if_upgt.c revision 1.10.2.1 1 /* $NetBSD: if_upgt.c,v 1.10.2.1 2014/08/10 06:54:58 tls Exp $ */
2 /* $OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
3
4 /*
5 * Copyright (c) 2007 Marcus Glocker <mglocker (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.10.2.1 2014/08/10 06:54:58 tls Exp $");
22
23 #include <sys/param.h>
24 #include <sys/callout.h>
25 #include <sys/device.h>
26 #include <sys/errno.h>
27 #include <sys/kernel.h>
28 #include <sys/kthread.h>
29 #include <sys/mbuf.h>
30 #include <sys/proc.h>
31 #include <sys/sockio.h>
32 #include <sys/systm.h>
33 #include <sys/vnode.h>
34 #include <sys/bus.h>
35 #include <sys/endian.h>
36 #include <sys/intr.h>
37
38 #include <net/bpf.h>
39 #include <net/if.h>
40 #include <net/if_arp.h>
41 #include <net/if_dl.h>
42 #include <net/if_ether.h>
43 #include <net/if_media.h>
44 #include <net/if_types.h>
45
46 #include <net80211/ieee80211_var.h>
47 #include <net80211/ieee80211_radiotap.h>
48
49 #include <dev/firmload.h>
50
51 #include <dev/usb/usb.h>
52 #include <dev/usb/usbdi.h>
53 #include <dev/usb/usbdi_util.h>
54 #include <dev/usb/usbdivar.h>
55 #include <dev/usb/usbdevs.h>
56
57 #include <dev/usb/if_upgtvar.h>
58
59 /*
60 * Driver for the USB PrismGT devices.
61 *
62 * For now just USB 2.0 devices with the GW3887 chipset are supported.
63 * The driver has been written based on the firmware version 2.13.1.0_LM87.
64 *
65 * TODO's:
66 * - Fix MONITOR mode (MAC filter).
67 * - Add HOSTAP mode.
68 * - Add IBSS mode.
69 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
70 *
71 * Parts of this driver has been influenced by reading the p54u driver
72 * written by Jean-Baptiste Note <jean-baptiste.note (at) m4x.org> and
73 * Sebastien Bourdeauducq <lekernel (at) prism54.org>.
74 */
75
76 #ifdef UPGT_DEBUG
77 int upgt_debug = 2;
78 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
79 #else
80 #define DPRINTF(l, x...)
81 #endif
82
83 /*
84 * Prototypes.
85 */
86 static int upgt_match(device_t, cfdata_t, void *);
87 static void upgt_attach(device_t, device_t, void *);
88 static int upgt_detach(device_t, int);
89 static int upgt_activate(device_t, devact_t);
90
91 static void upgt_attach_hook(device_t);
92 static int upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
93 static int upgt_device_init(struct upgt_softc *);
94 static int upgt_mem_init(struct upgt_softc *);
95 static uint32_t upgt_mem_alloc(struct upgt_softc *);
96 static void upgt_mem_free(struct upgt_softc *, uint32_t);
97 static int upgt_fw_alloc(struct upgt_softc *);
98 static void upgt_fw_free(struct upgt_softc *);
99 static int upgt_fw_verify(struct upgt_softc *);
100 static int upgt_fw_load(struct upgt_softc *);
101 static int upgt_fw_copy(char *, char *, int);
102 static int upgt_eeprom_read(struct upgt_softc *);
103 static int upgt_eeprom_parse(struct upgt_softc *);
104 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
105 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
106 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
107 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
108
109 static int upgt_ioctl(struct ifnet *, u_long, void *);
110 static int upgt_init(struct ifnet *);
111 static void upgt_stop(struct upgt_softc *);
112 static int upgt_media_change(struct ifnet *);
113 static void upgt_newassoc(struct ieee80211_node *, int);
114 static int upgt_newstate(struct ieee80211com *, enum ieee80211_state,
115 int);
116 static void upgt_newstate_task(void *);
117 static void upgt_next_scan(void *);
118 static void upgt_start(struct ifnet *);
119 static void upgt_watchdog(struct ifnet *);
120 static void upgt_tx_task(void *);
121 static void upgt_tx_done(struct upgt_softc *, uint8_t *);
122 static void upgt_rx_cb(usbd_xfer_handle, usbd_private_handle, usbd_status);
123 static void upgt_rx(struct upgt_softc *, uint8_t *, int);
124 static void upgt_setup_rates(struct upgt_softc *);
125 static uint8_t upgt_rx_rate(struct upgt_softc *, const int);
126 static int upgt_set_macfilter(struct upgt_softc *, uint8_t state);
