Home | History | Annotate | Line # | Download | only in usb
if_upgt.c revision 1.10
      1 /*	$NetBSD: if_upgt.c,v 1.10 2013/11/08 03:12:17 christos Exp $	*/
      2 /*	$OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2007 Marcus Glocker <mglocker (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.10 2013/11/08 03:12:17 christos Exp $");
     22 
     23 #include <sys/param.h>
     24 #include <sys/callout.h>
     25 #include <sys/device.h>
     26 #include <sys/errno.h>
     27 #include <sys/kernel.h>
     28 #include <sys/kthread.h>
     29 #include <sys/mbuf.h>
     30 #include <sys/proc.h>
     31 #include <sys/sockio.h>
     32 #include <sys/systm.h>
     33 #include <sys/vnode.h>
     34 #include <sys/bus.h>
     35 #include <sys/endian.h>
     36 #include <sys/intr.h>
     37 
     38 #include <net/bpf.h>
     39 #include <net/if.h>
     40 #include <net/if_arp.h>
     41 #include <net/if_dl.h>
     42 #include <net/if_ether.h>
     43 #include <net/if_media.h>
     44 #include <net/if_types.h>
     45 
     46 #include <net80211/ieee80211_var.h>
     47 #include <net80211/ieee80211_radiotap.h>
     48 
     49 #include <dev/firmload.h>
     50 
     51 #include <dev/usb/usb.h>
     52 #include <dev/usb/usbdi.h>
     53 #include <dev/usb/usbdi_util.h>
     54 #include <dev/usb/usbdivar.h>
     55 #include <dev/usb/usbdevs.h>
     56 
     57 #include <dev/usb/if_upgtvar.h>
     58 
     59 /*
     60  * Driver for the USB PrismGT devices.
     61  *
     62  * For now just USB 2.0 devices with the GW3887 chipset are supported.
     63  * The driver has been written based on the firmware version 2.13.1.0_LM87.
     64  *
     65  * TODO's:
     66  * - Fix MONITOR mode (MAC filter).
     67  * - Add HOSTAP mode.
     68  * - Add IBSS mode.
     69  * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
     70  *
     71  * Parts of this driver has been influenced by reading the p54u driver
     72  * written by Jean-Baptiste Note <jean-baptiste.note (at) m4x.org> and
     73  * Sebastien Bourdeauducq <lekernel (at) prism54.org>.
     74  */
     75 
     76 #ifdef UPGT_DEBUG
     77 int upgt_debug = 2;
     78 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
     79 #else
     80 #define DPRINTF(l, x...)
     81 #endif
     82 
     83 /*
     84  * Prototypes.
     85  */
     86 static int	upgt_match(device_t, cfdata_t, void *);
     87 static void	upgt_attach(device_t, device_t, void *);
     88 static int	upgt_detach(device_t, int);
     89 static int	upgt_activate(device_t, devact_t);
     90 
     91 static void	upgt_attach_hook(device_t);
     92 static int	upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
     93 static int	upgt_device_init(struct upgt_softc *);
     94 static int	upgt_mem_init(struct upgt_softc *);
     95 static uint32_t	upgt_mem_alloc(struct upgt_softc *);
     96 static void	upgt_mem_free(struct upgt_softc *, uint32_t);
     97 static int	upgt_fw_alloc(struct upgt_softc *);
     98 static void	upgt_fw_free(struct upgt_softc *);
     99 static int	upgt_fw_verify(struct upgt_softc *);
    100 static int	upgt_fw_load(struct upgt_softc *);
    101 static int	upgt_fw_copy(char *, char *, int);
    102 static int	upgt_eeprom_read(struct upgt_softc *);
    103 static int	upgt_eeprom_parse(struct upgt_softc *);
    104 static void	upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
    105 static void	upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
    106 static void	upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
    107 static void	upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
    108 
    109 static int	upgt_ioctl(struct ifnet *, u_long, void *);
    110 static int	upgt_init(struct ifnet *);
    111 static void	upgt_stop(struct upgt_softc *);
    112 static int	upgt_media_change(struct ifnet *);
    113 static void	upgt_newassoc(struct ieee80211_node *, int);
    114 static int	upgt_newstate(struct ieee80211com *, enum ieee80211_state,
    115 		    int);
    116 static void	upgt_newstate_task(void *);
    117 static void	upgt_next_scan(void *);
    118 static void	upgt_start(struct ifnet *);
    119 static void	upgt_watchdog(struct ifnet *);
    120 static void	upgt_tx_task(void *);
    121 static void	upgt_tx_done(struct upgt_softc *, uint8_t *);
    122 static void	upgt_rx_cb(usbd_xfer_handle, usbd_private_handle, usbd_status);
    123 static void	upgt_rx(struct upgt_softc *, uint8_t *, int);
    124 static void	upgt_setup_rates(struct upgt_softc *);
    125 static uint8_t	upgt_rx_rate(struct upgt_softc *, const int);
    126 static int	upgt_set_macfilter(struct upgt_softc *, uint8_t state);
    127 static int	upgt_set_channel(struct upgt_softc *, unsigned);
    128 static void	upgt_set_led(struct upgt_softc *, int);
    129 static void	upgt_set_led_blink(void *);
    130 static int	upgt_get_stats(struct upgt_softc *);
    131 
    132 static int	upgt_alloc_tx(struct upgt_softc *);
    133 static int	upgt_alloc_rx(struct upgt_softc *);
    134 static int	upgt_alloc_cmd(struct upgt_softc *);
    135 static void	upgt_free_tx(struct upgt_softc *);
    136 static void	upgt_free_rx(struct upgt_softc *);
    137 static void	upgt_free_cmd(struct upgt_softc *);
    138 static int	upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
    139 		    usbd_pipe_handle, uint32_t *, int);
    140 
    141 #if 0
    142 static void	upgt_hexdump(void *, int);
    143 #endif
    144 static uint32_t	upgt_crc32_le(const void *, size_t);
    145 static uint32_t	upgt_chksum_le(const uint32_t *, size_t);
    146 
    147 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
    148 	upgt_match, upgt_attach, upgt_detach, upgt_activate);
    149 
    150 static const struct usb_devno upgt_devs_1[] = {
    151 	/* version 1 devices */
    152 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST120G }
    153 };
    154 
    155 static const struct usb_devno upgt_devs_2[] = {
    156 	/* version 2 devices */
    157 	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_PRISM_GT },
    158 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST121G },
    159 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
    160 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
    161 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
    162 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
    163 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GTST },
    164 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_1 },
    165 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_2 },
    166 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122A2 },
    167 	{ USB_VENDOR_FSC,		USB_PRODUCT_FSC_E5400 },
    168 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
    169 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
    170 	{ USB_VENDOR_INTERSIL,		USB_PRODUCT_INTERSIL_PRISM_GT },
    171 	{ USB_VENDOR_PHEENET,		USB_PRODUCT_PHEENET_GWU513 },
    172 	{ USB_VENDOR_PHILIPS,		USB_PRODUCT_PHILIPS_CPWUA054 },
    173 	{ USB_VENDOR_SHARP,		USB_PRODUCT_SHARP_RUITZ1016YCZZ },
    174 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
    175 	{ USB_VENDOR_USR,		USB_PRODUCT_USR_USR5422 },
    176 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_UR045G },
    177 	{ USB_VENDOR_XYRATEX,		USB_PRODUCT_XYRATEX_PRISM_GT_1 },
    178 	{ USB_VENDOR_XYRATEX,		USB_PRODUCT_XYRATEX_PRISM_GT_2 },
    179 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_MD40900 },
    180 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_XG703A }
    181 };
    182 
    183 static int
    184 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
    185     size_t *sizep)
    186 {
    187 	firmware_handle_t fh;
    188 	int error;
    189 
    190 	if ((error = firmware_open(dname, iname, &fh)) != 0)
    191 		return error;
    192 	*sizep = firmware_get_size(fh);
    193 	if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
    194 		firmware_close(fh);
    195 		return ENOMEM;
    196 	}
    197 	if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
    198 		firmware_free(*ucodep, *sizep);
    199 	firmware_close(fh);
    200 
    201 	return error;
    202 }
    203 
    204 static int
    205 upgt_match(device_t parent, cfdata_t match, void *aux)
    206 {
    207 	struct usb_attach_arg *uaa = aux;
    208 
    209 	if (usb_lookup(upgt_devs_1, uaa->vendor, uaa->product) != NULL)
    210 		return UMATCH_VENDOR_PRODUCT;
    211 
    212 	if (usb_lookup(upgt_devs_2, uaa->vendor, uaa->product) != NULL)
    213 		return UMATCH_VENDOR_PRODUCT;
    214 
    215 	return UMATCH_NONE;
    216 }
    217 
    218 static void
    219 upgt_attach(device_t parent, device_t self, void *aux)
    220 {
    221 	struct upgt_softc *sc = device_private(self);
    222 	struct usb_attach_arg *uaa = aux;
    223 	usb_interface_descriptor_t *id;
    224 	usb_endpoint_descriptor_t *ed;
    225 	usbd_status error;
    226 	char *devinfop;
    227 	int i;
    228 
    229 	aprint_naive("\n");
    230 	aprint_normal("\n");
    231 
    232 	/*
    233 	 * Attach USB device.
