg(sc, SMSC_HW_CFG, ®_val)) != 0) {
830 smsc_warn_printf(sc, "failed to read HW_CFG: %d\n", err);
831 goto init_failed;
832 }
833 reg_val |= SMSC_HW_CFG_BIR;
834 smsc_write_reg(sc, SMSC_HW_CFG, reg_val);
835
836 /*
837 * There is a so called 'turbo mode' that the linux driver supports, it
838 * seems to allow you to jam multiple frames per Rx transaction.
839 * By default this driver supports that and therefore allows multiple
840 * frames per USB transfer.
841 *
842 * The xfer buffer size needs to reflect this as well, therefore based
843 * on the calculations in the Linux driver the RX bufsize is set to
844 * 18944,
845 * bufsz = (16 * 1024 + 5 * 512)
846 *
847 * Burst capability is the number of URBs that can be in a burst of
848 * data/ethernet frames.
849 */
850
851 if (sc->sc_udev->ud_speed == USB_SPEED_HIGH)
852 burst_cap = 37;
853 else
854 burst_cap = 128;
855
856 smsc_write_reg(sc, SMSC_BURST_CAP, burst_cap);
857
858 /* Set the default bulk in delay (magic value from Linux driver) */
859 smsc_write_reg(sc, SMSC_BULK_IN_DLY, 0x00002000);
860
861 /*
862 * Initialise the RX interface
863 */
864 if ((err = smsc_read_reg(sc, SMSC_HW_CFG, ®_val)) < 0) {
865 smsc_warn_printf(sc, "failed to read HW_CFG: (err = %d)\n",
866 err);
867 goto init_failed;
868 }
869
870 /*
871 * The following settings are used for 'turbo mode', a.k.a multiple
872 * frames per Rx transaction (again info taken form Linux driver).
873 */
874 reg_val |= (SMSC_HW_CFG_MEF | SMSC_HW_CFG_BCE);
875
876 /*
877 * set Rx data offset to ETHER_ALIGN which will make the IP header
878 * align on a word boundary.
879 */
880 reg_val |= ETHER_ALIGN << SMSC_HW_CFG_RXDOFF_SHIFT;
881
882 smsc_write_reg(sc, SMSC_HW_CFG, reg_val);
883
884 /* Clear the status register ? */
885 smsc_write_reg(sc, SMSC_INTR_STATUS, 0xffffffff);
886
887 /* Read and display the revision register */
888 if ((err = smsc_read_reg(sc, SMSC_ID_REV, &sc->sc_rev_id)) < 0) {
889 smsc_warn_printf(sc, "failed to read ID_REV (err = %d)\n", err);
890 goto init_failed;
891 }
892
893 /* GPIO/LED setup */
894 reg_val = SMSC_LED_GPIO_CFG_SPD_LED | SMSC_LED_GPIO_CFG_LNK_LED |
895 SMSC_LED_GPIO_CFG_FDX_LED;
896 smsc_write_reg(sc, SMSC_LED_GPIO_CFG, reg_val);
897
898 /*
899 * Initialise the TX interface
900 */
901 smsc_write_reg(sc, SMSC_FLOW, 0);
902
903 smsc_write_reg(sc, SMSC_AFC_CFG, AFC_CFG_DEFAULT);
904
905 /* Read the current MAC configuration */
906 if ((err = smsc_read_reg(sc, SMSC_MAC_CSR, &sc->sc_mac_csr)) < 0) {
907 smsc_warn_printf(sc, "failed to read MAC_CSR (err=%d)\n", err);
908 goto init_failed;
909 }
910
911 /* disable pad stripping, collides with checksum offload */
912 sc->sc_mac_csr &= ~SMSC_MAC_CSR_PADSTR;
913
914 /* Vlan */
915 smsc_write_reg(sc, SMSC_VLAN1, (uint32_t)ETHERTYPE_VLAN);
916
917 /*
918 * Start TX
919 */
920 sc->sc_mac_csr |= SMSC_MAC_CSR_TXEN;
921 smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
922 smsc_write_reg(sc, SMSC_TX_CFG, SMSC_TX_CFG_ON);
923
