if_smsc.c revision 1.22.2.37 1 /* $NetBSD: if_smsc.c,v 1.22.2.37 2017/08/30 10:08:22 skrll Exp $ */
2
3 /* $OpenBSD: if_smsc.c,v 1.4 2012/09/27 12:38:11 jsg Exp $ */
4 /* $FreeBSD: src/sys/dev/usb/net/if_smsc.c,v 1.1 2012/08/15 04:03:55 gonzo Exp $ */
5 /*-
6 * Copyright (c) 2012
7 * Ben Gray <bgray (at) freebsd.org>.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 /*
32 * SMSC LAN9xxx devices (http://www.smsc.com/)
33 *
34 * The LAN9500 & LAN9500A devices are stand-alone USB to Ethernet chips that
35 * support USB 2.0 and 10/100 Mbps Ethernet.
36 *
37 * The LAN951x devices are an integrated USB hub and USB to Ethernet adapter.
38 * The driver only covers the Ethernet part, the standard USB hub driver
39 * supports the hub part.
40 *
41 * This driver is closely modelled on the Linux driver written and copyrighted
42 * by SMSC.
43 *
44 * H/W TCP & UDP Checksum Offloading
45 * ---------------------------------
46 * The chip supports both tx and rx offloading of UDP & TCP checksums, this
47 * feature can be dynamically enabled/disabled.
48 *
49 * RX checksuming is performed across bytes after the IPv4 header to the end of
50 * the Ethernet frame, this means if the frame is padded with non-zero values
51 * the H/W checksum will be incorrect, however the rx code compensates for this.
52 *
53 * TX checksuming is more complicated, the device requires a special header to
54 * be prefixed onto the start of the frame which indicates the start and end
55 * positions of the UDP or TCP frame. This requires the driver to manually
56 * go through the packet data and decode the headers prior to sending.
57 * On Linux they generally provide cues to the location of the csum and the
58 * area to calculate it over, on FreeBSD we seem to have to do it all ourselves,
59 * hence this is not as optimal and therefore h/w TX checksum is currently not
60 * implemented.
61 */
62
63 #ifdef _KERNEL_OPT
64 #include "opt_usb.h"
65 #include "opt_inet.h"
66 #endif
67
68 #include <sys/param.h>
69 #include <sys/bus.h>
70 #include <sys/device.h>
71 #include <sys/kernel.h>
72 #include <sys/mbuf.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/rndsource.h>
76 #include <sys/socket.h>
77 #include <sys/sockio.h>
78 #include <sys/systm.h>
79
80 #include <net/if.h>
81 #include <net/if_dl.h>
82 #include <net/if_media.h>
83 #include <net/if_ether.h>
84
85 #include <net/bpf.h>
86
87 #ifdef INET
88 #include <netinet/in.h>
89 #include <netinet/if_inarp.h>
90 #endif
91
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94
95 #include <dev/usb/usb.h>
96 #include <dev/usb/usbdi.h>
97 #include <dev/usb/usbdi_util.h>
98 #include <dev/usb/usbdivar.h>
99 #include <dev/usb/usbdevs.h>
100
101 #include <dev/usb/if_smscreg.h>
102 #include <dev/usb/if_smscvar.h>
103
104 #include "ioconf.h"
105
106 #ifdef USB_DEBUG
107 int smsc_debug = 0;
108 #endif
109
110 #define ETHER_ALIGN 2
111 /*
112 * Various supported device vendors/products.
113 */
114 static const struct usb_devno smsc_devs[] = {
115 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN89530 },
116 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN9530 },
117 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN9730 },
118 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500 },
119 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A },
120 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_ALT },
121 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_HAL },
122 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_SAL10 },
123 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500_ALT },
124 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500_SAL10 },
125 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505 },
126 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A },
127 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A_HAL },
128 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A_SAL10 },
129 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505_SAL10 },
130 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14 },
131 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14_ALT },
132 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14_SAL10 }
133 };
134
135 #ifdef USB_DEBUG
136 #define smsc_dbg_printf(sc, fmt, args...) \
137 do { \
138 if (smsc_debug > 0) \
139 printf("debug: " fmt, ##args); \
140 } while(0)
141 #else
142 #define smsc_dbg_printf(sc, fmt, args...)
143 #endif
144
145 #define smsc_warn_printf(sc, fmt, args...) \
146 printf("%s: warning: " fmt, device_xname((sc)->sc_dev), ##args)
147
148 #define smsc_err_printf(sc, fmt, args...) \
149 printf("%s: error: " fmt, device_xname((sc)->sc_dev), ##args)
150
151 /* Function declarations */
152 int smsc_chip_init(struct smsc_softc *);
153 void smsc_setmulti(struct smsc_softc *);
154 int smsc_setmacaddress(struct smsc_softc *, const uint8_t *);
155
156 int smsc_match(device_t, cfdata_t, void *);
157 void smsc_attach(device_t, device_t, void *);
158 int smsc_detach(device_t, int);
159 int smsc_activate(device_t, enum devact);
160
161 int smsc_init(struct ifnet *);
162 int smsc_init_locked(struct ifnet *);
163 void smsc_start(struct ifnet *);
164 void smsc_start_locked(struct ifnet *);
165 int smsc_ioctl(struct ifnet *, u_long, void *);
166 void smsc_stop(struct ifnet *, int);
167 void smsc_stop_locked(struct ifnet *, int);
168
169 void smsc_reset(struct smsc_softc *);
170 struct mbuf *smsc_newbuf(void);
171
172 void smsc_tick(void *);
173 void smsc_tick_task(void *);
174 void smsc_miibus_statchg(struct ifnet *);
175 void smsc_miibus_statchg_locked(struct ifnet *);
176 int smsc_miibus_readreg(device_t, int, int);
177 void smsc_miibus_writereg(device_t, int, int, int);
178 int smsc_ifmedia_upd(struct ifnet *);
179 void smsc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
180 void smsc_lock_mii(struct smsc_softc *);
181 void smsc_unlock_mii(struct smsc_softc *);
182
183 int smsc_tx_list_init(struct smsc_softc *);
184 void smsc_tx_list_free(struct smsc_softc *);
185 int smsc_rx_list_init(struct smsc_softc *);
186 void smsc_rx_list_free(struct smsc_softc *);
187 int smsc_encap(struct smsc_softc *, struct mbuf *, int);
188 void smsc_rxeof(struct usbd_xfer *, void *, usbd_status);
189 void smsc_txeof(struct usbd_xfer *, void *, usbd_status);
190
191 int smsc_read_reg(struct smsc_softc *, uint32_t, uint32_t *);
192 int smsc_write_reg(struct smsc_softc *, uint32_t, uint32_t);
193 int smsc_wait_for_bits(struct smsc_softc *, uint32_t, uint32_t);
194 int smsc_sethwcsum(struct smsc_softc *);
195
196 CFATTACH_DECL_NEW(usmsc, sizeof(struct smsc_softc), smsc_match, smsc_attach,
197 smsc_detach, smsc_activate);
198
199 int