    234 	 */
    235 	sc->sc_dev = self;
    236 	sc->sc_udev = uaa->device;
    237 
    238 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
    239 	aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
    240 	usbd_devinfo_free(devinfop);
    241 
    242 	/* check device type */
    243 	if (upgt_device_type(sc, uaa->vendor, uaa->product) != 0)
    244 		return;
    245 
    246 	/* set configuration number */
    247 	error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
    248 	if (error != 0) {
    249 		aprint_error_dev(sc->sc_dev, "failed to set configuration"
    250 		    ", err=%s\n", usbd_errstr(error));
    251 		return;
    252 	}
    253 
    254 	/* get the first interface handle */
    255 	error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
    256 	    &sc->sc_iface);
    257 	if (error != 0) {
    258 		aprint_error_dev(sc->sc_dev,
    259 		    "could not get interface handle\n");
    260 		return;
    261 	}
    262 
    263 	/* find endpoints */
    264 	id = usbd_get_interface_descriptor(sc->sc_iface);
    265 	sc->sc_rx_no = sc->sc_tx_no = -1;
    266 	for (i = 0; i < id->bNumEndpoints; i++) {
    267 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
    268 		if (ed == NULL) {
    269 			aprint_error_dev(sc->sc_dev,
    270 			    "no endpoint descriptor for iface %d\n", i);
    271 			return;
    272 		}
    273 
    274 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
    275 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    276 			sc->sc_tx_no = ed->bEndpointAddress;
    277 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
    278 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    279 			sc->sc_rx_no = ed->bEndpointAddress;
    280 
    281 		/*
    282 		 * 0x01 TX pipe
    283 		 * 0x81 RX pipe
    284 		 *
    285 		 * Deprecated scheme (not used with fw version >2.5.6.x):
    286 		 * 0x02 TX MGMT pipe
    287 		 * 0x82 TX MGMT pipe
    288 		 */
    289 		if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
    290 			break;
    291 	}
    292 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
    293 		aprint_error_dev(sc->sc_dev, "missing endpoint\n");
    294 		return;
    295 	}
    296 
    297 	/* setup tasks and timeouts */
    298 	usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
    299 	usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
    300 	callout_init(&sc->scan_to, 0);
    301 	callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
    302 	callout_init(&sc->led_to, 0);
    303 	callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
    304 
    305 	/*
    306 	 * Open TX and RX USB bulk pipes.
    307 	 */
    308 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
    309 	    &sc->sc_tx_pipeh);
    310 	if (error != 0) {
    311 		aprint_error_dev(sc->sc_dev,
    312 		    "could not open TX pipe: %s\n", usbd_errstr(error));
    313 		goto fail;
    314 	}
    315 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
    316 	    &sc->sc_rx_pipeh);
    317 	if (error != 0) {
    318 		aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
    319 		    usbd_errstr(error));
    320 		goto fail;
    321 	}
    322 
    323 	/*
    324 	 * Allocate TX, RX, and CMD xfers.
    325 	 */
    326 	if (upgt_alloc_tx(sc) != 0)
    327 		goto fail;
    328 	if (upgt_alloc_rx(sc) != 0)
    329 		goto fail;
    330 	if (upgt_alloc_cmd(sc) != 0)
    331 		goto fail;
    332 
    333 	/*
    334 	 * We need the firmware loaded from file system to complete the attach.
    335 	 */
    336 	config_mountroot(self, upgt_attach_hook);
    337 
    338 	return;
    339 fail:
    340 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
    341 }
    342 
    343 static void
    344 upgt_attach_hook(device_t arg)
    345 {
    346 	struct upgt_softc *sc = device_private(arg);
    347 	struct ieee80211com *ic = &sc->sc_ic;
    348 	struct ifnet *ifp = &sc->sc_if;
    349 	usbd_status error;
    350 	int i;
    351 
    352 	/*
    353 	 * Load firmware file into memory.
    354 	 */
    355 	if (upgt_fw_alloc(sc) != 0)
    356 		goto fail;
    357 
    358 	/*
    359 	 * Initialize the device.
    360 	 */
    361 	if (upgt_device_init(sc) != 0)
    362 		goto fail;
    363 
    364 	/*
    365 	 * Verify the firmware.
    366 	 */
    367 	if (upgt_fw_verify(sc) != 0)
    368 		goto fail;
    369 
    370 	/*
    371 	 * Calculate device memory space.
    372 	 */
    373 	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
    374 		aprint_error_dev(sc->sc_dev,
    375 		    "could not find memory space addresses on FW\n");
    376 		goto fail;
    377 	}
    378 	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
    379 	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
    380 
    381 	DPRINTF(1, "%s: memory address frame start=0x%08x\n",
    382 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
    383 	DPRINTF(1, "%s: memory address frame end=0x%08x\n",
    384 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
    385 	DPRINTF(1, "%s: memory address rx start=0x%08x\n",
    386 	    device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
    387 
    388 	upgt_mem_init(sc);
    389 
    390 	/*
    391 	 * Load the firmware.
    392 	 */
    393 	if (upgt_fw_load(sc) != 0)
    394 		goto fail;
    395 
    396 	/*
    397 	 * Startup the RX pipe.
    398 	 */
    399 	struct upgt_data *data_rx = &sc->rx_data;
    400 
    401 	usbd_setup_xfer(data_rx->xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf,
    402 	    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
    403 	error = usbd_transfer(data_rx->xfer);
    404 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
    405 		aprint_error_dev(sc->sc_dev,
    406 		    "could not queue RX transfer\n");
    407 		goto fail;
    408 	}
    409 	usbd_delay_ms(sc->sc_udev, 100);
    410 
    411 	/*
    412 	 * Read the whole EEPROM content and parse it.
    413 	 */
    414 	if (upgt_eeprom_read(sc) != 0)
    415 		goto fail;
    416 	if (upgt_eeprom_parse(sc) != 0)
    417 		goto fail;
    418 
    419 	/*
    420 	 * Setup the 802.11 device.
    421 	 */
    422 	ic->ic_ifp = ifp;
    423 	ic->ic_phytype = IEEE80211_T_OFDM;
    424 	ic->ic_opmode = IEEE80211_M_STA;
    425 	ic->ic_state = IEEE80211_S_INIT;
    426 	ic->ic_caps =
    427 	    IEEE80211_C_MONITOR |
    428 	    IEEE80211_C_SHPREAMBLE |
    429 	    IEEE80211_C_SHSLOT;
    430 
    431 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
    432 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
    433 
    434 	for (i = 1; i <= 14; i++) {
    435 		ic->ic_channels[i].ic_freq =
    436 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    437 		ic->ic_channels[i].ic_flags =
    438 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    439 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    440 	}
    441 
    442 	ifp->if_softc = sc;
    443 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    444 	ifp->if_init = upgt_init;
    445 	ifp->if_ioctl = upgt_ioctl;
    446 	ifp->if_start = upgt_start;
    447 	ifp->if_watchdog = upgt_watchdog;
    448 	IFQ_SET_READY(&ifp->if_snd);
    449 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    450 
    451 	if_attach(ifp);
    452 	ieee80211_ifattach(ic);
    453 	ic->ic_newassoc = upgt_newassoc;
    454 
    455 	sc->sc_newstate = ic->ic_newstate;
    456 	ic->ic_newstate = upgt_newstate;
    457 	ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
    458 
    459 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    460 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    461 	    &sc->sc_drvbpf);
    462 
    463 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
    464 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    465 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
    466 
    467 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
    468 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    469 	sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
    470 
    471 	aprint_normal_dev(sc->sc_dev, "address %s\n",
    472 	    ether_sprintf(ic->ic_myaddr));
    473 
    474 	ieee80211_announce(ic);
    475 
    476 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
    477 
    478 	/* device attached */
    479 	sc->sc_flags |= UPGT_DEVICE_ATTACHED;
    480 
    481 	return;
    482 fail:
    483 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
    484 }
    485 
    486 static int
    487 upgt_detach(device_t self, int flags)
    488 {
    489 	struct upgt_softc *sc = device_private(self);
    490 	struct ifnet *ifp = &sc->sc_if;
    491 	struct ieee80211com *ic = &sc->sc_ic;
    492 	int s;
    493 
    494 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
    495 
    496 	s = splnet();
    497 
    498 	if (ifp->if_flags & IFF_RUNNING)
    499 		upgt_stop(sc);
    500 
    501 	/* remove tasks and timeouts */
    502 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
    503 	usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
    504 	callout_destroy(&sc->scan_to);
    505 	callout_destroy(&sc->led_to);
    506 
    507 	/* abort and close TX / RX pipes */
    508 	if (sc->sc_tx_pipeh != NULL) {
    509 		usbd_abort_pipe(sc->sc_tx_pipeh);
    510 		usbd_close_pipe(sc->sc_tx_pipeh);
    511 	}
    512 	if (sc->sc_rx_pipeh != NULL) {
    513 		usbd_abort_pipe(sc->sc_rx_pipeh);
    514 		usbd_close_pipe(sc->sc_rx_pipeh);
    515 	}
    516 
    517 	/* free xfers */
    518 	upgt_free_tx(sc);
    519 	upgt_free_rx(sc);
    520 	upgt_free_cmd(sc);
    521 
    522 	/* free firmware */
    523 	upgt_fw_free(sc);
    524 
    525 	if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
    526 		/* detach interface */
    527 		bpf_detach(ifp);
    528 		ieee80211_ifdetach(ic);
    529 		if_detach(ifp);
    530 	}
    531 
    532 	splx(s);
    533 
    534 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
    535 
    536 	return 0;
    537 }
    538 
    539 static int
    540 upgt_activate(device_t self, devact_t act)
    541 {
    542 	struct upgt_softc *sc = device_private(self);
    543 
    544 	switch (act) {
    545 	case DVACT_DEACTIVATE:
    546 		if_deactivate(&sc->sc_if);
    547 		return 0;
    548 	default:
    549 		return EOPNOTSUPP;
    550 	}
    551 }
    552 
    553 static int
    554 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
    555 {
    556 
    557 	if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
    558 		sc->sc_device_type = 1;
    559 		/* XXX */
    560 		aprint_error_dev(sc->sc_dev,
    561 		    "version 1 devices not supported yet\n");
    562 		return 1;
    563 	} else
    564 		sc->sc_device_type = 2;
    565 
    566 	return 0;
    567 }
    568 
    569 static int
    570 upgt_device_init(struct upgt_softc *sc)
    571 {
    572 	struct upgt_data *data_cmd = &sc->cmd_data;
    573 	const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
    574 	int len;
    575 
    576 	len = sizeof(init_cmd);
    577 	memcpy(data_cmd->buf, init_cmd, len);
    578 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    579 		aprint_error_dev(sc->sc_dev,
    580 		    "could not send device init string\n");
    581 		return EIO;
    582 	}
    583 	usbd_delay_ms(sc->sc_udev, 100);
    584 
    585 	DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
    586 
    587 	return 0;
    588 }
    589 
    590 static int
    591 upgt_mem_init(struct upgt_softc *sc)
    592 {
    593 	int i;
    594 
    595 	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
    596 		sc->sc_memory.page[i].used = 0;
    597 
    598 		if (i == 0) {
    599 			/*
    600 			 * The first memory page is always reserved for
    601 			 * command data.
