if_smsc.c revision 1.73 1 /* $NetBSD: if_smsc.c,v 1.73 2022/03/03 05:50:57 riastradh Exp $ */
2
3 /* $OpenBSD: if_smsc.c,v 1.4 2012/09/27 12:38:11 jsg Exp $ */
4 /* $FreeBSD: src/sys/dev/usb/net/if_smsc.c,v 1.1 2012/08/15 04:03:55 gonzo Exp $ */
5 /*-
6 * Copyright (c) 2012
7 * Ben Gray <bgray (at) freebsd.org>.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 /*
32 * SMSC LAN9xxx devices (http://www.smsc.com/)
33 *
34 * The LAN9500 & LAN9500A devices are stand-alone USB to Ethernet chips that
35 * support USB 2.0 and 10/100 Mbps Ethernet.
36 *
37 * The LAN951x devices are an integrated USB hub and USB to Ethernet adapter.
38 * The driver only covers the Ethernet part, the standard USB hub driver
39 * supports the hub part.
40 *
41 * This driver is closely modelled on the Linux driver written and copyrighted
42 * by SMSC.
43 *
44 * H/W TCP & UDP Checksum Offloading
45 * ---------------------------------
46 * The chip supports both tx and rx offloading of UDP & TCP checksums, this
47 * feature can be dynamically enabled/disabled.
48 *
49 * RX checksuming is performed across bytes after the IPv4 header to the end of
50 * the Ethernet frame, this means if the frame is padded with non-zero values
51 * the H/W checksum will be incorrect, however the rx code compensates for this.
52 *
53 * TX checksuming is more complicated, the device requires a special header to
54 * be prefixed onto the start of the frame which indicates the start and end
55 * positions of the UDP or TCP frame. This requires the driver to manually
56 * go through the packet data and decode the headers prior to sending.
57 * On Linux they generally provide cues to the location of the csum and the
58 * area to calculate it over, on FreeBSD we seem to have to do it all ourselves,
59 * hence this is not as optimal and therefore h/w TX checksum is currently not
60 * implemented.
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: if_smsc.c,v 1.73 2022/03/03 05:50:57 riastradh Exp $");
65
66 #ifdef _KERNEL_OPT
67 #include "opt_usb.h"
68 #endif
69
70 #include <sys/param.h>
71
72 #include <dev/usb/usbnet.h>
73 #include <dev/usb/usbhist.h>
74
75 #include <dev/usb/if_smscreg.h>
76
77 #include "ioconf.h"
78
79 struct smsc_softc {
80 struct usbnet smsc_un;
81
82 /*
83 * The following stores the settings in the mac control (MAC_CSR)
84 * register
85 */
86 uint32_t sc_mac_csr;
87 uint32_t sc_rev_id;
88
89 uint32_t sc_coe_ctrl;
90 };
91
92 #define SMSC_MIN_BUFSZ 2048
93 #define SMSC_MAX_BUFSZ 18944
94
95 /*
96 * Various supported device vendors/products.
97 */
98 static const struct usb_devno smsc_devs[] = {
99 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN89530 },
100 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN9530 },
101 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN9730 },
102 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500 },
103 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A },
104 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_ALT },
105 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_HAL },
106 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_SAL10 },
107 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500_ALT },
108 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500_SAL10 },
109 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505 },
110 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A },
111 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A_HAL },
112 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A_SAL10 },
113 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505_SAL10 },
114 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14 },
115 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14_ALT },
116 { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14_SAL10 }
117 };
118
119 #ifdef USB_DEBUG
120 #ifndef USMSC_DEBUG
121 #define usmscdebug 0
122 #else
123 static int usmscdebug = 1;
124
125 SYSCTL_SETUP(sysctl_hw_smsc_setup, "sysctl hw.usmsc setup")
126 {
127 int err;
128 const struct sysctlnode *rnode;
129 const struct sysctlnode *cnode;
130
131 err = sysctl_createv(clog, 0, NULL, &rnode,
132 CTLFLAG_PERMANENT, CTLTYPE_NODE, "usmsc",
133 SYSCTL_DESCR("usmsc global controls"),
134 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
135
136 if (err)
137 goto fail;
138
139 /* control debugging printfs */
140 err = sysctl_createv(clog, 0, &rnode, &cnode,
141 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
