if_smsc.c revision 1.56 1 /* $NetBSD: if_smsc.c,v 1.56 2019/08/11 23:55:43 mrg Exp $ */
2
3 /* $OpenBSD: if_smsc.c,v 1.4 2012/09/27 12:38:11 jsg Exp $ */
4 /* $FreeBSD: src/sys/dev/usb/net/if_smsc.c,v 1.1 2012/08/15 04:03:55 gonzo Exp $ */
5 /*-
6 * Copyright (c) 2012
7 * Ben Gray <bgray (at) freebsd.org>.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 /*
32 * SMSC LAN9xxx devices (http://www.smsc.com/)
33 *
34 * The LAN9500 & LAN9500A devices are stand-alone USB to Ethernet chips that
35 * support USB 2.0 and 10/100 Mbps Ethernet.
36 *
37 * The LAN951x devices are an integrated USB hub and USB to Ethernet adapter.
38 * The driver only covers the Ethernet part, the standard USB hub driver
39 * supports the hub part.
40 *
41 * This driver is closely modelled on the Linux driver written and copyrighted
42 * by SMSC.
43 *
44 * H/W TCP & UDP Checksum Offloading
45 * ---------------------------------
46 * The chip supports both tx and rx offloading of UDP & TCP checksums, this
47 * feature can be dynamically enabled/disabled.
48 *
49 * RX checksuming is performed across bytes after the IPv4 header to the end of
50 * the Ethernet frame, this means if the frame is padded with non-zero values
51 * the H/W checksum will be incorrect, however the rx code compensates for this.
52 *
53 * TX checksuming is more complicated, the device requires a special header to
54 * be prefixed onto the start of the frame which indicates the start and end
55 * positions of the UDP or TCP frame. This requires the driver to manually
56 * go through the packet data and decode the headers prior to sending.
57 * On Linux they generally provide cues to the location of the csum and the
58 * area to calculate it over, on FreeBSD we seem to have to do it all ourselves,
59 * hence this is not as optimal and therefore h/w TX checksum is currently not
60 * implemented.
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: if_smsc.c,v 1.56 2019/08/11 23:55:43 mrg Exp $");
65
66 #ifdef _KERNEL_OPT
67 #include "opt_usb.h"
68 #endif
69
70 #include <sys/param.h>
71 #include <sys/module.h>
72
73 #include <dev/usb/usbnet.h>
74 #include <dev/usb/usbhist.h>
75
76 #include <dev/usb/if_smscreg.h>
77
78 #include "ioconf.h"
79
80 struct smsc_softc {
81 struct usbnet smsc_un;
82
83 /*
84 * The following stores the settings in the mac control (MAC_CSR)
85 * register
86 */
87 uint32_t sc_mac_csr;
88 uint32_t sc_rev_id;
89
90 uint32_t sc_coe_ctrl;
91 };
92
93 #define SMSC_MIN_BUFSZ 2048
94 #define SMSC_MAX_BUFSZ 18944
95
96 /*
97 * Various supported device vendors/products.
98 */
99 static const struct usb_devno smsc_devs[] = {
100 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN89530 },
101 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN9530 },
102 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN9730 },
103 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500 },
104 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A },
105 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_ALT },
106 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_HAL },
107 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_SAL10 },
108 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500_ALT },
109 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500_SAL10 },
110 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505 },
111 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A },
112 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A_HAL },
113 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A_SAL10 },
114 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505_SAL10 },
115 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14 },
116 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14_ALT },
117 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14_SAL10 }
118 };
119
120 #ifdef USB_DEBUG
121 #ifndef USMSC_DEBUG
122 #define usmscdebug 0
123 #else
124 static int usmscdebug = 1;
125
126 SYSCTL_SETUP(sysctl_hw_smsc_setup, "sysctl hw.usmsc setup")
127 {
128 int err;
129 const struct sysctlnode *rnode;
130 const struct sysctlnode *cnode;
131
132 err = sysctl_createv(clog, 0, NULL, &rnode,
133 CTLFLAG_PERMANENT, CTLTYPE_NODE, "usmsc",
134 SYSCTL_DESCR("usmsc global controls"),
135 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
136
137 if (err)
138 goto fail;
139
140 /* control debugging printfs */
141 err = sysctl_createv(clog, 0, &rnode, &cnode,
142 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