    602 			 */
    603 			sc->sc_memory.page[i].addr =
    604 			    sc->sc_memaddr_frame_start + MCLBYTES;
    605 		} else {
    606 			sc->sc_memory.page[i].addr =
    607 			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
    608 		}
    609 
    610 		if (sc->sc_memory.page[i].addr + MCLBYTES >=
    611 		    sc->sc_memaddr_frame_end)
    612 			break;
    613 
    614 		DPRINTF(2, "%s: memory address page %d=0x%08x\n",
    615 		    device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
    616 	}
    617 
    618 	sc->sc_memory.pages = i;
    619 
    620 	DPRINTF(2, "%s: memory pages=%d\n",
    621 	    device_xname(sc->sc_dev), sc->sc_memory.pages);
    622 
    623 	return 0;
    624 }
    625 
    626 static uint32_t
    627 upgt_mem_alloc(struct upgt_softc *sc)
    628 {
    629 	int i;
    630 
    631 	for (i = 0; i < sc->sc_memory.pages; i++) {
    632 		if (sc->sc_memory.page[i].used == 0) {
    633 			sc->sc_memory.page[i].used = 1;
    634 			return sc->sc_memory.page[i].addr;
    635 		}
    636 	}
    637 
    638 	return 0;
    639 }
    640 
    641 static void
    642 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
    643 {
    644 	int i;
    645 
    646 	for (i = 0; i < sc->sc_memory.pages; i++) {
    647 		if (sc->sc_memory.page[i].addr == addr) {
    648 			sc->sc_memory.page[i].used = 0;
    649 			return;
    650 		}
    651 	}
    652 
    653 	aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
    654 	    addr);
    655 }
    656 
    657 
    658 static int
    659 upgt_fw_alloc(struct upgt_softc *sc)
    660 {
    661 	const char *name = "upgt-gw3887";
    662 	int error;
    663 
    664 	if (sc->sc_fw == NULL) {
    665 		error = firmware_load("upgt", name, &sc->sc_fw,
    666 		    &sc->sc_fw_size);
    667 		if (error != 0) {
    668 			if (error == ENOENT) {
    669 				/*
    670 				 * The firmware file for upgt(4) is not in
    671 				 * the default distribution due to its lisence
    672 				 * so explicitly notify it if the firmware file
    673 				 * is not found.
    674 				 */
    675 				aprint_error_dev(sc->sc_dev,
    676 				    "firmware file %s is not installed\n",
    677 				    name);
    678 				aprint_error_dev(sc->sc_dev,
    679 				    "(it is not included in the default"
    680 				    " distribution)\n");
    681 				aprint_error_dev(sc->sc_dev,
    682 				    "see upgt(4) man page for details about "
    683 				    "firmware installation\n");
    684 			} else {
    685 				aprint_error_dev(sc->sc_dev,
    686 				    "could not read firmware %s\n", name);
    687 			}
    688 			return EIO;
    689 		}
    690 	}
    691 
    692 	DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
    693 	    name);
    694 
    695 	return 0;
    696 }
    697 
    698 static void
    699 upgt_fw_free(struct upgt_softc *sc)
    700 {
    701 
    702 	if (sc->sc_fw != NULL) {
    703 		firmware_free(sc->sc_fw, sc->sc_fw_size);
    704 		sc->sc_fw = NULL;
    705 		DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
    706 	}
    707 }
    708 
    709 static int
    710 upgt_fw_verify(struct upgt_softc *sc)
    711 {
    712 	struct upgt_fw_bra_option *bra_option;
    713 	uint32_t bra_option_type, bra_option_len;
    714 	uint32_t *uc;
    715 	int offset, bra_end = 0;
    716 
    717 	/*
    718 	 * Seek to beginning of Boot Record Area (BRA).
    719 	 */
    720 	for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
    721 		uc = (uint32_t *)(sc->sc_fw + offset);
    722 		if (*uc == 0)
    723 			break;
    724 	}
    725 	for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
    726 		uc = (uint32_t *)(sc->sc_fw + offset);
    727 		if (*uc != 0)
    728 			break;
    729 	}
    730 	if (offset == sc->sc_fw_size) {
    731 		aprint_error_dev(sc->sc_dev,
    732 		    "firmware Boot Record Area not found\n");
    733 		return EIO;
    734 	}
    735 	DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
    736 	    device_xname(sc->sc_dev), offset);
    737 
    738 	/*
    739 	 * Parse Boot Record Area (BRA) options.
    740 	 */
    741 	while (offset < sc->sc_fw_size && bra_end == 0) {
    742 		/* get current BRA option */
    743 		bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
    744 		bra_option_type = le32toh(bra_option->type);
    745 		bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
    746 
    747 		switch (bra_option_type) {
    748 		case UPGT_BRA_TYPE_FW:
    749 			DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
    750 			    device_xname(sc->sc_dev), bra_option_len);
    751 
    752 			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
    753 				aprint_error_dev(sc->sc_dev,
    754 				    "wrong UPGT_BRA_TYPE_FW len\n");
    755 				return EIO;
    756 			}
    757 			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
    758 			    bra_option_len) == 0) {
    759 				sc->sc_fw_type = UPGT_FWTYPE_LM86;
    760 				break;
    761 			}
    762 			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
    763 			    bra_option_len) == 0) {
    764 				sc->sc_fw_type = UPGT_FWTYPE_LM87;
    765 				break;
    766 			}
    767 			if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
    768 			    bra_option_len) == 0) {
    769 				sc->sc_fw_type = UPGT_FWTYPE_FMAC;
    770 				break;
    771 			}
    772 			aprint_error_dev(sc->sc_dev,
    773 			    "unsupported firmware type\n");
    774 			return EIO;
    775 		case UPGT_BRA_TYPE_VERSION:
    776 			DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
    777 			    device_xname(sc->sc_dev), bra_option_len);
    778 			break;
    779 		case UPGT_BRA_TYPE_DEPIF:
    780 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
    781 			    device_xname(sc->sc_dev), bra_option_len);
    782 			break;
    783 		case UPGT_BRA_TYPE_EXPIF:
    784 			DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
    785 			    device_xname(sc->sc_dev), bra_option_len);
    786 			break;
    787 		case UPGT_BRA_TYPE_DESCR:
    788 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
    789 			    device_xname(sc->sc_dev), bra_option_len);
    790 
    791 			struct upgt_fw_bra_descr *descr =
    792 				(struct upgt_fw_bra_descr *)bra_option->data;
    793 
    794 			sc->sc_memaddr_frame_start =
    795 			    le32toh(descr->memaddr_space_start);
    796 			sc->sc_memaddr_frame_end =
    797 			    le32toh(descr->memaddr_space_end);
    798 
    799 			DPRINTF(2, "%s: memory address space start=0x%08x\n",
    800 			    device_xname(sc->sc_dev),
    801 			    sc->sc_memaddr_frame_start);
    802 			DPRINTF(2, "%s: memory address space end=0x%08x\n",
    803 			    device_xname(sc->sc_dev),
    804 			    sc->sc_memaddr_frame_end);
    805 			break;
    806 		case UPGT_BRA_TYPE_END:
    807 			DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
    808 			    device_xname(sc->sc_dev), bra_option_len);
    809 			bra_end = 1;
    810 			break;
    811 		default:
    812 			DPRINTF(1, "%s: unknown BRA option len=%d\n",
    813 			    device_xname(sc->sc_dev), bra_option_len);
    814 			return EIO;
    815 		}
    816 
    817 		/* jump to next BRA option */
    818 		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
    819 	}
    820 
    821 	DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
    822 
    823 	return 0;
    824 }
    825 
    826 static int
    827 upgt_fw_load(struct upgt_softc *sc)
    828 {
    829 	struct upgt_data *data_cmd = &sc->cmd_data;
    830 	struct upgt_data *data_rx = &sc->rx_data;
    831 	struct upgt_fw_x2_header *x2;
    832 	const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
    833 	int offset, bsize, n, i, len;
    834 	uint32_t crc;
    835 
    836 	/* send firmware start load command */
    837 	len = sizeof(start_fwload_cmd);
    838 	memcpy(data_cmd->buf, start_fwload_cmd, len);
    839 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    840 		aprint_error_dev(sc->sc_dev,
    841 		    "could not send start_firmware_load command\n");
    842 		return EIO;
    843 	}
    844 
    845 	/* send X2 header */
    846 	len = sizeof(struct upgt_fw_x2_header);
    847 	x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
    848 	memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
    849 	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
    850 	x2->len = htole32(sc->sc_fw_size);
    851 	x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
    852 	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
    853 	    sizeof(uint32_t));
    854 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    855 		aprint_error_dev(sc->sc_dev,
    856 		    "could not send firmware X2 header\n");
    857 		return EIO;
    858 	}
    859 
    860 	/* download firmware */
    861 	for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
    862 		if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
    863 			bsize = UPGT_FW_BLOCK_SIZE;
    864 		else
    865 			bsize = sc->sc_fw_size - offset;
    866 
    867 		n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
    868 
    869 		DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
    870 		    device_xname(sc->sc_dev), offset, n, bsize);
    871 
    872 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
    873 		    != 0) {
    874 			aprint_error_dev(sc->sc_dev,
    875 			    "error while downloading firmware block\n");
    876 			return EIO;
    877 		}
    878 
    879 		bsize = n;
    880 	}
    881 	DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
    882 
    883 	/* load firmware */
    884 	crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
    885 	*((uint32_t *)(data_cmd->buf)    ) = crc;
    886 	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
    887 	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
    888 	len = 6;
    889 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    890 		aprint_error_dev(sc->sc_dev,
    891 		    "could not send load_firmware command\n");
    892 		return EIO;
    893 	}
    894 
    895 	for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
    896 		len = UPGT_FW_BLOCK_SIZE;
    897 		memset(data_rx->buf, 0, 2);
    898 		if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
    899 		    USBD_SHORT_XFER_OK) != 0) {
    900 			aprint_error_dev(sc->sc_dev,
    901 			    "could not read firmware response\n");
    902 			return EIO;
    903 		}
    904 
    905 		if (memcmp(data_rx->buf, "OK", 2) == 0)
    906 			break;	/* firmware load was successful */
    907 	}
    908 	if (i == UPGT_FIRMWARE_TIMEOUT) {
    909 		aprint_error_dev(sc->sc_dev, "firmware load failed\n");
    910 		return EIO;
    911 	}
    912 	DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
    913 
    914 	return 0;
    915 }
    916 
    917 /*
    918  * While copying the version 2 firmware, we need to replace two characters:
    919  *
    920  * 0x7e -> 0x7d 0x5e
    921  * 0x7d -> 0x7d 0x5d
    922  */
    923 static int
    924 upgt_fw_copy(char *src, char *dst, int size)
    925 {
    926 	int i, j;
    927 
    928 	for (i = 0, j = 0; i < size && j < size; i++) {
    929 		switch (src[i]) {
    930 		case 0x7e:
    931 			dst[j] = 0x7d;
    932 			j++;
    933 			dst[j] = 0x5e;
    934 			j++;
    935 			break;
    936 		case 0x7d:
    937 			dst[j] = 0x7d;
    938 			j++;
    939 			dst[j] = 0x5d;
    940 			j++;
    941 			break;
    942 		default:
    943 			dst[j] = src[i];
    944 			j++;
    945 			break;
    946 		}
    947 	}
    948 
    949 	return i;
    950 }
    951 
    952 static int
    953 upgt_eeprom_read(struct upgt_softc *sc)
    954 {
    955 	struct upgt_data *data_cmd = &sc->cmd_data;
    956 	struct upgt_lmac_mem *mem;
    957 	struct upgt_lmac_eeprom	*eeprom;
    958 	int offset, block, len;
    959 
    960 	offset = 0;
    961 	block = UPGT_EEPROM_BLOCK_SIZE;
    962 	while (offset < UPGT_EEPROM_SIZE) {
    963 		DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
    964 		    device_xname(sc->sc_dev), offset, block);
    965 
    966 		/*
    967 		 * Transmit the URB containing the CMD data.
