Home | History | Annotate | Line # | Download | only in usb
if_upgt.c revision 1.1
      1 /*	$NetBSD: if_upgt.c,v 1.1 2010/07/04 15:21:58 tsutsui Exp $	*/
      2 /*	$OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2007 Marcus Glocker <mglocker (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.1 2010/07/04 15:21:58 tsutsui Exp $");
     22 
     23 #include <sys/param.h>
     24 #include <sys/callout.h>
     25 #include <sys/device.h>
     26 #include <sys/errno.h>
     27 #include <sys/kernel.h>
     28 #include <sys/kthread.h>
     29 #include <sys/mbuf.h>
     30 #include <sys/proc.h>
     31 #include <sys/sockio.h>
     32 #include <sys/systm.h>
     33 #include <sys/vnode.h>
     34 
     35 #include <sys/bus.h>
     36 #include <sys/endian.h>
     37 #include <sys/intr.h>
     38 
     39 #include <net/bpf.h>
     40 #include <net/if.h>
     41 #include <net/if_arp.h>
     42 #include <net/if_dl.h>
     43 #include <net/if_ether.h>
     44 #include <net/if_media.h>
     45 #include <net/if_types.h>
     46 
     47 #include <net80211/ieee80211_var.h>
     48 #include <net80211/ieee80211_radiotap.h>
     49 
     50 #include <dev/firmload.h>
     51 
     52 #include <dev/usb/usb.h>
     53 #include <dev/usb/usbdi.h>
     54 #include <dev/usb/usbdi_util.h>
     55 #include <dev/usb/usbdevs.h>
     56 
     57 #include <dev/usb/if_upgtvar.h>
     58 
     59 /*
     60  * Driver for the USB PrismGT devices.
     61  *
     62  * For now just USB 2.0 devices with the GW3887 chipset are supported.
     63  * The driver has been written based on the firmware version 2.13.1.0_LM87.
     64  *
     65  * TODO's:
     66  * - Fix MONITOR mode (MAC filter).
     67  * - Add HOSTAP mode.
     68  * - Add IBSS mode.
     69  * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
     70  *
     71  * Parts of this driver has been influenced by reading the p54u driver
     72  * written by Jean-Baptiste Note <jean-baptiste.note (at) m4x.org> and
     73  * Sebastien Bourdeauducq <lekernel (at) prism54.org>.
     74  */
     75 
     76 #ifdef UPGT_DEBUG
     77 int upgt_debug = 2;
     78 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
     79 #else
     80 #define DPRINTF(l, x...)
     81 #endif
     82 
     83 /*
     84  * Prototypes.
     85  */
     86 static int	upgt_match(device_t, cfdata_t, void *);
     87 static void	upgt_attach(device_t, device_t, void *);
     88 static int	upgt_detach(device_t, int);
     89 static int	upgt_activate(device_t, devact_t);
     90 
     91 static void	upgt_attach_hook(device_t);
     92 static int	upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
     93 static int	upgt_device_init(struct upgt_softc *);
     94 static int	upgt_mem_init(struct upgt_softc *);
     95 static uint32_t	upgt_mem_alloc(struct upgt_softc *);
     96 static void	upgt_mem_free(struct upgt_softc *, uint32_t);
     97 static int	upgt_fw_alloc(struct upgt_softc *);
     98 static void	upgt_fw_free(struct upgt_softc *);
     99 static int	upgt_fw_verify(struct upgt_softc *);
    100 static int	upgt_fw_load(struct upgt_softc *);
    101 static int	upgt_fw_copy(char *, char *, int);
    102 static int	upgt_eeprom_read(struct upgt_softc *);
    103 static int	upgt_eeprom_parse(struct upgt_softc *);
    104 static void	upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
    105 static void	upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
    106 static void	upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
    107 static void	upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
    108 
    109 static int	upgt_ioctl(struct ifnet *, u_long, void *);
    110 static int	upgt_init(struct ifnet *);
    111 static void	upgt_stop(struct upgt_softc *);
    112 static int	upgt_media_change(struct ifnet *);
    113 static void	upgt_newassoc(struct ieee80211_node *, int);
    114 static int	upgt_newstate(struct ieee80211com *, enum ieee80211_state,
    115 		    int);
    116 static void	upgt_newstate_task(void *);
    117 static void	upgt_next_scan(void *);
    118 static void	upgt_start(struct ifnet *);
    119 static void	upgt_watchdog(struct ifnet *);
    120 static void	upgt_tx_task(void *);
    121 static void	upgt_tx_done(struct upgt_softc *, uint8_t *);
    122 static void	upgt_rx_cb(usbd_xfer_handle, usbd_private_handle, usbd_status);
    123 static void	upgt_rx(struct upgt_softc *, uint8_t *, int);
    124 static void	upgt_setup_rates(struct upgt_softc *);
    125 static uint8_t	upgt_rx_rate(struct upgt_softc *, const int);
    126 static int	upgt_set_macfilter(struct upgt_softc *, uint8_t state);
    127 static int	upgt_set_channel(struct upgt_softc *, unsigned);
    128 static void	upgt_set_led(struct upgt_softc *, int);
    129 static void	upgt_set_led_blink(void *);
    130 static int	upgt_get_stats(struct upgt_softc *);
    131 
    132 static int	upgt_alloc_tx(struct upgt_softc *);
    133 static int	upgt_alloc_rx(struct upgt_softc *);
    134 static int	upgt_alloc_cmd(struct upgt_softc *);
    135 static void	upgt_free_tx(struct upgt_softc *);
    136 static void	upgt_free_rx(struct upgt_softc *);
    137 static void	upgt_free_cmd(struct upgt_softc *);
    138 static int	upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
    139 		    usbd_pipe_handle, uint32_t *, int);
    140 
    141 #if 0
    142 static void	upgt_hexdump(void *, int);
    143 #endif
    144 static uint32_t	upgt_crc32_le(const void *, size_t);
    145 static uint32_t	upgt_chksum_le(const uint32_t *, size_t);
    146 
    147 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
    148 	upgt_match, upgt_attach, upgt_detach, upgt_activate);
    149 
    150 static const struct usb_devno upgt_devs_1[] = {
    151 	/* version 1 devices */
    152 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST120G }
    153 };
    154 
    155 static const struct usb_devno upgt_devs_2[] = {
    156 	/* version 2 devices */
    157 	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_PRISM_GT },
    158 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST121G },
    159 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
    160 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
    161 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
    162 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
    163 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GTST },
    164 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_1 },
    165 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_2 },
    166 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122A2 },
    167 	{ USB_VENDOR_FSC,		USB_PRODUCT_FSC_E5400 },
    168 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
    169 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
    170 	{ USB_VENDOR_INTERSIL,		USB_PRODUCT_INTERSIL_PRISM_GT },
    171 	{ USB_VENDOR_PHEENET,		USB_PRODUCT_PHEENET_GWU513 },
    172 	{ USB_VENDOR_PHILIPS,		USB_PRODUCT_PHILIPS_CPWUA054 },
    173 	{ USB_VENDOR_SHARP,		USB_PRODUCT_SHARP_RUITZ1016YCZZ },
    174 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
    175 	{ USB_VENDOR_USR,		USB_PRODUCT_USR_USR5422 },
    176 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_UR045G },
    177 	{ USB_VENDOR_XYRATEX,		USB_PRODUCT_XYRATEX_PRISM_GT_1 },
    178 	{ USB_VENDOR_XYRATEX,		USB_PRODUCT_XYRATEX_PRISM_GT_2 },
    179 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_MD40900 },
    180 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_XG703A }
    181 };
    182 
    183 static int
    184 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
    185     size_t *sizep)
    186 {
    187 	firmware_handle_t fh;
    188 	int error;
    189 
    190 	if ((error = firmware_open(dname, iname, &fh)) != 0)
    191 		return error;
    192 	*sizep = firmware_get_size(fh);
    193 	if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
    194 		firmware_close(fh);
    195 		return ENOMEM;
    196 	}
    197 	if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
    198 		firmware_free(*ucodep, *sizep);
    199 	firmware_close(fh);
    200 
    201 	return error;
    202 }
    203 
    204 static int
    205 upgt_match(device_t parent, cfdata_t match, void *aux)
    206 {
    207 	struct usb_attach_arg *uaa = aux;
    208 
    209 	if (usb_lookup(upgt_devs_1, uaa->vendor, uaa->product) != NULL)
    210 		return UMATCH_VENDOR_PRODUCT;
    211 
    212 	if (usb_lookup(upgt_devs_2, uaa->vendor, uaa->product) != NULL)
    213 		return UMATCH_VENDOR_PRODUCT;
    214 
    215 	return UMATCH_NONE;
    216 }
    217 
    218 static void
    219 upgt_attach(device_t parent, device_t self, void *aux)
    220 {
    221 	struct upgt_softc *sc = device_private(self);
    222 	struct usb_attach_arg *uaa = aux;
    223 	usb_interface_descriptor_t *id;
    224 	usb_endpoint_descriptor_t *ed;
    225 	usbd_status error;
    226 	char *devinfop;
    227 	int i;
    228 
    229 	aprint_naive("\n");
    230 	aprint_normal("\n");
    231 
    232 	/*
    233 	 * Attach USB device.