143 "debug", SYSCTL_DESCR("Enable debugging output"),
144 NULL, 0, &usmscdebug, sizeof(usmscdebug), CTL_CREATE, CTL_EOL);
145 if (err)
146 goto fail;
147
148 return;
149 fail:
150 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
151 }
152
153 #endif /* SMSC_DEBUG */
154 #endif /* USB_DEBUG */
155
156 #define DPRINTF(FMT,A,B,C,D) USBHIST_LOG(usmscdebug,FMT,A,B,C,D)
157 #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(usmscdebug,N,FMT,A,B,C,D)
158 #define USMSCHIST_FUNC() USBHIST_FUNC()
159 #define USMSCHIST_CALLED() USBHIST_CALLED(usmscdebug)
160
161 #define smsc_warn_printf(un, fmt, args...) \
162 printf("%s: warning: " fmt, device_xname((un)->un_dev), ##args)
163
164 #define smsc_err_printf(un, fmt, args...) \
165 printf("%s: error: " fmt, device_xname((un)->un_dev), ##args)
166
167 /* Function declarations */
168 int smsc_match(device_t, cfdata_t, void *);
169 void smsc_attach(device_t, device_t, void *);
170
171 CFATTACH_DECL_NEW(usmsc, sizeof(struct smsc_softc),
172 smsc_match, smsc_attach, usbnet_detach, usbnet_activate);
173
174 int smsc_chip_init(struct usbnet *);
175 int smsc_setmacaddress(struct usbnet *, const uint8_t *);
176
177 int smsc_init(struct ifnet *);
178 int smsc_init_locked(struct ifnet *);
179 int smsc_ioctl(struct ifnet *, u_long, void *);
180 void smsc_stop_cb(struct ifnet *, int);
181
182 void smsc_reset(struct smsc_softc *);
183
184 static void smsc_miibus_statchg(struct ifnet *);
185 int smsc_readreg(struct usbnet *, uint32_t, uint32_t *);
186 int smsc_writereg(struct usbnet *, uint32_t, uint32_t);
187 int smsc_wait_for_bits(struct usbnet *, uint32_t, uint32_t);
188 usbd_status smsc_miibus_readreg(struct usbnet *, int, int, uint16_t *);
189 usbd_status smsc_miibus_writereg(struct usbnet *, int, int, uint16_t);
190
191 static int smsc_ioctl_cb(struct ifnet *, u_long, void *);
192 static unsigned smsc_tx_prepare(struct usbnet *, struct mbuf *,
193 struct usbnet_chain *);
194 static void smsc_rxeof_loop(struct usbnet *, struct usbd_xfer *,
195 struct usbnet_chain *, uint32_t);
196
197 static struct usbnet_ops smsc_ops = {
198 .uno_stop = smsc_stop_cb,
199 .uno_ioctl = smsc_ioctl_cb,
200 .uno_read_reg = smsc_miibus_readreg,
201 .uno_write_reg = smsc_miibus_writereg,
202 .uno_statchg = smsc_miibus_statchg,
203 .uno_tx_prepare = smsc_tx_prepare,
204 .uno_rx_loop = smsc_rxeof_loop,
205 .uno_init = smsc_init,
206 };
207
208 int
209 smsc_readreg(struct usbnet *un, uint32_t off, uint32_t *data)
210 {
211 usb_device_request_t req;
212 uint32_t buf;
213 usbd_status err;
214
215 usbnet_isowned_mii(un);
216
217 if (usbnet_isdying(un))
218 return 0;
219
220 req.bmRequestType = UT_READ_VENDOR_DEVICE;
221 req.bRequest = SMSC_UR_READ_REG;
222 USETW(req.wValue, 0);
223 USETW(req.wIndex, off);
224 USETW(req.wLength, 4);
225
226 err = usbd_do_request(un->un_udev, &req, &buf);
227 if (err != 0)
228 smsc_warn_printf(un, "Failed to read register 0x%0x\n", off);
229
230 *data = le32toh(buf);
231
232 return err;
233 }
234
235 int
236 smsc_writereg(struct usbnet *un, uint32_t off, uint32_t data)
237 {
238 usb_device_request_t req;
239 uint32_t buf;
240 usbd_status err;
241
242 usbnet_isowned_mii(un);
243
244 if (usbnet_isdying(un))
245 return 0;
246
247 buf = htole32(data);
248
249 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
250 req.bRequest = SMSC_UR_WRITE_REG;
251 USETW(req.wValue, 0);
252 USETW(req.wIndex, off);
253 USETW(req.wLength, 4);
254
255 err = usbd_do_request(un->un_udev, &req, &buf);
256 if (err != 0)
257 smsc_warn_printf(un, "Failed to write register 0x%0x\n", off);
258
259 return err;
260 }
261
262 int
263 smsc_wait_for_bits(struct usbnet *un, uint32_t reg, uint32_t bits)
264 {
265 uint32_t val;
266 int err, i;
267
268 for (i = 0; i < 100; i++) {
269 if ((err = smsc_readreg(un, reg, &val)) != 0)
270 return err;
271 if (!(val & bits))
272 return 0;
273 DELAY(5);
274 }
275
276 return 1;
277 }
278
279 usbd_status
280 smsc_miibus_readreg(struct usbnet *un, int phy, int reg, uint16_t *val)
281 {
282 uint32_t addr;
283 uint32_t data = 0;
284 int rv = 0;
285
286 usbnet_isowned_mii(un);
287
288 if (smsc_wait_for_bits(un, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
289 smsc_warn_printf(un, "MII is busy\n");
290 rv = -1;
291 goto done;
292 }
293
294 addr = (phy << 11) | (reg << 6) | SMSC_MII_READ;
295 smsc_writereg(un, SMSC_MII_ADDR, addr);
296
297 if (smsc_wait_for_bits(un, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
298 smsc_warn_printf(un, "MII read timeout\n");
299 rv = ETIMEDOUT;