142 "debug", SYSCTL_DESCR("Enable debugging output"),
143 NULL, 0, &usmscdebug, sizeof(usmscdebug), CTL_CREATE, CTL_EOL);
144 if (err)
145 goto fail;
146
147 return;
148 fail:
149 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
150 }
151
152 #endif /* SMSC_DEBUG */
153 #endif /* USB_DEBUG */
154
155 #define DPRINTF(FMT,A,B,C,D) USBHIST_LOG(usmscdebug,FMT,A,B,C,D)
156 #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(usmscdebug,N,FMT,A,B,C,D)
157 #define USMSCHIST_FUNC() USBHIST_FUNC()
158 #define USMSCHIST_CALLED() USBHIST_CALLED(usmscdebug)
159
160 #define smsc_warn_printf(un, fmt, args...) \
161 printf("%s: warning: " fmt, device_xname((un)->un_dev), ##args)
162
163 #define smsc_err_printf(un, fmt, args...) \
164 printf("%s: error: " fmt, device_xname((un)->un_dev), ##args)
165
166 /* Function declarations */
167 static int smsc_match(device_t, cfdata_t, void *);
168 static void smsc_attach(device_t, device_t, void *);
169
170 CFATTACH_DECL_NEW(usmsc, sizeof(struct smsc_softc),
171 smsc_match, smsc_attach, usbnet_detach, usbnet_activate);
172
173 static int smsc_chip_init(struct usbnet *);
174 static int smsc_setmacaddress(struct usbnet *, const uint8_t *);
175
176 static int smsc_uno_init(struct ifnet *);
177 static int smsc_init_locked(struct ifnet *);
178 static void smsc_uno_stop(struct ifnet *, int);
179
180 static void smsc_reset(struct smsc_softc *);
181
182 static void smsc_uno_miibus_statchg(struct ifnet *);
183 static int smsc_readreg(struct usbnet *, uint32_t, uint32_t *);
184 static int smsc_writereg(struct usbnet *, uint32_t, uint32_t);
185 static int smsc_wait_for_bits(struct usbnet *, uint32_t, uint32_t);
186 static int smsc_uno_miibus_readreg(struct usbnet *, int, int, uint16_t *);
187 static int smsc_uno_miibus_writereg(struct usbnet *, int, int, uint16_t);
188
189 static int smsc_uno_ioctl(struct ifnet *, u_long, void *);
190 static unsigned smsc_uno_tx_prepare(struct usbnet *, struct mbuf *,
191 struct usbnet_chain *);
192 static void smsc_uno_rx_loop(struct usbnet *, struct usbnet_chain *,
193 uint32_t);
194
195 static const struct usbnet_ops smsc_ops = {
196 .uno_stop = smsc_uno_stop,
197 .uno_ioctl = smsc_uno_ioctl,
198 .uno_read_reg = smsc_uno_miibus_readreg,
199 .uno_write_reg = smsc_uno_miibus_writereg,
200 .uno_statchg = smsc_uno_miibus_statchg,
201 .uno_tx_prepare = smsc_uno_tx_prepare,
202 .uno_rx_loop = smsc_uno_rx_loop,
203 .uno_init = smsc_uno_init,
204 };
205
206 static int
207 smsc_readreg(struct usbnet *un, uint32_t off, uint32_t *data)
208 {
209 usb_device_request_t req;
210 uint32_t buf;
211 usbd_status err;
212
213 usbnet_isowned_core(un);
214
215 if (usbnet_isdying(un))
216 return 0;
217
218 req.bmRequestType = UT_READ_VENDOR_DEVICE;
219 req.bRequest = SMSC_UR_READ_REG;
220 USETW(req.wValue, 0);
221 USETW(req.wIndex, off);
222 USETW(req.wLength, 4);
223
224 err = usbd_do_request(un->un_udev, &req, &buf);
225 if (err != 0)
226 smsc_warn_printf(un, "Failed to read register 0x%0x\n", off);
227
228 *data = le32toh(buf);
229
230 return err;
231 }
232
233 static int
234 smsc_writereg(struct usbnet *un, uint32_t off, uint32_t data)
235 {
236 usb_device_request_t req;
237 uint32_t buf;
238 usbd_status err;
239
240 usbnet_isowned_core(un);
241
242 if (usbnet_isdying(un))
243 return 0;
244
245 buf = htole32(data);
246
247 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
248 req.bRequest = SMSC_UR_WRITE_REG;
249 USETW(req.wValue, 0);
250 USETW(req.wIndex, off);
251 USETW(req.wLength, 4);
252
253 err = usbd_do_request(un->un_udev, &req, &buf);
254 if (err != 0)
255 smsc_warn_printf(un, "Failed to write register 0x%0x\n", off);
256
257 return err;
258 }
259
260 static int
261 smsc_wait_for_bits(struct usbnet *un, uint32_t reg, uint32_t bits)
262 {
263 uint32_t val;
264 int err, i;
265
266 for (i = 0; i < 100; i++) {
267 if (usbnet_isdying(un))
268 return ENXIO;
269 if ((err = smsc_readreg(un, reg, &val)) != 0)
270 return err;
271 if (!(val & bits))
272 return 0;
273 DELAY(5);
274 }
275
276 return 1;
277 }
278
279 static int
280 smsc_uno_miibus_readreg(struct usbnet *un, int phy, int reg, uint16_t *val)
281 {
282 uint32_t addr;
283 uint32_t data = 0;
284
285 if (un->un_phyno != phy)
286 return EINVAL;
287
288 if (smsc_wait_for_bits(un, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
289 smsc_warn_printf(un, "MII is busy\n");
290 return ETIMEDOUT;
291 }
292
293 addr = (phy << 11) | (reg << 6) | SMSC_MII_READ;
294 smsc_writereg(un, SMSC_MII_ADDR, addr);
295