924 /*
925 * Start RX
926 */
927 sc->sc_mac_csr |= SMSC_MAC_CSR_RXEN;
928 smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
929
930 return 0;
931
932 init_failed:
933 smsc_err_printf(sc, "smsc_chip_init failed (err=%d)\n", err);
934 return err;
935 }
936
937 static int
938 smsc_ifflags_cb(struct ethercom *ec)
939 {
940 struct ifnet *ifp = &ec->ec_if;
941 struct smsc_softc *sc = ifp->if_softc;
942 int rc = 0;
943
944 mutex_enter(&sc->sc_lock);
945
946 int change = ifp->if_flags ^ sc->sc_if_flags;
947 sc->sc_if_flags = ifp->if_flags;
948
949 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
950 rc = ENETRESET;
951 goto out;
952 }
953
954 if ((change & IFF_PROMISC) != 0) {
955 if (ifp->if_flags & IFF_PROMISC) {
956 sc->sc_mac_csr |= SMSC_MAC_CSR_PRMS;
957 smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
958 } else if (!(ifp->if_flags & IFF_PROMISC)) {
959 sc->sc_mac_csr &= ~SMSC_MAC_CSR_PRMS;
960 smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
961 }
962 smsc_setmulti(sc);
963 }
964
965 out:
966 mutex_exit(&sc->sc_lock);
967
968 return rc;
969 }
970
971
972 int
973 smsc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
974 {
975 struct smsc_softc *sc = ifp->if_softc;
976 // struct ifreq /*const*/ *ifr = data;
977 int s, error = 0;
978
979 if (sc->sc_dying)
980 return EIO;
981
982 s = splnet();
983 error = ether_ioctl(ifp, cmd, data);
984 splx(s);
985
986 if (error == ENETRESET) {
987 error = 0;
988 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
989 ;
990 else if (ifp->if_flags & IFF_RUNNING) {
991 mutex_enter(&sc->sc_lock);
992 smsc_setmulti(sc);
993 mutex_exit(&sc->sc_lock);
994 }
995 }
996 return error;
997 }
998
999 int
1000 smsc_match(device_t parent, cfdata_t match, void *aux)
1001 {
1002 struct usb_attach_arg *uaa = aux;
1003
1004 return (usb_lookup(smsc_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
1005 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
1006 }
1007
1008 void
1009 smsc_attach(device_t parent, device_t self, void *aux)
1010 {
1011 struct smsc_softc *sc = device_private(self);
1012 struct usb_attach_arg *uaa = aux;
1013 struct usbd_device *dev = uaa->uaa_device;
1014 usb_interface_descriptor_t *id;
1015 usb_endpoint_descriptor_t *ed;
1016 char *devinfop;
1017 struct mii_data *mii;
1018 struct ifnet *ifp;
1019 int err, i;
1020 uint32_t mac_h, mac_l;
1021
1022 sc->sc_dev = self;
1023 sc->sc_udev = dev;
1024 sc->sc_stopping = false;
1025
1026 aprint_naive("\n");
1027 aprint_normal("\n");
1028
1029 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
1030 aprint_normal_dev(self, "%s\n", devinfop);
1031 usbd_devinfo_free(devinfop);
1032
1033 err = usbd_set_config_no(dev, SMSC_CONFIG_INDEX, 1);
1034 if (err) {
1035 aprint_error_dev(self, "failed to set configuration"
1036 ", err=%s\n", usbd_errstr(err));
1037 return;
1038 }
1039 /* Setup the endpoints for the SMSC LAN95xx device(s) */
1040 usb_init_task(&sc->sc_tick_task, smsc_tick_task, sc, 0);