    234 	 */
    235 	sc->sc_dev = self;
    236 	sc->sc_udev = uaa->device;
    237 
    238 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
    239 	aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
    240 	usbd_devinfo_free(devinfop);
    241 
    242 	/* check device type */
    243 	if (upgt_device_type(sc, uaa->vendor, uaa->product) != 0)
    244 		return;
    245 
    246 	/* set configuration number */
    247 	if (usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0) != 0) {
    248 		aprint_error_dev(sc->sc_dev,
    249 		    "could not set configuration no\n");
    250 		return;
    251 	}
    252 
    253 	/* get the first interface handle */
    254 	error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
    255 	    &sc->sc_iface);
    256 	if (error != 0) {
    257 		aprint_error_dev(sc->sc_dev,
    258 		    "could not get interface handle\n");
    259 		return;
    260 	}
    261 
    262 	/* find endpoints */
    263 	id = usbd_get_interface_descriptor(sc->sc_iface);
    264 	sc->sc_rx_no = sc->sc_tx_no = -1;
    265 	for (i = 0; i < id->bNumEndpoints; i++) {
    266 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
    267 		if (ed == NULL) {
    268 			aprint_error_dev(sc->sc_dev,
    269 			    "no endpoint descriptor for iface %d\n", i);
    270 			return;
    271 		}
    272 
    273 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
    274 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    275 			sc->sc_tx_no = ed->bEndpointAddress;
    276 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
    277 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    278 			sc->sc_rx_no = ed->bEndpointAddress;
    279 
    280 		/*
    281 		 * 0x01 TX pipe
    282 		 * 0x81 RX pipe
    283 		 *
    284 		 * Deprecated scheme (not used with fw version >2.5.6.x):
    285 		 * 0x02 TX MGMT pipe
    286 		 * 0x82 TX MGMT pipe
    287 		 */
    288 		if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
    289 			break;
    290 	}
    291 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
    292 		aprint_error_dev(sc->sc_dev, "missing endpoint\n");
    293 		return;
    294 	}
    295 
    296 	/* setup tasks and timeouts */
    297 	usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc);
    298 	usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc);
    299 	callout_init(&sc->scan_to, 0);
    300 	callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
    301 	callout_init(&sc->led_to, 0);
    302 	callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
    303 
    304 	/*
    305 	 * Open TX and RX USB bulk pipes.
    306 	 */
    307 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
    308 	    &sc->sc_tx_pipeh);
    309 	if (error != 0) {
    310 		aprint_error_dev(sc->sc_dev,
    311 		    "could not open TX pipe: %s\n", usbd_errstr(error));
    312 		goto fail;
    313 	}
    314 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
    315 	    &sc->sc_rx_pipeh);
    316 	if (error != 0) {
    317 		aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
    318 		    usbd_errstr(error));
    319 		goto fail;
    320 	}
    321 
    322 	/*
    323 	 * Allocate TX, RX, and CMD xfers.
    324 	 */
    325 	if (upgt_alloc_tx(sc) != 0)
    326 		goto fail;
    327 	if (upgt_alloc_rx(sc) != 0)
    328 		goto fail;
    329 	if (upgt_alloc_cmd(sc) != 0)
    330 		goto fail;
    331 
    332 	/*
    333 	 * We need the firmware loaded from file system to complete the attach.
    334 	 */
    335 	config_mountroot(self, upgt_attach_hook);
    336 
    337 	return;
    338 fail:
    339 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
    340 }
    341 
    342 static void
    343 upgt_attach_hook(device_t arg)
    344 {
    345 	struct upgt_softc *sc = device_private(arg);
    346 	struct ieee80211com *ic = &sc->sc_ic;
    347 	struct ifnet *ifp = &sc->sc_if;
    348 	usbd_status error;
    349 	int i;
    350 
    351 	/*
    352 	 * Load firmware file into memory.
    353 	 */
    354 	if (upgt_fw_alloc(sc) != 0)
    355 		goto fail;
    356 
    357 	/*
    358 	 * Initialize the device.
    359 	 */
    360 	if (upgt_device_init(sc) != 0)
    361 		goto fail;
    362 
    363 	/*
    364 	 * Verify the firmware.
    365 	 */
    366 	if (upgt_fw_verify(sc) != 0)
    367 		goto fail;
    368 
    369 	/*
    370 	 * Calculate device memory space.
    371 	 */
    372 	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
    373 		aprint_error_dev(sc->sc_dev,
    374 		    "could not find memory space addresses on FW\n");
    375 		goto fail;
    376 	}
    377 	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
    378 	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
    379 
    380 	DPRINTF(1, "%s: memory address frame start=0x%08x\n",
    381 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
    382 	DPRINTF(1, "%s: memory address frame end=0x%08x\n",
    383 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
    384 	DPRINTF(1, "%s: memory address rx start=0x%08x\n",
    385 	    device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
    386 
    387 	upgt_mem_init(sc);
    388 
    389 	/*
    390 	 * Load the firmware.
    391 	 */
    392 	if (upgt_fw_load(sc) != 0)
    393 		goto fail;
    394 
    395 	/*
    396 	 * Startup the RX pipe.
    397 	 */
    398 	struct upgt_data *data_rx = &sc->rx_data;
    399 
    400 	usbd_setup_xfer(data_rx->xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf,
    401 	    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
    402 	error = usbd_transfer(data_rx->xfer);
    403 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
    404 		aprint_error_dev(sc->sc_dev,
    405 		    "could not queue RX transfer\n");
    406 		goto fail;
    407 	}
    408 	usbd_delay_ms(sc->sc_udev, 100);
    409 
    410 	/*
    411 	 * Read the whole EEPROM content and parse it.
    412 	 */
    413 	if (upgt_eeprom_read(sc) != 0)
    414 		goto fail;
    415 	if (upgt_eeprom_parse(sc) != 0)
    416 		goto fail;
    417 
    418 	/*
    419 	 * Setup the 802.11 device.
    420 	 */
    421 	ic->ic_ifp = ifp;
    422 	ic->ic_phytype = IEEE80211_T_OFDM;
    423 	ic->ic_opmode = IEEE80211_M_STA;
    424 	ic->ic_state = IEEE80211_S_INIT;
    425 	ic->ic_caps =
    426 	    IEEE80211_C_MONITOR |
    427 	    IEEE80211_C_SHPREAMBLE |
    428 	    IEEE80211_C_SHSLOT;
    429 
    430 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
    431 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
    432 
    433 	for (i = 1; i <= 14; i++) {
    434 		ic->ic_channels[i].ic_freq =
    435 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    436 		ic->ic_channels[i].ic_flags =
    437 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    438 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    439 	}
    440 
    441 	ifp->if_softc = sc;
    442 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    443 	ifp->if_init = upgt_init;
    444 	ifp->if_ioctl = upgt_ioctl;
    445 	ifp->if_start = upgt_start;
    446 	ifp->if_watchdog = upgt_watchdog;
    447 	IFQ_SET_READY(&ifp->if_snd);
    448 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    449 
    450 	if_attach(ifp);
    451 	ieee80211_ifattach(ic);
    452 	ic->ic_newassoc = upgt_newassoc;
    453 
    454 	sc->sc_newstate = ic->ic_newstate;
    455 	ic->ic_newstate = upgt_newstate;
    456 	ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
    457 
    458 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    459 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    460 	    &sc->sc_drvbpf);
    461 
    462 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
    463 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    464 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
    465 
    466 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
    467 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    468 	sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
    469 
    470 	aprint_normal_dev(sc->sc_dev, "address %s\n",
    471 	    ether_sprintf(ic->ic_myaddr));
    472 
    473 	ieee80211_announce(ic);
    474 
    475 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
    476 
    477 	/* device attached */
    478 	sc->sc_flags |= UPGT_DEVICE_ATTACHED;
    479 
    480 	return;
    481 fail:
    482 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
    483 }
    484 
    485 static int
    486 upgt_detach(device_t self, int flags)
    487 {
    488 	struct upgt_softc *sc = device_private(self);
    489 	struct ifnet *ifp = &sc->sc_if;
    490 	struct ieee80211com *ic = &sc->sc_ic;
    491 	int s;
    492 
    493 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
    494 
    495 	s = splnet();
    496 
    497 	if (ifp->if_flags & IFF_RUNNING)
    498 		upgt_stop(sc);
    499 
    500 	/* remove tasks and timeouts */
    501 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
    502 	usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
    503 	callout_destroy(&sc->scan_to);
    504 	callout_destroy(&sc->led_to);
    505 
    506 	/* abort and close TX / RX pipes */
    507 	if (sc->sc_tx_pipeh != NULL) {
    508 		usbd_abort_pipe(sc->sc_tx_pipeh);
    509 		usbd_close_pipe(sc->sc_tx_pipeh);
    510 	}
    511 	if (sc->sc_rx_pipeh != NULL) {
    512 		usbd_abort_pipe(sc->sc_rx_pipeh);
    513 		usbd_close_pipe(sc->sc_rx_pipeh);
    514 	}
    515 
    516 	/* free xfers */
    517 	upgt_free_tx(sc);
    518 	upgt_free_rx(sc);
    519 	upgt_free_cmd(sc);
    520 
    521 	/* free firmware */
    522 	upgt_fw_free(sc);
    523 
    524 	if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
    525 		/* detach interface */
    526 		bpf_detach(ifp);
    527 		ieee80211_ifdetach(ic);
    528 		if_detach(ifp);
    529 	}
    530 
    531 	splx(s);
    532 
    533 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
    534 
    535 	return 0;
    536 }
    537 
    538 static int
    539 upgt_activate(device_t self, devact_t act)
    540 {
    541 	struct upgt_softc *sc = device_private(self);
    542 
    543 	switch (act) {
    544 	case DVACT_DEACTIVATE:
    545 		if_deactivate(&sc->sc_if);
    546 		return 0;
    547 	default:
    548 		return EOPNOTSUPP;
    549 	}
    550 }
    551 
    552 static int
    553 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
    554 {
    555 
    556 	if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
    557 		sc->sc_device_type = 1;
    558 		/* XXX */
    559 		aprint_error_dev(sc->sc_dev,
    560 		    "version 1 devices not supported yet\n");
    561 		return 1;
    562 	} else
    563 		sc->sc_device_type = 2;
    564 
    565 	return 0;
    566 }
    567 
    568 static int
    569 upgt_device_init(struct upgt_softc *sc)
    570 {
    571 	struct upgt_data *data_cmd = &sc->cmd_data;
    572 	const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
    573 	int len;
    574 
    575 	len = sizeof(init_cmd);
    576 	memcpy(data_cmd->buf, init_cmd, len);
    577 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    578 		aprint_error_dev(sc->sc_dev,
    579 		    "could not send device init string\n");
    580 		return EIO;
    581 	}
    582 	usbd_delay_ms(sc->sc_udev, 100);
    583 
    584 	DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
    585 
    586 	return 0;
    587 }
    588 
    589 static int
    590 upgt_mem_init(struct upgt_softc *sc)
    591 {
    592 	int i;
    593 
    594 	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
    595 		sc->sc_memory.page[i].used = 0;
    596 
    597 		if (i == 0) {
    598 			/*
    599 			 * The first memory page is always reserved for
    600 			 * command data.