127 static int upgt_set_channel(struct upgt_softc *, unsigned);
128 static void upgt_set_led(struct upgt_softc *, int);
129 static void upgt_set_led_blink(void *);
130 static int upgt_get_stats(struct upgt_softc *);
131
132 static int upgt_alloc_tx(struct upgt_softc *);
133 static int upgt_alloc_rx(struct upgt_softc *);
134 static int upgt_alloc_cmd(struct upgt_softc *);
135 static void upgt_free_tx(struct upgt_softc *);
136 static void upgt_free_rx(struct upgt_softc *);
137 static void upgt_free_cmd(struct upgt_softc *);
138 static int upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
139 usbd_pipe_handle, uint32_t *, int);
140
141 #if 0
142 static void upgt_hexdump(void *, int);
143 #endif
144 static uint32_t upgt_crc32_le(const void *, size_t);
145 static uint32_t upgt_chksum_le(const uint32_t *, size_t);
146
147 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
148 upgt_match, upgt_attach, upgt_detach, upgt_activate);
149
150 static const struct usb_devno upgt_devs_1[] = {
151 /* version 1 devices */
152 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST120G },
153 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG_V1 }
154 };
155
156 static const struct usb_devno upgt_devs_2[] = {
157 /* version 2 devices */
158 { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_PRISM_GT },
159 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST121G },
160 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
161 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
162 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
163 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
164 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GTST },
165 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_1 },
166 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_2 },
167 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122A2 },
168 { USB_VENDOR_FSC, USB_PRODUCT_FSC_E5400 },
169 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
170 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
171 { USB_VENDOR_INTERSIL, USB_PRODUCT_INTERSIL_PRISM_GT },
172 { USB_VENDOR_PHEENET, USB_PRODUCT_PHEENET_GWU513 },
173 { USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_CPWUA054 },
174 { USB_VENDOR_SHARP, USB_PRODUCT_SHARP_RUITZ1016YCZZ },
175 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
176 { USB_VENDOR_USR, USB_PRODUCT_USR_USR5422 },
177 { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR045G },
178 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_1 },
179 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_2 },
180 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_MD40900 },
181 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_XG703A }
182 };
183
184 static int
185 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
186 size_t *sizep)
187 {
188 firmware_handle_t fh;
189 int error;
190
191 if ((error = firmware_open(dname, iname, &fh)) != 0)
192 return error;
193 *sizep = firmware_get_size(fh);
194 if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
195 firmware_close(fh);
196 return ENOMEM;
197 }
198 if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
199 firmware_free(*ucodep, *sizep);
200 firmware_close(fh);
201
202 return error;
203 }
204
205 static int
206 upgt_match(device_t parent, cfdata_t match, void *aux)
207 {
208 struct usb_attach_arg *uaa = aux;
209
210 if (usb_lookup(upgt_devs_1, uaa->vendor, uaa->product) != NULL)
211 return UMATCH_VENDOR_PRODUCT;
212
213 if (usb_lookup(upgt_devs_2, uaa->vendor, uaa->product) != NULL)
214 return UMATCH_VENDOR_PRODUCT;
215
216 return UMATCH_NONE;
217 }
218
219 static void
220 upgt_attach(device_t parent, device_t self, void *aux)
221 {
222 struct upgt_softc *sc = device_private(self);
223 struct usb_attach_arg *uaa = aux;
224 usb_interface_descriptor_t *id;
225 usb_endpoint_descriptor_t *ed;
226 usbd_status error;
227 char *devinfop;
228 int i;
229
230 aprint_naive("\n");
231 aprint_normal("\n");
232
233 /*
234 * Attach USB device.