300 }
301
302 smsc_readreg(un, SMSC_MII_DATA, &data);
303
304 done:
305 *val = data & 0xffff;
306 return rv;
307 }
308
309 usbd_status
310 smsc_miibus_writereg(struct usbnet *un, int phy, int reg, uint16_t val)
311 {
312 uint32_t addr;
313
314 usbnet_isowned_mii(un);
315
316 if (un->un_phyno != phy)
317 return -1;
318
319 if (smsc_wait_for_bits(un, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
320 smsc_warn_printf(un, "MII is busy\n");
321 return -1;
322 }
323
324 smsc_writereg(un, SMSC_MII_DATA, val);
325
326 addr = (phy << 11) | (reg << 6) | SMSC_MII_WRITE;
327 smsc_writereg(un, SMSC_MII_ADDR, addr);
328
329 if (smsc_wait_for_bits(un, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
330 smsc_warn_printf(un, "MII write timeout\n");
331 return ETIMEDOUT;
332 }
333
334 return 0;
335 }
336
337 void
338 smsc_miibus_statchg(struct ifnet *ifp)
339 {
340 USMSCHIST_FUNC(); USMSCHIST_CALLED();
341 struct usbnet * const un = ifp->if_softc;
342
343 if (usbnet_isdying(un))
344 return;
345
346 struct smsc_softc * const sc = usbnet_softc(un);
347 struct mii_data * const mii = usbnet_mii(un);
348 uint32_t flow;
349 uint32_t afc_cfg;
350
351 usbnet_set_link(un, false);
352 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
353 (IFM_ACTIVE | IFM_AVALID)) {
354 switch (IFM_SUBTYPE(mii->mii_media_active)) {
355 case IFM_10_T:
356 case IFM_100_TX:
357 usbnet_set_link(un, true);
358 break;
359 case IFM_1000_T:
360 /* Gigabit ethernet not supported by chipset */
361 break;
362 default:
363 break;
364 }
365 }
366
367 /* Lost link, do nothing. */
368 if (!usbnet_havelink(un))
369 return;
370
371 usbnet_lock_mii(un);
372 int err = smsc_readreg(un, SMSC_AFC_CFG, &afc_cfg);
373 usbnet_unlock_mii(un);
374 if (err) {
375 smsc_warn_printf(un, "failed to read initial AFC_CFG, "
376 "error %d\n", err);
377 return;
378 }
379
380 /* Enable/disable full duplex operation and TX/RX pause */
381 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
382 DPRINTF("full duplex operation", 0, 0, 0, 0);
383 sc->sc_mac_csr &= ~SMSC_MAC_CSR_RCVOWN;
384 sc->sc_mac_csr |= SMSC_MAC_CSR_FDPX;
385
386 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
387 flow = 0xffff0002;
388 else
389 flow = 0;
390
391 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
392 afc_cfg |= 0xf;
393 else
394 afc_cfg &= ~0xf;
395 } else {
396 DPRINTF("half duplex operation", 0, 0, 0, 0);
397 sc->sc_mac_csr &= ~SMSC_MAC_CSR_FDPX;
398 sc->sc_mac_csr |= SMSC_MAC_CSR_RCVOWN;
399
400 flow = 0;
401 afc_cfg |= 0xf;
402 }
403
404 usbnet_lock_mii(un);
405 err = smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr);
406 err += smsc_writereg(un, SMSC_FLOW, flow);
407 err += smsc_writereg(un, SMSC_AFC_CFG, afc_cfg);
408 usbnet_unlock_mii(un);
409
410 if (err)
411 smsc_warn_printf(un, "media change failed, error %d\n", err);
412 }
413
414 static inline uint32_t
415 smsc_hash(uint8_t addr[ETHER_ADDR_LEN])
416 {
417
418 return (ether_crc32_be(addr, ETHER_ADDR_LEN) >> 26) & 0x3f;
419 }
420
421 static void
422 smsc_setiff_locked(struct usbnet *un)
423 {
424 USMSCHIST_FUNC(); USMSCHIST_CALLED();
425 struct smsc_softc * const sc = usbnet_softc(un);
426 struct ifnet * const ifp = usbnet_ifp(un);
427 struct ethercom *ec = usbnet_ec(un);
428 struct ether_multi *enm;
429 struct ether_multistep step;
430 uint32_t hashtbl[2] = { 0, 0 };
431 uint32_t hash;
432
433 usbnet_isowned_mii(un);
434
435 if (usbnet_isdying(un))
436 return;
437
438 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
439 allmulti:
440 DPRINTF("receive all multicast enabled", 0, 0, 0, 0);
441 sc->sc_mac_csr |= SMSC_MAC_CSR_MCPAS;
442 sc->sc_mac_csr &= ~SMSC_MAC_CSR_HPFILT;
443 smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr);
444 return;
445 } else {
446 sc->sc_mac_csr |= SMSC_MAC_CSR_HPFILT;
447 sc->sc_mac_csr &= ~(SMSC_MAC_CSR_PRMS | SMSC_MAC_CSR_MCPAS);
448 }
449
450 ETHER_LOCK(ec);
451 ETHER_FIRST_MULTI(step, ec, enm);
452 while (enm != NULL) {
453 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
454 ETHER_UNLOCK(ec);
455 goto allmulti;
456 }
457
458 hash = smsc_hash(enm->enm_addrlo);
459 hashtbl[hash >> 5] |= 1 << (hash & 0x1F);
460 ETHER_NEXT_MULTI(step, enm);
461 }
462 ETHER_UNLOCK(ec);
463
464 /* Debug */
465 if (sc->sc_mac_csr & SMSC_MAC_CSR_HPFILT) {
466 DPRINTF("receive select group of macs", 0, 0, 0, 0);
467 } else {
468 DPRINTF("receive own packets only", 0, 0, 0, 0);
469 }
470
471 /* Write the hash table and mac control registers */
472
473 //XXX should we be doing this?