1041 usb_init_task(&sc->sc_stop_task, (void (*)(void *))smsc_stop, sc, 0);
1042
1043 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
1044 mutex_init(&sc->sc_txlock, MUTEX_DEFAULT, IPL_SOFTUSB);
1045 mutex_init(&sc->sc_rxlock, MUTEX_DEFAULT, IPL_SOFTUSB);
1046 mutex_init(&sc->sc_mii_lock, MUTEX_DEFAULT, IPL_NONE);
1047
1048 err = usbd_device2interface_handle(dev, SMSC_IFACE_IDX, &sc->sc_iface);
1049 if (err) {
1050 aprint_error_dev(self, "getting interface handle failed\n");
1051 return;
1052 }
1053
1054 id = usbd_get_interface_descriptor(sc->sc_iface);
1055
1056 if (sc->sc_udev->ud_speed >= USB_SPEED_HIGH)
1057 sc->sc_bufsz = SMSC_MAX_BUFSZ;
1058 else
1059 sc->sc_bufsz = SMSC_MIN_BUFSZ;
1060
1061 /* Find endpoints. */
1062 for (i = 0; i < id->bNumEndpoints; i++) {
1063 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
1064 if (!ed) {
1065 aprint_error_dev(self, "couldn't get ep %d\n", i);
1066 return;
1067 }
1068 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
1069 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
1070 sc->sc_ed[SMSC_ENDPT_RX] = ed->bEndpointAddress;
1071 } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
1072 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
1073 sc->sc_ed[SMSC_ENDPT_TX] = ed->bEndpointAddress;
1074 } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
1075 UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) {
1076 sc->sc_ed[SMSC_ENDPT_INTR] = ed->bEndpointAddress;
1077 }
1078 }
1079
1080 ifp = &sc->sc_ec.ec_if;
1081 ifp->if_softc = sc;
1082 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1083 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1084 ifp->if_extflags = IFEF_START_MPSAFE;
1085 ifp->if_init = smsc_init;
1086 ifp->if_ioctl = smsc_ioctl;
1087 ifp->if_start = smsc_start;
1088 ifp->if_stop = smsc_stop;
1089
1090 #ifdef notyet
1091 /*
1092 * We can do TCPv4, and UDPv4 checksums in hardware.
1093 */
1094 ifp->if_capabilities |=
1095 /*IFCAP_CSUM_TCPv4_Tx |*/ IFCAP_CSUM_TCPv4_Rx |
1096 /*IFCAP_CSUM_UDPv4_Tx |*/ IFCAP_CSUM_UDPv4_Rx;
1097 #endif
1098
1099 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
1100
1101 /* Setup some of the basics */
1102 sc->sc_phyno = 1;
1103
1104 /*
1105 * Attempt to get the mac address, if an EEPROM is not attached this
1106 * will just return FF:FF:FF:FF:FF:FF, so in such cases we invent a MAC
1107 * address based on urandom.
1108 */
1109 memset(sc->sc_enaddr, 0xff, ETHER_ADDR_LEN);
1110
1111 prop_dictionary_t dict = device_properties(self);
1112 prop_data_t eaprop = prop_dictionary_get(dict, "mac-address");
1113
1114 if (eaprop != NULL) {
1115 KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
1116 KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
1117 memcpy(sc->sc_enaddr, prop_data_data_nocopy(eaprop),
1118 ETHER_ADDR_LEN);
1119 } else
1120 /* Check if there is already a MAC address in the register */
1121 if ((smsc_read_reg(sc, SMSC_MAC_ADDRL, &mac_l) == 0) &&