    968 		 */
    969 		len = sizeof(*mem) + sizeof(*eeprom) + block;
    970 
    971 		memset(data_cmd->buf, 0, len);
    972 
    973 		mem = (struct upgt_lmac_mem *)data_cmd->buf;
    974 		mem->addr = htole32(sc->sc_memaddr_frame_start +
    975 		    UPGT_MEMSIZE_FRAME_HEAD);
    976 
    977 		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
    978 		eeprom->header1.flags = 0;
    979 		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
    980 		eeprom->header1.len = htole16((
    981 		    sizeof(struct upgt_lmac_eeprom) -
    982 		    sizeof(struct upgt_lmac_header)) + block);
    983 
    984 		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
    985 		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
    986 		eeprom->header2.flags = 0;
    987 
    988 		eeprom->offset = htole16(offset);
    989 		eeprom->len = htole16(block);
    990 
    991 		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
    992 		    len - sizeof(*mem));
    993 
    994 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
    995 		    USBD_FORCE_SHORT_XFER) != 0) {
    996 			aprint_error_dev(sc->sc_dev,
    997 			    "could not transmit EEPROM data URB\n");
    998 			return EIO;
    999 		}
   1000 		if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) {
   1001 			aprint_error_dev(sc->sc_dev,
   1002 			    "timeout while waiting for EEPROM data\n");
   1003 			return EIO;
   1004 		}
   1005 
   1006 		offset += block;
   1007 		if (UPGT_EEPROM_SIZE - offset < block)
   1008 			block = UPGT_EEPROM_SIZE - offset;
   1009 	}
   1010 
   1011 	return 0;
   1012 }
   1013 
   1014 static int
   1015 upgt_eeprom_parse(struct upgt_softc *sc)
   1016 {
   1017 	struct ieee80211com *ic = &sc->sc_ic;
   1018 	struct upgt_eeprom_header *eeprom_header;
   1019 	struct upgt_eeprom_option *eeprom_option;
   1020 	uint16_t option_len;
   1021 	uint16_t option_type;
   1022 	uint16_t preamble_len;
   1023 	int option_end = 0;
   1024 
   1025 	/* calculate eeprom options start offset */
   1026 	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
   1027 	preamble_len = le16toh(eeprom_header->preamble_len);
   1028 	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
   1029 	    (sizeof(struct upgt_eeprom_header) + preamble_len));
   1030 
   1031 	while (!option_end) {
   1032 		/* the eeprom option length is stored in words */
   1033 		option_len =
   1034 		    (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
   1035 		option_type =
   1036 		    le16toh(eeprom_option->type);
   1037 
   1038 		switch (option_type) {
   1039 		case UPGT_EEPROM_TYPE_NAME:
   1040 			DPRINTF(1, "%s: EEPROM name len=%d\n",
   1041 			    device_xname(sc->sc_dev), option_len);
   1042 			break;
   1043 		case UPGT_EEPROM_TYPE_SERIAL:
   1044 			DPRINTF(1, "%s: EEPROM serial len=%d\n",
   1045 			    device_xname(sc->sc_dev), option_len);
   1046 			break;
   1047 		case UPGT_EEPROM_TYPE_MAC:
   1048 			DPRINTF(1, "%s: EEPROM mac len=%d\n",
   1049 			    device_xname(sc->sc_dev), option_len);
   1050 
   1051 			IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
   1052 			break;
   1053 		case UPGT_EEPROM_TYPE_HWRX:
   1054 			DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
   1055 			    device_xname(sc->sc_dev), option_len);
   1056 
   1057 			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
   1058 			break;
   1059 		case UPGT_EEPROM_TYPE_CHIP:
   1060 			DPRINTF(1, "%s: EEPROM chip len=%d\n",
   1061 			    device_xname(sc->sc_dev), option_len);
   1062 			break;
   1063 		case UPGT_EEPROM_TYPE_FREQ3:
   1064 			DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
   1065 			    device_xname(sc->sc_dev), option_len);
   1066 
   1067 			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
   1068 			    option_len);
   1069 			break;
   1070 		case UPGT_EEPROM_TYPE_FREQ4:
   1071 			DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
   1072 			    device_xname(sc->sc_dev), option_len);
   1073 
   1074 			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
   1075 			    option_len);
   1076 			break;
   1077 		case UPGT_EEPROM_TYPE_FREQ5:
   1078 			DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
   1079 			    device_xname(sc->sc_dev), option_len);
   1080 			break;
   1081 		case UPGT_EEPROM_TYPE_FREQ6:
   1082 			DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
   1083 			    device_xname(sc->sc_dev), option_len);
   1084 
   1085 			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
   1086 			    option_len);
   1087 			break;
   1088 		case UPGT_EEPROM_TYPE_END:
   1089 			DPRINTF(1, "%s: EEPROM end len=%d\n",
   1090 			    device_xname(sc->sc_dev), option_len);
   1091 			option_end = 1;
   1092 			break;
   1093 		case UPGT_EEPROM_TYPE_OFF:
   1094 			DPRINTF(1, "%s: EEPROM off without end option\n",
   1095 			    device_xname(sc->sc_dev));
   1096 			return EIO;
   1097 		default:
   1098 			DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
   1099 			    device_xname(sc->sc_dev), option_type, option_len);
   1100 			break;
   1101 		}
   1102 
   1103 		/* jump to next EEPROM option */
   1104 		eeprom_option = (struct upgt_eeprom_option *)
   1105 		    (eeprom_option->data + option_len);
   1106 	}
   1107 
   1108 	return 0;
   1109 }
   1110 
   1111 static void
   1112 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
   1113 {
   1114 	struct upgt_eeprom_option_hwrx *option_hwrx;
   1115 
   1116 	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
   1117 
   1118 	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
   1119 
   1120 	DPRINTF(2, "%s: hwrx option value=0x%04x\n",
   1121 	    device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
   1122 }
   1123 
   1124 static void
   1125 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
   1126 {
   1127 	struct upgt_eeprom_freq3_header *freq3_header;
   1128 	struct upgt_lmac_freq3 *freq3;
   1129 	int i, elements, flags;
   1130 	unsigned channel;
   1131 
   1132 	freq3_header = (struct upgt_eeprom_freq3_header *)data;
   1133 	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
   1134 
   1135 	flags = freq3_header->flags;
   1136 	elements = freq3_header->elements;
   1137 
   1138 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
   1139 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1140 	__USE(flags);
   1141 
   1142 	for (i = 0; i < elements; i++) {
   1143 		channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
   1144 
   1145 		sc->sc_eeprom_freq3[channel] = freq3[i];
   1146 
   1147 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1148 		    device_xname(sc->sc_dev),
   1149 		    le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
   1150 	}
   1151 }
   1152 
   1153 static void
   1154 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
   1155 {
   1156 	struct upgt_eeprom_freq4_header *freq4_header;
   1157 	struct upgt_eeprom_freq4_1 *freq4_1;
   1158 	struct upgt_eeprom_freq4_2 *freq4_2;
   1159 	int i, j, elements, settings, flags;
   1160 	unsigned channel;
   1161 
   1162 	freq4_header = (struct upgt_eeprom_freq4_header *)data;
   1163 	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
   1164 
   1165 	flags = freq4_header->flags;
   1166 	elements = freq4_header->elements;
   1167 	settings = freq4_header->settings;
   1168 
   1169 	/* we need this value later */
   1170 	sc->sc_eeprom_freq6_settings = freq4_header->settings;
   1171 
   1172 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
   1173 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1174 	DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
   1175 	__USE(flags);
   1176 
   1177 	for (i = 0; i < elements; i++) {
   1178 		channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
   1179 
   1180 		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
   1181 
   1182 		for (j = 0; j < settings; j++) {
   1183 			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
   1184 			sc->sc_eeprom_freq4[channel][j].pad = 0;
   1185 		}
   1186 
   1187 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1188 		    device_xname(sc->sc_dev),
   1189 		    le16toh(freq4_1[i].freq), channel);
   1190 	}
   1191 }
   1192 
   1193 static void
   1194 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
   1195 {
   1196 	struct upgt_lmac_freq6 *freq6;
   1197 	int i, elements;
   1198 	unsigned channel;
   1199 
   1200 	freq6 = (struct upgt_lmac_freq6 *)data;
   1201 
   1202 	elements = len / sizeof(struct upgt_lmac_freq6);
   1203 
   1204 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1205 
   1206 	for (i = 0; i < elements; i++) {
   1207 		channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
   1208 
   1209 		sc->sc_eeprom_freq6[channel] = freq6[i];
   1210 
   1211 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1212 		    device_xname(sc->sc_dev),
   1213 		    le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
   1214 	}
   1215 }
   1216 
   1217 static int
   1218 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1219 {
   1220 	struct upgt_softc *sc = ifp->if_softc;
   1221 	struct ieee80211com *ic = &sc->sc_ic;
   1222 	int s, error = 0;
   1223 
   1224 	s = splnet();
   1225 
   1226 	switch (cmd) {
   1227 	case SIOCSIFFLAGS:
   1228 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1229 			break;
   1230 		if (ifp->if_flags & IFF_UP) {
   1231 			if ((ifp->if_flags & IFF_RUNNING) == 0)
   1232 				upgt_init(ifp);
   1233 		} else {
   1234 			if (ifp->if_flags & IFF_RUNNING)
   1235 				upgt_stop(sc);
   1236 		}
   1237 		break;
   1238 	case SIOCADDMULTI:
   1239 	case SIOCDELMULTI:
   1240 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   1241 			/* setup multicast filter, etc */
   1242 			error = 0;
   1243 		}
   1244 		break;
   1245 	default:
   1246 		error = ieee80211_ioctl(ic, cmd, data);
   1247 		break;
   1248 	}
   1249 
   1250 	if (error == ENETRESET) {
   1251 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1252 		    (IFF_UP | IFF_RUNNING))
   1253 			upgt_init(ifp);
   1254 		error = 0;
   1255 	}
   1256 
   1257 	splx(s);
   1258 
   1259 	return error;
   1260 }
   1261 
   1262 static int
   1263 upgt_init(struct ifnet *ifp)
   1264 {
   1265 	struct upgt_softc *sc = ifp->if_softc;
   1266 	struct ieee80211com *ic = &sc->sc_ic;
   1267 
   1268 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1269 
   1270 	if (ifp->if_flags & IFF_RUNNING)
   1271 		upgt_stop(sc);
   1272 
   1273 	ifp->if_flags |= IFF_RUNNING;
   1274 	ifp->if_flags &= ~IFF_OACTIVE;
   1275 
   1276 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   1277 
   1278 	/* setup device rates */
   1279 	upgt_setup_rates(sc);
   1280 
   1281 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   1282 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1283 	else
   1284 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1285 
   1286 	return 0;
   1287 }
   1288 
   1289 static void
   1290 upgt_stop(struct upgt_softc *sc)
   1291 {
   1292 	struct ieee80211com *ic = &sc->sc_ic;
   1293 	struct ifnet *ifp = &sc->sc_if;
   1294 
   1295 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1296 
   1297 	/* device down */
   1298 	ifp->if_timer = 0;
   1299 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1300 
   1301 	/* change device back to initial state */
   1302 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1303 }
   1304 
   1305 static int
   1306 upgt_media_change(struct ifnet *ifp)
   1307 {
   1308 	struct upgt_softc *sc = ifp->if_softc;
   1309 	int error;
   1310 
   1311 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1312 
   1313 	if ((error = ieee80211_media_change(ifp) != ENETRESET))
   1314 		return error;
   1315 
   1316 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1317 	    (IFF_UP | IFF_RUNNING)) {
   1318 		/* give pending USB transfers a chance to finish */
   1319 		usbd_delay_ms(sc->sc_udev, 100);
   1320 		upgt_init(ifp);
   1321 	}
   1322 
   1323 	return 0;
   1324 }
   1325 
   1326 static void
   1327 upgt_newassoc(struct ieee80211_node *ni, int isnew)
   1328 {
   1329 
   1330 	ni->ni_txrate = 0;
   1331 }
   1332 
   1333 static int
   1334 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1335 {
   1336 	struct upgt_softc *sc = ic->ic_ifp->if_softc;
   1337 
   1338 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
   1339 	callout_stop(&sc->scan_to);
   1340 
   1341 	/* do it in a process context */
   1342 	sc->sc_state = nstate;
   1343 	sc->sc_arg = arg;
   1344 	usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
   1345 
   1346 	return 0;
   1347 }
   1348 
   1349 static void
   1350 upgt_newstate_task(void *arg)
   1351 {
   1352 	struct upgt_softc *sc = arg;
   1353 	struct ieee80211com *ic = &sc->sc_ic;
   1354 	struct ieee80211_node *ni;
   1355 	unsigned channel;
   1356 
   1357 	mutex_enter(&sc->sc_mtx);
   1358 
   1359 	switch (sc->sc_state) {
   1360 	case IEEE80211_S_INIT:
   1361 		DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
   1362 		    device_xname(sc->sc_dev));
   1363 
   1364 		/* do not accept any frames if the device is down */
   1365 		upgt_set_macfilter(sc, IEEE80211_S_INIT);
   1366 		upgt_set_led(sc, UPGT_LED_OFF);
   1367 		break;
   1368 	case IEEE80211_S_SCAN:
   1369 		DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
   1370 		    device_xname(sc->sc_dev));
   1371 
   1372 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1373 		upgt_set_channel(sc, channel);
   1374 		upgt_set_macfilter(sc, IEEE80211_S_SCAN);
   1375 		callout_schedule(&sc->scan_to, hz / 5);
   1376 		break;
   1377 	case IEEE80211_S_AUTH:
   1378 		DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
   1379 		    device_xname(sc->sc_dev));
   1380 
   1381 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1382 		upgt_set_channel(sc, channel);
   1383 		break;
   1384 	case IEEE80211_S_ASSOC:
   1385 		DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
   1386 		    device_xname(sc->sc_dev));
   1387 
   1388 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1389 		upgt_set_channel(sc, channel);
   1390 		break;
   1391 	case IEEE80211_S_RUN:
   1392 		DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
   1393 		    device_xname(sc->sc_dev));
   1394 
   1395 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1396 		upgt_set_channel(sc, channel);
   1397 
   1398 		ni = ic->ic_bss;
   1399 
   1400 		/*
   1401 		 * TX rate control is done by the firmware.
   1402 		 * Report the maximum rate which is available therefore.
   1403 		 */
   1404 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
   1405 
   1406 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1407 			upgt_set_macfilter(sc, IEEE80211_S_RUN);
   1408 		upgt_set_led(sc, UPGT_LED_ON);
   1409 		break;
   1410 	}
   1411 
   1412 	mutex_exit(&sc->sc_mtx);
   1413 
   1414 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
   1415 }
   1416 
   1417 static void
   1418 upgt_next_scan(void *arg)
   1419 {
   1420 	struct upgt_softc *sc = arg;
   1421 	struct ieee80211com *ic = &sc->sc_ic;
   1422 
   1423 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1424 
   1425 	if (ic->ic_state == IEEE80211_S_SCAN)
   1426 		ieee80211_next_scan(ic);
   1427 }
   1428 
   1429 static void
   1430 upgt_start(struct ifnet *ifp)
   1431 {
   1432 	struct upgt_softc *sc = ifp->if_softc;
   1433 	struct ieee80211com *ic = &sc->sc_ic;
   1434 	struct ether_header *eh;
   1435 	struct ieee80211_node *ni;
   1436 	struct mbuf *m;
   1437 	int i;
   1438 
   1439 	/* don't transmit packets if interface is busy or down */
   1440 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1441 		return;
   1442 
   1443 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1444 
   1445 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1446 		struct upgt_data *data_tx = &sc->tx_data[i];
   1447 
   1448 		if (data_tx->m != NULL)
   1449 			continue;
   1450 
   1451 		IF_POLL(&ic->ic_mgtq, m);
   1452 		if (m != NULL) {
   1453 			/* management frame */
   1454 			IF_DEQUEUE(&ic->ic_mgtq, m);
   1455 
   1456 			ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
   1457 			m->m_pkthdr.rcvif = NULL;
   1458 
   1459 			bpf_mtap3(ic->ic_rawbpf, m);
   1460 
   1461 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
   1462 				aprint_error_dev(sc->sc_dev,
   1463 				    "no free prism memory\n");
   1464 				m_freem(m);
   1465 				ifp->if_oerrors++;
   1466 				break;
   1467 			}
   1468 			data_tx->ni = ni;
   1469 			data_tx->m = m;
   1470 			sc->tx_queued++;
   1471 		} else {
   1472 			/* data frame */
   1473 			if (ic->ic_state != IEEE80211_S_RUN)
   1474 				break;
   1475 
   1476 			IFQ_POLL(&ifp->if_snd, m);
   1477 			if (m == NULL)
   1478 				break;
   1479 
   1480 			IFQ_DEQUEUE(&ifp->if_snd, m);
   1481 			if (m->m_len < sizeof(struct ether_header) &&
   1482 			    !(m = m_pullup(m, sizeof(struct ether_header))))
   1483 				continue;
   1484 
   1485 			eh = mtod(m, struct ether_header *);
   1486 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1487 			if (ni == NULL) {
   1488 				m_freem(m);
   1489 				continue;
   1490 			}
   1491 
   1492 			bpf_mtap(ifp, m);
   1493 
   1494 			m = ieee80211_encap(ic, m, ni);
   1495 			if (m == NULL) {
   1496 				ieee80211_free_node(ni);
   1497 				continue;
   1498 			}
   1499 
   1500 			bpf_mtap3(ic->ic_rawbpf, m);
   1501 
   1502 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
   1503 				aprint_error_dev(sc->sc_dev,
   1504 				    "no free prism memory\n");
   1505 				m_freem(m);
   1506 				ieee80211_free_node(ni);
   1507 				ifp->if_oerrors++;
   1508 				break;
   1509 			}
   1510 			data_tx->ni = ni;
   1511 			data_tx->m = m;
   1512 			sc->tx_queued++;
   1513 		}
   1514 	}
   1515 
   1516 	if (sc->tx_queued > 0) {
   1517 		DPRINTF(2, "%s: tx_queued=%d\n",
   1518 		    device_xname(sc->sc_dev), sc->tx_queued);
   1519 		/* process the TX queue in process context */
   1520 		ifp->if_timer = 5;
   1521 		ifp->if_flags |= IFF_OACTIVE;
   1522 		usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
   1523 		usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
   1524 	}
   1525 }
   1526 
   1527 static void
   1528 upgt_watchdog(struct ifnet *ifp)
   1529 {
   1530 	struct upgt_softc *sc = ifp->if_softc;
   1531 	struct ieee80211com *ic = &sc->sc_ic;
   1532 
   1533 	if (ic->ic_state == IEEE80211_S_INIT)
   1534 		return;
   1535 
   1536 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
   1537 
   1538 	/* TODO: what shall we do on TX timeout? */
   1539 
   1540 	ieee80211_watchdog(ic);
   1541 }
   1542 
   1543 static void
   1544 upgt_tx_task(void *arg)
   1545 {
   1546 	struct upgt_softc *sc = arg;
   1547 	struct ieee80211com *ic = &sc->sc_ic;
   1548 	struct ieee80211_frame *wh;
   1549 	struct ieee80211_key *k;
   1550 	struct ifnet *ifp = &sc->sc_if;
   1551 	struct upgt_lmac_mem *mem;
   1552 	struct upgt_lmac_tx_desc *txdesc;
   1553 	struct mbuf *m;
   1554 	uint32_t addr;
   1555 	int i, len, pad, s;
   1556 	usbd_status error;
   1557 
   1558 	mutex_enter(&sc->sc_mtx);
   1559 	upgt_set_led(sc, UPGT_LED_BLINK);
   1560 	mutex_exit(&sc->sc_mtx);
   1561 
   1562 	s = splnet();
   1563 
   1564 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1565 		struct upgt_data *data_tx = &sc->tx_data[i];
   1566 
   1567 		if (data_tx->m == NULL)
   1568 			continue;
   1569 
   1570 		m = data_tx->m;
   1571 		addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
   1572 
   1573 		/*
   1574 		 * Software crypto.