474 ifp->if_flags &= ~IFF_ALLMULTI;
475 smsc_writereg(un, SMSC_HASHH, hashtbl[1]);
476 smsc_writereg(un, SMSC_HASHL, hashtbl[0]);
477 smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr);
478 }
479
480 static void
481 smsc_setiff(struct usbnet *un)
482 {
483 usbnet_lock_mii(un);
484 smsc_setiff_locked(un);
485 usbnet_unlock_mii(un);
486 }
487
488 static int
489 smsc_setoe_locked(struct usbnet *un)
490 {
491 struct smsc_softc * const sc = usbnet_softc(un);
492 struct ifnet * const ifp = usbnet_ifp(un);
493 uint32_t val;
494 int err;
495
496 usbnet_isowned_mii(un);
497
498 err = smsc_readreg(un, SMSC_COE_CTRL, &val);
499 if (err != 0) {
500 smsc_warn_printf(un, "failed to read SMSC_COE_CTRL (err=%d)\n",
501 err);
502 return err;
503 }
504
505 /* Enable/disable the Rx checksum */
506 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
507 val |= (SMSC_COE_CTRL_RX_EN | SMSC_COE_CTRL_RX_MODE);
508 else
509 val &= ~(SMSC_COE_CTRL_RX_EN | SMSC_COE_CTRL_RX_MODE);
510
511 /* Enable/disable the Tx checksum (currently not supported) */
512 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
513 val |= SMSC_COE_CTRL_TX_EN;
514 else
515 val &= ~SMSC_COE_CTRL_TX_EN;
516
517 sc->sc_coe_ctrl = val;
518
519 err = smsc_writereg(un, SMSC_COE_CTRL, val);
520 if (err != 0) {
521 smsc_warn_printf(un, "failed to write SMSC_COE_CTRL (err=%d)\n",
522 err);
523 return err;
524 }
525
526 return 0;
527 }
528
529 static void
530 smsc_setoe(struct usbnet *un)
531 {
532
533 usbnet_lock_mii(un);
534 smsc_setoe_locked(un);
535 usbnet_unlock_mii(un);
536 }
537
538
539 int
540 smsc_setmacaddress(struct usbnet *un, const uint8_t *addr)
541 {
542 USMSCHIST_FUNC(); USMSCHIST_CALLED();
543 int err;
544 uint32_t val;
545
546 DPRINTF("setting mac address to %02jx:%02jx:%02jx:...", addr[0], addr[1],
547 addr[2], 0);
548
549 DPRINTF("... %02jx:%0j2x:%02jx", addr[3], addr[4], addr[5], 0);
550
551 val = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
552 if ((err = smsc_writereg(un, SMSC_MAC_ADDRL, val)) != 0)
553 goto done;
554
555 val = (addr[5] << 8) | addr[4];
556 err = smsc_writereg(un, SMSC_MAC_ADDRH, val);
557
558 done:
559 return err;
560 }
561
562 void
563 smsc_reset(struct smsc_softc *sc)
564 {
565 struct usbnet * const un = &sc->smsc_un;
566
567 usbnet_isowned(un);
568 if (usbnet_isdying(un))
569 return;
570
571 /* Wait a little while for the chip to get its brains in order. */
572 DELAY(1000);
573
574 /* Reinitialize controller to achieve full reset. */
575 smsc_chip_init(un);
576 }
577
578 int
579 smsc_init(struct ifnet *ifp)
580 {
581 struct usbnet * const un = ifp->if_softc;
582
583 usbnet_lock(un);
584 int ret = smsc_init_locked(ifp);
585 usbnet_unlock(un);
586
587 return ret;
588 }
589
590 int
591 smsc_init_locked(struct ifnet *ifp)
592 {
593 struct usbnet * const un = ifp->if_softc;
594 struct smsc_softc * const sc = usbnet_softc(un);
595
596 if (usbnet_isdying(un))
597 return EIO;
598
599 /* Cancel pending I/O */
600 usbnet_stop(un, ifp, 1);
601
602 /* Reset the ethernet interface. */
603 smsc_reset(sc);
604
605 usbnet_lock_mii_un_locked(un);
606
607 /* Load the multicast filter. */
608 smsc_setiff_locked(un);
609
610 /* TCP/UDP checksum offload engines. */