200 smsc_read_reg(struct smsc_softc *sc, uint32_t off, uint32_t *data)
201 {
202 usb_device_request_t req;
203 uint32_t buf;
204 usbd_status err;
205
206 req.bmRequestType = UT_READ_VENDOR_DEVICE;
207 req.bRequest = SMSC_UR_READ_REG;
208 USETW(req.wValue, 0);
209 USETW(req.wIndex, off);
210 USETW(req.wLength, 4);
211
212 err = usbd_do_request(sc->sc_udev, &req, &buf);
213 if (err != 0)
214 smsc_warn_printf(sc, "Failed to read register 0x%0x\n", off);
215
216 *data = le32toh(buf);
217
218 return err;
219 }
220
221 int
222 smsc_write_reg(struct smsc_softc *sc, uint32_t off, uint32_t data)
223 {
224 usb_device_request_t req;
225 uint32_t buf;
226 usbd_status err;
227
228 buf = htole32(data);
229
230 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
231 req.bRequest = SMSC_UR_WRITE_REG;
232 USETW(req.wValue, 0);
233 USETW(req.wIndex, off);
234 USETW(req.wLength, 4);
235
236 err = usbd_do_request(sc->sc_udev, &req, &buf);
237 if (err != 0)
238 smsc_warn_printf(sc, "Failed to write register 0x%0x\n", off);
239
240 return err;
241 }
242
243 int
244 smsc_wait_for_bits(struct smsc_softc *sc, uint32_t reg, uint32_t bits)
245 {
246 uint32_t val;
247 int err, i;
248
249 for (i = 0; i < 100; i++) {
250 if ((err = smsc_read_reg(sc, reg, &val)) != 0)
251 return err;
252 if (!(val & bits))
253 return 0;
254 DELAY(5);
255 }
256
257 return 1;
258 }
259
260 int
261 smsc_miibus_readreg(device_t dev, int phy, int reg)
262 {
263 struct smsc_softc * const sc = device_private(dev);
264 uint32_t addr;
265 uint32_t val = 0;
266
267 smsc_lock_mii(sc);
268 if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
269 smsc_warn_printf(sc, "MII is busy\n");
270 goto done;
271 }
272
273 addr = (phy << 11) | (reg << 6) | SMSC_MII_READ;
274 smsc_write_reg(sc, SMSC_MII_ADDR, addr);
275
276 if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0)
277 smsc_warn_printf(sc, "MII read timeout\n");
278
279 smsc_read_reg(sc, SMSC_MII_DATA, &val);
280
281 done:
282 smsc_unlock_mii(sc);
283
284 return val & 0xffff;
285 }
286
287 void
288 smsc_miibus_writereg(device_t dev, int phy, int reg, int val)
289 {
290 struct smsc_softc * const sc = device_private(dev);
291 uint32_t addr;
292
293 if (sc->sc_phyno != phy)
294 return;
295
296 smsc_lock_mii(sc);
297 if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
298 smsc_warn_printf(sc, "MII is busy\n");
299 smsc_unlock_mii(sc);
300 return;
301 }
302
303 smsc_write_reg(sc, SMSC_MII_DATA, val);
304
305 addr = (phy << 11) | (reg << 6) | SMSC_MII_WRITE;
306 smsc_write_reg(sc, SMSC_MII_ADDR, addr);
307 smsc_unlock_mii(sc);
308
309 if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0)
310 smsc_warn_printf(sc, "MII write timeout\n");
311 }
312
313 void
314 smsc_miibus_statchg(struct ifnet *ifp)
315 {
316 if (ifp == NULL)
317 return;
318
319 struct smsc_softc * const sc = ifp->if_softc;
320
321 mutex_enter(&sc->sc_lock);
322 if (sc->sc_dying) {
323 mutex_exit(&sc->sc_lock);
324 return;
325 }
326 smsc_miibus_statchg_locked(ifp);
327
328 mutex_exit(&sc->sc_lock);
329 }
330
331
332 void
333 smsc_miibus_statchg_locked(struct ifnet *ifp)
334 {
335 struct smsc_softc * const sc = ifp->if_softc;
336 struct mii_data * const mii = &sc->sc_mii;
337 int err;
338 uint32_t flow;
339 uint32_t afc_cfg;
340
341 KASSERT(mutex_owned(&sc->sc_lock));
342
343 if ((ifp->if_flags & IFF_RUNNING) == 0) {
344 smsc_dbg_printf(sc, "%s: not running\n", __func__);
345 return;
346 }
347
348 /* Use the MII status to determine link status */
349 sc->sc_flags &= ~SMSC_FLAG_LINK;
350 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
351 (IFM_ACTIVE | IFM_AVALID)) {
352 switch (IFM_SUBTYPE(mii->mii_media_active)) {
353 case IFM_10_T:
354 case IFM_100_TX:
355 sc->sc_flags |= SMSC_FLAG_LINK;
356 break;
357 case IFM_1000_T:
358 /* Gigabit ethernet not supported by chipset */
359 break;
360 default:
361 break;
362 }
363 }
364
365 /* Lost link, do nothing. */
366 if ((sc->sc_flags & SMSC_FLAG_LINK) == 0) {
367 smsc_dbg_printf(sc, "link flag not set\n");
368 return;
369 }
370
371 err = smsc_read_reg(sc, SMSC_AFC_CFG, &afc_cfg);
372 if (err) {
373 smsc_warn_printf(sc, "failed to read initial AFC_CFG, "
374 "error %d\n", err);
375 return;
376 }
377
378 /* Enable/disable full duplex operation and TX/RX pause */
379 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
380 smsc_dbg_printf(sc, "full duplex operation\n");
381 sc->sc_mac_csr &= ~SMSC_MAC_CSR_RCVOWN;
382 sc->sc_mac_csr |= SMSC_MAC_CSR_FDPX;
383
384 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
385 flow = 0xffff0002;
386 else
387 flow = 0;
388
389 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
390 afc_cfg |= 0xf;
391 else
392 afc_cfg &= ~0xf;
393 } else {
394 smsc_dbg_printf(sc, "half duplex operation\n");
395 sc->sc_mac_csr &= ~SMSC_MAC_CSR_FDPX;
396 sc->sc_mac_csr |= SMSC_MAC_CSR_RCVOWN;
397
398 flow = 0;
399 afc_cfg |= 0xf;
400 }
401
402 err = smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
403 err += smsc_write_reg(sc, SMSC_FLOW, flow);
404 err += smsc_write_reg(sc, SMSC_AFC_CFG, afc_cfg);
405 if (err)
406 smsc_warn_printf(sc, "media change failed, error %d\n", err);
407 }
408
409 int
410 smsc_ifmedia_upd(struct ifnet *ifp)
411 {
412 struct smsc_softc * const sc = ifp->if_softc;
413 struct mii_data * const mii = &sc->sc_mii;
414 int err;
415
416 if (mii->mii_instance) {
417 struct mii_softc *miisc;
418
419 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
420 mii_phy_reset(miisc);
421 }
422 err = mii_mediachg(mii);
423 return err;
424 }
425
426 void
427 smsc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
428 {
429 struct smsc_softc * const sc = ifp->if_softc;
430 struct mii_data * const mii = &sc->sc_mii;
431
432 /* SMSC_LOCK */
433
434 mii_pollstat(mii);
435
436 ifmr->ifm_active = mii->mii_media_active;
437 ifmr->ifm_status = mii->mii_media_status;
438
439 /* SMSC_UNLOCK */
440 }
441
442 static inline uint32_t
443 smsc_hash(uint8_t addr[ETHER_ADDR_LEN])
444 {
445
446 return (ether_crc32_be(addr, ETHER_ADDR_LEN) >> 26) & 0x3f;
447 }
448
449 void
450 smsc_setmulti(struct smsc_softc *sc)
451 {
452 struct ifnet * const ifp = &sc->sc_ec.ec_if;
453 struct ether_multi *enm;
454 struct ether_multistep step;
455 uint32_t hashtbl[2] = { 0, 0 };
456 uint32_t hash;
457
458 KASSERT(mutex_owned(&sc->sc_lock));
459
460 if (sc->sc_dying)
461 return;
462
463 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
464 allmulti:
465 smsc_dbg_printf(sc, "receive all multicast enabled\n");
466 sc->sc_mac_csr |= SMSC_MAC_CSR_MCPAS;
467 sc->sc_mac_csr &= ~SMSC_MAC_CSR_HPFILT;
468 smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
469 return;
470 } else {
471 sc->sc_mac_csr |= SMSC_MAC_CSR_HPFILT;