   1575 		 */
   1576 		wh = mtod(m, struct ieee80211_frame *);
   1577 
   1578 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1579 			k = ieee80211_crypto_encap(ic, data_tx->ni, m);
   1580 			if (k == NULL) {
   1581 				m_freem(m);
   1582 				data_tx->m = NULL;
   1583 				ieee80211_free_node(data_tx->ni);
   1584 				data_tx->ni = NULL;
   1585 				ifp->if_oerrors++;
   1586 				break;
   1587 			}
   1588 
   1589 			/* in case packet header moved, reset pointer */
   1590 			wh = mtod(m, struct ieee80211_frame *);
   1591 		}
   1592 
   1593 		/*
   1594 		 * Transmit the URB containing the TX data.
   1595 		 */
   1596 		memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
   1597 
   1598 		mem = (struct upgt_lmac_mem *)data_tx->buf;
   1599 		mem->addr = htole32(addr);
   1600 
   1601 		txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
   1602 
   1603 		/* XXX differ between data and mgmt frames? */
   1604 		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
   1605 		txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
   1606 		txdesc->header1.len = htole16(m->m_pkthdr.len);
   1607 
   1608 		txdesc->header2.reqid = htole32(data_tx->addr);
   1609 		txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
   1610 		txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
   1611 
   1612 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1613 		    IEEE80211_FC0_TYPE_MGT) {
   1614 			/* always send mgmt frames at lowest rate (DS1) */
   1615 			memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
   1616 		} else {
   1617 			memcpy(txdesc->rates, sc->sc_cur_rateset,
   1618 			    sizeof(txdesc->rates));
   1619 		}
   1620 		txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
   1621 		txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
   1622 
   1623 		if (sc->sc_drvbpf != NULL) {
   1624 			struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
   1625 
   1626 			tap->wt_flags = 0;
   1627 			tap->wt_rate = 0;	/* TODO: where to get from? */
   1628 			tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1629 			tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1630 
   1631 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   1632 		}
   1633 
   1634 		/* copy frame below our TX descriptor header */
   1635 		m_copydata(m, 0, m->m_pkthdr.len,
   1636 		    data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
   1637 
   1638 		/* calculate frame size */
   1639 		len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
   1640 
   1641 		if (len & 3) {
   1642 			/* we need to align the frame to a 4 byte boundary */
   1643 			pad = 4 - (len & 3);
   1644 			memset(data_tx->buf + len, 0, pad);
   1645 			len += pad;
   1646 		}
   1647 
   1648 		/* calculate frame checksum */
   1649 		mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
   1650 		    len - sizeof(*mem));
   1651 
   1652 		/* we do not need the mbuf anymore */
   1653 		m_freem(m);
   1654 		data_tx->m = NULL;
   1655 
   1656 		ieee80211_free_node(data_tx->ni);
   1657 		data_tx->ni = NULL;
   1658 
   1659 		DPRINTF(2, "%s: TX start data sending\n",
   1660 		    device_xname(sc->sc_dev));
   1661 
   1662 		usbd_setup_xfer(data_tx->xfer, sc->sc_tx_pipeh, data_tx,
   1663 		    data_tx->buf, len, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
   1664 		    UPGT_USB_TIMEOUT, NULL);
   1665 		error = usbd_transfer(data_tx->xfer);
   1666 		if (error != USBD_NORMAL_COMPLETION &&
   1667 		    error != USBD_IN_PROGRESS) {
   1668 			aprint_error_dev(sc->sc_dev,
   1669 			    "could not transmit TX data URB\n");
   1670 			ifp->if_oerrors++;
   1671 			break;
   1672 		}
   1673 
   1674 		DPRINTF(2, "%s: TX sent (%d bytes)\n",
   1675 		    device_xname(sc->sc_dev), len);
   1676 	}
   1677 
   1678 	splx(s);
   1679 
   1680 	/*
   1681 	 * If we don't regulary read the device statistics, the RX queue
   1682 	 * will stall.  It's strange, but it works, so we keep reading
   1683 	 * the statistics here.  *shrug*
   1684 	 */
   1685 	mutex_enter(&sc->sc_mtx);
   1686 	upgt_get_stats(sc);
   1687 	mutex_exit(&sc->sc_mtx);
   1688 }
   1689 
   1690 static void
   1691 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
   1692 {
   1693 	struct ifnet *ifp = &sc->sc_if;
   1694 	struct upgt_lmac_tx_done_desc *desc;
   1695 	int i, s;
   1696 
   1697 	s = splnet();
   1698 
   1699 	desc = (struct upgt_lmac_tx_done_desc *)data;
   1700 
   1701 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1702 		struct upgt_data *data_tx = &sc->tx_data[i];
   1703 
   1704 		if (data_tx->addr == le32toh(desc->header2.reqid)) {
   1705 			upgt_mem_free(sc, data_tx->addr);
   1706 			data_tx->addr = 0;
   1707 
   1708 			sc->tx_queued--;
   1709 			ifp->if_opackets++;
   1710 
   1711 			DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
   1712 			DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
   1713 			    le32toh(desc->header2.reqid),
   1714 			    le16toh(desc->status),
   1715 			    le16toh(desc->rssi));
   1716 			DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
   1717 			break;
   1718 		}
   1719 	}
   1720 
   1721 	if (sc->tx_queued == 0) {
   1722 		/* TX queued was processed, continue */
   1723 		ifp->if_timer = 0;
   1724 		ifp->if_flags &= ~IFF_OACTIVE;
   1725 		upgt_start(ifp);
   1726 	}
   1727 
   1728 	splx(s);
   1729 }
   1730 
   1731 static void
   1732 upgt_rx_cb(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
   1733 {
   1734 	struct upgt_data *data_rx = priv;
   1735 	struct upgt_softc *sc = data_rx->sc;
   1736 	int len;
   1737 	struct upgt_lmac_header *header;
   1738 	struct upgt_lmac_eeprom *eeprom;
   1739 	uint8_t h1_type;
   1740 	uint16_t h2_type;
   1741 
   1742 	DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1743 
   1744 	if (status != USBD_NORMAL_COMPLETION) {
   1745 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
   1746 			return;
   1747 		if (status == USBD_STALLED)
   1748 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
   1749 		goto skip;
   1750 	}
   1751 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
   1752 
   1753 	/*
   1754 	 * Check what type of frame came in.