611 smsc_setoe_locked(un);
612
613 usbnet_unlock_mii_un_locked(un);
614
615 return usbnet_init_rx_tx(un);
616 }
617
618 void
619 smsc_stop_cb(struct ifnet *ifp, int disable)
620 {
621 struct usbnet * const un = ifp->if_softc;
622 struct smsc_softc * const sc = usbnet_softc(un);
623
624 // XXXNH didn't do this before
625 smsc_reset(sc);
626 }
627
628 int
629 smsc_chip_init(struct usbnet *un)
630 {
631 struct smsc_softc * const sc = usbnet_softc(un);
632 uint32_t reg_val;
633 int burst_cap;
634 int err;
635
636 usbnet_lock_mii_un_locked(un);
637
638 /* Enter H/W config mode */
639 smsc_writereg(un, SMSC_HW_CFG, SMSC_HW_CFG_LRST);
640
641 if ((err = smsc_wait_for_bits(un, SMSC_HW_CFG,
642 SMSC_HW_CFG_LRST)) != 0) {
643 smsc_warn_printf(un, "timed-out waiting for reset to "
644 "complete\n");
645 goto init_failed;
646 }
647
648 /* Reset the PHY */
649 smsc_writereg(un, SMSC_PM_CTRL, SMSC_PM_CTRL_PHY_RST);
650
651 if ((err = smsc_wait_for_bits(un, SMSC_PM_CTRL,
652 SMSC_PM_CTRL_PHY_RST)) != 0) {
653 smsc_warn_printf(un, "timed-out waiting for phy reset to "
654 "complete\n");
655 goto init_failed;
656 }
657 usbd_delay_ms(un->un_udev, 40);
658
659 /* Set the mac address */
660 struct ifnet * const ifp = usbnet_ifp(un);
661 const char *eaddr = CLLADDR(ifp->if_sadl);
662 if ((err = smsc_setmacaddress(un, eaddr)) != 0) {
663 smsc_warn_printf(un, "failed to set the MAC address\n");
664 goto init_failed;
665 }
666
667 /*
668 * Don't know what the HW_CFG_BIR bit is, but following the reset
669 * sequence as used in the Linux driver.
670 */
671 if ((err = smsc_readreg(un, SMSC_HW_CFG, ®_val)) != 0) {
672 smsc_warn_printf(un, "failed to read HW_CFG: %d\n", err);
673 goto init_failed;
674 }
675 reg_val |= SMSC_HW_CFG_BIR;
676 smsc_writereg(un, SMSC_HW_CFG, reg_val);
677
678 /*
679 * There is a so called 'turbo mode' that the linux driver supports, it
680 * seems to allow you to jam multiple frames per Rx transaction.
681 * By default this driver supports that and therefore allows multiple
682 * frames per USB transfer.
683 *
684 * The xfer buffer size needs to reflect this as well, therefore based
685 * on the calculations in the Linux driver the RX bufsize is set to
686 * 18944,
687 * bufsz = (16 * 1024 + 5 * 512)
688 *
689 * Burst capability is the number of URBs that can be in a burst of
690 * data/ethernet frames.
691 */
692
693 if (un->un_udev->ud_speed == USB_SPEED_HIGH)
694 burst_cap = 37;
695 else
696 burst_cap = 128;
697
698 smsc_writereg(un, SMSC_BURST_CAP, burst_cap);
699
700 /* Set the default bulk in delay (magic value from Linux driver) */
701 smsc_writereg(un, SMSC_BULK_IN_DLY, 0x00002000);
702
703 /*
704 * Initialise the RX interface
705 */
706 if ((err = smsc_readreg(un, SMSC_HW_CFG, ®_val)) < 0) {
707 smsc_warn_printf(un, "failed to read HW_CFG: (err = %d)\n",
708 err);
709 goto init_failed;
710 }
711
712 /*
713 * The following settings are used for 'turbo mode', a.k.a multiple
714 * frames per Rx transaction (again info taken form Linux driver).
715 */
716 reg_val |= (SMSC_HW_CFG_MEF | SMSC_HW_CFG_BCE);
717
718 /*
719 * set Rx data offset to ETHER_ALIGN which will make the IP header
720 * align on a word boundary.