296 if (smsc_wait_for_bits(un, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
297 smsc_warn_printf(un, "MII read timeout\n");
298 return ETIMEDOUT;
299 }
300
301 smsc_readreg(un, SMSC_MII_DATA, &data);
302
303 *val = data & 0xffff;
304 return 0;
305 }
306
307 static int
308 smsc_uno_miibus_writereg(struct usbnet *un, int phy, int reg, uint16_t val)
309 {
310 uint32_t addr;
311
312 if (un->un_phyno != phy)
313 return EINVAL;
314
315 if (smsc_wait_for_bits(un, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
316 smsc_warn_printf(un, "MII is busy\n");
317 return ETIMEDOUT;
318 }
319
320 smsc_writereg(un, SMSC_MII_DATA, val);
321
322 addr = (phy << 11) | (reg << 6) | SMSC_MII_WRITE;
323 smsc_writereg(un, SMSC_MII_ADDR, addr);
324
325 if (smsc_wait_for_bits(un, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
326 smsc_warn_printf(un, "MII write timeout\n");
327 return ETIMEDOUT;
328 }
329
330 return 0;
331 }
332
333 static void
334 smsc_uno_miibus_statchg(struct ifnet *ifp)
335 {
336 USMSCHIST_FUNC(); USMSCHIST_CALLED();
337 struct usbnet * const un = ifp->if_softc;
338
339 if (usbnet_isdying(un))
340 return;
341
342 struct smsc_softc * const sc = usbnet_softc(un);
343 struct mii_data * const mii = usbnet_mii(un);
344 uint32_t flow;
345 uint32_t afc_cfg;
346
347 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
348 (IFM_ACTIVE | IFM_AVALID)) {
349 switch (IFM_SUBTYPE(mii->mii_media_active)) {
350 case IFM_10_T:
351 case IFM_100_TX:
352 usbnet_set_link(un, true);
353 break;
354 case IFM_1000_T:
355 /* Gigabit ethernet not supported by chipset */
356 break;
357 default:
358 break;
359 }
360 }
361
362 /* Lost link, do nothing. */
363 if (!usbnet_havelink(un))
364 return;
365
366 int err = smsc_readreg(un, SMSC_AFC_CFG, &afc_cfg);
367 if (err) {
368 smsc_warn_printf(un, "failed to read initial AFC_CFG, "
369 "error %d\n", err);
370 return;
371 }
372
373 /* Enable/disable full duplex operation and TX/RX pause */
374 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
375 DPRINTF("full duplex operation", 0, 0, 0, 0);
376 sc->sc_mac_csr &= ~SMSC_MAC_CSR_RCVOWN;
377 sc->sc_mac_csr |= SMSC_MAC_CSR_FDPX;
378
379 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
380 flow = 0xffff0002;
381 else
382 flow = 0;
383
384 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
385 afc_cfg |= 0xf;
386 else
387 afc_cfg &= ~0xf;
388 } else {
389 DPRINTF("half duplex operation", 0, 0, 0, 0);
390 sc->sc_mac_csr &= ~SMSC_MAC_CSR_FDPX;
391 sc->sc_mac_csr |= SMSC_MAC_CSR_RCVOWN;
392
393 flow = 0;
394 afc_cfg |= 0xf;
395 }
396
397 err = smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr);
398 err += smsc_writereg(un, SMSC_FLOW, flow);
399 err += smsc_writereg(un, SMSC_AFC_CFG, afc_cfg);
400
401 if (err)
402 smsc_warn_printf(un, "media change failed, error %d\n", err);
403 }
404
405 static inline uint32_t
406 smsc_hash(uint8_t addr[ETHER_ADDR_LEN])
407 {
408
409 return (ether_crc32_be(addr, ETHER_ADDR_LEN) >> 26) & 0x3f;
410 }
411
412 static void
413 smsc_setiff_locked(struct usbnet *un)
414 {
415 USMSCHIST_FUNC(); USMSCHIST_CALLED();
416 struct smsc_softc * const sc = usbnet_softc(un);
417 struct ifnet * const ifp = usbnet_ifp(un);
418 struct ethercom *ec = usbnet_ec(un);
419 struct ether_multi *enm;
420 struct ether_multistep step;
421 uint32_t hashtbl[2] = { 0, 0 };
422 uint32_t hash;
423
424 usbnet_isowned_core(un);
425
426 if (usbnet_isdying(un))
427 return;
428
429 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
430 allmulti:
431 DPRINTF("receive all multicast enabled", 0, 0, 0, 0);
432 sc->sc_mac_csr |= SMSC_MAC_CSR_MCPAS;
433 sc->sc_mac_csr &= ~SMSC_MAC_CSR_HPFILT;
434 smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr);
435 return;
436 } else {
437 sc->sc_mac_csr |= SMSC_MAC_CSR_HPFILT;
438 sc->sc_mac_csr &= ~(SMSC_MAC_CSR_PRMS | SMSC_MAC_CSR_MCPAS);
439 }
440
441 ETHER_LOCK(ec);
442 ETHER_FIRST_MULTI(step, ec, enm);
443 while (enm != NULL) {
444 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
445 ETHER_UNLOCK(ec);
446 goto allmulti;
447 }
448
449 hash = smsc_hash(enm->enm_addrlo);
450 hashtbl[hash >> 5] |= 1 << (hash & 0x1F);
451 ETHER_NEXT_MULTI(step, enm);
452 }
453 ETHER_UNLOCK(ec);
454
455 /* Debug */
456 if (sc->sc_mac_csr & SMSC_MAC_CSR_HPFILT) {
457 DPRINTF("receive select group of macs", 0, 0, 0, 0);
458 } else {
459 DPRINTF("receive own packets only", 0, 0, 0, 0);
460 }
461
462 /* Write the hash table and mac control registers */
463
464 //XXX should we be doing this?