   1755 	 */
   1756 	header = (struct upgt_lmac_header *)(data_rx->buf + 4);
   1757 
   1758 	h1_type = header->header1.type;
   1759 	h2_type = le16toh(header->header2.type);
   1760 
   1761 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1762 	    h2_type == UPGT_H2_TYPE_EEPROM) {
   1763 		eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
   1764 		uint16_t eeprom_offset = le16toh(eeprom->offset);
   1765 		uint16_t eeprom_len = le16toh(eeprom->len);
   1766 
   1767 		DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
   1768 			device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
   1769 
   1770 		memcpy(sc->sc_eeprom + eeprom_offset,
   1771 		    data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
   1772 		    eeprom_len);
   1773 
   1774 		/* EEPROM data has arrived in time, wakeup tsleep() */
   1775 		wakeup(sc);
   1776 	} else
   1777 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1778 	    h2_type == UPGT_H2_TYPE_TX_DONE) {
   1779 		DPRINTF(2, "%s: received 802.11 TX done\n",
   1780 		    device_xname(sc->sc_dev));
   1781 
   1782 		upgt_tx_done(sc, data_rx->buf + 4);
   1783 	} else
   1784 	if (h1_type == UPGT_H1_TYPE_RX_DATA ||
   1785 	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
   1786 		DPRINTF(3, "%s: received 802.11 RX data\n",
   1787 		    device_xname(sc->sc_dev));
   1788 
   1789 		upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
   1790 	} else
   1791 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1792 	    h2_type == UPGT_H2_TYPE_STATS) {
   1793 		DPRINTF(2, "%s: received statistic data\n",
   1794 		    device_xname(sc->sc_dev));
   1795 
   1796 		/* TODO: what could we do with the statistic data? */
   1797 	} else {
   1798 		/* ignore unknown frame types */
   1799 		DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
   1800 		    device_xname(sc->sc_dev), header->header1.type);
   1801 	}
   1802 
   1803 skip:	/* setup new transfer */
   1804 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, MCLBYTES,
   1805 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
   1806 	(void)usbd_transfer(xfer);
   1807 }
   1808 
   1809 static void
   1810 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
   1811 {
   1812 	struct ieee80211com *ic = &sc->sc_ic;
   1813 	struct ifnet *ifp = &sc->sc_if;
   1814 	struct upgt_lmac_rx_desc *rxdesc;
   1815 	struct ieee80211_frame *wh;
   1816 	struct ieee80211_node *ni;
   1817 	struct mbuf *m;
   1818 	int s;
   1819 
   1820 	/* access RX packet descriptor */
   1821 	rxdesc = (struct upgt_lmac_rx_desc *)data;
   1822 
   1823 	/* create mbuf which is suitable for strict alignment archs */
   1824 #define ETHER_ALIGN	0
   1825 	m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL);
   1826 	if (m == NULL) {
   1827 		DPRINTF(1, "%s: could not create RX mbuf\n",
   1828 		   device_xname(sc->sc_dev));
   1829 		ifp->if_ierrors++;
   1830 		return;
   1831 	}
   1832 
   1833 	s = splnet();
   1834 
   1835 	if (sc->sc_drvbpf != NULL) {
   1836 		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
   1837 
   1838 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
   1839 		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
   1840 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1841 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1842 		tap->wr_antsignal = rxdesc->rssi;
   1843 
   1844 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1845 	}
   1846 
   1847 	/* trim FCS */
   1848 	m_adj(m, -IEEE80211_CRC_LEN);
   1849 
   1850 	wh = mtod(m, struct ieee80211_frame *);
   1851 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1852 
   1853 	/* push the frame up to the 802.11 stack */
   1854 	ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
   1855 
   1856 	/* node is no longer needed */
   1857 	ieee80211_free_node(ni);
   1858 
   1859 	splx(s);
   1860 
   1861 	DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
   1862 }
   1863 
   1864 static void
   1865 upgt_setup_rates(struct upgt_softc *sc)
   1866 {
   1867 	struct ieee80211com *ic = &sc->sc_ic;
   1868 
   1869 	/*
   1870 	 * 0x01 = OFMD6   0x10 = DS1
   1871 	 * 0x04 = OFDM9   0x11 = DS2
   1872 	 * 0x06 = OFDM12  0x12 = DS5
   1873 	 * 0x07 = OFDM18  0x13 = DS11
   1874 	 * 0x08 = OFDM24
   1875 	 * 0x09 = OFDM36
   1876 	 * 0x0a = OFDM48
   1877 	 * 0x0b = OFDM54
   1878 	 */
   1879 	const uint8_t rateset_auto_11b[] =
   1880 	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
   1881 	const uint8_t rateset_auto_11g[] =
   1882 	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
   1883 	const uint8_t rateset_fix_11bg[] =
   1884 	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
   1885 	      0x08, 0x09, 0x0a, 0x0b };
   1886 
   1887 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
   1888 		/*
   1889 		 * Automatic rate control is done by the device.
   1890 		 * We just pass the rateset from which the device
   1891 		 * will pickup a rate.
   1892 		 */
   1893 		if (ic->ic_curmode == IEEE80211_MODE_11B)
   1894 			memcpy(sc->sc_cur_rateset, rateset_auto_11b,
   1895 			    sizeof(sc->sc_cur_rateset));
   1896 		if (ic->ic_curmode == IEEE80211_MODE_11G ||
   1897 		    ic->ic_curmode == IEEE80211_MODE_AUTO)
   1898 			memcpy(sc->sc_cur_rateset, rateset_auto_11g,
   1899 			    sizeof(sc->sc_cur_rateset));
   1900 	} else {
   1901 		/* set a fixed rate */
   1902 		memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
   1903 		    sizeof(sc->sc_cur_rateset));
   1904 	}
   1905 }
   1906 
   1907 static uint8_t
   1908 upgt_rx_rate(struct upgt_softc *sc, const int rate)
   1909 {
   1910 	struct ieee80211com *ic = &sc->sc_ic;
   1911 
   1912 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
   1913 		if (rate < 0 || rate > 3)
   1914 			/* invalid rate */
   1915 			return 0;
   1916 
   1917 		switch (rate) {
   1918 		case 0:
   1919 			return 2;
   1920 		case 1:
   1921 			return 4;
   1922 		case 2:
   1923 			return 11;
   1924 		case 3:
   1925 			return 22;
   1926 		default:
   1927 			return 0;
   1928 		}
   1929 	}
   1930 
   1931 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
   1932 		if (rate < 0 || rate > 11)
   1933 			/* invalid rate */
   1934 			return 0;
   1935 
   1936 		switch (rate) {
   1937 		case 0:
   1938 			return 2;
   1939 		case 1:
   1940 			return 4;
   1941 		case 2:
   1942 			return 11;
   1943 		case 3:
   1944 			return 22;
   1945 		case 4:
   1946 			return 12;
   1947 		case 5:
   1948 			return 18;
   1949 		case 6:
   1950 			return 24;
   1951 		case 7:
   1952 			return 36;
   1953 		case 8:
   1954 			return 48;
   1955 		case 9:
   1956 			return 72;
   1957 		case 10:
   1958 			return 96;
   1959 		case 11:
   1960 			return 108;
   1961 		default:
   1962 			return 0;
   1963 		}
   1964 	}
   1965 
   1966 	return 0;
   1967 }
   1968 
   1969 static int
   1970 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
   1971 {
   1972 	struct ieee80211com *ic = &sc->sc_ic;
   1973 	struct ieee80211_node *ni = ic->ic_bss;
   1974 	struct upgt_data *data_cmd = &sc->cmd_data;
   1975 	struct upgt_lmac_mem *mem;
   1976 	struct upgt_lmac_filter *filter;
   1977 	int len;
   1978 	const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
   1979 
   1980 	/*
   1981 	 * Transmit the URB containing the CMD data.
   1982 	 */
   1983 	len = sizeof(*mem) + sizeof(*filter);
   1984 
   1985 	memset(data_cmd->buf, 0, len);
   1986 
   1987 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   1988 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   1989 	    UPGT_MEMSIZE_FRAME_HEAD);
   1990 
   1991 	filter = (struct upgt_lmac_filter *)(mem + 1);
   1992 
   1993 	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   1994 	filter->header1.type = UPGT_H1_TYPE_CTRL;
   1995 	filter->header1.len = htole16(
   1996 	    sizeof(struct upgt_lmac_filter) -
   1997 	    sizeof(struct upgt_lmac_header));
   1998 
   1999 	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2000 	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
   2001 	filter->header2.flags = 0;
   2002 
   2003 	switch (state) {
   2004 	case IEEE80211_S_INIT:
   2005 		DPRINTF(1, "%s: set MAC filter to INIT\n",
   2006 		    device_xname(sc->sc_dev));
   2007 
   2008 		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
   2009 		break;
   2010 	case IEEE80211_S_SCAN:
   2011 		DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
   2012 		    device_xname(sc->sc_dev), ether_sprintf(broadcast));
   2013 
   2014 		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
   2015 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
   2016 		IEEE80211_ADDR_COPY(filter->src, broadcast);
   2017 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
   2018 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
   2019 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
   2020 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
   2021 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
   2022 		break;
   2023 	case IEEE80211_S_RUN:
   2024 		DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
   2025 		    device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
   2026 
   2027 		filter->type = htole16(UPGT_FILTER_TYPE_STA);
   2028 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
   2029 		IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
   2030 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
   2031 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
   2032 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
   2033 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
   2034 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
   2035 		break;
   2036 	default:
   2037 		aprint_error_dev(sc->sc_dev,
   2038 		    "MAC filter does not know that state\n");
   2039 		break;
   2040 	}
   2041 
   2042 	mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
   2043 
   2044 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2045 		aprint_error_dev(sc->sc_dev,
   2046 		    "could not transmit macfilter CMD data URB\n");
   2047 		return EIO;
   2048 	}
   2049 
   2050 	return 0;
   2051 }
   2052 
   2053 static int
   2054 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
   2055 {
   2056 	struct upgt_data *data_cmd = &sc->cmd_data;
   2057 	struct upgt_lmac_mem *mem;
   2058 	struct upgt_lmac_channel *chan;
   2059 	int len;
   2060 
   2061 	DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
   2062 	    channel);
   2063 
   2064 	/*
   2065 	 * Transmit the URB containing the CMD data.
   2066 	 */
   2067 	len = sizeof(*mem) + sizeof(*chan);
   2068 
   2069 	memset(data_cmd->buf, 0, len);
   2070 
   2071 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2072 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2073 	    UPGT_MEMSIZE_FRAME_HEAD);
   2074 
   2075 	chan = (struct upgt_lmac_channel *)(mem + 1);
   2076 
   2077 	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   2078 	chan->header1.type = UPGT_H1_TYPE_CTRL;
   2079 	chan->header1.len = htole16(
   2080 	    sizeof(struct upgt_lmac_channel) -
   2081 	    sizeof(struct upgt_lmac_header));
   2082 
   2083 	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2084 	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
   2085 	chan->header2.flags = 0;
   2086 
   2087 	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
   2088 	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
   2089 	chan->freq6 = sc->sc_eeprom_freq6[channel];
   2090 	chan->settings = sc->sc_eeprom_freq6_settings;
   2091 	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
   2092 
   2093 	memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
   2094 	    sizeof(chan->freq3_1));
   2095 
   2096 	memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
   2097 	    sizeof(sc->sc_eeprom_freq4[channel]));
   2098 
   2099 	memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
   2100 	    sizeof(chan->freq3_2));
   2101 
   2102 	mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
   2103 
   2104 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2105 		aprint_error_dev(sc->sc_dev,
   2106 		    "could not transmit channel CMD data URB\n");
   2107 		return EIO;
   2108 	}
   2109 
   2110 	return 0;
   2111 }
   2112 
   2113 static void
   2114 upgt_set_led(struct upgt_softc *sc, int action)
   2115 {
   2116 	struct ieee80211com *ic = &sc->sc_ic;
   2117 	struct upgt_data *data_cmd = &sc->cmd_data;
   2118 	struct upgt_lmac_mem *mem;
   2119 	struct upgt_lmac_led *led;
   2120 	struct timeval t;
   2121 	int len;
   2122 
   2123 	/*
   2124 	 * Transmit the URB containing the CMD data.