721 */
722 reg_val |= ETHER_ALIGN << SMSC_HW_CFG_RXDOFF_SHIFT;
723
724 smsc_writereg(un, SMSC_HW_CFG, reg_val);
725
726 /* Clear the status register ? */
727 smsc_writereg(un, SMSC_INTR_STATUS, 0xffffffff);
728
729 /* Read and display the revision register */
730 if ((err = smsc_readreg(un, SMSC_ID_REV, &sc->sc_rev_id)) < 0) {
731 smsc_warn_printf(un, "failed to read ID_REV (err = %d)\n", err);
732 goto init_failed;
733 }
734
735 /* GPIO/LED setup */
736 reg_val = SMSC_LED_GPIO_CFG_SPD_LED | SMSC_LED_GPIO_CFG_LNK_LED |
737 SMSC_LED_GPIO_CFG_FDX_LED;
738 smsc_writereg(un, SMSC_LED_GPIO_CFG, reg_val);
739
740 /*
741 * Initialise the TX interface
742 */
743 smsc_writereg(un, SMSC_FLOW, 0);
744
745 smsc_writereg(un, SMSC_AFC_CFG, AFC_CFG_DEFAULT);
746
747 /* Read the current MAC configuration */
748 if ((err = smsc_readreg(un, SMSC_MAC_CSR, &sc->sc_mac_csr)) < 0) {
749 smsc_warn_printf(un, "failed to read MAC_CSR (err=%d)\n", err);
750 goto init_failed;
751 }
752
753 /* disable pad stripping, collides with checksum offload */
754 sc->sc_mac_csr &= ~SMSC_MAC_CSR_PADSTR;
755
756 /* Vlan */
757 smsc_writereg(un, SMSC_VLAN1, (uint32_t)ETHERTYPE_VLAN);
758
759 /*
760 * Start TX
761 */
762 sc->sc_mac_csr |= SMSC_MAC_CSR_TXEN;
763 smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr);
764 smsc_writereg(un, SMSC_TX_CFG, SMSC_TX_CFG_ON);
765
766 /*
767 * Start RX
768 */
769 sc->sc_mac_csr |= SMSC_MAC_CSR_RXEN;
770 smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr);
771 usbnet_unlock_mii_un_locked(un);
772
773 return 0;
774
775 init_failed:
776 usbnet_unlock_mii_un_locked(un);
777 smsc_err_printf(un, "smsc_chip_init failed (err=%d)\n", err);
778 return err;
779 }
780
781 static int
782 smsc_ioctl_cb(struct ifnet *ifp, u_long cmd, void *data)
783 {
784 struct usbnet * const un = ifp->if_softc;
785
786 switch (cmd) {
787 case SIOCSIFFLAGS:
788 case SIOCSETHERCAP:
789 case SIOCADDMULTI:
790 case SIOCDELMULTI:
791 smsc_setiff(un);
792 break;
793 case SIOCSIFCAP:
794 smsc_setoe(un);
795 break;
796 default:
797 break;
798 }
799
800 return 0;
801 }
802
803 int
804 smsc_match(device_t parent, cfdata_t match, void *aux)
805 {
806 struct usb_attach_arg *uaa = aux;
807
808 return (usb_lookup(smsc_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
809 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
810 }
811
812 void
813 smsc_attach(device_t parent, device_t self, void *aux)
814 {
815 struct smsc_softc * const sc = device_private(self);
816 struct usbnet * const un = &sc->smsc_un;
817 struct usb_attach_arg *uaa = aux;
818 struct usbd_device *dev = uaa->uaa_device;
819 usb_interface_descriptor_t *id;
820 usb_endpoint_descriptor_t *ed;
821 char *devinfop;
822 unsigned bufsz;
823 int err, i;
824 uint32_t mac_h, mac_l;
825
826 KASSERT((void *)sc == un);
827
828 aprint_naive("\n");
829 aprint_normal("\n");
830
831 un->un_dev = self;
832 un->un_udev = dev;
833 un->un_sc = sc;
834 un->un_ops = &smsc_ops;
835 un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
836 un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
837 un->un_rx_list_cnt = SMSC_RX_LIST_CNT;
838 un->un_tx_list_cnt = SMSC_TX_LIST_CNT;
839
840 devinfop = usbd_devinfo_alloc(un->un_udev, 0);
841 aprint_normal_dev(self, "%s\n", devinfop);
842 usbd_devinfo_free(devinfop);
843
844 err = usbd_set_config_no(dev, SMSC_CONFIG_INDEX, 1);
845 if (err) {
846 aprint_error_dev(self, "failed to set configuration"
847 ", err=%s\n", usbd_errstr(err));
848 return;
849 }
850
851 /* Setup the endpoints for the SMSC LAN95xx device(s) */
852 err = usbd_device2interface_handle(dev, SMSC_IFACE_IDX, &un->un_iface);
853 if (err) {
854 aprint_error_dev(self, "getting interface handle failed\n");
855 return;
856 }
857
858 id = usbd_get_interface_descriptor(un->un_iface);
859
860 if (dev->ud_speed >= USB_SPEED_HIGH) {
861 bufsz = SMSC_MAX_BUFSZ;
862 } else {
863 bufsz = SMSC_MIN_BUFSZ;
864 }
865 un->un_rx_bufsz = bufsz;
866 un->un_tx_bufsz = bufsz;
867
868 /* Find endpoints. */
869 for (i = 0; i < id->bNumEndpoints; i++) {
870 ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
871 if (!ed) {
872 aprint_error_dev(self, "couldn't get ep %d\n", i);
873 return;
874 }
875 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
876 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
877 un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
878 } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
879 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
880 un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
881 #if 0 /* not used yet */
882 } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
883 UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) {
884 un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress;
885 #endif
886 }
887 }
888
889 usbnet_attach(un, "smscdet");
890
891 #ifdef notyet
892 /*
893 * We can do TCPv4, and UDPv4 checksums in hardware.