472 sc->sc_mac_csr &= ~(SMSC_MAC_CSR_PRMS | SMSC_MAC_CSR_MCPAS);
473 }
474
475 ETHER_LOCK(&sc->sc_ec);
476 ETHER_FIRST_MULTI(step, &sc->sc_ec, enm);
477 while (enm != NULL) {
478 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
479 ETHER_UNLOCK(&sc->sc_ec);
480 goto allmulti;
481 }
482
483 hash = smsc_hash(enm->enm_addrlo);
484 hashtbl[hash >> 5] |= 1 << (hash & 0x1F);
485 ETHER_NEXT_MULTI(step, enm);
486 }
487 ETHER_UNLOCK(&sc->sc_ec);
488
489 /* Debug */
490 if (sc->sc_mac_csr & SMSC_MAC_CSR_HPFILT) {
491 smsc_dbg_printf(sc, "receive select group of macs\n");
492 } else {
493 smsc_dbg_printf(sc, "receive own packets only\n");
494 }
495
496 /* Write the hash table and mac control registers */
497 ifp->if_flags &= ~IFF_ALLMULTI;
498 smsc_write_reg(sc, SMSC_HASHH, hashtbl[1]);
499 smsc_write_reg(sc, SMSC_HASHL, hashtbl[0]);
500 smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
501 }
502
503 int
504 smsc_sethwcsum(struct smsc_softc *sc)
505 {
506 struct ifnet * const ifp = &sc->sc_ec.ec_if;
507 uint32_t val;
508 int err;
509
510 err = smsc_read_reg(sc, SMSC_COE_CTRL, &val);
511 if (err != 0) {
512 smsc_warn_printf(sc, "failed to read SMSC_COE_CTRL (err=%d)\n",
513 err);
514 return err;
515 }
516
517 /* Enable/disable the Rx checksum */
518 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
519 val |= (SMSC_COE_CTRL_RX_EN | SMSC_COE_CTRL_RX_MODE);
520 else
521 val &= ~(SMSC_COE_CTRL_RX_EN | SMSC_COE_CTRL_RX_MODE);
522
523 /* Enable/disable the Tx checksum (currently not supported) */
524 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
525 val |= SMSC_COE_CTRL_TX_EN;
526 else
527 val &= ~SMSC_COE_CTRL_TX_EN;
528
529 sc->sc_coe_ctrl = val;
530
531 err = smsc_write_reg(sc, SMSC_COE_CTRL, val);
532 if (err != 0) {
533 smsc_warn_printf(sc, "failed to write SMSC_COE_CTRL (err=%d)\n",
534 err);
535 return err;
536 }
537
538 return 0;
539 }
540
541 int
542 smsc_setmacaddress(struct smsc_softc *sc, const uint8_t *addr)
543 {
544 int err;
545 uint32_t val;
546
547 smsc_dbg_printf(sc, "setting mac address to "
548 "%02x:%02x:%02x:%02x:%02x:%02x\n",
549 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
550
551 val = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
552 if ((err = smsc_write_reg(sc, SMSC_MAC_ADDRL, val)) != 0)
553 goto done;
554
555 val = (addr[5] << 8) | addr[4];
556 err = smsc_write_reg(sc, SMSC_MAC_ADDRH, val);
557
558 done:
559 return err;
560 }
561
562 void
563 smsc_reset(struct smsc_softc *sc)
564 {
565 KASSERT(mutex_owned(&sc->sc_lock));
566 if (sc->sc_dying)
567 return;
568
569 /* Wait a little while for the chip to get its brains in order. */
570 DELAY(1000);
571
572 /* Reinitialize controller to achieve full reset. */
573 smsc_chip_init(sc);
574 }
575
576 int
577 smsc_init(struct ifnet *ifp)
578 {
579 struct smsc_softc * const sc = ifp->if_softc;
580
581 mutex_enter(&sc->sc_lock);
582 int ret = smsc_init_locked(ifp);
583 mutex_exit(&sc->sc_lock);
584
585 return ret;
586 }
587
588 int
589 smsc_init_locked(struct ifnet *ifp)
590 {
591 struct smsc_softc * const sc = ifp->if_softc;
592 usbd_status err;
593
594 if (sc->sc_dying)
595 return EIO;
596
597 /* Cancel pending I/O */
598 smsc_stop_locked(ifp, 1);
599
600 /* Reset the ethernet interface. */
601 smsc_reset(sc);
602
603 /* Load the multicast filter. */
604 smsc_setmulti(sc);
605
606 /* TCP/UDP checksum offload engines. */
607 smsc_sethwcsum(sc);
608
609 /* Open RX and TX pipes. */
610 err = usbd_open_pipe(sc->sc_iface, sc->sc_ed[SMSC_ENDPT_RX],
611 USBD_EXCLUSIVE_USE | USBD_MPSAFE, &sc->sc_ep[SMSC_ENDPT_RX]);
612 if (err) {
613 printf("%s: open rx pipe failed: %s\n",
614 device_xname(sc->sc_dev), usbd_errstr(err));
615 goto fail;
616 }
617
618 err = usbd_open_pipe(sc->sc_iface, sc->sc_ed[SMSC_ENDPT_TX],
619 USBD_EXCLUSIVE_USE | USBD_MPSAFE, &sc->sc_ep[SMSC_ENDPT_TX]);
620 if (err) {
621 printf("%s: open tx pipe failed: %s\n",
622 device_xname(sc->sc_dev), usbd_errstr(err));
623 goto fail1;
624 }
625
626 /* Init RX ring. */
627 if (smsc_rx_list_init(sc)) {
628 aprint_error_dev(sc->sc_dev, "rx list init failed\n");
629 goto fail2;
630 }
631
632 /* Init TX ring. */
633 if (smsc_tx_list_init(sc)) {
634 aprint_error_dev(sc->sc_dev, "tx list init failed\n");
635 goto fail3;
636 }
637
638 mutex_enter(&sc->sc_rxlock);
639 mutex_enter(&sc->sc_txlock);
640 sc->sc_stopping = false;
641
642 /* Start up the receive pipe. */
643 for (size_t i = 0; i < SMSC_RX_LIST_CNT; i++) {
644 struct smsc_chain *c = &sc->sc_cdata.rx_chain[i];
645 usbd_setup_xfer(c->sc_xfer, c, c->sc_buf, sc->sc_bufsz,
646 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, smsc_rxeof);
647 usbd_transfer(c->sc_xfer);
648 }
649
650 mutex_exit(&sc->sc_txlock);
651 mutex_exit(&sc->sc_rxlock);
652
653 /* Indicate we are up and running. */
654 ifp->if_flags |= IFF_RUNNING;
655 ifp->if_flags &= ~IFF_OACTIVE;
656
657 callout_reset(&sc->sc_stat_ch, hz, smsc_tick, sc);
658
659 return 0;
660
661 fail3:
662 smsc_rx_list_free(sc);
663 fail2:
664 usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_TX]);
665 fail1:
666 usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_RX]);
667 fail:
668 return EIO;
669 }
670
671 void
672 smsc_start(struct ifnet *ifp)
673 {
674 struct smsc_softc * const sc = ifp->if_softc;
675 KASSERT(ifp->if_extflags & IFEF_START_MPSAFE);
676
677 mutex_enter(&sc->sc_txlock);
678 if (!sc->sc_stopping)
679 smsc_start_locked(ifp);
680 mutex_exit(&sc->sc_txlock);
681 }
682
683 void
684 smsc_start_locked(struct ifnet *ifp)
685 {
686 struct smsc_softc * const sc = ifp->if_softc;
687 struct mbuf *m_head = NULL;
688
689 KASSERT(mutex_owned(&sc->sc_txlock));
690
691 /* Don't send anything if there is no link or controller is busy. */
692 if ((sc->sc_flags & SMSC_FLAG_LINK) == 0) {
693 smsc_dbg_printf(sc, "%s: no link\n", __func__);
694 return;
695 }
696
697 /* Any free USB transfers? */
698 if (sc->sc_cdata.tx_free == 0) {
699 smsc_dbg_printf(sc, "%s: all USB transfers in use\n", __func__);
700 return;
701 }
702
703 if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
704 smsc_dbg_printf(sc, "%s: not running\n", __func__);
705 return;
706 }
707
708 IFQ_POLL(&ifp->if_snd, m_head);
709 if (m_head == NULL)
710 return;
711
712 sc->sc_cdata.tx_free--;
713
714 IFQ_DEQUEUE(&ifp->if_snd, m_head);
715 if (smsc_encap(sc, m_head, sc->sc_cdata.tx_next)) {
716 m_free(m_head);
717 sc->sc_cdata.tx_free++;
718 return;
719 }
720
721 sc->sc_cdata.tx_next = (sc->sc_cdata.tx_next + 1) % SMSC_TX_LIST_CNT;
722
723 bpf_mtap(ifp, m_head);
724
725 if (sc->sc_cdata.tx_free == 0)
726 ifp->if_flags |= IFF_OACTIVE;
727
728 /*
729 * Set a timeout in case the chip goes out to lunch.
