if_smsc.c revision 1.22.2.36 1 /* $NetBSD: if_smsc.c,v 1.22.2.36 2017/04/15 14:38:44 skrll Exp $ */
2
3 /* $OpenBSD: if_smsc.c,v 1.4 2012/09/27 12:38:11 jsg Exp $ */
4 /* $FreeBSD: src/sys/dev/usb/net/if_smsc.c,v 1.1 2012/08/15 04:03:55 gonzo Exp $ */
5 /*-
6 * Copyright (c) 2012
7 * Ben Gray <bgray (at) freebsd.org>.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 /*
32 * SMSC LAN9xxx devices (http://www.smsc.com/)
33 *
34 * The LAN9500 & LAN9500A devices are stand-alone USB to Ethernet chips that
35 * support USB 2.0 and 10/100 Mbps Ethernet.
36 *
37 * The LAN951x devices are an integrated USB hub and USB to Ethernet adapter.
38 * The driver only covers the Ethernet part, the standard USB hub driver
39 * supports the hub part.
40 *
41 * This driver is closely modelled on the Linux driver written and copyrighted
42 * by SMSC.
43 *
44 * H/W TCP & UDP Checksum Offloading
45 * ---------------------------------
46 * The chip supports both tx and rx offloading of UDP & TCP checksums, this
47 * feature can be dynamically enabled/disabled.
48 *
49 * RX checksuming is performed across bytes after the IPv4 header to the end of
50 * the Ethernet frame, this means if the frame is padded with non-zero values
51 * the H/W checksum will be incorrect, however the rx code compensates for this.
52 *
53 * TX checksuming is more complicated, the device requires a special header to
54 * be prefixed onto the start of the frame which indicates the start and end
55 * positions of the UDP or TCP frame. This requires the driver to manually
56 * go through the packet data and decode the headers prior to sending.
57 * On Linux they generally provide cues to the location of the csum and the
58 * area to calculate it over, on FreeBSD we seem to have to do it all ourselves,
59 * hence this is not as optimal and therefore h/w TX checksum is currently not
60 * implemented.
61 */
62
63 #ifdef _KERNEL_OPT
64 #include "opt_usb.h"
65 #include "opt_inet.h"
66 #endif
67
68 #include <sys/param.h>
69 #include <sys/bus.h>
70 #include <sys/device.h>
71 #include <sys/kernel.h>
72 #include <sys/mbuf.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/rndsource.h>
76 #include <sys/socket.h>
77 #include <sys/sockio.h>
78 #include <sys/systm.h>
79
80 #include <net/if.h>
81 #include <net/if_dl.h>
82 #include <net/if_media.h>
83 #include <net/if_ether.h>
84
85 #include <net/bpf.h>
86
87 #ifdef INET
88 #include <netinet/in.h>
89 #include <netinet/if_inarp.h>
90 #endif
91
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94
95 #include <dev/usb/usb.h>
96 #include <dev/usb/usbdi.h>
97 #include <dev/usb/usbdi_util.h>
98 #include <dev/usb/usbdivar.h>
99 #include <dev/usb/usbdevs.h>
100
101 #include <dev/usb/if_smscreg.h>
102 #include <dev/usb/if_smscvar.h>
103
104 #include "ioconf.h"
105
106 #ifdef USB_DEBUG
107 int smsc_debug = 0;
108 #endif
109
110 #define ETHER_ALIGN 2
111 /*
112 * Various supported device vendors/products.
113 */
114 static const struct usb_devno smsc_devs[] = {
115 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN89530 },
116 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN9530 },
117 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN9730 },
118 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500 },
119 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A },
120 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_ALT },
121 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_HAL },
122 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_SAL10 },
123 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500_ALT },
124 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500_SAL10 },
125 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505 },
126 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A },
127 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A_HAL },
128 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A_SAL10 },
129 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505_SAL10 },
130 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14 },
131 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14_ALT },
132 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14_SAL10 }
133 };
134
135 #ifdef USB_DEBUG
136 #define smsc_dbg_printf(sc, fmt, args...) \
137 do { \
138 if (smsc_debug > 0) \
139 printf("debug: " fmt, ##args); \
140 } while(0)
141 #else
142 #define smsc_dbg_printf(sc, fmt, args...)
143 #endif
144
145 #define smsc_warn_printf(sc, fmt, args...) \
146 printf("%s: warning: " fmt, device_xname((sc)->sc_dev), ##args)
147
148 #define smsc_err_printf(sc, fmt, args...) \
149 printf("%s: error: " fmt, device_xname((sc)->sc_dev), ##args)
150
151 /* Function declarations */
152 int smsc_chip_init(struct smsc_softc *);
153 void smsc_setmulti(struct smsc_softc *);
154 int smsc_setmacaddress(struct smsc_softc *, const uint8_t *);
155
156 int smsc_match(device_t, cfdata_t, void *);
157 void smsc_attach(device_t, device_t, void *);
158 int smsc_detach(device_t, int);
159 int smsc_activate(device_t, enum devact);
160
161 int smsc_init(struct ifnet *);
162 int smsc_init_locked(struct ifnet *);
163 void smsc_start(struct ifnet *);
164 void smsc_start_locked(struct ifnet *);
165 int smsc_ioctl(struct ifnet *, u_long, void *);
166 void smsc_stop(struct ifnet *, int);
167 void smsc_stop_locked(struct ifnet *, int);
168
169 void smsc_reset(struct smsc_softc *);
170 struct mbuf *smsc_newbuf(void);
171
172 void smsc_tick(void *);
173 void smsc_tick_task(void *);
174 void smsc_miibus_statchg(struct ifnet *);
175 void smsc_miibus_statchg_locked(struct ifnet *);
176 int smsc_miibus_readreg(device_t, int, int);
177 void smsc_miibus_writereg(device_t, int, int, int);
178 int smsc_ifmedia_upd(struct ifnet *);
179 void smsc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
180 void smsc_lock_mii(struct smsc_softc *);
181 void smsc_unlock_mii(struct smsc_softc *);
182
183 int smsc_tx_list_init(struct smsc_softc *);
184 void smsc_tx_list_free(struct smsc_softc *);
185 int smsc_rx_list_init(struct smsc_softc *);
186 void smsc_rx_list_free(struct smsc_softc *);
187 int smsc_encap(struct smsc_softc *, struct mbuf *, int);
188 void smsc_rxeof(struct usbd_xfer *, void *, usbd_status);
189 void smsc_txeof(struct usbd_xfer *, void *, usbd_status);
190
191 int smsc_read_reg(struct smsc_softc *, uint32_t, uint32_t *);
192 int smsc_write_reg(struct smsc_softc *, uint32_t, uint32_t);
193 int smsc_wait_for_bits(struct smsc_softc *, uint32_t, uint32_t);
194 int smsc_sethwcsum(struct smsc_softc *);
195