235 */
236 sc->sc_dev = self;
237 sc->sc_udev = uaa->device;
238
239 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
240 aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
241 usbd_devinfo_free(devinfop);
242
243 /* check device type */
244 if (upgt_device_type(sc, uaa->vendor, uaa->product) != 0)
245 return;
246
247 /* set configuration number */
248 error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
249 if (error != 0) {
250 aprint_error_dev(sc->sc_dev, "failed to set configuration"
251 ", err=%s\n", usbd_errstr(error));
252 return;
253 }
254
255 /* get the first interface handle */
256 error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
257 &sc->sc_iface);
258 if (error != 0) {
259 aprint_error_dev(sc->sc_dev,
260 "could not get interface handle\n");
261 return;
262 }
263
264 /* find endpoints */
265 id = usbd_get_interface_descriptor(sc->sc_iface);
266 sc->sc_rx_no = sc->sc_tx_no = -1;
267 for (i = 0; i < id->bNumEndpoints; i++) {
268 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
269 if (ed == NULL) {
270 aprint_error_dev(sc->sc_dev,
271 "no endpoint descriptor for iface %d\n", i);
272 return;
273 }
274
275 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
276 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
277 sc->sc_tx_no = ed->bEndpointAddress;
278 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
279 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
280 sc->sc_rx_no = ed->bEndpointAddress;
281
282 /*
283 * 0x01 TX pipe
284 * 0x81 RX pipe
285 *
286 * Deprecated scheme (not used with fw version >2.5.6.x):
287 * 0x02 TX MGMT pipe
288 * 0x82 TX MGMT pipe
289 */
290 if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
291 break;
292 }
293 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
294 aprint_error_dev(sc->sc_dev, "missing endpoint\n");
295 return;
296 }
297
298 /* setup tasks and timeouts */
299 usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
300 usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
301 callout_init(&sc->scan_to, 0);
302 callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
303 callout_init(&sc->led_to, 0);
304 callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
305
306 /*
307 * Open TX and RX USB bulk pipes.
308 */
309 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
310 &sc->sc_tx_pipeh);
311 if (error != 0) {
312 aprint_error_dev(sc->sc_dev,
313 "could not open TX pipe: %s\n", usbd_errstr(error));
314 goto fail;
315 }
316 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
317 &sc->sc_rx_pipeh);
318 if (error != 0) {
319 aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
320 usbd_errstr(error));
321 goto fail;
322 }
323
324 /*
325 * Allocate TX, RX, and CMD xfers.
326 */
327 if (upgt_alloc_tx(sc) != 0)
328 goto fail;
329 if (upgt_alloc_rx(sc) != 0)
330 goto fail;
331 if (upgt_alloc_cmd(sc) != 0)
332 goto fail;
333
334 /*
335 * We need the firmware loaded from file system to complete the attach.
336 */
337 config_mountroot(self, upgt_attach_hook);
338
339 return;
340 fail:
341 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
342 }
343
344 static void
345 upgt_attach_hook(device_t arg)
346 {
347 struct upgt_softc *sc = device_private(arg);
348 struct ieee80211com *ic = &sc->sc_ic;
349 struct ifnet *ifp = &sc->sc_if;
350 usbd_status error;
351 int i;
352
353 /*
354 * Load firmware file into memory.
355 */
356 if (upgt_fw_alloc(sc) != 0)
357 goto fail;
358
359 /*
360 * Initialize the device.
361 */
362 if (upgt_device_init(sc) != 0)
363 goto fail;
364
365 /*
366 * Verify the firmware.
367 */
368 if (upgt_fw_verify(sc) != 0)
369 goto fail;
370
371 /*
372 * Calculate device memory space.