730 */
731 ifp->if_timer = 5;
732 }
733
734 void
735 smsc_tick(void *xsc)
736 {
737 struct smsc_softc * const sc = xsc;
738
739 if (sc == NULL)
740 return;
741
742 mutex_enter(&sc->sc_lock);
743
744 if (sc->sc_dying) {
745 mutex_exit(&sc->sc_lock);
746 return;
747 }
748
749 if (!sc->sc_ttpending) {
750 sc->sc_ttpending = true;
751 usb_add_task(sc->sc_udev, &sc->sc_tick_task, USB_TASKQ_DRIVER);
752 }
753
754 mutex_exit(&sc->sc_lock);
755 }
756
757 void
758 smsc_stop(struct ifnet *ifp, int disable)
759 {
760 struct smsc_softc * const sc = ifp->if_softc;
761
762 mutex_enter(&sc->sc_lock);
763 smsc_stop_locked(ifp, disable);
764 mutex_exit(&sc->sc_lock);
765 }
766
767 void
768 smsc_stop_locked(struct ifnet *ifp, int disable)
769 {
770 struct smsc_softc * const sc = ifp->if_softc;
771 usbd_status err;
772
773 KASSERT(mutex_owned(&sc->sc_lock));
774 mutex_enter(&sc->sc_rxlock);
775 mutex_enter(&sc->sc_txlock);
776 sc->sc_stopping = true;
777 mutex_exit(&sc->sc_txlock);
778 mutex_exit(&sc->sc_rxlock);
779
780 callout_stop(&sc->sc_stat_ch);
781
782 /* Stop transfers. */
783 if (sc->sc_ep[SMSC_ENDPT_RX] != NULL) {
784 err = usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_RX]);
785 if (err) {
786 printf("%s: abort rx pipe failed: %s\n",
787 device_xname(sc->sc_dev), usbd_errstr(err));
788 }
789 }
790
791 if (sc->sc_ep[SMSC_ENDPT_TX] != NULL) {
792 err = usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_TX]);
793 if (err) {
794 printf("%s: abort tx pipe failed: %s\n",
795 device_xname(sc->sc_dev), usbd_errstr(err));
796 }
797 }
798
799 if (sc->sc_ep[SMSC_ENDPT_INTR] != NULL) {
800 err = usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_INTR]);
801 if (err) {
802 printf("%s: abort intr pipe failed: %s\n",
803 device_xname(sc->sc_dev), usbd_errstr(err));
804 }
805 }
806
807 smsc_rx_list_free(sc);
808
809 smsc_tx_list_free(sc);
810
811 /* Close pipes */
812 if (sc->sc_ep[SMSC_ENDPT_RX] != NULL) {
813 err = usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_RX]);
814 if (err) {
815 printf("%s: close rx pipe failed: %s\n",
816 device_xname(sc->sc_dev), usbd_errstr(err));
817 }
818 sc->sc_ep[SMSC_ENDPT_RX] = NULL;
819 }
820
821 if (sc->sc_ep[SMSC_ENDPT_TX] != NULL) {
822 err = usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_TX]);
823 if (err) {
824 printf("%s: close tx pipe failed: %s\n",
825 device_xname(sc->sc_dev), usbd_errstr(err));
826 }
827 sc->sc_ep[SMSC_ENDPT_TX] = NULL;
828 }
829
830 if (sc->sc_ep[SMSC_ENDPT_INTR] != NULL) {
831 err = usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_INTR]);
832 if (err) {
833 printf("%s: close intr pipe failed: %s\n",
834 device_xname(sc->sc_dev), usbd_errstr(err));
835 }
836 sc->sc_ep[SMSC_ENDPT_INTR] = NULL;
837 }
838
839 ifp->if_timer = 0;
840 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
841
842 if (disable) {
843 /* drain */
844 }
845 }
846
847 int
848 smsc_chip_init(struct smsc_softc *sc)
849 {
850 int err;
851 uint32_t reg_val;
852 int burst_cap;
853
854 /* Enter H/W config mode */
855 smsc_write_reg(sc, SMSC_HW_CFG, SMSC_HW_CFG_LRST);
856
857 if ((err = smsc_wait_for_bits(sc, SMSC_HW_CFG,
858 SMSC_HW_CFG_LRST)) != 0) {
859 smsc_warn_printf(sc, "timed-out waiting for reset to "
860 "complete\n");
861 goto init_failed;
862 }
863
864 /* Reset the PHY */
865 smsc_write_reg(sc, SMSC_PM_CTRL, SMSC_PM_CTRL_PHY_RST);
866
867 if ((err = smsc_wait_for_bits(sc, SMSC_PM_CTRL,
868 SMSC_PM_CTRL_PHY_RST)) != 0) {
869 smsc_warn_printf(sc, "timed-out waiting for phy reset to "
870 "complete\n");
871 goto init_failed;
872 }
873 usbd_delay_ms(sc->sc_udev, 40);
874
875 /* Set the mac address */
876 struct ifnet * const ifp = &sc->sc_ec.ec_if;
877 const char *eaddr = CLLADDR(ifp->if_sadl);
878 if ((err = smsc_setmacaddress(sc, eaddr)) != 0) {
879 smsc_warn_printf(sc, "failed to set the MAC address\n");
880 goto init_failed;
881 }
882
883 /*
884 * Don't know what the HW_CFG_BIR bit is, but following the reset
885 * sequence as used in the Linux driver.
886 */
887 if ((err = smsc_read_reg(sc, SMSC_HW_CFG, ®_val)) != 0) {
888 smsc_warn_printf(sc, "failed to read HW_CFG: %d\n", err);
889 goto init_failed;
890 }
891 reg_val |= SMSC_HW_CFG_BIR;
892 smsc_write_reg(sc, SMSC_HW_CFG, reg_val);
893
894 /*
895 * There is a so called 'turbo mode' that the linux driver supports, it
896 * seems to allow you to jam multiple frames per Rx transaction.
897 * By default this driver supports that and therefore allows multiple
898 * frames per USB transfer.
899 *
900 * The xfer buffer size needs to reflect this as well, therefore based
901 * on the calculations in the Linux driver the RX bufsize is set to
902 * 18944,
903 * bufsz = (16 * 1024 + 5 * 512)
904 *
905 * Burst capability is the number of URBs that can be in a burst of
906 * data/ethernet frames.
907 */
908
909 if (sc->sc_udev->ud_speed == USB_SPEED_HIGH)
910 burst_cap = 37;
911 else
912 burst_cap = 128;
913
914 smsc_write_reg(sc, SMSC_BURST_CAP, burst_cap);
915
916 /* Set the default bulk in delay (magic value from Linux driver) */
917 smsc_write_reg(sc, SMSC_BULK_IN_DLY, 0x00002000);
918
919 /*
920 * Initialise the RX interface
921 */
922 if ((err = smsc_read_reg(sc, SMSC_HW_CFG, ®_val)) < 0) {
923 smsc_warn_printf(sc, "failed to read HW_CFG: (err = %d)\n",
924 err);
925 goto init_failed;
926 }
927
928 /*
929 * The following settings are used for 'turbo mode', a.k.a multiple
930 * frames per Rx transaction (again info taken form Linux driver).