196 CFATTACH_DECL_NEW(usmsc, sizeof(struct smsc_softc), smsc_match, smsc_attach,
197 smsc_detach, smsc_activate);
198
199 int
200 smsc_read_reg(struct smsc_softc *sc, uint32_t off, uint32_t *data)
201 {
202 usb_device_request_t req;
203 uint32_t buf;
204 usbd_status err;
205
206 req.bmRequestType = UT_READ_VENDOR_DEVICE;
207 req.bRequest = SMSC_UR_READ_REG;
208 USETW(req.wValue, 0);
209 USETW(req.wIndex, off);
210 USETW(req.wLength, 4);
211
212 err = usbd_do_request(sc->sc_udev, &req, &buf);
213 if (err != 0)
214 smsc_warn_printf(sc, "Failed to read register 0x%0x\n", off);
215
216 *data = le32toh(buf);
217
218 return err;
219 }
220
221 int
222 smsc_write_reg(struct smsc_softc *sc, uint32_t off, uint32_t data)
223 {
224 usb_device_request_t req;
225 uint32_t buf;
226 usbd_status err;
227
228 buf = htole32(data);
229
230 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
231 req.bRequest = SMSC_UR_WRITE_REG;
232 USETW(req.wValue, 0);
233 USETW(req.wIndex, off);
234 USETW(req.wLength, 4);
235
236 err = usbd_do_request(sc->sc_udev, &req, &buf);
237 if (err != 0)
238 smsc_warn_printf(sc, "Failed to write register 0x%0x\n", off);
239
240 return err;
241 }
242
243 int
244 smsc_wait_for_bits(struct smsc_softc *sc, uint32_t reg, uint32_t bits)
245 {
246 uint32_t val;
247 int err, i;
248
249 for (i = 0; i < 100; i++) {
250 if ((err = smsc_read_reg(sc, reg, &val)) != 0)
251 return err;
252 if (!(val & bits))
253 return 0;
254 DELAY(5);
255 }
256
257 return 1;
258 }
259
260 int
261 smsc_miibus_readreg(device_t dev, int phy, int reg)
262 {
263 struct smsc_softc * const sc = device_private(dev);
264 uint32_t addr;
265 uint32_t val = 0;
266
267 smsc_lock_mii(sc);
268 if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
269 smsc_warn_printf(sc, "MII is busy\n");
270 goto done;
271 }
272
273 addr = (phy << 11) | (reg << 6) | SMSC_MII_READ;
274 smsc_write_reg(sc, SMSC_MII_ADDR, addr);
275
276 if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0)
277 smsc_warn_printf(sc, "MII read timeout\n");
278
279 smsc_read_reg(sc, SMSC_MII_DATA, &val);
280
281 done:
282 smsc_unlock_mii(sc);
283
284 return val & 0xffff;
285 }
286
287 void
288 smsc_miibus_writereg(device_t dev, int phy, int reg, int val)
289 {
290 struct smsc_softc * const sc = device_private(dev);
291 uint32_t addr;
292
293 if (sc->sc_phyno != phy)
294 return;
295
296 smsc_lock_mii(sc);
297 if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
298 smsc_warn_printf(sc, "MII is busy\n");
299 smsc_unlock_mii(sc);
300 return;
301 }
302
303 smsc_write_reg(sc, SMSC_MII_DATA, val);
304
305 addr = (phy << 11) | (reg << 6) | SMSC_MII_WRITE;
306 smsc_write_reg(sc, SMSC_MII_ADDR, addr);
307 smsc_unlock_mii(sc);
308
309 if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0)
310 smsc_warn_printf(sc, "MII write timeout\n");
311 }
312
313 void
314 smsc_miibus_statchg(struct ifnet *ifp)
315 {
316 if (ifp == NULL)
317 return;
318
319 struct smsc_softc * const sc = ifp->if_softc;
320
321 mutex_enter(&sc->sc_lock);
322 if (sc->sc_dying) {
323 mutex_exit(&sc->sc_lock);
324 return;
325 }
326 smsc_miibus_statchg_locked(ifp);
327
328 mutex_exit(&sc->sc_lock);
329 }
330
331
332 void
333 smsc_miibus_statchg_locked(struct ifnet *ifp)
334 {
335 struct smsc_softc * const sc = ifp->if_softc;
336 struct mii_data * const mii = &sc->sc_mii;
337 int err;
338 uint32_t flow;
339 uint32_t afc_cfg;
340
341 KASSERT(mutex_owned(&sc->sc_lock));
342
343 if ((ifp->if_flags & IFF_RUNNING) == 0) {
344 smsc_dbg_printf(sc, "%s: not running\n", __func__);
345 return;
346 }
347
348 /* Use the MII status to determine link status */
349 sc->sc_flags &= ~SMSC_FLAG_LINK;
350 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
351 (IFM_ACTIVE | IFM_AVALID)) {
352 switch (IFM_SUBTYPE(mii->mii_media_active)) {
353 case IFM_10_T:
354 case IFM_100_TX:
355 sc->sc_flags |= SMSC_FLAG_LINK;
356 break;
357 case IFM_1000_T:
358 /* Gigabit ethernet not supported by chipset */
359 break;
360 default:
361 break;
362 }
363 }
364
365 /* Lost link, do nothing. */
366 if ((sc->sc_flags & SMSC_FLAG_LINK) == 0) {
367 smsc_dbg_printf(sc, "link flag not set\n");
368 return;
369 }
370
371 err = smsc_read_reg(sc, SMSC_AFC_CFG, &afc_cfg);
372 if (err) {
373 smsc_warn_printf(sc, "failed to read initial AFC_CFG, "
374 "error %d\n", err);
375 return;
376 }
377
378 /* Enable/disable full duplex operation and TX/RX pause */
379 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
380 smsc_dbg_printf(sc, "full duplex operation\n");
381 sc->sc_mac_csr &= ~SMSC_MAC_CSR_RCVOWN;
382 sc->sc_mac_csr |= SMSC_MAC_CSR_FDPX;
383
384 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
385 flow = 0xffff0002;
386 else
387 flow = 0;
388
389 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
390 afc_cfg |= 0xf;
391 else
392 afc_cfg &= ~0xf;
393 } else {
394 smsc_dbg_printf(sc, "half duplex operation\n");
395 sc->sc_mac_csr &= ~SMSC_MAC_CSR_FDPX;
396 sc->sc_mac_csr |= SMSC_MAC_CSR_RCVOWN;
397
398 flow = 0;
399 afc_cfg |= 0xf;
400 }
401
402 err = smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
403 err += smsc_write_reg(sc, SMSC_FLOW, flow);
404 err += smsc_write_reg(sc, SMSC_AFC_CFG, afc_cfg);
405 if (err)
406 smsc_warn_printf(sc, "media change failed, error %d\n", err);
407 }
408
409 int
410 smsc_ifmedia_upd(struct ifnet *ifp)
411 {
412 struct smsc_softc * const sc = ifp->if_softc;
413 struct mii_data * const mii = &sc->sc_mii;
414 int err;
415
416 if (mii->mii_instance) {
417 struct mii_softc *miisc;
418
419 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
420 mii_phy_reset(miisc);
421 }
422 err = mii_mediachg(mii);
423 return err;
424 }
425
426 void
427 smsc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
428 {
429 struct smsc_softc * const sc = ifp->if_softc;
430 struct mii_data * const mii = &sc->sc_mii;
431
432 /* SMSC_LOCK */
433
434 mii_pollstat(mii);
435
436 ifmr->ifm_active = mii->mii_media_active;
437 ifmr->ifm_status = mii->mii_media_status;
438
439 /* SMSC_UNLOCK */
440 }
441
442 static inline uint32_t
443 smsc_hash(uint8_t addr[ETHER_ADDR_LEN])
444 {
445
446 return (ether_crc32_be(addr, ETHER_ADDR_LEN) >> 26) & 0x3f;
447 }
448
449 void
450 smsc_setmulti(struct smsc_softc *sc)
451 {
452 struct ifnet * const ifp = &sc->sc_ec.ec_if;
453 struct ether_multi *enm;
454 struct ether_multistep step;
455 uint32_t hashtbl[2] = { 0, 0 };
456 uint32_t hash;
457
458 KASSERT(mutex_owned(&sc->sc_lock));
459
460 if (sc->sc_dying)
461 return;
462
463 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
464 allmulti:
465 smsc_dbg_printf(sc, "receive all multicast enabled\n");
466 sc->sc_mac_csr |= SMSC_MAC_CSR_MCPAS;
467 sc->sc_mac_csr &= ~SMSC_MAC_CSR_HPFILT;
468 smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
469 return;
470 } else {
471 sc->sc_mac_csr |= SMSC_MAC_CSR_HPFILT;
472 sc->sc_mac_csr &= ~(SMSC_MAC_CSR_PRMS | SMSC_MAC_CSR_MCPAS);
473 }
474
475 ETHER_LOCK(&sc->sc_ec);
476 ETHER_FIRST_MULTI(step, &sc->sc_ec, enm);
477 while (enm != NULL) {
478 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
479 ETHER_UNLOCK(&sc->sc_ec);
480 goto allmulti;
481 }
482
483 hash = smsc_hash(enm->enm_addrlo);
484 hashtbl[hash >> 5] |= 1 << (hash & 0x1F);
485 ETHER_NEXT_MULTI(step, enm);
486 }
487 ETHER_UNLOCK(&sc->sc_ec);
488
489 /* Debug */
490 if (sc->sc_mac_csr & SMSC_MAC_CSR_HPFILT) {
491 smsc_dbg_printf(sc, "receive select group of macs\n");
492 } else {
493 smsc_dbg_printf(sc, "receive own packets only\n");
494 }
495
496 /* Write the hash table and mac control registers */
497 ifp->if_flags &= ~IFF_ALLMULTI;
498 smsc_write_reg(sc, SMSC_HASHH, hashtbl[1]);
499 smsc_write_reg(sc, SMSC_HASHL, hashtbl[0]);
500 smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
501 }
502
503 int
504 smsc_sethwcsum(struct smsc_softc *sc)
505 {
506 struct ifnet * const ifp = &sc->sc_ec.ec_if;
507 uint32_t val;
508 int err;
509
510 err = smsc_read_reg(sc, SMSC_COE_CTRL, &val);
511 if (err != 0) {
512 smsc_warn_printf(sc, "failed to read SMSC_COE_CTRL (err=%d)\n",
513 err);
514 return err;
515 }
516
517 /* Enable/disable the Rx checksum */
518 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
519 val |= (SMSC_COE_CTRL_RX_EN | SMSC_COE_CTRL_RX_MODE);
520 else
521 val &= ~(SMSC_COE_CTRL_RX_EN | SMSC_COE_CTRL_RX_MODE);
522
523 /* Enable/disable the Tx checksum (currently not supported) */
524 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
525 val |= SMSC_COE_CTRL_TX_EN;
526 else
527 val &= ~SMSC_COE_CTRL_TX_EN;
528
529 sc->sc_coe_ctrl = val;
530
531 err = smsc_write_reg(sc, SMSC_COE_CTRL, val);
532 if (err != 0) {
533 smsc_warn_printf(sc, "failed to write SMSC_COE_CTRL (err=%d)\n",
534 err);
535 return err;
536 }
537
538 return 0;
539 }
540
541 int
542 smsc_setmacaddress(struct smsc_softc *sc, const uint8_t *addr)
543 {
544 int err;
545 uint32_t val;
546
547 smsc_dbg_printf(sc, "setting mac address to "
548 "%02x:%02x:%02x:%02x:%02x:%02x\n",
549 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
550
551 val = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
552 if ((err = smsc_write_reg(sc, SMSC_MAC_ADDRL, val)) != 0)
553 goto done;
554
555 val = (addr[5] << 8) | addr[4];
556 err = smsc_write_reg(sc, SMSC_MAC_ADDRH, val);
557
558 done:
559 return err;
560 }
561
562 void
563 smsc_reset(struct smsc_softc *sc)
564 {
565 KASSERT(mutex_owned(&sc->sc_lock));
566 if (sc->sc_dying)
567 return;
568
569 /* Wait a little while for the chip to get its brains in order. */
570 DELAY(1000);
571
572 /* Reinitialize controller to achieve full reset. */
573 smsc_chip_init(sc);
574 }
575
576 int
577 smsc_init(struct ifnet *ifp)
578 {
579 struct smsc_softc * const sc = ifp->if_softc;
580
581 mutex_enter(&sc->sc_lock);
582 int ret = smsc_init_locked(ifp);
583 mutex_exit(&sc->sc_lock);
584
585 return ret;
586 }
587
588 int
589 smsc_init_locked(struct ifnet *ifp)
590 {
591 struct smsc_softc * const sc = ifp->if_softc;
592 usbd_status err;
593
594 if (sc->sc_dying)
595 return EIO;
596
597 /* Cancel pending I/O */
598 smsc_stop_locked(ifp, 1);
599
600 /* Reset the ethernet interface. */
601 smsc_reset(sc);
602
603 /* Load the multicast filter. */
604 smsc_setmulti(sc);
605
606 /* TCP/UDP checksum offload engines. */
607 smsc_sethwcsum(sc);
608
609 /* Open RX and TX pipes. */
610 err = usbd_open_pipe(sc->sc_iface, sc->sc_ed[SMSC_ENDPT_RX],
611 USBD_EXCLUSIVE_USE | USBD_MPSAFE, &sc->sc_ep[SMSC_ENDPT_RX]);
612 if (err) {
613 printf("%s: open rx pipe failed: %s\n",
614 device_xname(sc->sc_dev), usbd_errstr(err));
615 goto fail;
616 }
617
618 err = usbd_open_pipe(sc->sc_iface, sc->sc_ed[SMSC_ENDPT_TX],
619 USBD_EXCLUSIVE_USE | USBD_MPSAFE, &sc->sc_ep[SMSC_ENDPT_TX]);
620 if (err) {
621 printf("%s: open tx pipe failed: %s\n",
622 device_xname(sc->sc_dev), usbd_errstr(err));
623 goto fail1;
624 }
625
626 /* Init RX ring. */
627 if (smsc_rx_list_init(sc)) {
628 aprint_error_dev(sc->sc_dev, "rx list init failed\n");
629 goto fail2;
630 }
631
632 /* Init TX ring. */
633 if (smsc_tx_list_init(sc)) {
634 aprint_error_dev(sc->sc_dev, "tx list init failed\n");
635 goto fail3;
636 }
637
638 mutex_enter(&sc->sc_rxlock);
639 mutex_enter(&sc->sc_txlock);
640 sc->sc_stopping = false;
641
642 /* Start up the receive pipe. */
643 for (size_t i = 0; i < SMSC_RX_LIST_CNT; i++) {
644 struct smsc_chain *c = &sc->sc_cdata.rx_chain[i];
645 usbd_setup_xfer(c->sc_xfer, c, c->sc_buf, sc->sc_bufsz,
646 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, smsc_rxeof);
647 usbd_transfer(c->sc_xfer);
648 }
649
650 mutex_exit(&sc->sc_txlock);
651 mutex_exit(&sc->sc_rxlock);
652
653 /* Indicate we are up and running. */
654 ifp->if_flags |= IFF_RUNNING;
655 ifp->if_flags &= ~IFF_OACTIVE;
656
657 callout_reset(&sc->sc_stat_ch, hz, smsc_tick, sc);
658
659 return 0;
660
661 fail3:
662 smsc_rx_list_free(sc);
663 fail2:
664 usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_TX]);
665 fail1:
666 usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_RX]);
667 fail:
668 return EIO;
669 }
670
671 void
672 smsc_start(struct ifnet *ifp)
673 {
674 struct smsc_softc * const sc = ifp->if_softc;
675 KASSERT(ifp->if_extflags & IFEF_START_MPSAFE);
676
677 mutex_enter(&sc->sc_txlock);
678 if (!sc->sc_stopping)
679 smsc_start_locked(ifp);
680 mutex_exit(&sc->sc_txlock);
681 }
682
683 void
684 smsc_start_locked(struct ifnet *ifp)
685 {
686 struct smsc_softc * const sc = ifp->if_softc;
687 struct mbuf *m_head = NULL;
688
689 KASSERT(mutex_owned(&sc->sc_txlock));
690
691 /* Don't send anything if there is no link or controller is busy. */
692 if ((sc->sc_flags & SMSC_FLAG_LINK) == 0) {
693 smsc_dbg_printf(sc, "%s: no link\n", __func__);
694 return;
695 }
696
697 if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
698 smsc_dbg_printf(sc, "%s: not running\n", __func__);
699 return;
700 }
701
702 IFQ_POLL(&ifp->if_snd, m_head);
703 if (m_head == NULL)
704 return;
705
706 IFQ_DEQUEUE(&ifp->if_snd, m_head);
707 if (smsc_encap(sc, m_head, 0)) {
708 m_free(m_head);
709 return;
710 }
711
712 bpf_mtap(ifp, m_head);
713
714 ifp->if_flags |= IFF_OACTIVE;
715
716 /*
717 * Set a timeout in case the chip goes out to lunch.