    601 			 */
    602 			sc->sc_memory.page[i].addr =
    603 			    sc->sc_memaddr_frame_start + MCLBYTES;
    604 		} else {
    605 			sc->sc_memory.page[i].addr =
    606 			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
    607 		}
    608 
    609 		if (sc->sc_memory.page[i].addr + MCLBYTES >=
    610 		    sc->sc_memaddr_frame_end)
    611 			break;
    612 
    613 		DPRINTF(2, "%s: memory address page %d=0x%08x\n",
    614 		    device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
    615 	}
    616 
    617 	sc->sc_memory.pages = i;
    618 
    619 	DPRINTF(2, "%s: memory pages=%d\n",
    620 	    device_xname(sc->sc_dev), sc->sc_memory.pages);
    621 
    622 	return 0;
    623 }
    624 
    625 static uint32_t
    626 upgt_mem_alloc(struct upgt_softc *sc)
    627 {
    628 	int i;
    629 
    630 	for (i = 0; i < sc->sc_memory.pages; i++) {
    631 		if (sc->sc_memory.page[i].used == 0) {
    632 			sc->sc_memory.page[i].used = 1;
    633 			return sc->sc_memory.page[i].addr;
    634 		}
    635 	}
    636 
    637 	return 0;
    638 }
    639 
    640 static void
    641 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
    642 {
    643 	int i;
    644 
    645 	for (i = 0; i < sc->sc_memory.pages; i++) {
    646 		if (sc->sc_memory.page[i].addr == addr) {
    647 			sc->sc_memory.page[i].used = 0;
    648 			return;
    649 		}
    650 	}
    651 
    652 	aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
    653 	    addr);
    654 }
    655 
    656 
    657 static int
    658 upgt_fw_alloc(struct upgt_softc *sc)
    659 {
    660 	const char *name = "upgt-gw3887";
    661 	int error;
    662 
    663 	if (sc->sc_fw == NULL) {
    664 		error = firmware_load("upgt", name, &sc->sc_fw,
    665 		    &sc->sc_fw_size);
    666 		if (error != 0) {
    667 			aprint_error_dev(sc->sc_dev,
    668 			    "could not read firmware %s", name);
    669 			aprint_error_dev(sc->sc_dev,
    670 			    "see upgt(4) man page for details\n");
    671 			return EIO;
    672 		}
    673 	}
    674 
    675 	DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
    676 	    name);
    677 
    678 	return 0;
    679 }
    680 
    681 static void
    682 upgt_fw_free(struct upgt_softc *sc)
    683 {
    684 
    685 	if (sc->sc_fw != NULL) {
    686 		firmware_free(sc->sc_fw, sc->sc_fw_size);
    687 		sc->sc_fw = NULL;
    688 		DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
    689 	}
    690 }
    691 
    692 static int
    693 upgt_fw_verify(struct upgt_softc *sc)
    694 {
    695 	struct upgt_fw_bra_option *bra_option;
    696 	uint32_t bra_option_type, bra_option_len;
    697 	uint32_t *uc;
    698 	int offset, bra_end = 0;
    699 
    700 	/*
    701 	 * Seek to beginning of Boot Record Area (BRA).
    702 	 */
    703 	for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
    704 		uc = (uint32_t *)(sc->sc_fw + offset);
    705 		if (*uc == 0)
    706 			break;
    707 	}
    708 	for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
    709 		uc = (uint32_t *)(sc->sc_fw + offset);
    710 		if (*uc != 0)
    711 			break;
    712 	}
    713 	if (offset == sc->sc_fw_size) {
    714 		aprint_error_dev(sc->sc_dev,
    715 		    "firmware Boot Record Area not found\n");
    716 		return EIO;
    717 	}
    718 	DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
    719 	    device_xname(sc->sc_dev), offset);
    720 
    721 	/*
    722 	 * Parse Boot Record Area (BRA) options.
    723 	 */
    724 	while (offset < sc->sc_fw_size && bra_end == 0) {
    725 		/* get current BRA option */
    726 		bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
    727 		bra_option_type = le32toh(bra_option->type);
    728 		bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
    729 
    730 		switch (bra_option_type) {
    731 		case UPGT_BRA_TYPE_FW:
    732 			DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
    733 			    device_xname(sc->sc_dev), bra_option_len);
    734 
    735 			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
    736 				aprint_error_dev(sc->sc_dev,
    737 				    "wrong UPGT_BRA_TYPE_FW len\n");
    738 				return EIO;
    739 			}
    740 			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
    741 			    bra_option_len) == 0) {
    742 				sc->sc_fw_type = UPGT_FWTYPE_LM86;
    743 				break;
    744 			}
    745 			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
    746 			    bra_option_len) == 0) {
    747 				sc->sc_fw_type = UPGT_FWTYPE_LM87;
    748 				break;
    749 			}
    750 			if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
    751 			    bra_option_len) == 0) {
    752 				sc->sc_fw_type = UPGT_FWTYPE_FMAC;
    753 				break;
    754 			}
    755 			aprint_error_dev(sc->sc_dev,
    756 			    "unsupported firmware type\n");
    757 			return EIO;
    758 		case UPGT_BRA_TYPE_VERSION:
    759 			DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
    760 			    device_xname(sc->sc_dev), bra_option_len);
    761 			break;
    762 		case UPGT_BRA_TYPE_DEPIF:
    763 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
    764 			    device_xname(sc->sc_dev), bra_option_len);
    765 			break;
    766 		case UPGT_BRA_TYPE_EXPIF:
    767 			DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
    768 			    device_xname(sc->sc_dev), bra_option_len);
    769 			break;
    770 		case UPGT_BRA_TYPE_DESCR:
    771 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
    772 			    device_xname(sc->sc_dev), bra_option_len);
    773 
    774 			struct upgt_fw_bra_descr *descr =
    775 				(struct upgt_fw_bra_descr *)bra_option->data;
    776 
    777 			sc->sc_memaddr_frame_start =
    778 			    le32toh(descr->memaddr_space_start);
    779 			sc->sc_memaddr_frame_end =
    780 			    le32toh(descr->memaddr_space_end);
    781 
    782 			DPRINTF(2, "%s: memory address space start=0x%08x\n",
    783 			    device_xname(sc->sc_dev),
    784 			    sc->sc_memaddr_frame_start);
    785 			DPRINTF(2, "%s: memory address space end=0x%08x\n",
    786 			    device_xname(sc->sc_dev),
    787 			    sc->sc_memaddr_frame_end);
    788 			break;
    789 		case UPGT_BRA_TYPE_END:
    790 			DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
    791 			    device_xname(sc->sc_dev), bra_option_len);
    792 			bra_end = 1;
    793 			break;
    794 		default:
    795 			DPRINTF(1, "%s: unknown BRA option len=%d\n",
    796 			    device_xname(sc->sc_dev), bra_option_len);
    797 			return EIO;
    798 		}
    799 
    800 		/* jump to next BRA option */
    801 		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
    802 	}
    803 
    804 	DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
    805 
    806 	return 0;
    807 }
    808 
    809 static int
    810 upgt_fw_load(struct upgt_softc *sc)
    811 {
    812 	struct upgt_data *data_cmd = &sc->cmd_data;
    813 	struct upgt_data *data_rx = &sc->rx_data;
    814 	struct upgt_fw_x2_header *x2;
    815 	const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
    816 	int offset, bsize, n, i, len;
    817 	uint32_t crc;
    818 
    819 	/* send firmware start load command */
    820 	len = sizeof(start_fwload_cmd);
    821 	memcpy(data_cmd->buf, start_fwload_cmd, len);
    822 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    823 		aprint_error_dev(sc->sc_dev,
    824 		    "could not send start_firmware_load command\n");
    825 		return EIO;
    826 	}
    827 
    828 	/* send X2 header */
    829 	len = sizeof(struct upgt_fw_x2_header);
    830 	x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
    831 	memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
    832 	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
    833 	x2->len = htole32(sc->sc_fw_size);
    834 	x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
    835 	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
    836 	    sizeof(uint32_t));
    837 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    838 		aprint_error_dev(sc->sc_dev,
    839 		    "could not send firmware X2 header\n");
    840 		return EIO;
    841 	}
    842 
    843 	/* download firmware */
    844 	for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
    845 		if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
    846 			bsize = UPGT_FW_BLOCK_SIZE;
    847 		else
    848 			bsize = sc->sc_fw_size - offset;
    849 
    850 		n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
    851 
    852 		DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
    853 		    device_xname(sc->sc_dev), offset, n, bsize);
    854 
    855 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
    856 		    != 0) {
    857 			aprint_error_dev(sc->sc_dev,
    858 			    "error while downloading firmware block\n");
    859 			return EIO;
    860 		}
    861 
    862 		bsize = n;
    863 	}
    864 	DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
    865 
    866 	/* load firmware */
    867 	crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
    868 	*((uint32_t *)(data_cmd->buf)    ) = crc;
    869 	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
    870 	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
    871 	len = 6;
    872 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    873 		aprint_error_dev(sc->sc_dev,
    874 		    "could not send load_firmware command\n");
    875 		return EIO;
    876 	}
    877 
    878 	for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
    879 		len = UPGT_FW_BLOCK_SIZE;
    880 		memset(data_rx->buf, 0, 2);
    881 		if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
    882 		    USBD_SHORT_XFER_OK) != 0) {
    883 			aprint_error_dev(sc->sc_dev,
    884 			    "could not read firmware response\n");
    885 			return EIO;
    886 		}
    887 
    888 		if (memcmp(data_rx->buf, "OK", 2) == 0)
    889 			break;	/* firmware load was successful */
    890 	}
    891 	if (i == UPGT_FIRMWARE_TIMEOUT) {
    892 		aprint_error_dev(sc->sc_dev, "firmware load failed\n");
    893 		return EIO;
    894 	}
    895 	DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
    896 
    897 	return 0;
    898 }
    899 
    900 /*
    901  * While copying the version 2 firmware, we need to replace two characters:
    902  *
    903  * 0x7e -> 0x7d 0x5e
    904  * 0x7d -> 0x7d 0x5d
    905  */
    906 static int
    907 upgt_fw_copy(char *src, char *dst, int size)
    908 {
    909 	int i, j;
    910 
    911 	for (i = 0, j = 0; i < size && j < size; i++) {
    912 		switch (src[i]) {
    913 		case 0x7e:
    914 			dst[j] = 0x7d;
    915 			j++;
    916 			dst[j] = 0x5e;
    917 			j++;
    918 			break;
    919 		case 0x7d:
    920 			dst[j] = 0x7d;
    921 			j++;
    922 			dst[j] = 0x5d;
    923 			j++;
    924 			break;
    925 		default:
    926 			dst[j] = src[i];
    927 			j++;
    928 			break;
    929 		}
    930 	}
    931 
    932 	return i;
    933 }
    934 
    935 static int
    936 upgt_eeprom_read(struct upgt_softc *sc)
    937 {
    938 	struct upgt_data *data_cmd = &sc->cmd_data;
    939 	struct upgt_lmac_mem *mem;
    940 	struct upgt_lmac_eeprom	*eeprom;
    941 	int offset, block, len;
    942 
    943 	offset = 0;
    944 	block = UPGT_EEPROM_BLOCK_SIZE;
    945 	while (offset < UPGT_EEPROM_SIZE) {
    946 		DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
    947 		    device_xname(sc->sc_dev), offset, block);
    948 
    949 		/*
    950 		 * Transmit the URB containing the CMD data.