465 ifp->if_flags &= ~IFF_ALLMULTI;
466 smsc_writereg(un, SMSC_HASHH, hashtbl[1]);
467 smsc_writereg(un, SMSC_HASHL, hashtbl[0]);
468 smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr);
469 }
470
471 static int
472 smsc_setoe_locked(struct usbnet *un)
473 {
474 struct smsc_softc * const sc = usbnet_softc(un);
475 struct ifnet * const ifp = usbnet_ifp(un);
476 uint32_t val;
477 int err;
478
479 usbnet_isowned_core(un);
480
481 err = smsc_readreg(un, SMSC_COE_CTRL, &val);
482 if (err != 0) {
483 smsc_warn_printf(un, "failed to read SMSC_COE_CTRL (err=%d)\n",
484 err);
485 return err;
486 }
487
488 /* Enable/disable the Rx checksum */
489 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
490 val |= (SMSC_COE_CTRL_RX_EN | SMSC_COE_CTRL_RX_MODE);
491 else
492 val &= ~(SMSC_COE_CTRL_RX_EN | SMSC_COE_CTRL_RX_MODE);
493
494 /* Enable/disable the Tx checksum (currently not supported) */
495 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
496 val |= SMSC_COE_CTRL_TX_EN;
497 else
498 val &= ~SMSC_COE_CTRL_TX_EN;
499
500 sc->sc_coe_ctrl = val;
501
502 err = smsc_writereg(un, SMSC_COE_CTRL, val);
503 if (err != 0) {
504 smsc_warn_printf(un, "failed to write SMSC_COE_CTRL (err=%d)\n",
505 err);
506 return err;
507 }
508
509 return 0;
510 }
511
512 static int
513 smsc_setmacaddress(struct usbnet *un, const uint8_t *addr)
514 {
515 USMSCHIST_FUNC(); USMSCHIST_CALLED();
516 int err;
517 uint32_t val;
518
519 DPRINTF("setting mac address to %02jx:%02jx:%02jx:...", addr[0],
520 addr[1], addr[2], 0);
521
522 DPRINTF("... %02jx:%02jx:%02jx", addr[3], addr[4], addr[5], 0);
523
524 val = ((uint32_t)addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8)
525 | addr[0];
526 if ((err = smsc_writereg(un, SMSC_MAC_ADDRL, val)) != 0)
527 goto done;
528
529 val = (addr[5] << 8) | addr[4];
530 err = smsc_writereg(un, SMSC_MAC_ADDRH, val);
531
532 done:
533 return err;
534 }
535
536 static void
537 smsc_reset(struct smsc_softc *sc)
538 {
539 struct usbnet * const un = &sc->smsc_un;
540
541 usbnet_isowned_core(un);
542 if (usbnet_isdying(un))
543 return;
544
545 /* Wait a little while for the chip to get its brains in order. */
546 DELAY(1000);
547
548 /* Reinitialize controller to achieve full reset. */
549 smsc_chip_init(un);
550 }
551
552 static int
553 smsc_uno_init(struct ifnet *ifp)
554 {
555 struct usbnet * const un = ifp->if_softc;
556
557 usbnet_busy(un);
558 int ret = smsc_init_locked(ifp);
559 usbnet_unbusy(un);
560
561 return ret;
562 }
563
564 static int
565 smsc_init_locked(struct ifnet *ifp)
566 {
567 struct usbnet * const un = ifp->if_softc;
568 struct smsc_softc * const sc = usbnet_softc(un);
569
570 usbnet_isowned_core(un);
571
572 if (usbnet_isdying(un))
573 return EIO;
574
575 /* Cancel pending I/O */
576 usbnet_stop(un, ifp, 1);
577
578 /* Reset the ethernet interface. */
579 smsc_reset(sc);
580
581 /* Load the multicast filter. */
582 smsc_setiff_locked(un);
583
584 /* TCP/UDP checksum offload engines. */
585 smsc_setoe_locked(un);
586
587 return usbnet_init_rx_tx(un);
588 }
589
590 static void