718 */
719 ifp->if_timer = 5;
720 }
721
722 void
723 smsc_tick(void *xsc)
724 {
725 struct smsc_softc * const sc = xsc;
726
727 if (sc == NULL)
728 return;
729
730 mutex_enter(&sc->sc_lock);
731
732 if (sc->sc_dying) {
733 mutex_exit(&sc->sc_lock);
734 return;
735 }
736
737 if (!sc->sc_ttpending) {
738 sc->sc_ttpending = true;
739 usb_add_task(sc->sc_udev, &sc->sc_tick_task, USB_TASKQ_DRIVER);
740 }
741
742 mutex_exit(&sc->sc_lock);
743 }
744
745 void
746 smsc_stop(struct ifnet *ifp, int disable)
747 {
748 struct smsc_softc * const sc = ifp->if_softc;
749
750 mutex_enter(&sc->sc_lock);
751 smsc_stop_locked(ifp, disable);
752 mutex_exit(&sc->sc_lock);
753 }
754
755 void
756 smsc_stop_locked(struct ifnet *ifp, int disable)
757 {
758 struct smsc_softc * const sc = ifp->if_softc;
759 usbd_status err;
760
761 KASSERT(mutex_owned(&sc->sc_lock));
762 mutex_enter(&sc->sc_rxlock);
763 mutex_enter(&sc->sc_txlock);
764 sc->sc_stopping = true;
765 mutex_exit(&sc->sc_txlock);
766 mutex_exit(&sc->sc_rxlock);
767
768 callout_stop(&sc->sc_stat_ch);
769
770 /* Stop transfers. */
771 if (sc->sc_ep[SMSC_ENDPT_RX] != NULL) {
772 err = usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_RX]);
773 if (err) {
774 printf("%s: abort rx pipe failed: %s\n",
775 device_xname(sc->sc_dev), usbd_errstr(err));
776 }
777 }
778
779 if (sc->sc_ep[SMSC_ENDPT_TX] != NULL) {
780 err = usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_TX]);
781 if (err) {
782 printf("%s: abort tx pipe failed: %s\n",
783 device_xname(sc->sc_dev), usbd_errstr(err));
784 }
785 }
786
787 if (sc->sc_ep[SMSC_ENDPT_INTR] != NULL) {
788 err = usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_INTR]);
789 if (err) {
790 printf("%s: abort intr pipe failed: %s\n",
791 device_xname(sc->sc_dev), usbd_errstr(err));
792 }
793 }
794
795 smsc_rx_list_free(sc);
796
797 smsc_tx_list_free(sc);
798
799 /* Close pipes */
800 if (sc->sc_ep[SMSC_ENDPT_RX] != NULL) {
801 err = usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_RX]);
802 if (err) {
803 printf("%s: close rx pipe failed: %s\n",
804 device_xname(sc->sc_dev), usbd_errstr(err));
805 }
806 sc->sc_ep[SMSC_ENDPT_RX] = NULL;
807 }
808
809 if (sc->sc_ep[SMSC_ENDPT_TX] != NULL) {
810 err = usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_TX]);
811 if (err) {
812 printf("%s: close tx pipe failed: %s\n",
813 device_xname(sc->sc_dev), usbd_errstr(err));
814 }
815 sc->sc_ep[SMSC_ENDPT_TX] = NULL;
816 }
817
818 if (sc->sc_ep[SMSC_ENDPT_INTR] != NULL) {
819 err = usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_INTR]);
820 if (err) {
821 printf("%s: close intr pipe failed: %s\n",
822 device_xname(sc->sc_dev), usbd_errstr(err));
823 }
824 sc->sc_ep[SMSC_ENDPT_INTR] = NULL;
825 }
826
827 ifp->if_timer = 0;
828 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
829
830 if (disable) {
831 /* drain */
832 }
833 }
834
835 int
836 smsc_chip_init(struct smsc_softc *sc)
837 {
838 int err;
839 uint32_t reg_val;
840 int burst_cap;
841
842 /* Enter H/W config mode */
843 smsc_write_reg(sc, SMSC_HW_CFG, SMSC_HW_CFG_LRST);
844
845 if ((err = smsc_wait_for_bits(sc, SMSC_HW_CFG,
846 SMSC_HW_CFG_LRST)) != 0) {
847 smsc_warn_printf(sc, "timed-out waiting for reset to "
848 "complete\n");
849 goto init_failed;
850 }
851
852 /* Reset the PHY */
853 smsc_write_reg(sc, SMSC_PM_CTRL, SMSC_PM_CTRL_PHY_RST);
854
855 if ((err = smsc_wait_for_bits(sc, SMSC_PM_CTRL,
856 SMSC_PM_CTRL_PHY_RST)) != 0) {
857 smsc_warn_printf(sc, "timed-out waiting for phy reset to "
858 "complete\n");
859 goto init_failed;
860 }
861 usbd_delay_ms(sc->sc_udev, 40);
862
863 /* Set the mac address */
864 struct ifnet * const ifp = &sc->sc_ec.ec_if;
865 const char *eaddr = CLLADDR(ifp->if_sadl);
866 if ((err = smsc_setmacaddress(sc, eaddr)) != 0) {
867 smsc_warn_printf(sc, "failed to set the MAC address\n");
868 goto init_failed;
869 }
870
871 /*
872 * Don't know what the HW_CFG_BIR bit is, but following the reset
873 * sequence as used in the Linux driver.
874 */
875 if ((err = smsc_read_reg(sc, SMSC_HW_CFG, ®_val)) != 0) {
876 smsc_warn_printf(sc, "failed to read HW_CFG: %d\n", err);
877 goto init_failed;
878 }
879 reg_val |= SMSC_HW_CFG_BIR;
880 smsc_write_reg(sc, SMSC_HW_CFG, reg_val);
881
882 /*
883 * There is a so called 'turbo mode' that the linux driver supports, it
884 * seems to allow you to jam multiple frames per Rx transaction.
885 * By default this driver supports that and therefore allows multiple
886 * frames per USB transfer.
887 *
888 * The xfer buffer size needs to reflect this as well, therefore based
889 * on the calculations in the Linux driver the RX bufsize is set to
890 * 18944,
891 * bufsz = (16 * 1024 + 5 * 512)
892 *
893 * Burst capability is the number of URBs that can be in a burst of
894 * data/ethernet frames.
895 */
896
897 if (sc->sc_udev->ud_speed == USB_SPEED_HIGH)
898 burst_cap = 37;
899 else
900 burst_cap = 128;
901
902 smsc_write_reg(sc, SMSC_BURST_CAP, burst_cap);
903
904 /* Set the default bulk in delay (magic value from Linux driver) */
905 smsc_write_reg(sc, SMSC_BULK_IN_DLY, 0x00002000);
906
907 /*
908 * Initialise the RX interface
909 */
910 if ((err = smsc_read_reg(sc, SMSC_HW_CFG, ®_val)) < 0) {
911 smsc_warn_printf(sc, "failed to read HW_CFG: (err = %d)\n",
912 err);
913 goto init_failed;
914 }
915
916 /*
917 * The following settings are used for 'turbo mode', a.k.a multiple
918 * frames per Rx transaction (again info taken form Linux driver).
919 */
920 reg_val |= (SMSC_HW_CFG_MEF | SMSC_HW_CFG_BCE);
921
922 /*
923 * set Rx data offset to ETHER_ALIGN which will make the IP header
924 * align on a word boundary.