    951 		 */
    952 		len = sizeof(*mem) + sizeof(*eeprom) + block;
    953 
    954 		memset(data_cmd->buf, 0, len);
    955 
    956 		mem = (struct upgt_lmac_mem *)data_cmd->buf;
    957 		mem->addr = htole32(sc->sc_memaddr_frame_start +
    958 		    UPGT_MEMSIZE_FRAME_HEAD);
    959 
    960 		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
    961 		eeprom->header1.flags = 0;
    962 		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
    963 		eeprom->header1.len = htole16((
    964 		    sizeof(struct upgt_lmac_eeprom) -
    965 		    sizeof(struct upgt_lmac_header)) + block);
    966 
    967 		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
    968 		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
    969 		eeprom->header2.flags = 0;
    970 
    971 		eeprom->offset = htole16(offset);
    972 		eeprom->len = htole16(block);
    973 
    974 		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
    975 		    len - sizeof(*mem));
    976 
    977 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
    978 		    USBD_FORCE_SHORT_XFER) != 0) {
    979 			aprint_error_dev(sc->sc_dev,
    980 			    "could not transmit EEPROM data URB\n");
    981 			return EIO;
    982 		}
    983 		if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) {
    984 			aprint_error_dev(sc->sc_dev,
    985 			    "timeout while waiting for EEPROM data\n");
    986 			return EIO;
    987 		}
    988 
    989 		offset += block;
    990 		if (UPGT_EEPROM_SIZE - offset < block)
    991 			block = UPGT_EEPROM_SIZE - offset;
    992 	}
    993 
    994 	return 0;
    995 }
    996 
    997 static int
    998 upgt_eeprom_parse(struct upgt_softc *sc)
    999 {
   1000 	struct ieee80211com *ic = &sc->sc_ic;
   1001 	struct upgt_eeprom_header *eeprom_header;
   1002 	struct upgt_eeprom_option *eeprom_option;
   1003 	uint16_t option_len;
   1004 	uint16_t option_type;
   1005 	uint16_t preamble_len;
   1006 	int option_end = 0;
   1007 
   1008 	/* calculate eeprom options start offset */
   1009 	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
   1010 	preamble_len = le16toh(eeprom_header->preamble_len);
   1011 	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
   1012 	    (sizeof(struct upgt_eeprom_header) + preamble_len));
   1013 
   1014 	while (!option_end) {
   1015 		/* the eeprom option length is stored in words */
   1016 		option_len =
   1017 		    (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
   1018 		option_type =
   1019 		    le16toh(eeprom_option->type);
   1020 
   1021 		switch (option_type) {
   1022 		case UPGT_EEPROM_TYPE_NAME:
   1023 			DPRINTF(1, "%s: EEPROM name len=%d\n",
   1024 			    device_xname(sc->sc_dev), option_len);
   1025 			break;
   1026 		case UPGT_EEPROM_TYPE_SERIAL:
   1027 			DPRINTF(1, "%s: EEPROM serial len=%d\n",
   1028 			    device_xname(sc->sc_dev), option_len);
   1029 			break;
   1030 		case UPGT_EEPROM_TYPE_MAC:
   1031 			DPRINTF(1, "%s: EEPROM mac len=%d\n",
   1032 			    device_xname(sc->sc_dev), option_len);
   1033 
   1034 			IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
   1035 			break;
   1036 		case UPGT_EEPROM_TYPE_HWRX:
   1037 			DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
   1038 			    device_xname(sc->sc_dev), option_len);
   1039 
   1040 			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
   1041 			break;
   1042 		case UPGT_EEPROM_TYPE_CHIP:
   1043 			DPRINTF(1, "%s: EEPROM chip len=%d\n",
   1044 			    device_xname(sc->sc_dev), option_len);
   1045 			break;
   1046 		case UPGT_EEPROM_TYPE_FREQ3:
   1047 			DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
   1048 			    device_xname(sc->sc_dev), option_len);
   1049 
   1050 			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
   1051 			    option_len);
   1052 			break;
   1053 		case UPGT_EEPROM_TYPE_FREQ4:
   1054 			DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
   1055 			    device_xname(sc->sc_dev), option_len);
   1056 
   1057 			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
   1058 			    option_len);
   1059 			break;
   1060 		case UPGT_EEPROM_TYPE_FREQ5:
   1061 			DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
   1062 			    device_xname(sc->sc_dev), option_len);
   1063 			break;
   1064 		case UPGT_EEPROM_TYPE_FREQ6:
   1065 			DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
   1066 			    device_xname(sc->sc_dev), option_len);
   1067 
   1068 			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
   1069 			    option_len);
   1070 			break;
   1071 		case UPGT_EEPROM_TYPE_END:
   1072 			DPRINTF(1, "%s: EEPROM end len=%d\n",
   1073 			    device_xname(sc->sc_dev), option_len);
   1074 			option_end = 1;
   1075 			break;
   1076 		case UPGT_EEPROM_TYPE_OFF:
   1077 			DPRINTF(1, "%s: EEPROM off without end option\n",
   1078 			    device_xname(sc->sc_dev));
   1079 			return EIO;
   1080 		default:
   1081 			DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
   1082 			    device_xname(sc->sc_dev), option_type, option_len);
   1083 			break;
   1084 		}
   1085 
   1086 		/* jump to next EEPROM option */
   1087 		eeprom_option = (struct upgt_eeprom_option *)
   1088 		    (eeprom_option->data + option_len);
   1089 	}
   1090 
   1091 	return 0;
   1092 }
   1093 
   1094 static void
   1095 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
   1096 {
   1097 	struct upgt_eeprom_option_hwrx *option_hwrx;
   1098 
   1099 	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
   1100 
   1101 	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
   1102 
   1103 	DPRINTF(2, "%s: hwrx option value=0x%04x\n",
   1104 	    device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
   1105 }
   1106 
   1107 static void
   1108 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
   1109 {
   1110 	struct upgt_eeprom_freq3_header *freq3_header;
   1111 	struct upgt_lmac_freq3 *freq3;
   1112 	int i, elements, flags;
   1113 	unsigned channel;
   1114 
   1115 	freq3_header = (struct upgt_eeprom_freq3_header *)data;
   1116 	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
   1117 
   1118 	flags = freq3_header->flags;
   1119 	elements = freq3_header->elements;
   1120 
   1121 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
   1122 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1123 
   1124 	for (i = 0; i < elements; i++) {
   1125 		channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
   1126 
   1127 		sc->sc_eeprom_freq3[channel] = freq3[i];
   1128 
   1129 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1130 		    device_xname(sc->sc_dev),
   1131 		    le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
   1132 	}
   1133 }
   1134 
   1135 static void
   1136 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
   1137 {
   1138 	struct upgt_eeprom_freq4_header *freq4_header;
   1139 	struct upgt_eeprom_freq4_1 *freq4_1;
   1140 	struct upgt_eeprom_freq4_2 *freq4_2;
   1141 	int i, j, elements, settings, flags;
   1142 	unsigned channel;
   1143 
   1144 	freq4_header = (struct upgt_eeprom_freq4_header *)data;
   1145 	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
   1146 
   1147 	flags = freq4_header->flags;
   1148 	elements = freq4_header->elements;
   1149 	settings = freq4_header->settings;
   1150 
   1151 	/* we need this value later */
   1152 	sc->sc_eeprom_freq6_settings = freq4_header->settings;
   1153 
   1154 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
   1155 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1156 	DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
   1157 
   1158 	for (i = 0; i < elements; i++) {
   1159 		channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
   1160 
   1161 		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
   1162 
   1163 		for (j = 0; j < settings; j++) {
   1164 			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
   1165 			sc->sc_eeprom_freq4[channel][j].pad = 0;
   1166 		}
   1167 
   1168 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1169 		    device_xname(sc->sc_dev),
   1170 		    le16toh(freq4_1[i].freq), channel);
   1171 	}
   1172 }
   1173 
   1174 static void
   1175 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
   1176 {
   1177 	struct upgt_lmac_freq6 *freq6;
   1178 	int i, elements;
   1179 	unsigned channel;
   1180 
   1181 	freq6 = (struct upgt_lmac_freq6 *)data;
   1182 
   1183 	elements = len / sizeof(struct upgt_lmac_freq6);
   1184 
   1185 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1186 
   1187 	for (i = 0; i < elements; i++) {
   1188 		channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
   1189 
   1190 		sc->sc_eeprom_freq6[channel] = freq6[i];
   1191 
   1192 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1193 		    device_xname(sc->sc_dev),
   1194 		    le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
   1195 	}
   1196 }
   1197 
   1198 static int
   1199 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1200 {
   1201 	struct upgt_softc *sc = ifp->if_softc;
   1202 	struct ieee80211com *ic = &sc->sc_ic;
   1203 	int s, error = 0;
   1204 
   1205 	s = splnet();
   1206 
   1207 	switch (cmd) {
   1208 	case SIOCSIFFLAGS:
   1209 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1210 			break;
   1211 		if (ifp->if_flags & IFF_UP) {
   1212 			if ((ifp->if_flags & IFF_RUNNING) == 0)
   1213 				upgt_init(ifp);
   1214 		} else {
   1215 			if (ifp->if_flags & IFF_RUNNING)
   1216 				upgt_stop(sc);
   1217 		}
   1218 		break;
   1219 	case SIOCADDMULTI:
   1220 	case SIOCDELMULTI:
   1221 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   1222 			/* setup multicast filter, etc */
   1223 			error = 0;
   1224 		}
   1225 		break;
   1226 	default:
   1227 		error = ieee80211_ioctl(ic, cmd, data);
   1228 		break;
   1229 	}
   1230 
   1231 	if (error == ENETRESET) {
   1232 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1233 		    (IFF_UP | IFF_RUNNING))
   1234 			upgt_init(ifp);
   1235 		error = 0;
   1236 	}
   1237 
   1238 	splx(s);
   1239 
   1240 	return error;
   1241 }
   1242 
   1243 static int
   1244 upgt_init(struct ifnet *ifp)
   1245 {
   1246 	struct upgt_softc *sc = ifp->if_softc;
   1247 	struct ieee80211com *ic = &sc->sc_ic;
   1248 
   1249 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1250 
   1251 	if (ifp->if_flags & IFF_RUNNING)
   1252 		upgt_stop(sc);
   1253 
   1254 	ifp->if_flags |= IFF_RUNNING;
   1255 	ifp->if_flags &= ~IFF_OACTIVE;
   1256 
   1257 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   1258 
   1259 	/* setup device rates */
   1260 	upgt_setup_rates(sc);
   1261 
   1262 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   1263 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1264 	else
   1265 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1266 
   1267 	return 0;
   1268 }
   1269 
   1270 static void
   1271 upgt_stop(struct upgt_softc *sc)
   1272 {
   1273 	struct ieee80211com *ic = &sc->sc_ic;
   1274 	struct ifnet *ifp = &sc->sc_if;
   1275 
   1276 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1277 
   1278 	/* device down */
   1279 	ifp->if_timer = 0;
   1280 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1281 
   1282 	/* change device back to initial state */
   1283 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1284 }
   1285 
   1286 static int
   1287 upgt_media_change(struct ifnet *ifp)
   1288 {
   1289 	struct upgt_softc *sc = ifp->if_softc;
   1290 	int error;
   1291 
   1292 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1293 
   1294 	if ((error = ieee80211_media_change(ifp) != ENETRESET))
   1295 		return error;
   1296 
   1297 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1298 	    (IFF_UP | IFF_RUNNING)) {
   1299 		/* give pending USB transfers a chance to finish */
   1300 		usbd_delay_ms(sc->sc_udev, 100);
   1301 		upgt_init(ifp);
   1302 	}
   1303 
   1304 	return 0;
   1305 }
   1306 
   1307 static void
   1308 upgt_newassoc(struct ieee80211_node *ni, int isnew)
   1309 {
   1310 
   1311 	ni->ni_txrate = 0;
   1312 }
   1313 
   1314 static int
   1315 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1316 {
   1317 	struct upgt_softc *sc = ic->ic_ifp->if_softc;
   1318 
   1319 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
   1320 	callout_stop(&sc->scan_to);
   1321 
   1322 	/* do it in a process context */
   1323 	sc->sc_state = nstate;
   1324 	sc->sc_arg = arg;
   1325 	usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
   1326 
   1327 	return 0;
   1328 }
   1329 
   1330 static void
   1331 upgt_newstate_task(void *arg)
   1332 {
   1333 	struct upgt_softc *sc = arg;
   1334 	struct ieee80211com *ic = &sc->sc_ic;
   1335 	struct ieee80211_node *ni;
   1336 	unsigned channel;
   1337 
   1338 	mutex_enter(&sc->sc_mtx);
   1339 
   1340 	switch (sc->sc_state) {
   1341 	case IEEE80211_S_INIT:
   1342 		DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
   1343 		    device_xname(sc->sc_dev));
   1344 
   1345 		/* do not accept any frames if the device is down */
   1346 		upgt_set_macfilter(sc, IEEE80211_S_INIT);
   1347 		upgt_set_led(sc, UPGT_LED_OFF);
   1348 		break;
   1349 	case IEEE80211_S_SCAN:
   1350 		DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
   1351 		    device_xname(sc->sc_dev));
   1352 
   1353 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1354 		upgt_set_channel(sc, channel);
   1355 		upgt_set_macfilter(sc, IEEE80211_S_SCAN);
   1356 		callout_schedule(&sc->scan_to, hz / 5);
   1357 		break;
   1358 	case IEEE80211_S_AUTH:
   1359 		DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
   1360 		    device_xname(sc->sc_dev));
   1361 
   1362 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1363 		upgt_set_channel(sc, channel);
   1364 		break;
   1365 	case IEEE80211_S_ASSOC:
   1366 		DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
   1367 		    device_xname(sc->sc_dev));
   1368 
   1369 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1370 		upgt_set_channel(sc, channel);
   1371 		break;
   1372 	case IEEE80211_S_RUN:
   1373 		DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
   1374 		    device_xname(sc->sc_dev));
   1375 
   1376 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1377 		upgt_set_channel(sc, channel);
   1378 
   1379 		ni = ic->ic_bss;
   1380 
   1381 		/*
   1382 		 * TX rate control is done by the firmware.
   1383 		 * Report the maximum rate which is available therefore.
   1384 		 */
   1385 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
   1386 
   1387 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1388 			upgt_set_macfilter(sc, IEEE80211_S_RUN);
   1389 		upgt_set_led(sc, UPGT_LED_ON);
   1390 		break;
   1391 	}
   1392 
   1393 	mutex_exit(&sc->sc_mtx);
   1394 
   1395 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
   1396 }
   1397 
   1398 static void
   1399 upgt_next_scan(void *arg)
   1400 {
   1401 	struct upgt_softc *sc = arg;
   1402 	struct ieee80211com *ic = &sc->sc_ic;
   1403 
   1404 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1405 
   1406 	if (ic->ic_state == IEEE80211_S_SCAN)
   1407 		ieee80211_next_scan(ic);
   1408 }
   1409 
   1410 static void
   1411 upgt_start(struct ifnet *ifp)
   1412 {
   1413 	struct upgt_softc *sc = ifp->if_softc;
   1414 	struct ieee80211com *ic = &sc->sc_ic;
   1415 	struct ether_header *eh;
   1416 	struct ieee80211_node *ni;
   1417 	struct mbuf *m;
   1418 	int i;
   1419 
   1420 	/* don't transmit packets if interface is busy or down */
   1421 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1422 		return;
   1423 
   1424 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1425 
   1426 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1427 		struct upgt_data *data_tx = &sc->tx_data[i];
   1428 
   1429 		if (data_tx->m != NULL)
   1430 			continue;
   1431 
   1432 		IF_POLL(&ic->ic_mgtq, m);
   1433 		if (m != NULL) {
   1434 			/* management frame */
   1435 			IF_DEQUEUE(&ic->ic_mgtq, m);
   1436 
   1437 			ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
   1438 			m->m_pkthdr.rcvif = NULL;
   1439 
   1440 			bpf_mtap3(ic->ic_rawbpf, m);
   1441 
   1442 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
   1443 				aprint_error_dev(sc->sc_dev,
   1444 				    "no free prism memory\n");
   1445 				m_freem(m);
   1446 				ifp->if_oerrors++;
   1447 				break;
   1448 			}
   1449 			data_tx->ni = ni;
   1450 			data_tx->m = m;
   1451 			sc->tx_queued++;
   1452 		} else {
   1453 			/* data frame */
   1454 			if (ic->ic_state != IEEE80211_S_RUN)
   1455 				break;
   1456 
   1457 			IFQ_POLL(&ifp->if_snd, m);
   1458 			if (m == NULL)
   1459 				break;
   1460 
   1461 			IFQ_DEQUEUE(&ifp->if_snd, m);
   1462 			if (m->m_len < sizeof(struct ether_header) &&
   1463 			    !(m = m_pullup(m, sizeof(struct ether_header))))
   1464 				continue;
   1465 
   1466 			eh = mtod(m, struct ether_header *);
   1467 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1468 			if (ni == NULL) {
   1469 				m_freem(m);
   1470 				continue;
   1471 			}
   1472 
   1473 			bpf_mtap(ifp, m);
   1474 
   1475 			m = ieee80211_encap(ic, m, ni);
   1476 			if (m == NULL) {
   1477 				ieee80211_free_node(ni);
   1478 				continue;
   1479 			}
   1480 
   1481 			bpf_mtap3(ic->ic_rawbpf, m);
   1482 
   1483 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
   1484 				aprint_error_dev(sc->sc_dev,
   1485 				    "no free prism memory\n");
   1486 				m_freem(m);
   1487 				ieee80211_free_node(ni);
   1488 				ifp->if_oerrors++;
   1489 				break;
   1490 			}
   1491 			data_tx->ni = ni;
   1492 			data_tx->m = m;
   1493 			sc->tx_queued++;
   1494 		}
   1495 	}
   1496 
   1497 	if (sc->tx_queued > 0) {
   1498 		DPRINTF(2, "%s: tx_queued=%d\n",
   1499 		    device_xname(sc->sc_dev), sc->tx_queued);
   1500 		/* process the TX queue in process context */
   1501 		ifp->if_timer = 5;
   1502 		ifp->if_flags |= IFF_OACTIVE;
   1503 		usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
   1504 		usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
   1505 	}
   1506 }
   1507 
   1508 static void
   1509 upgt_watchdog(struct ifnet *ifp)
   1510 {
   1511 	struct upgt_softc *sc = ifp->if_softc;
   1512 	struct ieee80211com *ic = &sc->sc_ic;
   1513 
   1514 	if (ic->ic_state == IEEE80211_S_INIT)
   1515 		return;
   1516 
   1517 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
   1518 
   1519 	/* TODO: what shall we do on TX timeout? */
   1520 
   1521 	ieee80211_watchdog(ic);
   1522 }
   1523 
   1524 static void
   1525 upgt_tx_task(void *arg)
   1526 {
   1527 	struct upgt_softc *sc = arg;
   1528 	struct ieee80211com *ic = &sc->sc_ic;
   1529 	struct ieee80211_frame *wh;
   1530 	struct ieee80211_key *k;
   1531 	struct ifnet *ifp = &sc->sc_if;
   1532 	struct upgt_lmac_mem *mem;
   1533 	struct upgt_lmac_tx_desc *txdesc;
   1534 	struct mbuf *m;
   1535 	uint32_t addr;
   1536 	int i, len, pad, s;
   1537 	usbd_status error;
   1538 
   1539 	mutex_enter(&sc->sc_mtx);
   1540 	upgt_set_led(sc, UPGT_LED_BLINK);
   1541 	mutex_exit(&sc->sc_mtx);
   1542 
   1543 	s = splnet();
   1544 
   1545 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1546 		struct upgt_data *data_tx = &sc->tx_data[i];
   1547 
   1548 		if (data_tx->m == NULL)
   1549 			continue;
   1550 
   1551 		m = data_tx->m;
   1552 		addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
   1553 
   1554 		/*
   1555 		 * Software crypto.