931 */
932 reg_val |= (SMSC_HW_CFG_MEF | SMSC_HW_CFG_BCE);
933
934 /*
935 * set Rx data offset to ETHER_ALIGN which will make the IP header
936 * align on a word boundary.
937 */
938 reg_val |= ETHER_ALIGN << SMSC_HW_CFG_RXDOFF_SHIFT;
939
940 smsc_write_reg(sc, SMSC_HW_CFG, reg_val);
941
942 /* Clear the status register ? */
943 smsc_write_reg(sc, SMSC_INTR_STATUS, 0xffffffff);
944
945 /* Read and display the revision register */
946 if ((err = smsc_read_reg(sc, SMSC_ID_REV, &sc->sc_rev_id)) < 0) {
947 smsc_warn_printf(sc, "failed to read ID_REV (err = %d)\n", err);
948 goto init_failed;
949 }
950
951 /* GPIO/LED setup */
952 reg_val = SMSC_LED_GPIO_CFG_SPD_LED | SMSC_LED_GPIO_CFG_LNK_LED |
953 SMSC_LED_GPIO_CFG_FDX_LED;
954 smsc_write_reg(sc, SMSC_LED_GPIO_CFG, reg_val);
955
956 /*
957 * Initialise the TX interface
958 */
959 smsc_write_reg(sc, SMSC_FLOW, 0);
960
961 smsc_write_reg(sc, SMSC_AFC_CFG, AFC_CFG_DEFAULT);
962
963 /* Read the current MAC configuration */
964 if ((err = smsc_read_reg(sc, SMSC_MAC_CSR, &sc->sc_mac_csr)) < 0) {
965 smsc_warn_printf(sc, "failed to read MAC_CSR (err=%d)\n", err);
966 goto init_failed;
967 }
968
969 /* disable pad stripping, collides with checksum offload */
970 sc->sc_mac_csr &= ~SMSC_MAC_CSR_PADSTR;
971
972 /* Vlan */
973 smsc_write_reg(sc, SMSC_VLAN1, (uint32_t)ETHERTYPE_VLAN);
974
975 /*
976 * Start TX
977 */
978 sc->sc_mac_csr |= SMSC_MAC_CSR_TXEN;
979 smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
980 smsc_write_reg(sc, SMSC_TX_CFG, SMSC_TX_CFG_ON);
981
982 /*
983 * Start RX
984 */
985 sc->sc_mac_csr |= SMSC_MAC_CSR_RXEN;
986 smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
987
988 return 0;
989
990 init_failed:
991 smsc_err_printf(sc, "smsc_chip_init failed (err=%d)\n", err);
992 return err;
993 }
994
995 static int
996 smsc_ifflags_cb(struct ethercom *ec)
997 {
998 struct ifnet *ifp = &ec->ec_if;
999 struct smsc_softc *sc = ifp->if_softc;
1000
1001 mutex_enter(&sc->sc_lock);
1002
1003 const int change = ifp->if_flags ^ sc->sc_if_flags;
1004 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
1005 mutex_exit(&sc->sc_lock);
1006 return ENETRESET;
1007 }
1008
1009 smsc_dbg_printf(sc, "%s: change %x\n", __func__, change);
1010
1011 if ((change & IFF_PROMISC) != 0) {
1012 if (ifp->if_flags & IFF_PROMISC) {
1013 sc->sc_mac_csr |= SMSC_MAC_CSR_PRMS;
1014 smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
1015 } else if (!(ifp->if_flags & IFF_PROMISC)) {
1016 sc->sc_mac_csr &= ~SMSC_MAC_CSR_PRMS;
1017 smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
1018 }
1019 smsc_setmulti(sc);
1020 }
1021
1022 mutex_exit(&sc->sc_lock);
1023
1024 return 0;
1025 }
1026
1027
1028 int
1029 smsc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1030 {
1031 struct smsc_softc * const sc = ifp->if_softc;
1032
1033 smsc_dbg_printf(sc, "%s: cmd %0lx data %p\n", __func__, cmd, data);
1034
1035 int error = ether_ioctl(ifp, cmd, data);
1036
1037 if (error == ENETRESET) {
1038 error = 0;
1039 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1040 if (ifp->if_flags & IFF_RUNNING) {
1041 mutex_enter(&sc->sc_lock);
1042 smsc_setmulti(sc);
1043 mutex_exit(&sc->sc_lock);
1044 }
1045 }
1046 }
1047
1048 mutex_enter(&sc->sc_rxlock);
1049 mutex_enter(&sc->sc_txlock);
1050 sc->sc_if_flags = ifp->if_flags;
1051 mutex_exit(&sc->sc_txlock);
1052 mutex_exit(&sc->sc_rxlock);
1053
1054 return error;
1055 }
1056
1057 int
1058 smsc_match(device_t parent, cfdata_t match, void *aux)
1059 {
1060 struct usb_attach_arg *uaa = aux;
1061
1062 return (usb_lookup(smsc_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
1063 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
1064 }
1065
1066 void
1067 smsc_attach(device_t parent, device_t self, void *aux)
1068 {
1069 struct smsc_softc *sc = device_private(self);
1070 struct usb_attach_arg *uaa = aux;
1071 struct usbd_device *dev = uaa->uaa_device;
1072 usb_interface_descriptor_t *id;
1073 usb_endpoint_descriptor_t *ed;
1074 char *devinfop;
1075 struct mii_data *mii;
1076 struct ifnet *ifp;
1077 int err, i;
1078 uint32_t mac_h, mac_l;
1079
1080 sc->sc_dev = self;
1081 sc->sc_udev = dev;
1082 sc->sc_stopping = false;
1083
1084 aprint_naive("\n");
1085 aprint_normal("\n");
1086
1087 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
1088 aprint_normal_dev(self, "%s\n", devinfop);
1089 usbd_devinfo_free(devinfop);
1090
1091 err = usbd_set_config_no(dev, SMSC_CONFIG_INDEX, 1);
1092 if (err) {
1093 aprint_error_dev(self, "failed to set configuration"
1094 ", err=%s\n", usbd_errstr(err));
1095 return;
1096 }
1097
1098 /* Setup the endpoints for the SMSC LAN95xx device(s) */
1099 err = usbd_device2interface_handle(dev, SMSC_IFACE_IDX, &sc->sc_iface);
1100 if (err) {
1101 aprint_error_dev(self, "getting interface handle failed\n");
1102 return;
1103 }
1104
1105 id = usbd_get_interface_descriptor(sc->sc_iface);
1106
1107 if (sc->sc_udev->ud_speed >= USB_SPEED_HIGH)
1108 sc->sc_bufsz = SMSC_MAX_BUFSZ;
1109 else
1110 sc->sc_bufsz = SMSC_MIN_BUFSZ;
1111
1112 /* Find endpoints. */
1113 for (i = 0; i < id->bNumEndpoints; i++) {
1114 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
1115 if (!ed) {
1116 aprint_error_dev(self, "couldn't get ep %d\n", i);
1117 return;
1118 }
1119 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
1120 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
1121 sc->sc_ed[SMSC_ENDPT_RX] = ed->bEndpointAddress;
1122 } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
1123 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
1124 sc->sc_ed[SMSC_ENDPT_TX] = ed->bEndpointAddress;
1125 } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
1126 UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) {
1127 sc->sc_ed[SMSC_ENDPT_INTR] = ed->bEndpointAddress;
1128 }
1129 }
1130
1131 usb_init_task(&sc->sc_tick_task, smsc_tick_task, sc, USB_TASKQ_MPSAFE);
1132
1133 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
1134 mutex_init(&sc->sc_txlock, MUTEX_DEFAULT, IPL_SOFTUSB);
1135 mutex_init(&sc->sc_rxlock, MUTEX_DEFAULT, IPL_SOFTUSB);
1136 mutex_init(&sc->sc_mii_lock, MUTEX_DEFAULT, IPL_NONE);
1137
1138 ifp = &sc->sc_ec.ec_if;
1139 ifp->if_softc = sc;
1140 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1141 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1142 ifp->if_extflags = IFEF_START_MPSAFE;
1143 ifp->if_init = smsc_init;
1144 ifp->if_ioctl = smsc_ioctl;
1145 ifp->if_start = smsc_start;
1146 ifp->if_stop = smsc_stop;
1147
1148 #ifdef notyet
1149 /*
1150 * We can do TCPv4, and UDPv4 checksums in hardware.