1122 (smsc_read_reg(sc, SMSC_MAC_ADDRH, &mac_h) == 0)) {
1123 sc->sc_enaddr[5] = (uint8_t)((mac_h >> 8) & 0xff);
1124 sc->sc_enaddr[4] = (uint8_t)((mac_h) & 0xff);
1125 sc->sc_enaddr[3] = (uint8_t)((mac_l >> 24) & 0xff);
1126 sc->sc_enaddr[2] = (uint8_t)((mac_l >> 16) & 0xff);
1127 sc->sc_enaddr[1] = (uint8_t)((mac_l >> 8) & 0xff);
1128 sc->sc_enaddr[0] = (uint8_t)((mac_l) & 0xff);
1129 }
1130
1131 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(sc->sc_enaddr));
1132
1133 IFQ_SET_READY(&ifp->if_snd);
1134
1135 /* Initialize MII/media info. */
1136 mii = &sc->sc_mii;
1137 mii->mii_ifp = ifp;
1138 mii->mii_readreg = smsc_miibus_readreg;
1139 mii->mii_writereg = smsc_miibus_writereg;
1140 mii->mii_statchg = smsc_miibus_statchg;
1141 mii->mii_flags = MIIF_AUTOTSLEEP;
1142 sc->sc_ec.ec_mii = mii;
1143 ifmedia_init(&mii->mii_media, 0, smsc_ifmedia_upd, smsc_ifmedia_sts);
1144 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
1145
1146 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1147 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1148 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1149 } else
1150 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1151
1152 if_initialize(ifp);
1153 sc->sc_ipq = if_percpuq_create(&sc->sc_ec.ec_if);
1154 ether_ifattach(ifp, sc->sc_enaddr);
1155 if_register(ifp);
1156 ether_set_ifflags_cb(&sc->sc_ec, smsc_ifflags_cb);
1157
1158 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
1159 RND_TYPE_NET, RND_FLAG_DEFAULT);
1160
1161 callout_init(&sc->sc_stat_ch, 0);
1162
1163 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
1164 }
1165
1166 int
1167 smsc_detach(device_t self, int flags)
1168 {
1169 struct smsc_softc *sc = device_private(self);
1170 struct ifnet *ifp = &sc->sc_ec.ec_if;
1171 int s;
1172
1173 callout_stop(&sc->sc_stat_ch);
1174
1175 if (sc->sc_ep[SMSC_ENDPT_TX] != NULL)
1176 usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_TX]);
1177 if (sc->sc_ep[SMSC_ENDPT_RX] != NULL)
1178 usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_RX]);
1179 if (sc->sc_ep[SMSC_ENDPT_INTR] != NULL)
1180 usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_INTR]);
1181
1182 /*
1183 * Remove any pending tasks. They cannot be executing because they run
1184 * in the same thread as detach.
1185 */
1186 usb_rem_task(sc->sc_udev, &sc->sc_tick_task);
1187 usb_rem_task(sc->sc_udev, &sc->sc_stop_task);
1188
1189 s = splusb();
1190
1191 if (--sc->sc_refcnt >= 0) {
1192 /* Wait for processes to go away */
1193 usb_detach_waitold(sc->sc_dev);
1194 }
1195
1196 if (ifp->if_flags & IFF_RUNNING)
1197 smsc_stop(ifp ,1);
1198
1199 rnd_detach_source(&sc->sc_rnd_source);
1200 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1201 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1202 if (ifp->if_softc != NULL) {
1203 ether_ifdetach(ifp);
1204 if_detach(ifp);
1205 }
1206
1207 #ifdef DIAGNOSTIC
1208 if (sc->sc_ep[SMSC_ENDPT_TX] != NULL ||
1209 sc->sc_ep[SMSC_ENDPT_RX] != NULL ||