591 smsc_uno_stop(struct ifnet *ifp, int disable)
592 {
593 struct usbnet * const un = ifp->if_softc;
594 struct smsc_softc * const sc = usbnet_softc(un);
595
596 // XXXNH didn't do this before
597 smsc_reset(sc);
598 }
599
600 static int
601 smsc_chip_init(struct usbnet *un)
602 {
603 struct smsc_softc * const sc = usbnet_softc(un);
604 uint32_t reg_val;
605 int burst_cap;
606 int err;
607
608 usbnet_isowned_core(un);
609
610 /* Enter H/W config mode */
611 smsc_writereg(un, SMSC_HW_CFG, SMSC_HW_CFG_LRST);
612
613 if ((err = smsc_wait_for_bits(un, SMSC_HW_CFG,
614 SMSC_HW_CFG_LRST)) != 0) {
615 smsc_warn_printf(un, "timed-out waiting for reset to "
616 "complete\n");
617 goto init_failed;
618 }
619
620 /* Reset the PHY */
621 smsc_writereg(un, SMSC_PM_CTRL, SMSC_PM_CTRL_PHY_RST);
622
623 if ((err = smsc_wait_for_bits(un, SMSC_PM_CTRL,
624 SMSC_PM_CTRL_PHY_RST)) != 0) {
625 smsc_warn_printf(un, "timed-out waiting for phy reset to "
626 "complete\n");
627 goto init_failed;
628 }
629 usbd_delay_ms(un->un_udev, 40);
630
631 /* Set the mac address */
632 struct ifnet * const ifp = usbnet_ifp(un);
633 const char *eaddr = CLLADDR(ifp->if_sadl);
634 if ((err = smsc_setmacaddress(un, eaddr)) != 0) {
635 smsc_warn_printf(un, "failed to set the MAC address\n");
636 goto init_failed;
637 }
638
639 /*
640 * Don't know what the HW_CFG_BIR bit is, but following the reset
641 * sequence as used in the Linux driver.
642 */
643 if ((err = smsc_readreg(un, SMSC_HW_CFG, ®_val)) != 0) {
644 smsc_warn_printf(un, "failed to read HW_CFG: %d\n", err);
645 goto init_failed;
646 }
647 reg_val |= SMSC_HW_CFG_BIR;
648 smsc_writereg(un, SMSC_HW_CFG, reg_val);
649
650 /*
651 * There is a so called 'turbo mode' that the linux driver supports, it
652 * seems to allow you to jam multiple frames per Rx transaction.
653 * By default this driver supports that and therefore allows multiple
654 * frames per USB transfer.
655 *
656 * The xfer buffer size needs to reflect this as well, therefore based
657 * on the calculations in the Linux driver the RX bufsize is set to
658 * 18944,
659 * bufsz = (16 * 1024 + 5 * 512)
660 *
661 * Burst capability is the number of URBs that can be in a burst of
662 * data/ethernet frames.
663 */
664
665 if (un->un_udev->ud_speed == USB_SPEED_HIGH)
666 burst_cap = 37;
667 else
668 burst_cap = 128;
669
670 smsc_writereg(un, SMSC_BURST_CAP, burst_cap);
671
672 /* Set the default bulk in delay (magic value from Linux driver) */
673 smsc_writereg(un, SMSC_BULK_IN_DLY, 0x00002000);
674
675 /*
676 * Initialise the RX interface
677 */
678 if ((err = smsc_readreg(un, SMSC_HW_CFG, ®_val)) < 0) {
679 smsc_warn_printf(un, "failed to read HW_CFG: (err = %d)\n",
680 err);
681 goto init_failed;
682 }
683
684 /*
685 * The following settings are used for 'turbo mode', a.k.a multiple
686 * frames per Rx transaction (again info taken form Linux driver).
687 */
688 reg_val |= (SMSC_HW_CFG_MEF | SMSC_HW_CFG_BCE);
689
690 /*
691 * set Rx data offset to ETHER_ALIGN which will make the IP header
692 * align on a word boundary.