1151 */
1152 ifp->if_capabilities |=
1153 /*IFCAP_CSUM_TCPv4_Tx |*/ IFCAP_CSUM_TCPv4_Rx |
1154 /*IFCAP_CSUM_UDPv4_Tx |*/ IFCAP_CSUM_UDPv4_Rx;
1155 #endif
1156
1157 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
1158
1159 /* Setup some of the basics */
1160 sc->sc_phyno = 1;
1161
1162 /*
1163 * Attempt to get the mac address, if an EEPROM is not attached this
1164 * will just return FF:FF:FF:FF:FF:FF, so in such cases we invent a MAC
1165 * address based on urandom.
1166 */
1167 memset(sc->sc_enaddr, 0xff, ETHER_ADDR_LEN);
1168
1169 prop_dictionary_t dict = device_properties(self);
1170 prop_data_t eaprop = prop_dictionary_get(dict, "mac-address");
1171
1172 if (eaprop != NULL) {
1173 KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
1174 KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
1175 memcpy(sc->sc_enaddr, prop_data_data_nocopy(eaprop),
1176 ETHER_ADDR_LEN);
1177 } else {
1178 /* Check if there is already a MAC address in the register */
1179 if ((smsc_read_reg(sc, SMSC_MAC_ADDRL, &mac_l) == 0) &&
1180 (smsc_read_reg(sc, SMSC_MAC_ADDRH, &mac_h) == 0)) {
1181 sc->sc_enaddr[5] = (uint8_t)((mac_h >> 8) & 0xff);
1182 sc->sc_enaddr[4] = (uint8_t)((mac_h) & 0xff);
1183 sc->sc_enaddr[3] = (uint8_t)((mac_l >> 24) & 0xff);
1184 sc->sc_enaddr[2] = (uint8_t)((mac_l >> 16) & 0xff);
1185 sc->sc_enaddr[1] = (uint8_t)((mac_l >> 8) & 0xff);
1186 sc->sc_enaddr[0] = (uint8_t)((mac_l) & 0xff);
1187 }
1188 }
1189
1190 aprint_normal_dev(self, "Ethernet address %s\n",
1191 ether_sprintf(sc->sc_enaddr));
1192
1193 IFQ_SET_READY(&ifp->if_snd);
1194
1195 /* Initialize MII/media info. */
1196 mii = &sc->sc_mii;
1197 mii->mii_ifp = ifp;
1198 mii->mii_readreg = smsc_miibus_readreg;
1199 mii->mii_writereg = smsc_miibus_writereg;
1200 mii->mii_statchg = smsc_miibus_statchg;
1201 mii->mii_flags = MIIF_AUTOTSLEEP;
1202 sc->sc_ec.ec_mii = mii;
1203 ifmedia_init(&mii->mii_media, 0, smsc_ifmedia_upd, smsc_ifmedia_sts);
1204 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
1205
1206 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1207 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1208 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1209 } else
1210 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1211
1212 callout_init(&sc->sc_stat_ch, CALLOUT_MPSAFE);
1213
1214 if_initialize(ifp);
1215 sc->sc_ipq = if_percpuq_create(&sc->sc_ec.ec_if);
1216 ether_ifattach(ifp, sc->sc_enaddr);
1217 ether_set_ifflags_cb(&sc->sc_ec, smsc_ifflags_cb);
1218 if_register(ifp);
1219
1220 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
1221 RND_TYPE_NET, RND_FLAG_DEFAULT);
1222
1223 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
1224 }
1225
1226 int
1227 smsc_detach(device_t self, int flags)
1228 {
1229 struct smsc_softc *sc = device_private(self);
1230 struct ifnet *ifp = &sc->sc_ec.ec_if;
1231
1232 mutex_enter(&sc->sc_lock);
1233 sc->sc_dying = true;
1234 mutex_exit(&sc->sc_lock);
1235
1236 callout_halt(&sc->sc_stat_ch, NULL);
1237
1238 if (ifp->if_flags & IFF_RUNNING)
1239 smsc_stop_locked(ifp, 1);
1240
1241 /*
1242 * Remove any pending tasks. They cannot be executing because they run
1243 * in the same thread as detach.
1244 */
1245 usb_rem_task(sc->sc_udev, &sc->sc_tick_task);
1246
1247 mutex_enter(&sc->sc_lock);
1248 sc->sc_refcnt--;
1249 while (sc->sc_refcnt > 0) {
1250 /* Wait for processes to go away */
1251 cv_wait(&sc->sc_detachcv, &sc->sc_lock);
1252 }
1253
1254 #ifdef DIAGNOSTIC
1255 if (sc->sc_ep[SMSC_ENDPT_TX] != NULL ||
1256 sc->sc_ep[SMSC_ENDPT_RX] != NULL ||
1257 sc->sc_ep[SMSC_ENDPT_INTR] != NULL)
1258 printf("%s: detach has active endpoints\n",
1259 device_xname(sc->sc_dev));
1260 #endif
1261
1262 mutex_exit(&sc->sc_lock);
1263
1264 rnd_detach_source(&sc->sc_rnd_source);
1265 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1266 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1267 if (ifp->if_softc != NULL) {
1268 ether_ifdetach(ifp);
1269 if_detach(ifp);
1270 }
1271
1272 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
1273
1274 cv_destroy(&sc->sc_detachcv);
1275 mutex_destroy(&sc->sc_mii_lock);
1276 mutex_destroy(&sc->sc_rxlock);
1277 mutex_destroy(&sc->sc_txlock);
1278 mutex_destroy(&sc->sc_lock);
1279
1280 return 0;
1281 }
1282
1283 void
1284 smsc_tick_task(void *xsc)
1285 {
1286 struct smsc_softc * const sc = xsc;
1287
1288 if (sc == NULL)
1289 return;
1290
1291 mutex_enter(&sc->sc_lock);
1292
1293 if (sc->sc_dying) {
1294 mutex_exit(&sc->sc_lock);
1295 return;
1296 }
1297
1298 struct ifnet * const ifp = &sc->sc_ec.ec_if;
1299 struct mii_data * const mii = &sc->sc_mii;
1300
1301 sc->sc_refcnt++;
1302 mutex_exit(&sc->sc_lock);
1303
1304 mii_tick(mii);
1305 if ((sc->sc_flags & SMSC_FLAG_LINK) == 0)
1306 smsc_miibus_statchg(ifp);
1307
1308 mutex_enter(&sc->sc_lock);
1309 sc->sc_ttpending = false;
1310
1311 if (--sc->sc_refcnt < 0)
1312 cv_broadcast(&sc->sc_detachcv);
1313
1314 if (sc->sc_dying) {
1315 mutex_exit(&sc->sc_lock);
1316 return;
1317 }
1318 callout_reset(&sc->sc_stat_ch, hz, smsc_tick, sc);
1319
1320 mutex_exit(&sc->sc_lock);
1321 }
1322
1323 int
1324 smsc_activate(device_t self, enum devact act)
1325 {
1326 struct smsc_softc *sc = device_private(self);
1327
1328 switch (act) {