1210 sc->sc_ep[SMSC_ENDPT_INTR] != NULL)
1211 printf("%s: detach has active endpoints\n",
1212 device_xname(sc->sc_dev));
1213 #endif
1214
1215 if (--sc->sc_refcnt >= 0) {
1216 /* Wait for processes to go away. */
1217 usb_detach_waitold(sc->sc_dev);
1218 }
1219 splx(s);
1220
1221 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
1222
1223 mutex_destroy(&sc->sc_mii_lock);
1224
1225 mutex_destroy(&sc->sc_rxlock);
1226 mutex_destroy(&sc->sc_txlock);
1227 mutex_destroy(&sc->sc_lock);
1228
1229 return 0;
1230 }
1231
1232 void
1233 smsc_tick_task(void *xsc)
1234 {
1235 int s;
1236 struct smsc_softc *sc = xsc;
1237 struct ifnet *ifp;
1238 struct mii_data *mii;
1239
1240 if (sc == NULL)
1241 return;
1242
1243 if (sc->sc_dying)
1244 return;
1245 ifp = &sc->sc_ec.ec_if;
1246 mii = &sc->sc_mii;
1247 if (mii == NULL)
1248 return;
1249
1250 s = splnet();
1251
1252 mii_tick(mii);
1253 if ((sc->sc_flags & SMSC_FLAG_LINK) == 0)
1254 smsc_miibus_statchg(ifp);
1255 callout_reset(&sc->sc_stat_ch, hz, smsc_tick, sc);
1256
1257 splx(s);
1258 }
1259
1260 int
1261 smsc_activate(device_t self, enum devact act)
1262 {
1263 struct smsc_softc *sc = device_private(self);
1264
1265 switch (act) {
1266 case DVACT_DEACTIVATE:
1267 if_deactivate(&sc->sc_ec.ec_if);
1268 sc->sc_dying = 1;
1269 return 0;
1270 default:
1271 return EOPNOTSUPP;
1272 }
1273 return 0;
1274 }
1275
1276 void
1277 smsc_lock_mii(struct smsc_softc *sc)
1278 {
1279 sc->sc_refcnt++;
1280 mutex_enter(&sc->sc_mii_lock);
1281 }
1282
1283 void
1284 smsc_unlock_mii(struct smsc_softc *sc)
1285 {
1286 mutex_exit(&sc->sc_mii_lock);
1287 if (--sc->sc_refcnt < 0)
1288 usb_detach_wakeupold(sc->sc_dev);
1289 }
1290
1291 void
1292 smsc_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
1293 {
1294 struct smsc_chain *c = (struct smsc_chain *)priv;
1295 struct smsc_softc *sc = c->sc_sc;
1296 struct ifnet *ifp = &sc->sc_ec.ec_if;
1297 u_char *buf = c->sc_buf;
1298 uint32_t total_len;
1299 uint32_t rxhdr;
1300 uint16_t pktlen;
1301 struct mbuf *m;
1302
1303 mutex_enter(&sc->sc_rxlock);
1304
1305 if (sc->sc_dying) {
1306 mutex_exit(&sc->sc_rxlock);
1307 return;
1308 }
1309
1310 if (!(ifp->if_flags & IFF_RUNNING)) {
1311 mutex_exit(&sc->sc_rxlock);
1312 return;
1313 }
1314
1315 if (status != USBD_NORMAL_COMPLETION) {
1316 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
1317 mutex_exit(&sc->sc_rxlock);
1318 return;
1319 }
1320 if (usbd_ratecheck(&sc->sc_rx_notice)) {
1321 printf("%s: usb errors on rx: %s\n",
1322 device_xname(sc->sc_dev), usbd_errstr(status));
1323 }
1324 if (status == USBD_STALLED)
1325 usbd_clear_endpoint_stall_async(sc->sc_ep[SMSC_ENDPT_RX]);
1326 goto done;
1327 }
1328
1329 usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL);
1330 smsc_dbg_printf(sc, "xfer status total_len %d\n", total_len);
1331
1332 while (total_len != 0) {
1333 if (total_len < sizeof(rxhdr)) {
1334 smsc_dbg_printf(sc, "total_len %d < sizeof(rxhdr) %zu\n",
1335 total_len, sizeof(rxhdr));