693 */
694 reg_val |= ETHER_ALIGN << SMSC_HW_CFG_RXDOFF_SHIFT;
695
696 smsc_writereg(un, SMSC_HW_CFG, reg_val);
697
698 /* Clear the status register ? */
699 smsc_writereg(un, SMSC_INTR_STATUS, 0xffffffff);
700
701 /* Read and display the revision register */
702 if ((err = smsc_readreg(un, SMSC_ID_REV, &sc->sc_rev_id)) < 0) {
703 smsc_warn_printf(un, "failed to read ID_REV (err = %d)\n", err);
704 goto init_failed;
705 }
706
707 /* GPIO/LED setup */
708 reg_val = SMSC_LED_GPIO_CFG_SPD_LED | SMSC_LED_GPIO_CFG_LNK_LED |
709 SMSC_LED_GPIO_CFG_FDX_LED;
710 smsc_writereg(un, SMSC_LED_GPIO_CFG, reg_val);
711
712 /*
713 * Initialise the TX interface
714 */
715 smsc_writereg(un, SMSC_FLOW, 0);
716
717 smsc_writereg(un, SMSC_AFC_CFG, AFC_CFG_DEFAULT);
718
719 /* Read the current MAC configuration */
720 if ((err = smsc_readreg(un, SMSC_MAC_CSR, &sc->sc_mac_csr)) < 0) {
721 smsc_warn_printf(un, "failed to read MAC_CSR (err=%d)\n", err);
722 goto init_failed;
723 }
724
725 /* disable pad stripping, collides with checksum offload */
726 sc->sc_mac_csr &= ~SMSC_MAC_CSR_PADSTR;
727
728 /* Vlan */
729 smsc_writereg(un, SMSC_VLAN1, (uint32_t)ETHERTYPE_VLAN);
730
731 /*
732 * Start TX
733 */
734 sc->sc_mac_csr |= SMSC_MAC_CSR_TXEN;
735 smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr);
736 smsc_writereg(un, SMSC_TX_CFG, SMSC_TX_CFG_ON);
737
738 /*
739 * Start RX
740 */
741 sc->sc_mac_csr |= SMSC_MAC_CSR_RXEN;
742 smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr);
743
744 return 0;
745
746 init_failed:
747 smsc_err_printf(un, "smsc_chip_init failed (err=%d)\n", err);
748 return err;
749 }
750
751 static int
752 smsc_uno_ioctl(struct ifnet *ifp, u_long cmd, void *data)
753 {
754 struct usbnet * const un = ifp->if_softc;
755
756 usbnet_lock_core(un);
757 usbnet_busy(un);
758
759 switch (cmd) {
760 case SIOCADDMULTI:
761 case SIOCDELMULTI:
762 smsc_setiff_locked(un);
763 break;
764 case SIOCSIFCAP:
765 smsc_setoe_locked(un);
766 break;
767 default:
768 break;
769 }
770
771 usbnet_unbusy(un);
772 usbnet_unlock_core(un);
773
774 return 0;
775 }
776
777 static int
778 smsc_match(device_t parent, cfdata_t match, void *aux)
779 {
780 struct usb_attach_arg *uaa = aux;
781
782 return (usb_lookup(smsc_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
783 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
784 }
785
786 static void
787 smsc_attach(device_t parent, device_t self, void *aux)
788 {
789 USBNET_MII_DECL_DEFAULT(unm);
790 struct smsc_softc * const sc = device_private(self);
791 struct usbnet * const un = &sc->smsc_un;
792 struct usb_attach_arg *uaa = aux;
793 struct usbd_device *dev = uaa->uaa_device;
794 usb_interface_descriptor_t *id;
795 usb_endpoint_descriptor_t *ed;
796 char *devinfop;
797 unsigned bufsz;
798 int err, i;
799 uint32_t mac_h, mac_l;
800
801 KASSERT((void *)sc == un);
802
803 aprint_naive("\n");
804 aprint_normal("\n");
805
806 un->un_dev = self;
807 un->un_udev = dev;
808 un->un_sc = sc;
809 un->un_ops = &smsc_ops;
810 un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
811 un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
812 un->un_rx_list_cnt = SMSC_RX_LIST_CNT;
813 un->un_tx_list_cnt = SMSC_TX_LIST_CNT;
814
815 devinfop = usbd_devinfo_alloc(un->un_udev, 0);
816 aprint_normal_dev(self, "%s\n", devinfop);
817 usbd_devinfo_free(devinfop);
818
819 err = usbd_set_config_no(dev, SMSC_CONFIG_INDEX, 1);
820 if (err) {
821 aprint_error_dev(self, "failed to set configuration"
822 ", err=%s\n", usbd_errstr(err));
823 return;
824 }
825
826 /* Setup the endpoints for the SMSC LAN95xx device(s) */
827 err = usbd_device2interface_handle(dev, SMSC_IFACE_IDX, &un->un_iface);
828 if (err) {
829 aprint_error_dev(self, "getting interface handle failed\n");
830 return;
831 }
832
833 id = usbd_get_interface_descriptor(un->un_iface);
834
835 if (dev->ud_speed >= USB_SPEED_HIGH) {
836 bufsz = SMSC_MAX_BUFSZ;
837 } else {
838 bufsz = SMSC_MIN_BUFSZ;
839 }
840 un->un_rx_bufsz = bufsz;
841 un->un_tx_bufsz = bufsz;
842
843 /* Find endpoints. */
844 for (i = 0; i < id->bNumEndpoints; i++) {
845 ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
846 if (!ed) {
847 aprint_error_dev(self, "couldn't get ep %d\n", i);
848 return;
849 }
850 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
851 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
852 un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
853 } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
854 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
855 un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
856 #if 0 /* not used yet */
857 } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
858 UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) {
859 un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress;
860 #endif
861 }
862 }
863
864 usbnet_attach(un, "smscdet");
865
866 #ifdef notyet
867 /*
868 * We can do TCPv4, and UDPv4 checksums in hardware.