   1556 		 */
   1557 		wh = mtod(m, struct ieee80211_frame *);
   1558 
   1559 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1560 			k = ieee80211_crypto_encap(ic, data_tx->ni, m);
   1561 			if (k == NULL) {
   1562 				m_freem(m);
   1563 				data_tx->m = NULL;
   1564 				ieee80211_free_node(data_tx->ni);
   1565 				data_tx->ni = NULL;
   1566 				ifp->if_oerrors++;
   1567 				break;
   1568 			}
   1569 
   1570 			/* in case packet header moved, reset pointer */
   1571 			wh = mtod(m, struct ieee80211_frame *);
   1572 		}
   1573 
   1574 		/*
   1575 		 * Transmit the URB containing the TX data.
   1576 		 */
   1577 		memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
   1578 
   1579 		mem = (struct upgt_lmac_mem *)data_tx->buf;
   1580 		mem->addr = htole32(addr);
   1581 
   1582 		txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
   1583 
   1584 		/* XXX differ between data and mgmt frames? */
   1585 		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
   1586 		txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
   1587 		txdesc->header1.len = htole16(m->m_pkthdr.len);
   1588 
   1589 		txdesc->header2.reqid = htole32(data_tx->addr);
   1590 		txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
   1591 		txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
   1592 
   1593 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1594 		    IEEE80211_FC0_TYPE_MGT) {
   1595 			/* always send mgmt frames at lowest rate (DS1) */
   1596 			memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
   1597 		} else {
   1598 			memcpy(txdesc->rates, sc->sc_cur_rateset,
   1599 			    sizeof(txdesc->rates));
   1600 		}
   1601 		txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
   1602 		txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
   1603 
   1604 		if (sc->sc_drvbpf != NULL) {
   1605 			struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
   1606 
   1607 			tap->wt_flags = 0;
   1608 			tap->wt_rate = 0;	/* TODO: where to get from? */
   1609 			tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1610 			tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1611 
   1612 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   1613 		}
   1614 
   1615 		/* copy frame below our TX descriptor header */
   1616 		m_copydata(m, 0, m->m_pkthdr.len,
   1617 		    data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
   1618 
   1619 		/* calculate frame size */
   1620 		len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
   1621 
   1622 		if (len & 3) {
   1623 			/* we need to align the frame to a 4 byte boundary */
   1624 			pad = 4 - (len & 3);
   1625 			memset(data_tx->buf + len, 0, pad);
   1626 			len += pad;
   1627 		}
   1628 
   1629 		/* calculate frame checksum */
   1630 		mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
   1631 		    len - sizeof(*mem));
   1632 
   1633 		/* we do not need the mbuf anymore */
   1634 		m_freem(m);
   1635 		data_tx->m = NULL;
   1636 
   1637 		ieee80211_free_node(data_tx->ni);
   1638 		data_tx->ni = NULL;
   1639 
   1640 		DPRINTF(2, "%s: TX start data sending\n",
   1641 		    device_xname(sc->sc_dev));
   1642 
   1643 		usbd_setup_xfer(data_tx->xfer, sc->sc_tx_pipeh, data_tx,
   1644 		    data_tx->buf, len, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
   1645 		    UPGT_USB_TIMEOUT, NULL);
   1646 		error = usbd_transfer(data_tx->xfer);
   1647 		if (error != USBD_NORMAL_COMPLETION &&
   1648 		    error != USBD_IN_PROGRESS) {
   1649 			aprint_error_dev(sc->sc_dev,
   1650 			    "could not transmit TX data URB\n");
   1651 			ifp->if_oerrors++;
   1652 			break;
   1653 		}
   1654 
   1655 		DPRINTF(2, "%s: TX sent (%d bytes)\n",
   1656 		    device_xname(sc->sc_dev), len);
   1657 	}
   1658 
   1659 	splx(s);
   1660 
   1661 	/*
   1662 	 * If we don't regulary read the device statistics, the RX queue
   1663 	 * will stall.  It's strange, but it works, so we keep reading
   1664 	 * the statistics here.  *shrug*
   1665 	 */
   1666 	mutex_enter(&sc->sc_mtx);
   1667 	upgt_get_stats(sc);
   1668 	mutex_exit(&sc->sc_mtx);
   1669 }
   1670 
   1671 static void
   1672 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
   1673 {
   1674 	struct ifnet *ifp = &sc->sc_if;
   1675 	struct upgt_lmac_tx_done_desc *desc;
   1676 	int i, s;
   1677 
   1678 	s = splnet();
   1679 
   1680 	desc = (struct upgt_lmac_tx_done_desc *)data;
   1681 
   1682 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1683 		struct upgt_data *data_tx = &sc->tx_data[i];
   1684 
   1685 		if (data_tx->addr == le32toh(desc->header2.reqid)) {
   1686 			upgt_mem_free(sc, data_tx->addr);
   1687 			data_tx->addr = 0;
   1688 
   1689 			sc->tx_queued--;
   1690 			ifp->if_opackets++;
   1691 
   1692 			DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
   1693 			DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
   1694 			    le32toh(desc->header2.reqid),
   1695 			    le16toh(desc->status),
   1696 			    le16toh(desc->rssi));
   1697 			DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
   1698 			break;
   1699 		}
   1700 	}
   1701 
   1702 	if (sc->tx_queued == 0) {
   1703 		/* TX queued was processed, continue */
   1704 		ifp->if_timer = 0;
   1705 		ifp->if_flags &= ~IFF_OACTIVE;
   1706 		upgt_start(ifp);
   1707 	}
   1708 
   1709 	splx(s);
   1710 }
   1711 
   1712 static void
   1713 upgt_rx_cb(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
   1714 {
   1715 	struct upgt_data *data_rx = priv;
   1716 	struct upgt_softc *sc = data_rx->sc;
   1717 	int len;
   1718 	struct upgt_lmac_header *header;
   1719 	struct upgt_lmac_eeprom *eeprom;
   1720 	uint8_t h1_type;
   1721 	uint16_t h2_type;
   1722 
   1723 	DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1724 
   1725 	if (status != USBD_NORMAL_COMPLETION) {
   1726 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
   1727 			return;
   1728 		if (status == USBD_STALLED)
   1729 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
   1730 		goto skip;
   1731 	}
   1732 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
   1733 
   1734 	/*
   1735 	 * Check what type of frame came in.