1336 ifp->if_ierrors++;
1337 goto done;
1338 }
1339
1340 memcpy(&rxhdr, buf, sizeof(rxhdr));
1341 rxhdr = le32toh(rxhdr);
1342 buf += sizeof(rxhdr);
1343 total_len -= sizeof(rxhdr);
1344
1345 if (rxhdr & SMSC_RX_STAT_COLLISION)
1346 ifp->if_collisions++;
1347
1348 if (rxhdr & (SMSC_RX_STAT_ERROR
1349 | SMSC_RX_STAT_LENGTH_ERROR
1350 | SMSC_RX_STAT_MII_ERROR)) {
1351 smsc_dbg_printf(sc, "rx error (hdr 0x%08x)\n", rxhdr);
1352 ifp->if_ierrors++;
1353 goto done;
1354 }
1355
1356 pktlen = (uint16_t)SMSC_RX_STAT_FRM_LENGTH(rxhdr);
1357 smsc_dbg_printf(sc, "rxeof total_len %d pktlen %d rxhdr "
1358 "0x%08x\n", total_len, pktlen, rxhdr);
1359
1360 if (pktlen < ETHER_HDR_LEN) {
1361 smsc_dbg_printf(sc, "pktlen %d < ETHER_HDR_LEN %d\n",
1362 pktlen, ETHER_HDR_LEN);
1363 ifp->if_ierrors++;
1364 goto done;
1365 }
1366
1367 pktlen += ETHER_ALIGN;
1368
1369 if (pktlen > MCLBYTES) {
1370 smsc_dbg_printf(sc, "pktlen %d > MCLBYTES %d\n",
1371 pktlen, MCLBYTES);
1372 ifp->if_ierrors++;
1373 goto done;
1374 }
1375
1376 if (pktlen > total_len) {
1377 smsc_dbg_printf(sc, "pktlen %d > total_len %d\n",
1378 pktlen, total_len);
1379 ifp->if_ierrors++;
1380 goto done;
1381 }
1382
1383 m = smsc_newbuf();
1384 if (m == NULL) {
1385 smsc_dbg_printf(sc, "smc_newbuf returned NULL\n");
1386 ifp->if_ierrors++;
1387 goto done;
1388 }
1389
1390 ifp->if_ipackets++;
1391 m_set_rcvif(m, ifp);
1392 m->m_pkthdr.len = m->m_len = pktlen;
1393 m->m_flags |= M_HASFCS;
1394 m_adj(m, ETHER_ALIGN);
1395
1396 KASSERT(m->m_len < MCLBYTES);
1397 memcpy(mtod(m, char *), buf + ETHER_ALIGN, m->m_len);
1398
1399 /* Check if RX TCP/UDP checksumming is being offloaded */
1400 if (sc->sc_coe_ctrl & SMSC_COE_CTRL_RX_EN) {
1401 smsc_dbg_printf(sc,"RX checksum offload checking\n");
1402 struct ether_header *eh;
1403
1404 eh = mtod(m, struct ether_header *);
1405
1406 /* Remove the extra 2 bytes of the csum */
1407 m_adj(m, -2);
1408
1409 /*
1410 * The checksum appears to be simplistically calculated
1411 * over the udp/tcp header and data up to the end of the
1412 * eth frame. Which means if the eth frame is padded
1413 * the csum calculation is incorrectly performed over
1414 * the padding bytes as well. Therefore to be safe we
1415 * ignore the H/W csum on frames less than or equal to
1416 * 64 bytes.
1417 *
1418 * Ignore H/W csum for non-IPv4 packets.
1419 */
1420 smsc_dbg_printf(sc,"Ethertype %02x pktlen %02x\n",
1421 be16toh(eh->ether_type), pktlen);
1422 if (be16toh(eh->ether_type) == ETHERTYPE_IP &&
1423 pktlen > ETHER_MIN_LEN) {
1424
1425 m->m_pkthdr.csum_flags |=
1426 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
1427
1428 /*
1429 * Copy the TCP/UDP checksum from the last 2
1430 * bytes of the transfer and put in the
1431 * csum_data field.
1432 */
1433 memcpy(&m->m_pkthdr.csum_data,
1434 buf + pktlen - 2, 2);
1435 /*
1436 * The data is copied in network order, but the
1437 * csum algorithm in the kernel expects it to be
1438 * in host network order.