925 */
926 reg_val |= ETHER_ALIGN << SMSC_HW_CFG_RXDOFF_SHIFT;
927
928 smsc_write_reg(sc, SMSC_HW_CFG, reg_val);
929
930 /* Clear the status register ? */
931 smsc_write_reg(sc, SMSC_INTR_STATUS, 0xffffffff);
932
933 /* Read and display the revision register */
934 if ((err = smsc_read_reg(sc, SMSC_ID_REV, &sc->sc_rev_id)) < 0) {
935 smsc_warn_printf(sc, "failed to read ID_REV (err = %d)\n", err);
936 goto init_failed;
937 }
938
939 /* GPIO/LED setup */
940 reg_val = SMSC_LED_GPIO_CFG_SPD_LED | SMSC_LED_GPIO_CFG_LNK_LED |
941 SMSC_LED_GPIO_CFG_FDX_LED;
942 smsc_write_reg(sc, SMSC_LED_GPIO_CFG, reg_val);
943
944 /*
945 * Initialise the TX interface
946 */
947 smsc_write_reg(sc, SMSC_FLOW, 0);
948
949 smsc_write_reg(sc, SMSC_AFC_CFG, AFC_CFG_DEFAULT);
950
951 /* Read the current MAC configuration */
952 if ((err = smsc_read_reg(sc, SMSC_MAC_CSR, &sc->sc_mac_csr)) < 0) {
953 smsc_warn_printf(sc, "failed to read MAC_CSR (err=%d)\n", err);
954 goto init_failed;
955 }
956
957 /* disable pad stripping, collides with checksum offload */
958 sc->sc_mac_csr &= ~SMSC_MAC_CSR_PADSTR;
959
960 /* Vlan */
961 smsc_write_reg(sc, SMSC_VLAN1, (uint32_t)ETHERTYPE_VLAN);
962
963 /*
964 * Start TX
965 */
966 sc->sc_mac_csr |= SMSC_MAC_CSR_TXEN;
967 smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
968 smsc_write_reg(sc, SMSC_TX_CFG, SMSC_TX_CFG_ON);
969
970 /*
971 * Start RX
972 */
973 sc->sc_mac_csr |= SMSC_MAC_CSR_RXEN;
974 smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
975
976 return 0;
977
978 init_failed:
979 smsc_err_printf(sc, "smsc_chip_init failed (err=%d)\n", err);
980 return err;
981 }
982
983 static int
984 smsc_ifflags_cb(struct ethercom *ec)
985 {
986 struct ifnet *ifp = &ec->ec_if;
987 struct smsc_softc *sc = ifp->if_softc;
988
989 mutex_enter(&sc->sc_lock);
990
991 const int change = ifp->if_flags ^ sc->sc_if_flags;
992 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
993 mutex_exit(&sc->sc_lock);
994 return ENETRESET;
995 }
996
997 smsc_dbg_printf(sc, "%s: change %x\n", __func__, change);
998
999 if ((change & IFF_PROMISC) != 0) {
1000 if (ifp->if_flags & IFF_PROMISC) {
1001 sc->sc_mac_csr |= SMSC_MAC_CSR_PRMS;
1002 smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
1003 } else if (!(ifp->if_flags & IFF_PROMISC)) {
1004 sc->sc_mac_csr &= ~SMSC_MAC_CSR_PRMS;
1005 smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
1006 }
1007 smsc_setmulti(sc);
1008 }
1009
1010 mutex_exit(&sc->sc_lock);
1011
1012 return 0;
1013 }
1014
1015
1016 int
1017 smsc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1018 {
1019 struct smsc_softc * const sc = ifp->if_softc;
1020
1021 smsc_dbg_printf(sc, "%s: cmd %0lx data %p\n", __func__, cmd, data);
1022
1023 int error = ether_ioctl(ifp, cmd, data);
1024
1025 if (error == ENETRESET) {
1026 error = 0;
1027 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1028 if (ifp->if_flags & IFF_RUNNING) {
1029 mutex_enter(&sc->sc_lock);
1030 smsc_setmulti(sc);
1031 mutex_exit(&sc->sc_lock);
1032 }
1033 }
1034 }
1035
1036 mutex_enter(&sc->sc_rxlock);
1037 mutex_enter(&sc->sc_txlock);
1038 sc->sc_if_flags = ifp->if_flags;
1039 mutex_exit(&sc->sc_txlock);
1040 mutex_exit(&sc->sc_rxlock);
1041
1042 return error;
1043 }
1044
1045 int
1046 smsc_match(device_t parent, cfdata_t match, void *aux)
1047 {
1048 struct usb_attach_arg *uaa = aux;
1049
1050 return (usb_lookup(smsc_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
1051 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
1052 }
1053
1054 void
1055 smsc_attach(device_t parent, device_t self, void *aux)
1056 {
1057 struct smsc_softc *sc = device_private(self);
1058 struct usb_attach_arg *uaa = aux;
1059 struct usbd_device *dev = uaa->uaa_device;
1060 usb_interface_descriptor_t *id;
1061 usb_endpoint_descriptor_t *ed;
1062 char *devinfop;
1063 struct mii_data *mii;
1064 struct ifnet *ifp;
1065 int err, i;
1066 uint32_t mac_h, mac_l;
1067
1068 sc->sc_dev = self;
1069 sc->sc_udev = dev;
1070 sc->sc_stopping = false;
1071
1072 aprint_naive("\n");
1073 aprint_normal("\n");
1074
1075 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
1076 aprint_normal_dev(self, "%s\n", devinfop);
1077 usbd_devinfo_free(devinfop);
1078
1079 err = usbd_set_config_no(dev, SMSC_CONFIG_INDEX, 1);
1080 if (err) {
1081 aprint_error_dev(self, "failed to set configuration"
1082 ", err=%s\n", usbd_errstr(err));
1083 return;
1084 }
1085
1086 /* Setup the endpoints for the SMSC LAN95xx device(s) */
1087 err = usbd_device2interface_handle(dev, SMSC_IFACE_IDX, &sc->sc_iface);
1088 if (err) {
1089 aprint_error_dev(self, "getting interface handle failed\n");
1090 return;
1091 }
1092
1093 id = usbd_get_interface_descriptor(sc->sc_iface);
1094
1095 if (sc->sc_udev->ud_speed >= USB_SPEED_HIGH)
1096 sc->sc_bufsz = SMSC_MAX_BUFSZ;
1097 else
1098 sc->sc_bufsz = SMSC_MIN_BUFSZ;
1099
1100 /* Find endpoints. */
1101 for (i = 0; i < id->bNumEndpoints; i++) {
1102 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
1103 if (!ed) {
1104 aprint_error_dev(self, "couldn't get ep %d\n", i);
1105 return;
1106 }
1107 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
1108 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
1109 sc->sc_ed[SMSC_ENDPT_RX] = ed->bEndpointAddress;
1110 } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
1111 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
1112 sc->sc_ed[SMSC_ENDPT_TX] = ed->bEndpointAddress;
1113 } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
1114 UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) {
1115 sc->sc_ed[SMSC_ENDPT_INTR] = ed->bEndpointAddress;
1116 }
1117 }
1118
1119 usb_init_task(&sc->sc_tick_task, smsc_tick_task, sc, USB_TASKQ_MPSAFE);
1120
1121 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
1122 mutex_init(&sc->sc_txlock, MUTEX_DEFAULT, IPL_SOFTUSB);
1123 mutex_init(&sc->sc_rxlock, MUTEX_DEFAULT, IPL_SOFTUSB);
1124 mutex_init(&sc->sc_mii_lock, MUTEX_DEFAULT, IPL_NONE);
1125
1126 ifp = &sc->sc_ec.ec_if;
1127 ifp->if_softc = sc;
1128 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1129 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1130 ifp->if_extflags = IFEF_START_MPSAFE;
1131 ifp->if_init = smsc_init;
1132 ifp->if_ioctl = smsc_ioctl;
1133 ifp->if_start = smsc_start;
1134 ifp->if_stop = smsc_stop;
1135
1136 #ifdef notyet
1137 /*
1138 * We can do TCPv4, and UDPv4 checksums in hardware.