869 */
870 struct ifnet *ifp = usbnet_ifp(un);
871
872 ifp->if_capabilities |=
873 /*IFCAP_CSUM_TCPv4_Tx |*/ IFCAP_CSUM_TCPv4_Rx |
874 /*IFCAP_CSUM_UDPv4_Tx |*/ IFCAP_CSUM_UDPv4_Rx;
875 #endif
876 struct ethercom *ec = usbnet_ec(un);
877 ec->ec_capabilities = ETHERCAP_VLAN_MTU;
878
879 /* Setup some of the basics */
880 un->un_phyno = 1;
881
882 usbnet_lock_core(un);
883 usbnet_busy(un);
884 /*
885 * Attempt to get the mac address, if an EEPROM is not attached this
886 * will just return FF:FF:FF:FF:FF:FF, so in such cases we invent a MAC
887 * address based on urandom.
888 */
889 memset(un->un_eaddr, 0xff, ETHER_ADDR_LEN);
890
891 prop_dictionary_t dict = device_properties(self);
892 prop_data_t eaprop = prop_dictionary_get(dict, "mac-address");
893
894 if (eaprop != NULL) {
895 KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
896 KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
897 memcpy(un->un_eaddr, prop_data_value(eaprop),
898 ETHER_ADDR_LEN);
899 } else {
900 /* Check if there is already a MAC address in the register */
901 if ((smsc_readreg(un, SMSC_MAC_ADDRL, &mac_l) == 0) &&
902 (smsc_readreg(un, SMSC_MAC_ADDRH, &mac_h) == 0)) {
903 un->un_eaddr[5] = (uint8_t)((mac_h >> 8) & 0xff);
904 un->un_eaddr[4] = (uint8_t)((mac_h) & 0xff);
905 un->un_eaddr[3] = (uint8_t)((mac_l >> 24) & 0xff);
906 un->un_eaddr[2] = (uint8_t)((mac_l >> 16) & 0xff);
907 un->un_eaddr[1] = (uint8_t)((mac_l >> 8) & 0xff);
908 un->un_eaddr[0] = (uint8_t)((mac_l) & 0xff);
909 }
910 }
911 usbnet_unbusy(un);
912 usbnet_unlock_core(un);
913
914 usbnet_attach_ifp(un, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
915 0, &unm);
916 }
917
918 static void
919 smsc_uno_rx_loop(struct usbnet *un, struct usbnet_chain *c, uint32_t total_len)
920 {
921 USMSCHIST_FUNC(); USMSCHIST_CALLED();
922 struct smsc_softc * const sc = usbnet_softc(un);
923 struct ifnet *ifp = usbnet_ifp(un);
924 uint8_t *buf = c->unc_buf;
925 int count;
926
927 count = 0;
928 DPRINTF("total_len %jd/%#jx", total_len, total_len, 0, 0);
929 while (total_len != 0) {
930 uint32_t rxhdr;
931 if (total_len < sizeof(rxhdr)) {
932 DPRINTF("total_len %jd < sizeof(rxhdr) %jd",
933 total_len, sizeof(rxhdr), 0, 0);
934 if_statinc(ifp, if_ierrors);
935 return;
936 }
937
938 memcpy(&rxhdr, buf, sizeof(rxhdr));
939 rxhdr = le32toh(rxhdr);
940 buf += sizeof(rxhdr);
941 total_len -= sizeof(rxhdr);
942
943 if (rxhdr & SMSC_RX_STAT_COLLISION)
944 if_statinc(ifp, if_collisions);
945
946 if (rxhdr & (SMSC_RX_STAT_ERROR
947 | SMSC_RX_STAT_LENGTH_ERROR
948 | SMSC_RX_STAT_MII_ERROR)) {
949 DPRINTF("rx error (hdr 0x%08jx)", rxhdr, 0, 0, 0);
950 if_statinc(ifp, if_ierrors);
951 return;
952 }
953
954 uint16_t pktlen = (uint16_t)SMSC_RX_STAT_FRM_LENGTH(rxhdr);
955 DPRINTF("total_len %jd pktlen %jd rxhdr 0x%08jx", total_len,
956 pktlen, rxhdr, 0);
957
958 if (pktlen < ETHER_HDR_LEN) {
959 DPRINTF("pktlen %jd < ETHER_HDR_LEN %jd", pktlen,
960 ETHER_HDR_LEN, 0, 0);
961 if_statinc(ifp, if_ierrors);
962 return;
963 }
964
965 pktlen += ETHER_ALIGN;
966
967 if (pktlen > MCLBYTES) {
968 DPRINTF("pktlen %jd > MCLBYTES %jd", pktlen, MCLBYTES, 0,
969 0);
970 if_statinc(ifp, if_ierrors);
971 return;
972 }
973
974 if (pktlen > total_len) {
975 DPRINTF("pktlen %jd > total_len %jd", pktlen, total_len,
976 0, 0);