1439 */
1440 m->m_pkthdr.csum_data =
1441 ntohs(m->m_pkthdr.csum_data);
1442 smsc_dbg_printf(sc,
1443 "RX checksum offloaded (0x%04x)\n",
1444 m->m_pkthdr.csum_data);
1445 }
1446 }
1447
1448 /* round up to next longword */
1449 pktlen = (pktlen + 3) & ~0x3;
1450
1451 /* total_len does not include the padding */
1452 if (pktlen > total_len)
1453 pktlen = total_len;
1454
1455 buf += pktlen;
1456 total_len -= pktlen;
1457
1458 mutex_exit(&sc->sc_rxlock);
1459
1460 /* push the packet up */
1461 bpf_mtap(ifp, m);
1462 if_percpuq_enqueue(sc->sc_ipq, m);
1463
1464 mutex_enter(&sc->sc_rxlock);
1465 }
1466
1467 done:
1468 mutex_exit(&sc->sc_rxlock);
1469
1470 /* Setup new transfer. */
1471 usbd_setup_xfer(xfer, c, c->sc_buf, sc->sc_bufsz, USBD_SHORT_XFER_OK,
1472 USBD_NO_TIMEOUT, smsc_rxeof);
1473 usbd_transfer(xfer);
1474
1475 return;
1476 }
1477
1478 void
1479 smsc_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
1480 {
1481 struct smsc_chain *c = priv;
1482 struct smsc_softc *sc = c->sc_sc;
1483 struct ifnet *ifp = &sc->sc_ec.ec_if;
1484
1485 mutex_enter(&sc->sc_txlock);
1486
1487 if (sc->sc_dying) {
1488 mutex_exit(&sc->sc_txlock);
1489 return;
1490 }
1491
1492 if (sc->sc_stopping) {
1493 mutex_exit(&sc->sc_txlock);
1494 return;
1495 }
1496
1497 ifp->if_timer = 0;
1498 ifp->if_flags &= ~IFF_OACTIVE;
1499
1500 if (status != USBD_NORMAL_COMPLETION) {
1501 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
1502 mutex_exit(&sc->sc_txlock);
1503 return;
1504 }
1505 ifp->if_oerrors++;
1506 printf("%s: usb error on tx: %s\n", device_xname(sc->sc_dev),
1507 usbd_errstr(status));
1508 if (status == USBD_STALLED)
1509 usbd_clear_endpoint_stall_async(sc->sc_ep[SMSC_ENDPT_TX]);
1510 mutex_exit(&sc->sc_txlock);
1511 return;
1512 }
1513 ifp->if_opackets++;
1514
1515 m_freem(c->sc_mbuf);
1516 c->sc_mbuf = NULL;
1517
1518 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1519 smsc_start_locked(ifp);
1520
1521 mutex_exit(&sc->sc_txlock);
1522 }
1523
1524 int
1525 smsc_tx_list_init(struct smsc_softc *sc)
1526 {
1527 struct smsc_cdata *cd = &sc->sc_cdata;
1528 struct smsc_chain *c;
1529 int i;
1530
1531 for (i = 0; i < SMSC_TX_LIST_CNT; i++) {
1532 c = &cd->tx_chain[i];
1533 c->sc_sc = sc;
1534 c->sc_idx = i;
1535 c->sc_mbuf = NULL;
1536 if (c->sc_xfer == NULL) {
1537 int error = usbd_create_xfer(sc->sc_ep[SMSC_ENDPT_TX],
1538 sc->sc_bufsz, USBD_FORCE_SHORT_XFER, 0,
1539 &c->sc_xfer);
1540 if (error)
1541 return EIO;
1542 c->sc_buf = usbd_get_buffer(c->sc_xfer);
1543 }
1544 }
1545
1546 return 0;
1547 }
1548
1549 void
1550 smsc_tx_list_free(struct smsc_softc *sc)
1551 {
1552 /* Free TX resources. */
1553 for (size_t i = 0; i < SMSC_TX_LIST_CNT; i++) {
1554 if (sc->sc_cdata.tx_chain[i].sc_mbuf != NULL) {
1555 m_freem(sc->sc_cdata.tx_chain[i].sc_mbuf);