1329 case DVACT_DEACTIVATE:
1330 if_deactivate(&sc->sc_ec.ec_if);
1331
1332 mutex_enter(&sc->sc_lock);
1333 sc->sc_dying = true;
1334
1335 mutex_enter(&sc->sc_rxlock);
1336 mutex_enter(&sc->sc_txlock);
1337 sc->sc_stopping = true;
1338 mutex_exit(&sc->sc_txlock);
1339 mutex_exit(&sc->sc_rxlock);
1340
1341 mutex_exit(&sc->sc_lock);
1342 return 0;
1343 default:
1344 return EOPNOTSUPP;
1345 }
1346 return 0;
1347 }
1348
1349 void
1350 smsc_lock_mii(struct smsc_softc *sc)
1351 {
1352
1353 mutex_enter(&sc->sc_lock);
1354 sc->sc_refcnt++;
1355 mutex_exit(&sc->sc_lock);
1356
1357 mutex_enter(&sc->sc_mii_lock);
1358 }
1359
1360 void
1361 smsc_unlock_mii(struct smsc_softc *sc)
1362 {
1363
1364 mutex_exit(&sc->sc_mii_lock);
1365 mutex_enter(&sc->sc_lock);
1366 if (--sc->sc_refcnt < 0)
1367 cv_broadcast(&sc->sc_detachcv);
1368 mutex_exit(&sc->sc_lock);
1369 }
1370
1371 void
1372 smsc_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
1373 {
1374 struct smsc_chain * const c = (struct smsc_chain *)priv;
1375 struct smsc_softc * const sc = c->sc_sc;
1376 struct ifnet * const ifp = &sc->sc_ec.ec_if;
1377 u_char *buf = c->sc_buf;
1378 uint32_t total_len;
1379
1380 mutex_enter(&sc->sc_rxlock);
1381 if (sc->sc_stopping) {
1382 smsc_dbg_printf(sc, "%s: stopping\n", __func__);
1383 mutex_exit(&sc->sc_rxlock);
1384 return;
1385 }
1386
1387 if (!(sc->sc_if_flags & IFF_RUNNING)) {
1388 smsc_dbg_printf(sc, "%s: not running\n", __func__);
1389 mutex_exit(&sc->sc_rxlock);
1390 return;
1391 }
1392
1393 if (status != USBD_NORMAL_COMPLETION) {
1394 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
1395 mutex_exit(&sc->sc_rxlock);
1396 return;
1397 }
1398 if (usbd_ratecheck(&sc->sc_rx_notice)) {
1399 printf("%s: usb errors on rx: %s\n",
1400 device_xname(sc->sc_dev), usbd_errstr(status));
1401 }
1402 if (status == USBD_STALLED)
1403 usbd_clear_endpoint_stall_async(sc->sc_ep[SMSC_ENDPT_RX]);
1404 goto done;
1405 }
1406
1407 usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL);
1408 smsc_dbg_printf(sc, "xfer status total_len %d\n", total_len);
1409
1410 while (total_len != 0) {
1411 uint32_t rxhdr;
1412 if (total_len < sizeof(rxhdr)) {
1413 smsc_dbg_printf(sc, "total_len %d < sizeof(rxhdr) %zu\n",
1414 total_len, sizeof(rxhdr));
1415 ifp->if_ierrors++;
1416 goto done;
1417 }
1418
1419 memcpy(&rxhdr, buf, sizeof(rxhdr));
1420 rxhdr = le32toh(rxhdr);
1421 buf += sizeof(rxhdr);
1422 total_len -= sizeof(rxhdr);
1423
1424 if (rxhdr & SMSC_RX_STAT_COLLISION)
1425 ifp->if_collisions++;
1426
1427 if (rxhdr & (SMSC_RX_STAT_ERROR
1428 | SMSC_RX_STAT_LENGTH_ERROR
1429 | SMSC_RX_STAT_MII_ERROR)) {
1430 smsc_dbg_printf(sc, "rx error (hdr 0x%08x)\n", rxhdr);
1431 ifp->if_ierrors++;
1432 goto done;
1433 }
1434
1435 uint16_t pktlen = (uint16_t)SMSC_RX_STAT_FRM_LENGTH(rxhdr);
1436 smsc_dbg_printf(sc, "rxeof total_len %d pktlen %d rxhdr "
1437 "0x%08x\n", total_len, pktlen, rxhdr);
1438
1439 if (pktlen < ETHER_HDR_LEN) {
1440 smsc_dbg_printf(sc, "pktlen %d < ETHER_HDR_LEN %d\n",
1441 pktlen, ETHER_HDR_LEN);
1442 ifp->if_ierrors++;
1443 goto done;
1444 }
1445
1446 pktlen += ETHER_ALIGN;
1447
1448 if (pktlen > MCLBYTES) {
1449 smsc_dbg_printf(sc, "pktlen %d > MCLBYTES %d\n",
1450 pktlen, MCLBYTES);
1451 ifp->if_ierrors++;
1452 goto done;
1453 }
1454
1455 if (pktlen > total_len) {
1456 smsc_dbg_printf(sc, "pktlen %d > total_len %d\n",
1457 pktlen, total_len);
1458 ifp->if_ierrors++;
1459 goto done;
1460 }
1461
1462 struct mbuf *m = smsc_newbuf();
1463 if (m == NULL) {
1464 smsc_dbg_printf(sc, "smc_newbuf returned NULL\n");
1465 ifp->if_ierrors++;
1466 goto done;
1467 }
1468
1469 m_set_rcvif(m, ifp);
1470 m->m_pkthdr.len = m->m_len = pktlen;
1471 m->m_flags |= M_HASFCS;
1472 m_adj(m, ETHER_ALIGN);
1473
1474 KASSERT(m->m_len < MCLBYTES);
1475 memcpy(mtod(m, char *), buf + ETHER_ALIGN, m->m_len);
1476
1477 /* Check if RX TCP/UDP checksumming is being offloaded */
1478 if (sc->sc_coe_ctrl & SMSC_COE_CTRL_RX_EN) {
1479 smsc_dbg_printf(sc,"RX checksum offload checking\n");
1480 struct ether_header *eh;
1481
1482 eh = mtod(m, struct ether_header *);
1483
1484 /* Remove the extra 2 bytes of the csum */
1485 m_adj(m, -2);
1486
1487 /*
1488 * The checksum appears to be simplistically calculated
1489 * over the udp/tcp header and data up to the end of the
1490 * eth frame. Which means if the eth frame is padded
1491 * the csum calculation is incorrectly performed over
1492 * the padding bytes as well. Therefore to be safe we
1493 * ignore the H/W csum on frames less than or equal to
1494 * 64 bytes.
1495 *
1496 * Ignore H/W csum for non-IPv4 packets.
1497 */
1498 smsc_dbg_printf(sc,"Ethertype %02x pktlen %02x\n",
1499 be16toh(eh->ether_type), pktlen);
1500 if (be16toh(eh->ether_type) == ETHERTYPE_IP &&
1501 pktlen > ETHER_MIN_LEN) {
1502
1503 m->m_pkthdr.csum_flags |=
1504 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
1505
1506 /*
1507 * Copy the TCP/UDP checksum from the last 2
1508 * bytes of the transfer and put in the
1509 * csum_data field.
1510 */
1511 memcpy(&m->m_pkthdr.csum_data,
1512 buf + pktlen - 2, 2);
1513 /*
1514 * The data is copied in network order, but the
1515 * csum algorithm in the kernel expects it to be
1516 * in host network order.