1139 */
1140 ifp->if_capabilities |=
1141 /*IFCAP_CSUM_TCPv4_Tx |*/ IFCAP_CSUM_TCPv4_Rx |
1142 /*IFCAP_CSUM_UDPv4_Tx |*/ IFCAP_CSUM_UDPv4_Rx;
1143 #endif
1144
1145 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
1146
1147 /* Setup some of the basics */
1148 sc->sc_phyno = 1;
1149
1150 /*
1151 * Attempt to get the mac address, if an EEPROM is not attached this
1152 * will just return FF:FF:FF:FF:FF:FF, so in such cases we invent a MAC
1153 * address based on urandom.
1154 */
1155 memset(sc->sc_enaddr, 0xff, ETHER_ADDR_LEN);
1156
1157 prop_dictionary_t dict = device_properties(self);
1158 prop_data_t eaprop = prop_dictionary_get(dict, "mac-address");
1159
1160 if (eaprop != NULL) {
1161 KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
1162 KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
1163 memcpy(sc->sc_enaddr, prop_data_data_nocopy(eaprop),
1164 ETHER_ADDR_LEN);
1165 } else {
1166 /* Check if there is already a MAC address in the register */
1167 if ((smsc_read_reg(sc, SMSC_MAC_ADDRL, &mac_l) == 0) &&
1168 (smsc_read_reg(sc, SMSC_MAC_ADDRH, &mac_h) == 0)) {
1169 sc->sc_enaddr[5] = (uint8_t)((mac_h >> 8) & 0xff);
1170 sc->sc_enaddr[4] = (uint8_t)((mac_h) & 0xff);
1171 sc->sc_enaddr[3] = (uint8_t)((mac_l >> 24) & 0xff);
1172 sc->sc_enaddr[2] = (uint8_t)((mac_l >> 16) & 0xff);
1173 sc->sc_enaddr[1] = (uint8_t)((mac_l >> 8) & 0xff);
1174 sc->sc_enaddr[0] = (uint8_t)((mac_l) & 0xff);
1175 }
1176 }
1177
1178 aprint_normal_dev(self, "Ethernet address %s\n",
1179 ether_sprintf(sc->sc_enaddr));
1180
1181 IFQ_SET_READY(&ifp->if_snd);
1182
1183 /* Initialize MII/media info. */
1184 mii = &sc->sc_mii;
1185 mii->mii_ifp = ifp;
1186 mii->mii_readreg = smsc_miibus_readreg;
1187 mii->mii_writereg = smsc_miibus_writereg;
1188 mii->mii_statchg = smsc_miibus_statchg;
1189 mii->mii_flags = MIIF_AUTOTSLEEP;
1190 sc->sc_ec.ec_mii = mii;
1191 ifmedia_init(&mii->mii_media, 0, smsc_ifmedia_upd, smsc_ifmedia_sts);
1192 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
1193
1194 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1195 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1196 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1197 } else
1198 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1199
1200 callout_init(&sc->sc_stat_ch, CALLOUT_MPSAFE);
1201
1202 if_initialize(ifp);
1203 sc->sc_ipq = if_percpuq_create(&sc->sc_ec.ec_if);
1204 ether_ifattach(ifp, sc->sc_enaddr);
1205 ether_set_ifflags_cb(&sc->sc_ec, smsc_ifflags_cb);
1206 if_register(ifp);
1207
1208 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
1209 RND_TYPE_NET, RND_FLAG_DEFAULT);
1210
1211 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
1212 }
1213
1214 int
1215 smsc_detach(device_t self, int flags)
1216 {
1217 struct smsc_softc *sc = device_private(self);
1218 struct ifnet *ifp = &sc->sc_ec.ec_if;
1219
1220 mutex_enter(&sc->sc_lock);
1221 sc->sc_dying = true;
1222 mutex_exit(&sc->sc_lock);
1223
1224 callout_halt(&sc->sc_stat_ch, NULL);
1225
1226 if (ifp->if_flags & IFF_RUNNING)
1227 smsc_stop_locked(ifp, 1);
1228
1229 /*
1230 * Remove any pending tasks. They cannot be executing because they run
1231 * in the same thread as detach.
1232 */
1233 usb_rem_task(sc->sc_udev, &sc->sc_tick_task);
1234
1235 mutex_enter(&sc->sc_lock);
1236 sc->sc_refcnt--;
1237 while (sc->sc_refcnt > 0) {
1238 /* Wait for processes to go away */
1239 cv_wait(&sc->sc_detachcv, &sc->sc_lock);
1240 }
1241
1242 #ifdef DIAGNOSTIC
1243 if (sc->sc_ep[SMSC_ENDPT_TX] != NULL ||
1244 sc->sc_ep[SMSC_ENDPT_RX] != NULL ||
1245 sc->sc_ep[SMSC_ENDPT_INTR] != NULL)
1246 printf("%s: detach has active endpoints\n",
1247 device_xname(sc->sc_dev));
1248 #endif
1249
1250 mutex_exit(&sc->sc_lock);
1251
1252 rnd_detach_source(&sc->sc_rnd_source);
1253 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1254 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1255 if (ifp->if_softc != NULL) {
1256 ether_ifdetach(ifp);
1257 if_detach(ifp);
1258 }
1259
1260 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
1261
1262 cv_destroy(&sc->sc_detachcv);
1263 mutex_destroy(&sc->sc_mii_lock);
1264 mutex_destroy(&sc->sc_rxlock);
1265 mutex_destroy(&sc->sc_txlock);
1266 mutex_destroy(&sc->sc_lock);
1267
1268 return 0;
1269 }
1270
1271 void
1272 smsc_tick_task(void *xsc)
1273 {
1274 struct smsc_softc * const sc = xsc;
1275
1276 if (sc == NULL)
1277 return;
1278
1279 mutex_enter(&sc->sc_lock);
1280
1281 if (sc->sc_dying) {
1282 mutex_exit(&sc->sc_lock);
1283 return;
1284 }
1285
1286 struct ifnet * const ifp = &sc->sc_ec.ec_if;
1287 struct mii_data * const mii = &sc->sc_mii;
1288
1289 sc->sc_refcnt++;
1290 mutex_exit(&sc->sc_lock);
1291
1292 mii_tick(mii);
1293 if ((sc->sc_flags & SMSC_FLAG_LINK) == 0)
1294 smsc_miibus_statchg(ifp);
1295
1296 mutex_enter(&sc->sc_lock);
1297 sc->sc_ttpending = false;
1298
1299 if (--sc->sc_refcnt < 0)
1300 cv_broadcast(&sc->sc_detachcv);
1301
1302 if (sc->sc_dying) {
1303 mutex_exit(&sc->sc_lock);
1304 return;
1305 }
1306 callout_reset(&sc->sc_stat_ch, hz, smsc_tick, sc);
1307
1308 mutex_exit(&sc->sc_lock);
1309 }
1310
1311 int
1312 smsc_activate(device_t self, enum devact act)
1313 {
1314 struct smsc_softc *sc = device_private(self);
1315
1316 switch (act) {