1556 sc->sc_cdata.tx_chain[i].sc_mbuf = NULL;
1557 }
1558 if (sc->sc_cdata.tx_chain[i].sc_xfer != NULL) {
1559 usbd_destroy_xfer(sc->sc_cdata.tx_chain[i].sc_xfer);
1560 sc->sc_cdata.tx_chain[i].sc_xfer = NULL;
1561 }
1562 }
1563 }
1564
1565 int
1566 smsc_rx_list_init(struct smsc_softc *sc)
1567 {
1568 struct smsc_cdata *cd = &sc->sc_cdata;
1569 struct smsc_chain *c;
1570 int i;
1571
1572 for (i = 0; i < SMSC_RX_LIST_CNT; i++) {
1573 c = &cd->rx_chain[i];
1574 c->sc_sc = sc;
1575 c->sc_idx = i;
1576 c->sc_mbuf = NULL;
1577 if (c->sc_xfer == NULL) {
1578 int error = usbd_create_xfer(sc->sc_ep[SMSC_ENDPT_RX],
1579 sc->sc_bufsz, USBD_SHORT_XFER_OK, 0, &c->sc_xfer);
1580 if (error)
1581 return error;
1582 c->sc_buf = usbd_get_buffer(c->sc_xfer);
1583 }
1584 }
1585
1586 return 0;
1587 }
1588
1589 void
1590 smsc_rx_list_free(struct smsc_softc *sc)
1591 {
1592 /* Free RX resources. */
1593 for (size_t i = 0; i < SMSC_RX_LIST_CNT; i++) {
1594 if (sc->sc_cdata.rx_chain[i].sc_mbuf != NULL) {
1595 m_freem(sc->sc_cdata.rx_chain[i].sc_mbuf);
1596 sc->sc_cdata.rx_chain[i].sc_mbuf = NULL;
1597 }
1598 if (sc->sc_cdata.rx_chain[i].sc_xfer != NULL) {
1599 usbd_destroy_xfer(sc->sc_cdata.rx_chain[i].sc_xfer);
1600 sc->sc_cdata.rx_chain[i].sc_xfer = NULL;
1601 }
1602 }
1603 }
1604
1605 struct mbuf *
1606 smsc_newbuf(void)
1607 {
1608 struct mbuf *m;
1609
1610 MGETHDR(m, M_DONTWAIT, MT_DATA);
1611 if (m == NULL)
1612 return NULL;
1613
1614 MCLGET(m, M_DONTWAIT);
1615 if (!(m->m_flags & M_EXT)) {
1616 m_freem(m);
1617 return NULL;
1618 }
1619
1620 return m;
1621 }
1622
1623 int
1624 smsc_encap(struct smsc_softc *sc, struct mbuf *m, int idx)
1625 {
1626 struct ifnet * const ifp = &sc->sc_ec.ec_if;
1627 struct smsc_chain * const c = &sc->sc_cdata.tx_chain[idx];
1628 uint32_t txhdr;
1629 uint32_t frm_len = 0;
1630
1631 /*
1632 * Each frame is prefixed with two 32-bit values describing the
1633 * length of the packet and buffer.
1634 */
1635 txhdr = SMSC_TX_CTRL_0_BUF_SIZE(m->m_pkthdr.len) |
1636 SMSC_TX_CTRL_0_FIRST_SEG | SMSC_TX_CTRL_0_LAST_SEG;
1637 txhdr = htole32(txhdr);
1638 memcpy(c->sc_buf, &txhdr, sizeof(txhdr));
1639
1640 txhdr = SMSC_TX_CTRL_1_PKT_LENGTH(m->m_pkthdr.len);
1641 txhdr = htole32(txhdr);
1642 memcpy(c->sc_buf + 4, &txhdr, sizeof(txhdr));
1643
1644 frm_len += 8;
1645
1646 /* Next copy in the actual packet */
1647 m_copydata(m, 0, m->m_pkthdr.len, c->sc_buf + frm_len);
1648 frm_len += m->m_pkthdr.len;
1649
1650 c->sc_mbuf = m;
1651
1652 usbd_setup_xfer(c->sc_xfer, c, c->sc_buf, frm_len,
1653 USBD_FORCE_SHORT_XFER, 10000, smsc_txeof);
1654
1655 usbd_status err = usbd_transfer(c->sc_xfer);
1656 /* XXXNH get task to stop interface */
1657 if (err != USBD_IN_PROGRESS) {
1658 smsc_stop(ifp, 0);
1659 return EIO;
1660 }
1661
1662 sc->sc_cdata.tx_cnt++;
1663
1664 return 0;
1665 }
1666