894 */
895 struct ifnet *ifp = usbnet_ifp(un);
896
897 ifp->if_capabilities |=
898 /*IFCAP_CSUM_TCPv4_Tx |*/ IFCAP_CSUM_TCPv4_Rx |
899 /*IFCAP_CSUM_UDPv4_Tx |*/ IFCAP_CSUM_UDPv4_Rx;
900 #endif
901 struct ethercom *ec = usbnet_ec(un);
902 ec->ec_capabilities = ETHERCAP_VLAN_MTU;
903
904 /* Setup some of the basics */
905 un->un_phyno = 1;
906
907 usbnet_lock_mii(un);
908 /*
909 * Attempt to get the mac address, if an EEPROM is not attached this
910 * will just return FF:FF:FF:FF:FF:FF, so in such cases we invent a MAC
911 * address based on urandom.
912 */
913 memset(un->un_eaddr, 0xff, ETHER_ADDR_LEN);
914
915 prop_dictionary_t dict = device_properties(self);
916 prop_data_t eaprop = prop_dictionary_get(dict, "mac-address");
917
918 if (eaprop != NULL) {
919 KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
920 KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
921 memcpy(un->un_eaddr, prop_data_data_nocopy(eaprop),
922 ETHER_ADDR_LEN);
923 } else {
924 /* Check if there is already a MAC address in the register */
925 if ((smsc_readreg(un, SMSC_MAC_ADDRL, &mac_l) == 0) &&
926 (smsc_readreg(un, SMSC_MAC_ADDRH, &mac_h) == 0)) {
927 un->un_eaddr[5] = (uint8_t)((mac_h >> 8) & 0xff);
928 un->un_eaddr[4] = (uint8_t)((mac_h) & 0xff);
929 un->un_eaddr[3] = (uint8_t)((mac_l >> 24) & 0xff);
930 un->un_eaddr[2] = (uint8_t)((mac_l >> 16) & 0xff);
931 un->un_eaddr[1] = (uint8_t)((mac_l >> 8) & 0xff);
932 un->un_eaddr[0] = (uint8_t)((mac_l) & 0xff);
933 }
934 }
935 usbnet_unlock_mii(un);
936
937 usbnet_attach_ifp(un, true, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
938 0, 0);
939 }
940
941 void
942 smsc_rxeof_loop(struct usbnet * un, struct usbd_xfer *xfer,
943 struct usbnet_chain *c, uint32_t total_len)
944 {
945 USMSCHIST_FUNC(); USMSCHIST_CALLED();
946 struct smsc_softc * const sc = usbnet_softc(un);
947 struct ifnet *ifp = usbnet_ifp(un);
948 uint8_t *buf = c->unc_buf;
949
950 usbnet_isowned_rx(un);
951
952 DPRINTF("total_len %jd/0x%jx", total_len, total_len, 0, 0);
953 while (total_len != 0) {
954 uint32_t rxhdr;
955 if (total_len < sizeof(rxhdr)) {
956 DPRINTF("total_len %jd < sizeof(rxhdr) %jd",
957 total_len, sizeof(rxhdr), 0, 0);
958 ifp->if_ierrors++;
959 return;
960 }
961
962 memcpy(&rxhdr, buf, sizeof(rxhdr));
963 rxhdr = le32toh(rxhdr);
964 buf += sizeof(rxhdr);
965 total_len -= sizeof(rxhdr);
966
967 if (rxhdr & SMSC_RX_STAT_COLLISION)
968 ifp->if_collisions++;
969
970 if (rxhdr & (SMSC_RX_STAT_ERROR
971 | SMSC_RX_STAT_LENGTH_ERROR
972 | SMSC_RX_STAT_MII_ERROR)) {
973 DPRINTF("rx error (hdr 0x%08jx)", rxhdr, 0, 0, 0);
974 ifp->if_ierrors++;
975 return;
976 }
977
978 uint16_t pktlen = (uint16_t)SMSC_RX_STAT_FRM_LENGTH(rxhdr);
979 DPRINTF("total_len %jd pktlen %jd rxhdr 0x%08jx", total_len,
980 pktlen, rxhdr, 0);
981
982 if (pktlen < ETHER_HDR_LEN) {
983 DPRINTF("pktlen %jd < ETHER_HDR_LEN %jd", pktlen,
984 ETHER_HDR_LEN, 0, 0);
985 ifp->if_ierrors++;
986 return;
987 }
988
989 pktlen += ETHER_ALIGN;
990
991 if (pktlen > MCLBYTES) {
992 DPRINTF("pktlen %jd > MCLBYTES %jd", pktlen, MCLBYTES, 0,
993 0);
994 ifp->if_ierrors++;
995 return;
996 }
997
998 if (pktlen > total_len) {
999 DPRINTF("pktlen %jd > total_len %jd", pktlen, total_len,
1000 0, 0);
1001 ifp->if_ierrors++;
1002 return;
1003 }
1004
1005 uint8_t *pktbuf = buf + ETHER_ALIGN;
1006 size_t buflen = pktlen - ETHER_ALIGN;
1007 int mbuf_flags = M_HASFCS;
1008 int csum_flags = 0;
1009 uint16_t csum_data = 0;
1010
1011 KASSERT(pktlen < MCLBYTES);
1012
1013 /* Check if RX TCP/UDP checksumming is being offloaded */
1014 if (sc->sc_coe_ctrl & SMSC_COE_CTRL_RX_EN) {
1015 DPRINTF("RX checksum offload checking", 0, 0, 0, 0);
1016 struct ether_header *eh = (struct ether_header *)pktbuf;
1017 const size_t cssz = sizeof(csum_data);
1018
1019 /* Remove the extra 2 bytes of the csum */
1020 buflen -= cssz;
1021
1022 /*
1023 * The checksum appears to be simplistically calculated
1024 * over the udp/tcp header and data up to the end of the
1025 * eth frame. Which means if the eth frame is padded
1026 * the csum calculation is incorrectly performed over
1027 * the padding bytes as well. Therefore to be safe we
1028 * ignore the H/W csum on frames less than or equal to
1029 * 64 bytes.