1317 case DVACT_DEACTIVATE:
1318 if_deactivate(&sc->sc_ec.ec_if);
1319
1320 mutex_enter(&sc->sc_lock);
1321 sc->sc_dying = true;
1322
1323 mutex_enter(&sc->sc_rxlock);
1324 mutex_enter(&sc->sc_txlock);
1325 sc->sc_stopping = true;
1326 mutex_exit(&sc->sc_txlock);
1327 mutex_exit(&sc->sc_rxlock);
1328
1329 mutex_exit(&sc->sc_lock);
1330 return 0;
1331 default:
1332 return EOPNOTSUPP;
1333 }
1334 return 0;
1335 }
1336
1337 void
1338 smsc_lock_mii(struct smsc_softc *sc)
1339 {
1340
1341 mutex_enter(&sc->sc_lock);
1342 sc->sc_refcnt++;
1343 mutex_exit(&sc->sc_lock);
1344
1345 mutex_enter(&sc->sc_mii_lock);
1346 }
1347
1348 void
1349 smsc_unlock_mii(struct smsc_softc *sc)
1350 {
1351
1352 mutex_exit(&sc->sc_mii_lock);
1353 mutex_enter(&sc->sc_lock);
1354 if (--sc->sc_refcnt < 0)
1355 cv_broadcast(&sc->sc_detachcv);
1356 mutex_exit(&sc->sc_lock);
1357 }
1358
1359 void
1360 smsc_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
1361 {
1362 struct smsc_chain * const c = (struct smsc_chain *)priv;
1363 struct smsc_softc * const sc = c->sc_sc;
1364 struct ifnet * const ifp = &sc->sc_ec.ec_if;
1365 u_char *buf = c->sc_buf;
1366 uint32_t total_len;
1367
1368 mutex_enter(&sc->sc_rxlock);
1369 if (sc->sc_stopping) {
1370 smsc_dbg_printf(sc, "%s: stopping\n", __func__);
1371 mutex_exit(&sc->sc_rxlock);
1372 return;
1373 }
1374
1375 if (!(sc->sc_if_flags & IFF_RUNNING)) {
1376 smsc_dbg_printf(sc, "%s: not running\n", __func__);
1377 mutex_exit(&sc->sc_rxlock);
1378 return;
1379 }
1380
1381 if (status != USBD_NORMAL_COMPLETION) {
1382 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
1383 mutex_exit(&sc->sc_rxlock);
1384 return;
1385 }
1386 if (usbd_ratecheck(&sc->sc_rx_notice)) {
1387 printf("%s: usb errors on rx: %s\n",
1388 device_xname(sc->sc_dev), usbd_errstr(status));
1389 }
1390 if (status == USBD_STALLED)
1391 usbd_clear_endpoint_stall_async(sc->sc_ep[SMSC_ENDPT_RX]);
1392 goto done;
1393 }
1394
1395 usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL);
1396 smsc_dbg_printf(sc, "xfer status total_len %d\n", total_len);
1397
1398 while (total_len != 0) {
1399 uint32_t rxhdr;
1400 if (total_len < sizeof(rxhdr)) {
1401 smsc_dbg_printf(sc, "total_len %d < sizeof(rxhdr) %zu\n",
1402 total_len, sizeof(rxhdr));
1403 ifp->if_ierrors++;
1404 goto done;
1405 }
1406
1407 memcpy(&rxhdr, buf, sizeof(rxhdr));
1408 rxhdr = le32toh(rxhdr);
1409 buf += sizeof(rxhdr);
1410 total_len -= sizeof(rxhdr);
1411
1412 if (rxhdr & SMSC_RX_STAT_COLLISION)
1413 ifp->if_collisions++;
1414
1415 if (rxhdr & (SMSC_RX_STAT_ERROR
1416 | SMSC_RX_STAT_LENGTH_ERROR
1417 | SMSC_RX_STAT_MII_ERROR)) {
1418 smsc_dbg_printf(sc, "rx error (hdr 0x%08x)\n", rxhdr);
1419 ifp->if_ierrors++;
1420 goto done;
1421 }
1422
1423 uint16_t pktlen = (uint16_t)SMSC_RX_STAT_FRM_LENGTH(rxhdr);
1424 smsc_dbg_printf(sc, "rxeof total_len %d pktlen %d rxhdr "
1425 "0x%08x\n", total_len, pktlen, rxhdr);
1426
1427 if (pktlen < ETHER_HDR_LEN) {
1428 smsc_dbg_printf(sc, "pktlen %d < ETHER_HDR_LEN %d\n",
1429 pktlen, ETHER_HDR_LEN);
1430 ifp->if_ierrors++;
1431 goto done;
1432 }
1433
1434 pktlen += ETHER_ALIGN;
1435
1436 if (pktlen > MCLBYTES) {
1437 smsc_dbg_printf(sc, "pktlen %d > MCLBYTES %d\n",
1438 pktlen, MCLBYTES);
1439 ifp->if_ierrors++;
1440 goto done;
1441 }
1442
1443 if (pktlen > total_len) {
1444 smsc_dbg_printf(sc, "pktlen %d > total_len %d\n",
1445 pktlen, total_len);
1446 ifp->if_ierrors++;
1447 goto done;
1448 }
1449
1450 struct mbuf *m = smsc_newbuf();
1451 if (m == NULL) {
1452 smsc_dbg_printf(sc, "smc_newbuf returned NULL\n");
1453 ifp->if_ierrors++;
1454 goto done;
1455 }
1456
1457 m_set_rcvif(m, ifp);
1458 m->m_pkthdr.len = m->m_len = pktlen;
1459 m->m_flags |= M_HASFCS;
1460 m_adj(m, ETHER_ALIGN);
1461
1462 KASSERT(m->m_len < MCLBYTES);
1463 memcpy(mtod(m, char *), buf + ETHER_ALIGN, m->m_len);
1464
1465 /* Check if RX TCP/UDP checksumming is being offloaded */
1466 if (sc->sc_coe_ctrl & SMSC_COE_CTRL_RX_EN) {
1467 smsc_dbg_printf(sc,"RX checksum offload checking\n");
1468 struct ether_header *eh;
1469
1470 eh = mtod(m, struct ether_header *);
1471
1472 /* Remove the extra 2 bytes of the csum */
1473 m_adj(m, -2);
1474
1475 /*
1476 * The checksum appears to be simplistically calculated
1477 * over the udp/tcp header and data up to the end of the
1478 * eth frame. Which means if the eth frame is padded
1479 * the csum calculation is incorrectly performed over
1480 * the padding bytes as well. Therefore to be safe we
1481 * ignore the H/W csum on frames less than or equal to
1482 * 64 bytes.
1483 *
1484 * Ignore H/W csum for non-IPv4 packets.
1485 */
1486 smsc_dbg_printf(sc,"Ethertype %02x pktlen %02x\n",
1487 be16toh(eh->ether_type), pktlen);
1488 if (be16toh(eh->ether_type) == ETHERTYPE_IP &&
1489 pktlen > ETHER_MIN_LEN) {
1490
1491 m->m_pkthdr.csum_flags |=
1492 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
1493
1494 /*
1495 * Copy the TCP/UDP checksum from the last 2
1496 * bytes of the transfer and put in the
1497 * csum_data field.
1498 */
1499 memcpy(&m->m_pkthdr.csum_data,
1500 buf + pktlen - 2, 2);
1501 /*
1502 * The data is copied in network order, but the
1503 * csum algorithm in the kernel expects it to be
1504 * in host network order.