   1736 	 */
   1737 	header = (struct upgt_lmac_header *)(data_rx->buf + 4);
   1738 
   1739 	h1_type = header->header1.type;
   1740 	h2_type = le16toh(header->header2.type);
   1741 
   1742 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1743 	    h2_type == UPGT_H2_TYPE_EEPROM) {
   1744 		eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
   1745 		uint16_t eeprom_offset = le16toh(eeprom->offset);
   1746 		uint16_t eeprom_len = le16toh(eeprom->len);
   1747 
   1748 		DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
   1749 			device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
   1750 
   1751 		memcpy(sc->sc_eeprom + eeprom_offset,
   1752 		    data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
   1753 		    eeprom_len);
   1754 
   1755 		/* EEPROM data has arrived in time, wakeup tsleep() */
   1756 		wakeup(sc);
   1757 	} else
   1758 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1759 	    h2_type == UPGT_H2_TYPE_TX_DONE) {
   1760 		DPRINTF(2, "%s: received 802.11 TX done\n",
   1761 		    device_xname(sc->sc_dev));
   1762 
   1763 		upgt_tx_done(sc, data_rx->buf + 4);
   1764 	} else
   1765 	if (h1_type == UPGT_H1_TYPE_RX_DATA ||
   1766 	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
   1767 		DPRINTF(3, "%s: received 802.11 RX data\n",
   1768 		    device_xname(sc->sc_dev));
   1769 
   1770 		upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
   1771 	} else
   1772 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1773 	    h2_type == UPGT_H2_TYPE_STATS) {
   1774 		DPRINTF(2, "%s: received statistic data\n",
   1775 		    device_xname(sc->sc_dev));
   1776 
   1777 		/* TODO: what could we do with the statistic data? */
   1778 	} else {
   1779 		/* ignore unknown frame types */
   1780 		DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
   1781 		    device_xname(sc->sc_dev), header->header1.type);
   1782 	}
   1783 
   1784 skip:	/* setup new transfer */
   1785 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, MCLBYTES,
   1786 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
   1787 	(void)usbd_transfer(xfer);
   1788 }
   1789 
   1790 static void
   1791 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
   1792 {
   1793 	struct ieee80211com *ic = &sc->sc_ic;
   1794 	struct ifnet *ifp = &sc->sc_if;
   1795 	struct upgt_lmac_rx_desc *rxdesc;
   1796 	struct ieee80211_frame *wh;
   1797 	struct ieee80211_node *ni;
   1798 	struct mbuf *m;
   1799 	int s;
   1800 
   1801 	/* access RX packet descriptor */
   1802 	rxdesc = (struct upgt_lmac_rx_desc *)data;
   1803 
   1804 	/* create mbuf which is suitable for strict alignment archs */
   1805 #define ETHER_ALIGN	0
   1806 	m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL);
   1807 	if (m == NULL) {
   1808 		DPRINTF(1, "%s: could not create RX mbuf\n",
   1809 		   device_xname(sc->sc_dev));
   1810 		ifp->if_ierrors++;
   1811 		return;
   1812 	}
   1813 
   1814 	s = splnet();
   1815 
   1816 	if (sc->sc_drvbpf != NULL) {
   1817 		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
   1818 
   1819 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
   1820 		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
   1821 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1822 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1823 		tap->wr_antsignal = rxdesc->rssi;
   1824 
   1825 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1826 	}
   1827 
   1828 	/* trim FCS */
   1829 	m_adj(m, -IEEE80211_CRC_LEN);
   1830 
   1831 	wh = mtod(m, struct ieee80211_frame *);
   1832 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1833 
   1834 	/* push the frame up to the 802.11 stack */
   1835 	ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
   1836 
   1837 	/* node is no longer needed */
   1838 	ieee80211_free_node(ni);
   1839 
   1840 	splx(s);
   1841 
   1842 	DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
   1843 }
   1844 
   1845 static void
   1846 upgt_setup_rates(struct upgt_softc *sc)
   1847 {
   1848 	struct ieee80211com *ic = &sc->sc_ic;
   1849 
   1850 	/*
   1851 	 * 0x01 = OFMD6   0x10 = DS1
   1852 	 * 0x04 = OFDM9   0x11 = DS2
   1853 	 * 0x06 = OFDM12  0x12 = DS5
   1854 	 * 0x07 = OFDM18  0x13 = DS11
   1855 	 * 0x08 = OFDM24
   1856 	 * 0x09 = OFDM36
   1857 	 * 0x0a = OFDM48
   1858 	 * 0x0b = OFDM54
   1859 	 */
   1860 	const uint8_t rateset_auto_11b[] =
   1861 	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
   1862 	const uint8_t rateset_auto_11g[] =
   1863 	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
   1864 	const uint8_t rateset_fix_11bg[] =
   1865 	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
   1866 	      0x08, 0x09, 0x0a, 0x0b };
   1867 
   1868 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
   1869 		/*
   1870 		 * Automatic rate control is done by the device.
   1871 		 * We just pass the rateset from which the device
   1872 		 * will pickup a rate.
   1873 		 */
   1874 		if (ic->ic_curmode == IEEE80211_MODE_11B)
   1875 			memcpy(sc->sc_cur_rateset, rateset_auto_11b,
   1876 			    sizeof(sc->sc_cur_rateset));
   1877 		if (ic->ic_curmode == IEEE80211_MODE_11G ||
   1878 		    ic->ic_curmode == IEEE80211_MODE_AUTO)
   1879 			memcpy(sc->sc_cur_rateset, rateset_auto_11g,
   1880 			    sizeof(sc->sc_cur_rateset));
   1881 	} else {
   1882 		/* set a fixed rate */
   1883 		memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
   1884 		    sizeof(sc->sc_cur_rateset));
   1885 	}
   1886 }
   1887 
   1888 static uint8_t
   1889 upgt_rx_rate(struct upgt_softc *sc, const int rate)
   1890 {
   1891 	struct ieee80211com *ic = &sc->sc_ic;
   1892 
   1893 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
   1894 		if (rate < 0 || rate > 3)
   1895 			/* invalid rate */
   1896 			return 0;
   1897 
   1898 		switch (rate) {
   1899 		case 0:
   1900 			return 2;
   1901 		case 1:
   1902 			return 4;
   1903 		case 2:
   1904 			return 11;
   1905 		case 3:
   1906 			return 22;
   1907 		default:
   1908 			return 0;
   1909 		}
   1910 	}
   1911 
   1912 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
   1913 		if (rate < 0 || rate > 11)
   1914 			/* invalid rate */
   1915 			return 0;
   1916 
   1917 		switch (rate) {
   1918 		case 0:
   1919 			return 2;
   1920 		case 1:
   1921 			return 4;
   1922 		case 2:
   1923 			return 11;
   1924 		case 3:
   1925 			return 22;
   1926 		case 4:
   1927 			return 12;
   1928 		case 5:
   1929 			return 18;
   1930 		case 6:
   1931 			return 24;
   1932 		case 7:
   1933 			return 36;
   1934 		case 8:
   1935 			return 48;
   1936 		case 9:
   1937 			return 72;
   1938 		case 10:
   1939 			return 96;
   1940 		case 11:
   1941 			return 108;
   1942 		default:
   1943 			return 0;
   1944 		}
   1945 	}
   1946 
   1947 	return 0;
   1948 }
   1949 
   1950 static int
   1951 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
   1952 {
   1953 	struct ieee80211com *ic = &sc->sc_ic;
   1954 	struct ieee80211_node *ni = ic->ic_bss;
   1955 	struct upgt_data *data_cmd = &sc->cmd_data;
   1956 	struct upgt_lmac_mem *mem;
   1957 	struct upgt_lmac_filter *filter;
   1958 	int len;
   1959 	const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
   1960 
   1961 	/*
   1962 	 * Transmit the URB containing the CMD data.
   1963 	 */
   1964 	len = sizeof(*mem) + sizeof(*filter);
   1965 
   1966 	memset(data_cmd->buf, 0, len);
   1967 
   1968 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   1969 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   1970 	    UPGT_MEMSIZE_FRAME_HEAD);
   1971 
   1972 	filter = (struct upgt_lmac_filter *)(mem + 1);
   1973 
   1974 	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   1975 	filter->header1.type = UPGT_H1_TYPE_CTRL;
   1976 	filter->header1.len = htole16(
   1977 	    sizeof(struct upgt_lmac_filter) -
   1978 	    sizeof(struct upgt_lmac_header));
   1979 
   1980 	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   1981 	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
   1982 	filter->header2.flags = 0;
   1983 
   1984 	switch (state) {
   1985 	case IEEE80211_S_INIT:
   1986 		DPRINTF(1, "%s: set MAC filter to INIT\n",
   1987 		    device_xname(sc->sc_dev));
   1988 
   1989 		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
   1990 		break;
   1991 	case IEEE80211_S_SCAN:
   1992 		DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
   1993 		    device_xname(sc->sc_dev), ether_sprintf(broadcast));
   1994 
   1995 		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
   1996 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
   1997 		IEEE80211_ADDR_COPY(filter->src, broadcast);
   1998 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
   1999 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
   2000 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
   2001 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
   2002 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
   2003 		break;
   2004 	case IEEE80211_S_RUN:
   2005 		DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
   2006 		    device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
   2007 
   2008 		filter->type = htole16(UPGT_FILTER_TYPE_STA);
   2009 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
   2010 		IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
   2011 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
   2012 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
   2013 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
   2014 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
   2015 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
   2016 		break;
   2017 	default:
   2018 		aprint_error_dev(sc->sc_dev,
   2019 		    "MAC filter does not know that state\n");
   2020 		break;
   2021 	}
   2022 
   2023 	mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
   2024 
   2025 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2026 		aprint_error_dev(sc->sc_dev,
   2027 		    "could not transmit macfilter CMD data URB\n");
   2028 		return EIO;
   2029 	}
   2030 
   2031 	return 0;
   2032 }
   2033 
   2034 static int
   2035 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
   2036 {
   2037 	struct upgt_data *data_cmd = &sc->cmd_data;
   2038 	struct upgt_lmac_mem *mem;
   2039 	struct upgt_lmac_channel *chan;
   2040 	int len;
   2041 
   2042 	DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
   2043 	    channel);
   2044 
   2045 	/*
   2046 	 * Transmit the URB containing the CMD data.
   2047 	 */
   2048 	len = sizeof(*mem) + sizeof(*chan);
   2049 
   2050 	memset(data_cmd->buf, 0, len);
   2051 
   2052 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2053 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2054 	    UPGT_MEMSIZE_FRAME_HEAD);
   2055 
   2056 	chan = (struct upgt_lmac_channel *)(mem + 1);
   2057 
   2058 	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   2059 	chan->header1.type = UPGT_H1_TYPE_CTRL;
   2060 	chan->header1.len = htole16(
   2061 	    sizeof(struct upgt_lmac_channel) -
   2062 	    sizeof(struct upgt_lmac_header));
   2063 
   2064 	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2065 	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
   2066 	chan->header2.flags = 0;
   2067 
   2068 	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
   2069 	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
   2070 	chan->freq6 = sc->sc_eeprom_freq6[channel];
   2071 	chan->settings = sc->sc_eeprom_freq6_settings;
   2072 	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
   2073 
   2074 	memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
   2075 	    sizeof(chan->freq3_1));
   2076 
   2077 	memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
   2078 	    sizeof(sc->sc_eeprom_freq4[channel]));
   2079 
   2080 	memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
   2081 	    sizeof(chan->freq3_2));
   2082 
   2083 	mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
   2084 
   2085 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2086 		aprint_error_dev(sc->sc_dev,
   2087 		    "could not transmit channel CMD data URB\n");
   2088 		return EIO;
   2089 	}
   2090 
   2091 	return 0;
   2092 }
   2093 
   2094 static void
   2095 upgt_set_led(struct upgt_softc *sc, int action)
   2096 {
   2097 	struct ieee80211com *ic = &sc->sc_ic;
   2098 	struct upgt_data *data_cmd = &sc->cmd_data;
   2099 	struct upgt_lmac_mem *mem;
   2100 	struct upgt_lmac_led *led;
   2101 	struct timeval t;
   2102 	int len;
   2103 
   2104 	/*
   2105 	 * Transmit the URB containing the CMD data.