1030 *
1031 * Ignore H/W csum for non-IPv4 packets.
1032 */
1033 DPRINTF("Ethertype %02jx pktlen %02jx",
1034 be16toh(eh->ether_type), pktlen, 0, 0);
1035 if (be16toh(eh->ether_type) == ETHERTYPE_IP &&
1036 pktlen > ETHER_MIN_LEN) {
1037
1038 csum_flags |=
1039 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
1040
1041 /*
1042 * Copy the TCP/UDP checksum from the last 2
1043 * bytes of the transfer and put in the
1044 * csum_data field.
1045 */
1046 memcpy(&csum_data, buf + pktlen - cssz, cssz);
1047
1048 /*
1049 * The data is copied in network order, but the
1050 * csum algorithm in the kernel expects it to be
1051 * in host network order.
1052 */
1053 csum_data = ntohs(csum_data);
1054 DPRINTF("RX checksum offloaded (0x%04jx)",
1055 csum_data, 0, 0, 0);
1056 }
1057 }
1058
1059 /* round up to next longword */
1060 pktlen = (pktlen + 3) & ~0x3;
1061
1062 /* total_len does not include the padding */
1063 if (pktlen > total_len)
1064 pktlen = total_len;
1065
1066 buf += pktlen;
1067 total_len -= pktlen;
1068
1069 /* push the packet up */
1070 usbnet_enqueue(un, pktbuf, buflen, csum_flags, csum_data,
1071 mbuf_flags);
1072 }
1073 }
1074
1075 static unsigned
1076 smsc_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
1077 {
1078 uint32_t txhdr;
1079 uint32_t frm_len = 0;
1080
1081 usbnet_isowned_tx(un);
1082
1083 const size_t hdrsz = sizeof(txhdr) * 2;
1084
1085 if ((unsigned)m->m_pkthdr.len > un->un_tx_bufsz - hdrsz)
1086 return 0;
1087
1088 /*
1089 * Each frame is prefixed with two 32-bit values describing the
1090 * length of the packet and buffer.
1091 */
1092 txhdr = SMSC_TX_CTRL_0_BUF_SIZE(m->m_pkthdr.len) |
1093 SMSC_TX_CTRL_0_FIRST_SEG | SMSC_TX_CTRL_0_LAST_SEG;
1094 txhdr = htole32(txhdr);
1095 memcpy(c->unc_buf, &txhdr, sizeof(txhdr));
1096
1097 txhdr = SMSC_TX_CTRL_1_PKT_LENGTH(m->m_pkthdr.len);
1098 txhdr = htole32(txhdr);
1099 memcpy(c->unc_buf + sizeof(txhdr), &txhdr, sizeof(txhdr));
1100
1101 frm_len += hdrsz;
1102
1103 /* Next copy in the actual packet */
1104 m_copydata(m, 0, m->m_pkthdr.len, c->unc_buf + frm_len);
1105 frm_len += m->m_pkthdr.len;
1106
1107 return frm_len;
1108 }
1109
1110 MODULE(MODULE_CLASS_DRIVER, if_smsc, "usbnet");
1111
1112 #ifdef _MODULE
1113 #include "ioconf.c"
1114 #endif
1115
1116 static int
1117 if_smsc_modcmd(modcmd_t cmd, void *aux)
1118 {
1119 int error = 0;
1120
1121 switch (cmd) {
1122 case MODULE_CMD_INIT:
1123 #ifdef _MODULE
1124 error = config_init_component(cfdriver_ioconf_smsc,
1125 cfattach_ioconf_smsc, cfdata_ioconf_smsc);
1126 #endif
1127 return error;
1128 case MODULE_CMD_FINI:
1129 #ifdef _MODULE
1130 error = config_fini_component(cfdriver_ioconf_smsc,
1131 cfattach_ioconf_smsc, cfdata_ioconf_smsc);
1132 #endif
1133 return error;
1134 default:
1135 return ENOTTY;
1136 }
1137 }
1138