   2125 	 */
   2126 	len = sizeof(*mem) + sizeof(*led);
   2127 
   2128 	memset(data_cmd->buf, 0, len);
   2129 
   2130 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2131 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2132 	    UPGT_MEMSIZE_FRAME_HEAD);
   2133 
   2134 	led = (struct upgt_lmac_led *)(mem + 1);
   2135 
   2136 	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   2137 	led->header1.type = UPGT_H1_TYPE_CTRL;
   2138 	led->header1.len = htole16(
   2139 	    sizeof(struct upgt_lmac_led) -
   2140 	    sizeof(struct upgt_lmac_header));
   2141 
   2142 	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2143 	led->header2.type = htole16(UPGT_H2_TYPE_LED);
   2144 	led->header2.flags = 0;
   2145 
   2146 	switch (action) {
   2147 	case UPGT_LED_OFF:
   2148 		led->mode = htole16(UPGT_LED_MODE_SET);
   2149 		led->action_fix = 0;
   2150 		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
   2151 		led->action_tmp_dur = 0;
   2152 		break;
   2153 	case UPGT_LED_ON:
   2154 		led->mode = htole16(UPGT_LED_MODE_SET);
   2155 		led->action_fix = 0;
   2156 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
   2157 		led->action_tmp_dur = 0;
   2158 		break;
   2159 	case UPGT_LED_BLINK:
   2160 		if (ic->ic_state != IEEE80211_S_RUN)
   2161 			return;
   2162 		if (sc->sc_led_blink)
   2163 			/* previous blink was not finished */
   2164 			return;
   2165 		led->mode = htole16(UPGT_LED_MODE_SET);
   2166 		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
   2167 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
   2168 		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
   2169 		/* lock blink */
   2170 		sc->sc_led_blink = 1;
   2171 		t.tv_sec = 0;
   2172 		t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
   2173 		callout_schedule(&sc->led_to, tvtohz(&t));
   2174 		break;
   2175 	default:
   2176 		return;
   2177 	}
   2178 
   2179 	mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
   2180 
   2181 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2182 		aprint_error_dev(sc->sc_dev,
   2183 		    "could not transmit led CMD URB\n");
   2184 	}
   2185 }
   2186 
   2187 static void
   2188 upgt_set_led_blink(void *arg)
   2189 {
   2190 	struct upgt_softc *sc = arg;
   2191 
   2192 	/* blink finished, we are ready for a next one */
   2193 	sc->sc_led_blink = 0;
   2194 	callout_stop(&sc->led_to);
   2195 }
   2196 
   2197 static int
   2198 upgt_get_stats(struct upgt_softc *sc)
   2199 {
   2200 	struct upgt_data *data_cmd = &sc->cmd_data;
   2201 	struct upgt_lmac_mem *mem;
   2202 	struct upgt_lmac_stats *stats;
   2203 	int len;
   2204 
   2205 	/*
   2206 	 * Transmit the URB containing the CMD data.
   2207 	 */
   2208 	len = sizeof(*mem) + sizeof(*stats);
   2209 
   2210 	memset(data_cmd->buf, 0, len);
   2211 
   2212 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2213 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2214 	    UPGT_MEMSIZE_FRAME_HEAD);
   2215 
   2216 	stats = (struct upgt_lmac_stats *)(mem + 1);
   2217 
   2218 	stats->header1.flags = 0;
   2219 	stats->header1.type = UPGT_H1_TYPE_CTRL;
   2220 	stats->header1.len = htole16(
   2221 	    sizeof(struct upgt_lmac_stats) -
   2222 	    sizeof(struct upgt_lmac_header));
   2223 
   2224 	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2225 	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
   2226 	stats->header2.flags = 0;
   2227 
   2228 	mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
   2229 
   2230 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2231 		aprint_error_dev(sc->sc_dev,
   2232 		    "could not transmit statistics CMD data URB\n");
   2233 		return EIO;
   2234 	}
   2235 
   2236 	return 0;
   2237 
   2238 }
   2239 
   2240 static int
   2241 upgt_alloc_tx(struct upgt_softc *sc)
   2242 {
   2243 	int i;
   2244 
   2245 	sc->tx_queued = 0;
   2246 
   2247 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   2248 		struct upgt_data *data_tx = &sc->tx_data[i];
   2249 
   2250 		data_tx->sc = sc;
   2251 
   2252 		data_tx->xfer = usbd_alloc_xfer(sc->sc_udev);
   2253 		if (data_tx->xfer == NULL) {
   2254 			aprint_error_dev(sc->sc_dev,
   2255 			    "could not allocate TX xfer\n");
   2256 			return ENOMEM;
   2257 		}
   2258 
   2259 		data_tx->buf = usbd_alloc_buffer(data_tx->xfer, MCLBYTES);
   2260 		if (data_tx->buf == NULL) {
   2261 			aprint_error_dev(sc->sc_dev,
   2262 			    "could not allocate TX buffer\n");
   2263 			return ENOMEM;
   2264 		}
   2265 	}
   2266 
   2267 	return 0;
   2268 }
   2269 
   2270 static int
   2271 upgt_alloc_rx(struct upgt_softc *sc)
   2272 {
   2273 	struct upgt_data *data_rx = &sc->rx_data;
   2274 
   2275 	data_rx->sc = sc;
   2276 
   2277 	data_rx->xfer = usbd_alloc_xfer(sc->sc_udev);
   2278 	if (data_rx->xfer == NULL) {
   2279 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
   2280 		return ENOMEM;
   2281 	}
   2282 
   2283 	data_rx->buf = usbd_alloc_buffer(data_rx->xfer, MCLBYTES);
   2284 	if (data_rx->buf == NULL) {
   2285 		aprint_error_dev(sc->sc_dev,
   2286 		    "could not allocate RX buffer\n");
   2287 		return ENOMEM;
   2288 	}
   2289 
   2290 	return 0;
   2291 }
   2292 
   2293 static int
   2294 upgt_alloc_cmd(struct upgt_softc *sc)
   2295 {
   2296 	struct upgt_data *data_cmd = &sc->cmd_data;
   2297 
   2298 	data_cmd->sc = sc;
   2299 
   2300 	data_cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
   2301 	if (data_cmd->xfer == NULL) {
   2302 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
   2303 		return ENOMEM;
   2304 	}
   2305 
   2306 	data_cmd->buf = usbd_alloc_buffer(data_cmd->xfer, MCLBYTES);
   2307 	if (data_cmd->buf == NULL) {
   2308 		aprint_error_dev(sc->sc_dev,
   2309 		    "could not allocate RX buffer\n");
   2310 		return ENOMEM;
   2311 	}
   2312 
   2313 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
   2314 
   2315 	return 0;
   2316 }
   2317 
   2318 static void
   2319 upgt_free_tx(struct upgt_softc *sc)
   2320 {
   2321 	int i;
   2322 
   2323 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   2324 		struct upgt_data *data_tx = &sc->tx_data[i];
   2325 
   2326 		if (data_tx->xfer != NULL) {
   2327 			usbd_free_xfer(data_tx->xfer);
   2328 			data_tx->xfer = NULL;
   2329 		}
   2330 
   2331 		data_tx->ni = NULL;
   2332 	}
   2333 }
   2334 
   2335 static void
   2336 upgt_free_rx(struct upgt_softc *sc)
   2337 {
   2338 	struct upgt_data *data_rx = &sc->rx_data;
   2339 
   2340 	if (data_rx->xfer != NULL) {
   2341 		usbd_free_xfer(data_rx->xfer);
   2342 		data_rx->xfer = NULL;
   2343 	}
   2344 
   2345 	data_rx->ni = NULL;
   2346 }
   2347 
   2348 static void
   2349 upgt_free_cmd(struct upgt_softc *sc)
   2350 {
   2351 	struct upgt_data *data_cmd = &sc->cmd_data;
   2352 
   2353 	if (data_cmd->xfer != NULL) {
   2354 		usbd_free_xfer(data_cmd->xfer);
   2355 		data_cmd->xfer = NULL;
   2356 	}
   2357 
   2358 	mutex_destroy(&sc->sc_mtx);
   2359 }
   2360 
   2361 static int
   2362 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
   2363     usbd_pipe_handle pipeh, uint32_t *size, int flags)
   2364 {
   2365         usbd_status status;
   2366 
   2367 	status = usbd_bulk_transfer(data->xfer, pipeh,
   2368 	    USBD_NO_COPY | flags, UPGT_USB_TIMEOUT, data->buf, size,
   2369 	    "upgt_bulk_xmit");
   2370 	if (status != USBD_NORMAL_COMPLETION) {
   2371 		aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
   2372 		    usbd_errstr(status));
   2373 		return EIO;
   2374 	}
   2375 
   2376 	return 0;
   2377 }
   2378 
   2379 #if 0
   2380 static void
   2381 upgt_hexdump(void *buf, int len)
   2382 {
   2383 	int i;
   2384 
   2385 	for (i = 0; i < len; i++) {
   2386 		if (i % 16 == 0)
   2387 			printf("%s%5i:", i ? "\n" : "", i);
   2388 		if (i % 4 == 0)
   2389 			printf(" ");
   2390 		printf("%02x", (int)*((uint8_t *)buf + i));
   2391 	}
   2392 	printf("\n");
   2393 }
   2394 #endif
   2395 
   2396 static uint32_t
   2397 upgt_crc32_le(const void *buf, size_t size)
   2398 {
   2399 	uint32_t crc;
   2400 
   2401 	crc = ether_crc32_le(buf, size);
   2402 
   2403 	/* apply final XOR value as common for CRC-32 */
   2404 	crc = htole32(crc ^ 0xffffffffU);
   2405 
   2406 	return crc;
   2407 }
   2408 
   2409 /*
   2410  * The firmware awaits a checksum for each frame we send to it.
   2411  * The algorithm used therefor is uncommon but somehow similar to CRC32.
   2412  */
   2413 static uint32_t
   2414 upgt_chksum_le(const uint32_t *buf, size_t size)
   2415 {
   2416 	int i;
   2417 	uint32_t crc = 0;
   2418 
   2419 	for (i = 0; i < size; i += sizeof(uint32_t)) {
   2420 		crc = htole32(crc ^ *buf++);
   2421 		crc = htole32((crc >> 5) ^ (crc << 3));
   2422 	}
   2423 
   2424 	return crc;
   2425 }
   2426