   2106 	 */
   2107 	len = sizeof(*mem) + sizeof(*led);
   2108 
   2109 	memset(data_cmd->buf, 0, len);
   2110 
   2111 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2112 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2113 	    UPGT_MEMSIZE_FRAME_HEAD);
   2114 
   2115 	led = (struct upgt_lmac_led *)(mem + 1);
   2116 
   2117 	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   2118 	led->header1.type = UPGT_H1_TYPE_CTRL;
   2119 	led->header1.len = htole16(
   2120 	    sizeof(struct upgt_lmac_led) -
   2121 	    sizeof(struct upgt_lmac_header));
   2122 
   2123 	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2124 	led->header2.type = htole16(UPGT_H2_TYPE_LED);
   2125 	led->header2.flags = 0;
   2126 
   2127 	switch (action) {
   2128 	case UPGT_LED_OFF:
   2129 		led->mode = htole16(UPGT_LED_MODE_SET);
   2130 		led->action_fix = 0;
   2131 		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
   2132 		led->action_tmp_dur = 0;
   2133 		break;
   2134 	case UPGT_LED_ON:
   2135 		led->mode = htole16(UPGT_LED_MODE_SET);
   2136 		led->action_fix = 0;
   2137 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
   2138 		led->action_tmp_dur = 0;
   2139 		break;
   2140 	case UPGT_LED_BLINK:
   2141 		if (ic->ic_state != IEEE80211_S_RUN)
   2142 			return;
   2143 		if (sc->sc_led_blink)
   2144 			/* previous blink was not finished */
   2145 			return;
   2146 		led->mode = htole16(UPGT_LED_MODE_SET);
   2147 		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
   2148 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
   2149 		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
   2150 		/* lock blink */
   2151 		sc->sc_led_blink = 1;
   2152 		t.tv_sec = 0;
   2153 		t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
   2154 		callout_schedule(&sc->led_to, tvtohz(&t));
   2155 		break;
   2156 	default:
   2157 		return;
   2158 	}
   2159 
   2160 	mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
   2161 
   2162 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2163 		aprint_error_dev(sc->sc_dev,
   2164 		    "could not transmit led CMD URB\n");
   2165 	}
   2166 }
   2167 
   2168 static void
   2169 upgt_set_led_blink(void *arg)
   2170 {
   2171 	struct upgt_softc *sc = arg;
   2172 
   2173 	/* blink finished, we are ready for a next one */
   2174 	sc->sc_led_blink = 0;
   2175 	callout_stop(&sc->led_to);
   2176 }
   2177 
   2178 static int
   2179 upgt_get_stats(struct upgt_softc *sc)
   2180 {
   2181 	struct upgt_data *data_cmd = &sc->cmd_data;
   2182 	struct upgt_lmac_mem *mem;
   2183 	struct upgt_lmac_stats *stats;
   2184 	int len;
   2185 
   2186 	/*
   2187 	 * Transmit the URB containing the CMD data.
   2188 	 */
   2189 	len = sizeof(*mem) + sizeof(*stats);
   2190 
   2191 	memset(data_cmd->buf, 0, len);
   2192 
   2193 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2194 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2195 	    UPGT_MEMSIZE_FRAME_HEAD);
   2196 
   2197 	stats = (struct upgt_lmac_stats *)(mem + 1);
   2198 
   2199 	stats->header1.flags = 0;
   2200 	stats->header1.type = UPGT_H1_TYPE_CTRL;
   2201 	stats->header1.len = htole16(
   2202 	    sizeof(struct upgt_lmac_stats) -
   2203 	    sizeof(struct upgt_lmac_header));
   2204 
   2205 	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2206 	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
   2207 	stats->header2.flags = 0;
   2208 
   2209 	mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
   2210 
   2211 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2212 		aprint_error_dev(sc->sc_dev,
   2213 		    "could not transmit statistics CMD data URB\n");
   2214 		return EIO;
   2215 	}
   2216 
   2217 	return 0;
   2218 
   2219 }
   2220 
   2221 static int
   2222 upgt_alloc_tx(struct upgt_softc *sc)
   2223 {
   2224 	int i;
   2225 
   2226 	sc->tx_queued = 0;
   2227 
   2228 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   2229 		struct upgt_data *data_tx = &sc->tx_data[i];
   2230 
   2231 		data_tx->sc = sc;
   2232 
   2233 		data_tx->xfer = usbd_alloc_xfer(sc->sc_udev);
   2234 		if (data_tx->xfer == NULL) {
   2235 			aprint_error_dev(sc->sc_dev,
   2236 			    "could not allocate TX xfer\n");
   2237 			return ENOMEM;
   2238 		}
   2239 
   2240 		data_tx->buf = usbd_alloc_buffer(data_tx->xfer, MCLBYTES);
   2241 		if (data_tx->buf == NULL) {
   2242 			aprint_error_dev(sc->sc_dev,
   2243 			    "could not allocate TX buffer\n");
   2244 			return ENOMEM;
   2245 		}
   2246 	}
   2247 
   2248 	return 0;
   2249 }
   2250 
   2251 static int
   2252 upgt_alloc_rx(struct upgt_softc *sc)
   2253 {
   2254 	struct upgt_data *data_rx = &sc->rx_data;
   2255 
   2256 	data_rx->sc = sc;
   2257 
   2258 	data_rx->xfer = usbd_alloc_xfer(sc->sc_udev);
   2259 	if (data_rx->xfer == NULL) {
   2260 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
   2261 		return ENOMEM;
   2262 	}
   2263 
   2264 	data_rx->buf = usbd_alloc_buffer(data_rx->xfer, MCLBYTES);
   2265 	if (data_rx->buf == NULL) {
   2266 		aprint_error_dev(sc->sc_dev,
   2267 		    "could not allocate RX buffer\n");
   2268 		return ENOMEM;
   2269 	}
   2270 
   2271 	return 0;
   2272 }
   2273 
   2274 static int
   2275 upgt_alloc_cmd(struct upgt_softc *sc)
   2276 {
   2277 	struct upgt_data *data_cmd = &sc->cmd_data;
   2278 
   2279 	data_cmd->sc = sc;
   2280 
   2281 	data_cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
   2282 	if (data_cmd->xfer == NULL) {
   2283 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
   2284 		return ENOMEM;
   2285 	}
   2286 
   2287 	data_cmd->buf = usbd_alloc_buffer(data_cmd->xfer, MCLBYTES);
   2288 	if (data_cmd->buf == NULL) {
   2289 		aprint_error_dev(sc->sc_dev,
   2290 		    "could not allocate RX buffer\n");
   2291 		return ENOMEM;
   2292 	}
   2293 
   2294 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
   2295 
   2296 	return 0;
   2297 }
   2298 
   2299 static void
   2300 upgt_free_tx(struct upgt_softc *sc)
   2301 {
   2302 	int i;
   2303 
   2304 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   2305 		struct upgt_data *data_tx = &sc->tx_data[i];
   2306 
   2307 		if (data_tx->xfer != NULL) {
   2308 			usbd_free_xfer(data_tx->xfer);
   2309 			data_tx->xfer = NULL;
   2310 		}
   2311 
   2312 		data_tx->ni = NULL;
   2313 	}
   2314 }
   2315 
   2316 static void
   2317 upgt_free_rx(struct upgt_softc *sc)
   2318 {
   2319 	struct upgt_data *data_rx = &sc->rx_data;
   2320 
   2321 	if (data_rx->xfer != NULL) {
   2322 		usbd_free_xfer(data_rx->xfer);
   2323 		data_rx->xfer = NULL;
   2324 	}
   2325 
   2326 	data_rx->ni = NULL;
   2327 }
   2328 
   2329 static void
   2330 upgt_free_cmd(struct upgt_softc *sc)
   2331 {
   2332 	struct upgt_data *data_cmd = &sc->cmd_data;
   2333 
   2334 	if (data_cmd->xfer != NULL) {
   2335 		usbd_free_xfer(data_cmd->xfer);
   2336 		data_cmd->xfer = NULL;
   2337 	}
   2338 
   2339 	mutex_destroy(&sc->sc_mtx);
   2340 }
   2341 
   2342 static int
   2343 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
   2344     usbd_pipe_handle pipeh, uint32_t *size, int flags)
   2345 {
   2346         usbd_status status;
   2347 
   2348 	status = usbd_bulk_transfer(data->xfer, pipeh,
   2349 	    USBD_NO_COPY | flags, UPGT_USB_TIMEOUT, data->buf, size,
   2350 	    "upgt_bulk_xmit");
   2351 	if (status != USBD_NORMAL_COMPLETION) {
   2352 		aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
   2353 		    usbd_errstr(status));
   2354 		return EIO;
   2355 	}
   2356 
   2357 	return 0;
   2358 }
   2359 
   2360 #if 0
   2361 static void
   2362 upgt_hexdump(void *buf, int len)
   2363 {
   2364 	int i;
   2365 
   2366 	for (i = 0; i < len; i++) {
   2367 		if (i % 16 == 0)
   2368 			printf("%s%5i:", i ? "\n" : "", i);
   2369 		if (i % 4 == 0)
   2370 			printf(" ");
   2371 		printf("%02x", (int)*((uint8_t *)buf + i));
   2372 	}
   2373 	printf("\n");
   2374 }
   2375 #endif
   2376 
   2377 static uint32_t
   2378 upgt_crc32_le(const void *buf, size_t size)
   2379 {
   2380 	uint32_t crc;
   2381 
   2382 	crc = ether_crc32_le(buf, size);
   2383 
   2384 	/* apply final XOR value as common for CRC-32 */
   2385 	crc = htole32(crc ^ 0xffffffffU);
   2386 
   2387 	return crc;
   2388 }
   2389 
   2390 /*
   2391  * The firmware awaits a checksum for each frame we send to it.
   2392  * The algorithm used therefor is uncommon but somehow similar to CRC32.
   2393  */
   2394 static uint32_t
   2395 upgt_chksum_le(const uint32_t *buf, size_t size)
   2396 {
   2397 	int i;
   2398 	uint32_t crc = 0;
   2399 
   2400 	for (i = 0; i < size; i += sizeof(uint32_t)) {
   2401 		crc = htole32(crc ^ *buf++);
   2402 		crc = htole32((crc >> 5) ^ (crc << 3));
   2403 	}
   2404 
   2405 	return crc;
   2406 }
   2407