1517 */
1518 m->m_pkthdr.csum_data =
1519 ntohs(m->m_pkthdr.csum_data);
1520 smsc_dbg_printf(sc,
1521 "RX checksum offloaded (0x%04x)\n",
1522 m->m_pkthdr.csum_data);
1523 }
1524 }
1525
1526 /* round up to next longword */
1527 pktlen = (pktlen + 3) & ~0x3;
1528
1529 /* total_len does not include the padding */
1530 if (pktlen > total_len)
1531 pktlen = total_len;
1532
1533 buf += pktlen;
1534 total_len -= pktlen;
1535
1536 mutex_exit(&sc->sc_rxlock);
1537
1538 /* push the packet up */
1539 if_percpuq_enqueue(sc->sc_ipq, m);
1540
1541 mutex_enter(&sc->sc_rxlock);
1542 if (sc->sc_stopping) {
1543 smsc_dbg_printf(sc, "%s: stopping\n", __func__);
1544 mutex_exit(&sc->sc_rxlock);
1545 return;
1546 }
1547 }
1548
1549 done:
1550 mutex_exit(&sc->sc_rxlock);
1551
1552 /* Setup new transfer. */
1553 usbd_setup_xfer(xfer, c, c->sc_buf, sc->sc_bufsz, USBD_SHORT_XFER_OK,
1554 USBD_NO_TIMEOUT, smsc_rxeof);
1555 usbd_transfer(xfer);
1556
1557 return;
1558 }
1559
1560 void
1561 smsc_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
1562 {
1563 struct smsc_chain *c = priv;
1564 struct smsc_softc *sc = c->sc_sc;
1565 struct ifnet *ifp = &sc->sc_ec.ec_if;
1566
1567 mutex_enter(&sc->sc_txlock);
1568 if (sc->sc_stopping) {
1569 smsc_dbg_printf(sc, "%s: stopping\n", __func__);
1570 mutex_exit(&sc->sc_txlock);
1571 return;
1572 }
1573
1574 sc->sc_cdata.tx_free++;
1575 ifp->if_timer = 0;
1576 ifp->if_flags &= ~IFF_OACTIVE;
1577
1578 if (status != USBD_NORMAL_COMPLETION) {
1579 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
1580 mutex_exit(&sc->sc_txlock);
1581 return;
1582 }
1583 ifp->if_oerrors++;
1584 printf("%s: usb error on tx: %s\n", device_xname(sc->sc_dev),
1585 usbd_errstr(status));
1586 if (status == USBD_STALLED)
1587 usbd_clear_endpoint_stall_async(sc->sc_ep[SMSC_ENDPT_TX]);
1588 mutex_exit(&sc->sc_txlock);
1589 return;
1590 }
1591 ifp->if_opackets++;
1592
1593 m_freem(c->sc_mbuf);
1594 c->sc_mbuf = NULL;
1595
1596 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1597 smsc_start_locked(ifp);
1598
1599 mutex_exit(&sc->sc_txlock);
1600 }
1601
1602 int
1603 smsc_tx_list_init(struct smsc_softc *sc)
1604 {
1605 struct smsc_cdata *cd = &sc->sc_cdata;
1606 struct smsc_chain *c;
1607 int i;
1608
1609 for (i = 0; i < SMSC_TX_LIST_CNT; i++) {
1610 c = &cd->tx_chain[i];
1611 c->sc_sc = sc;
1612 c->sc_idx = i;
1613 c->sc_mbuf = NULL;
1614 if (c->sc_xfer == NULL) {
1615 int error = usbd_create_xfer(sc->sc_ep[SMSC_ENDPT_TX],
1616 sc->sc_bufsz, USBD_FORCE_SHORT_XFER, 0,
1617 &c->sc_xfer);
1618 if (error)
1619 return EIO;
1620 c->sc_buf = usbd_get_buffer(c->sc_xfer);
1621 }
1622 }
1623
1624 cd->tx_free = SMSC_TX_LIST_CNT;
1625 cd->tx_next = 0;
1626
1627 return 0;
1628 }
1629
1630 void
1631 smsc_tx_list_free(struct smsc_softc *sc)
1632 {
1633 /* Free TX resources. */
1634 for (size_t i = 0; i < SMSC_TX_LIST_CNT; i++) {
1635 if (sc->sc_cdata.tx_chain[i].sc_mbuf != NULL) {
1636 m_freem(sc->sc_cdata.tx_chain[i].sc_mbuf);
1637 sc->sc_cdata.tx_chain[i].sc_mbuf = NULL;
1638 }
1639 if (sc->sc_cdata.tx_chain[i].sc_xfer != NULL) {
1640 usbd_destroy_xfer(sc->sc_cdata.tx_chain[i].sc_xfer);
1641 sc->sc_cdata.tx_chain[i].sc_xfer = NULL;
1642 }
1643 }
1644 }
1645
1646 int
1647 smsc_rx_list_init(struct smsc_softc *sc)
1648 {
1649 struct smsc_cdata *cd = &sc->sc_cdata;
1650 struct smsc_chain *c;
1651 int i;
1652
1653 for (i = 0; i < SMSC_RX_LIST_CNT; i++) {
1654 c = &cd->rx_chain[i];
1655 c->sc_sc = sc;
1656 c->sc_idx = i;
1657 c->sc_mbuf = NULL;
1658 if (c->sc_xfer == NULL) {
1659 int error = usbd_create_xfer(sc->sc_ep[SMSC_ENDPT_RX],
1660 sc->sc_bufsz, USBD_SHORT_XFER_OK, 0, &c->sc_xfer);
1661 if (error)
1662 return error;
1663 c->sc_buf = usbd_get_buffer(c->sc_xfer);
1664 }
1665 }
1666
1667 return 0;
1668 }
1669
1670 void
1671 smsc_rx_list_free(struct smsc_softc *sc)
1672 {
1673 /* Free RX resources. */
1674 for (size_t i = 0; i < SMSC_RX_LIST_CNT; i++) {
1675 if (sc->sc_cdata.rx_chain[i].sc_mbuf != NULL) {
1676 m_freem(sc->sc_cdata.rx_chain[i].sc_mbuf);
1677 sc->sc_cdata.rx_chain[i].sc_mbuf = NULL;
1678 }
1679 if (sc->sc_cdata.rx_chain[i].sc_xfer != NULL) {
1680 usbd_destroy_xfer(sc->sc_cdata.rx_chain[i].sc_xfer);
1681 sc->sc_cdata.rx_chain[i].sc_xfer = NULL;
1682 }
1683 }
1684 }
1685
1686 struct mbuf *
1687 smsc_newbuf(void)
1688 {
1689 struct mbuf *m;
1690
1691 MGETHDR(m, M_DONTWAIT, MT_DATA);
1692 if (m == NULL)
1693 return NULL;
1694
1695 MCLGET(m, M_DONTWAIT);
1696 if (!(m->m_flags & M_EXT)) {
1697 m_freem(m);
1698 return NULL;
1699 }
1700
1701 return m;
1702 }
1703
1704 int
1705 smsc_encap(struct smsc_softc *sc, struct mbuf *m, int idx)
1706 {
1707 struct smsc_chain * const c = &sc->sc_cdata.tx_chain[idx];
1708 uint32_t txhdr;
1709 uint32_t frm_len = 0;
1710
1711 /*
1712 * Each frame is prefixed with two 32-bit values describing the
1713 * length of the packet and buffer.
1714 */
1715 txhdr = SMSC_TX_CTRL_0_BUF_SIZE(m->m_pkthdr.len) |
1716 SMSC_TX_CTRL_0_FIRST_SEG | SMSC_TX_CTRL_0_LAST_SEG;
1717 txhdr = htole32(txhdr);
1718 memcpy(c->sc_buf, &txhdr, sizeof(txhdr));
1719
1720 txhdr = SMSC_TX_CTRL_1_PKT_LENGTH(m->m_pkthdr.len);
1721 txhdr = htole32(txhdr);
1722 memcpy(c->sc_buf + 4, &txhdr, sizeof(txhdr));
1723
1724 frm_len += 8;
1725
1726 /* Next copy in the actual packet */
1727 m_copydata(m, 0, m->m_pkthdr.len, c->sc_buf + frm_len);
1728 frm_len += m->m_pkthdr.len;
1729
1730 c->sc_mbuf = m;
1731
1732 usbd_setup_xfer(c->sc_xfer, c, c->sc_buf, frm_len,
1733 USBD_FORCE_SHORT_XFER, 10000, smsc_txeof);
1734
1735 usbd_status err = usbd_transfer(c->sc_xfer);
1736 if (err != USBD_IN_PROGRESS) {
1737 return EIO;
1738 }
1739
1740 return 0;
1741 }
1742