977 if_statinc(ifp, if_ierrors);
978 return;
979 }
980
981 uint8_t *pktbuf = buf + ETHER_ALIGN;
982 size_t buflen = pktlen - ETHER_ALIGN;
983 int mbuf_flags = M_HASFCS;
984 int csum_flags = 0;
985 uint16_t csum_data = 0;
986
987 KASSERT(pktlen < MCLBYTES);
988
989 /* Check if RX TCP/UDP checksumming is being offloaded */
990 if (sc->sc_coe_ctrl & SMSC_COE_CTRL_RX_EN) {
991 DPRINTF("RX checksum offload checking", 0, 0, 0, 0);
992 struct ether_header *eh = (struct ether_header *)pktbuf;
993 const size_t cssz = sizeof(csum_data);
994
995 /* Remove the extra 2 bytes of the csum */
996 buflen -= cssz;
997
998 /*
999 * The checksum appears to be simplistically calculated
1000 * over the udp/tcp header and data up to the end of the
1001 * eth frame. Which means if the eth frame is padded
1002 * the csum calculation is incorrectly performed over
1003 * the padding bytes as well. Therefore to be safe we
1004 * ignore the H/W csum on frames less than or equal to
1005 * 64 bytes.
1006 *
1007 * Ignore H/W csum for non-IPv4 packets.
1008 */
1009 DPRINTF("Ethertype %02jx pktlen %02jx",
1010 be16toh(eh->ether_type), pktlen, 0, 0);
1011 if (be16toh(eh->ether_type) == ETHERTYPE_IP &&
1012 pktlen > ETHER_MIN_LEN) {
1013
1014 csum_flags |=
1015 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
1016
1017 /*
1018 * Copy the TCP/UDP checksum from the last 2
1019 * bytes of the transfer and put in the
1020 * csum_data field.
1021 */
1022 memcpy(&csum_data, buf + pktlen - cssz, cssz);
1023
1024 /*
1025 * The data is copied in network order, but the
1026 * csum algorithm in the kernel expects it to be
1027 * in host network order.
1028 */
1029 csum_data = ntohs(csum_data);
1030 DPRINTF("RX checksum offloaded (0x%04jx)",
1031 csum_data, 0, 0, 0);
1032 }
1033 }
1034
1035 /* round up to next longword */
1036 pktlen = (pktlen + 3) & ~0x3;
1037
1038 /* total_len does not include the padding */
1039 if (pktlen > total_len)
1040 pktlen = total_len;
1041
1042 buf += pktlen;
1043 total_len -= pktlen;
1044
1045 /* push the packet up */
1046 usbnet_enqueue(un, pktbuf, buflen, csum_flags, csum_data,
1047 mbuf_flags);
1048
1049 count++;
1050 }
1051
1052 if (count != 0)
1053 rnd_add_uint32(usbnet_rndsrc(un), count);
1054 }
1055
1056 static unsigned
1057 smsc_uno_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
1058 {
1059 uint32_t txhdr;
1060 uint32_t frm_len = 0;
1061
1062 const size_t hdrsz = sizeof(txhdr) * 2;
1063
1064 if ((unsigned)m->m_pkthdr.len > un->un_tx_bufsz - hdrsz)
1065 return 0;
1066
1067 /*
1068 * Each frame is prefixed with two 32-bit values describing the
1069 * length of the packet and buffer.
1070 */
1071 txhdr = SMSC_TX_CTRL_0_BUF_SIZE(m->m_pkthdr.len) |
1072 SMSC_TX_CTRL_0_FIRST_SEG | SMSC_TX_CTRL_0_LAST_SEG;
1073 txhdr = htole32(txhdr);
1074 memcpy(c->unc_buf, &txhdr, sizeof(txhdr));
1075
1076 txhdr = SMSC_TX_CTRL_1_PKT_LENGTH(m->m_pkthdr.len);
1077 txhdr = htole32(txhdr);
1078 memcpy(c->unc_buf + sizeof(txhdr), &txhdr, sizeof(txhdr));
1079
1080 frm_len += hdrsz;
1081
1082 /* Next copy in the actual packet */
1083 m_copydata(m, 0, m->m_pkthdr.len, c->unc_buf + frm_len);
1084 frm_len += m->m_pkthdr.len;
1085
1086 return frm_len;
1087 }
1088
1089 #ifdef _MODULE
1090 #include "ioconf.c"
1091 #endif
1092
1093 USBNET_MODULE(smsc)
1094