1505 */
1506 m->m_pkthdr.csum_data =
1507 ntohs(m->m_pkthdr.csum_data);
1508 smsc_dbg_printf(sc,
1509 "RX checksum offloaded (0x%04x)\n",
1510 m->m_pkthdr.csum_data);
1511 }
1512 }
1513
1514 /* round up to next longword */
1515 pktlen = (pktlen + 3) & ~0x3;
1516
1517 /* total_len does not include the padding */
1518 if (pktlen > total_len)
1519 pktlen = total_len;
1520
1521 buf += pktlen;
1522 total_len -= pktlen;
1523
1524 mutex_exit(&sc->sc_rxlock);
1525
1526 /* push the packet up */
1527 if_percpuq_enqueue(sc->sc_ipq, m);
1528
1529 mutex_enter(&sc->sc_rxlock);
1530 if (sc->sc_stopping) {
1531 smsc_dbg_printf(sc, "%s: stopping\n", __func__);
1532 mutex_exit(&sc->sc_rxlock);
1533 return;
1534 }
1535 }
1536
1537 done:
1538 mutex_exit(&sc->sc_rxlock);
1539
1540 /* Setup new transfer. */
1541 usbd_setup_xfer(xfer, c, c->sc_buf, sc->sc_bufsz, USBD_SHORT_XFER_OK,
1542 USBD_NO_TIMEOUT, smsc_rxeof);
1543 usbd_transfer(xfer);
1544
1545 return;
1546 }
1547
1548 void
1549 smsc_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
1550 {
1551 struct smsc_chain *c = priv;
1552 struct smsc_softc *sc = c->sc_sc;
1553 struct ifnet *ifp = &sc->sc_ec.ec_if;
1554
1555 mutex_enter(&sc->sc_txlock);
1556 if (sc->sc_stopping) {
1557 smsc_dbg_printf(sc, "%s: stopping\n", __func__);
1558 mutex_exit(&sc->sc_txlock);
1559 return;
1560 }
1561
1562 ifp->if_timer = 0;
1563 ifp->if_flags &= ~IFF_OACTIVE;
1564
1565 if (status != USBD_NORMAL_COMPLETION) {
1566 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
1567 mutex_exit(&sc->sc_txlock);
1568 return;
1569 }
1570 ifp->if_oerrors++;
1571 printf("%s: usb error on tx: %s\n", device_xname(sc->sc_dev),
1572 usbd_errstr(status));
1573 if (status == USBD_STALLED)
1574 usbd_clear_endpoint_stall_async(sc->sc_ep[SMSC_ENDPT_TX]);
1575 mutex_exit(&sc->sc_txlock);
1576 return;
1577 }
1578 ifp->if_opackets++;
1579
1580 m_freem(c->sc_mbuf);
1581 c->sc_mbuf = NULL;
1582
1583 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1584 smsc_start_locked(ifp);
1585
1586 mutex_exit(&sc->sc_txlock);
1587 }
1588
1589 int
1590 smsc_tx_list_init(struct smsc_softc *sc)
1591 {
1592 struct smsc_cdata *cd = &sc->sc_cdata;
1593 struct smsc_chain *c;
1594 int i;
1595
1596 for (i = 0; i < SMSC_TX_LIST_CNT; i++) {
1597 c = &cd->tx_chain[i];
1598 c->sc_sc = sc;
1599 c->sc_idx = i;
1600 c->sc_mbuf = NULL;
1601 if (c->sc_xfer == NULL) {
1602 int error = usbd_create_xfer(sc->sc_ep[SMSC_ENDPT_TX],
1603 sc->sc_bufsz, USBD_FORCE_SHORT_XFER, 0,
1604 &c->sc_xfer);
1605 if (error)
1606 return EIO;
1607 c->sc_buf = usbd_get_buffer(c->sc_xfer);
1608 }
1609 }
1610
1611 return 0;
1612 }
1613
1614 void
1615 smsc_tx_list_free(struct smsc_softc *sc)
1616 {
1617 /* Free TX resources. */
1618 for (size_t i = 0; i < SMSC_TX_LIST_CNT; i++) {
1619 if (sc->sc_cdata.tx_chain[i].sc_mbuf != NULL) {
1620 m_freem(sc->sc_cdata.tx_chain[i].sc_mbuf);
1621 sc->sc_cdata.tx_chain[i].sc_mbuf = NULL;
1622 }
1623 if (sc->sc_cdata.tx_chain[i].sc_xfer != NULL) {
1624 usbd_destroy_xfer(sc->sc_cdata.tx_chain[i].sc_xfer);
1625 sc->sc_cdata.tx_chain[i].sc_xfer = NULL;
1626 }
1627 }
1628 }
1629
1630 int
1631 smsc_rx_list_init(struct smsc_softc *sc)
1632 {
1633 struct smsc_cdata *cd = &sc->sc_cdata;
1634 struct smsc_chain *c;
1635 int i;
1636
1637 for (i = 0; i < SMSC_RX_LIST_CNT; i++) {
1638 c = &cd->rx_chain[i];
1639 c->sc_sc = sc;
1640 c->sc_idx = i;
1641 c->sc_mbuf = NULL;
1642 if (c->sc_xfer == NULL) {
1643 int error = usbd_create_xfer(sc->sc_ep[SMSC_ENDPT_RX],
1644 sc->sc_bufsz, USBD_SHORT_XFER_OK, 0, &c->sc_xfer);
1645 if (error)
1646 return error;
1647 c->sc_buf = usbd_get_buffer(c->sc_xfer);
1648 }
1649 }
1650
1651 return 0;
1652 }
1653
1654 void
1655 smsc_rx_list_free(struct smsc_softc *sc)
1656 {
1657 /* Free RX resources. */
1658 for (size_t i = 0; i < SMSC_RX_LIST_CNT; i++) {
1659 if (sc->sc_cdata.rx_chain[i].sc_mbuf != NULL) {
1660 m_freem(sc->sc_cdata.rx_chain[i].sc_mbuf);
1661 sc->sc_cdata.rx_chain[i].sc_mbuf = NULL;
1662 }
1663 if (sc->sc_cdata.rx_chain[i].sc_xfer != NULL) {
1664 usbd_destroy_xfer(sc->sc_cdata.rx_chain[i].sc_xfer);
1665 sc->sc_cdata.rx_chain[i].sc_xfer = NULL;
1666 }
1667 }
1668 }
1669
1670 struct mbuf *
1671 smsc_newbuf(void)
1672 {
1673 struct mbuf *m;
1674
1675 MGETHDR(m, M_DONTWAIT, MT_DATA);
1676 if (m == NULL)
1677 return NULL;
1678
1679 MCLGET(m, M_DONTWAIT);
1680 if (!(m->m_flags & M_EXT)) {
1681 m_freem(m);
1682 return NULL;
1683 }
1684
1685 return m;
1686 }
1687
1688 int
1689 smsc_encap(struct smsc_softc *sc, struct mbuf *m, int idx)
1690 {
1691 struct smsc_chain * const c = &sc->sc_cdata.tx_chain[idx];
1692 uint32_t txhdr;
1693 uint32_t frm_len = 0;
1694
1695 /*
1696 * Each frame is prefixed with two 32-bit values describing the
1697 * length of the packet and buffer.
1698 */
1699 txhdr = SMSC_TX_CTRL_0_BUF_SIZE(m->m_pkthdr.len) |
1700 SMSC_TX_CTRL_0_FIRST_SEG | SMSC_TX_CTRL_0_LAST_SEG;
1701 txhdr = htole32(txhdr);
1702 memcpy(c->sc_buf, &txhdr, sizeof(txhdr));
1703
1704 txhdr = SMSC_TX_CTRL_1_PKT_LENGTH(m->m_pkthdr.len);
1705 txhdr = htole32(txhdr);
1706 memcpy(c->sc_buf + 4, &txhdr, sizeof(txhdr));
1707
1708 frm_len += 8;
1709
1710 /* Next copy in the actual packet */
1711 m_copydata(m, 0, m->m_pkthdr.len, c->sc_buf + frm_len);
1712 frm_len += m->m_pkthdr.len;
1713
1714 c->sc_mbuf = m;
1715
1716 usbd_setup_xfer(c->sc_xfer, c, c->sc_buf, frm_len,
1717 USBD_FORCE_SHORT_XFER, 10000, smsc_txeof);
1718
1719 usbd_status err = usbd_transfer(c->sc_xfer);
1720 if (err != USBD_IN_PROGRESS) {
1721 return EIO;
1722 }
1723
1724 sc->sc_cdata.tx_cnt++;
1725
1726 return 0;
1727 }
1728