373 */
374 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
375 aprint_error_dev(sc->sc_dev,
376 "could not find memory space addresses on FW\n");
377 goto fail;
378 }
379 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
380 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
381
382 DPRINTF(1, "%s: memory address frame start=0x%08x\n",
383 device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
384 DPRINTF(1, "%s: memory address frame end=0x%08x\n",
385 device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
386 DPRINTF(1, "%s: memory address rx start=0x%08x\n",
387 device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
388
389 upgt_mem_init(sc);
390
391 /*
392 * Load the firmware.
393 */
394 if (upgt_fw_load(sc) != 0)
395 goto fail;
396
397 /*
398 * Startup the RX pipe.
399 */
400 struct upgt_data *data_rx = &sc->rx_data;
401
402 usbd_setup_xfer(data_rx->xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf,
403 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
404 error = usbd_transfer(data_rx->xfer);
405 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
406 aprint_error_dev(sc->sc_dev,
407 "could not queue RX transfer\n");
408 goto fail;
409 }
410 usbd_delay_ms(sc->sc_udev, 100);
411
412 /*
413 * Read the whole EEPROM content and parse it.
414 */
415 if (upgt_eeprom_read(sc) != 0)
416 goto fail;
417 if (upgt_eeprom_parse(sc) != 0)
418 goto fail;
419
420 /*
421 * Setup the 802.11 device.
422 */
423 ic->ic_ifp = ifp;
424 ic->ic_phytype = IEEE80211_T_OFDM;
425 ic->ic_opmode = IEEE80211_M_STA;
426 ic->ic_state = IEEE80211_S_INIT;
427 ic->ic_caps =
428 IEEE80211_C_MONITOR |
429 IEEE80211_C_SHPREAMBLE |
430 IEEE80211_C_SHSLOT;
431
432 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
433 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
434
435 for (i = 1; i <= 14; i++) {
436 ic->ic_channels[i].ic_freq =
437 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
438 ic->ic_channels[i].ic_flags =
439 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
440 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
441 }
442
443 ifp->if_softc = sc;
444 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
445 ifp->if_init = upgt_init;
446 ifp->if_ioctl = upgt_ioctl;
447 ifp->if_start = upgt_start;
448 ifp->if_watchdog = upgt_watchdog;
449 IFQ_SET_READY(&ifp->if_snd);
450 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
451
452 if_attach(ifp);
453 ieee80211_ifattach(ic);
454 ic->ic_newassoc = upgt_newassoc;
455
456 sc->sc_newstate = ic->ic_newstate;
457 ic->ic_newstate = upgt_newstate;
458 ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
459
460 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
461 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
462 &sc->sc_drvbpf);
463
464 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
465 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
466 sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
467
468 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
469 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
470 sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
471
472 aprint_normal_dev(sc->sc_dev, "address %s\n",
473 ether_sprintf(ic->ic_myaddr));
474
475 ieee80211_announce(ic);
476
477 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
478
479 /* device attached */
480 sc->sc_flags |= UPGT_DEVICE_ATTACHED;
481
482 return;
483 fail:
484 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
485 }
486
487 static int
488 upgt_detach(device_t self, int flags)
489 {
490 struct upgt_softc *sc = device_private(self);
491 struct ifnet *ifp = &sc->sc_if;
492 struct ieee80211com *ic = &sc->sc_ic;
493 int s;
494
495 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
496
497 s = splnet();
498
499 if (ifp->if_flags & IFF_RUNNING)
500 upgt_stop(sc);
501
502 /* remove tasks and timeouts */
503 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
504 usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
505 callout_destroy(&sc->scan_to);
506 callout_destroy(&sc->led_to);
507
508 /* abort and close TX / RX pipes */
509 if (sc->sc_tx_pipeh != NULL) {
510 usbd_abort_pipe(sc->sc_tx_pipeh);
511 usbd_close_pipe(sc->sc_tx_pipeh);
512 }
513 if (sc->sc_rx_pipeh != NULL) {
514 usbd_abort_pipe(sc->sc_rx_pipeh);
515 usbd_close_pipe(sc->sc_rx_pipeh);
516 }
517
518 /* free xfers */
519 upgt_free_tx(sc);
520 upgt_free_rx(sc);
521 upgt_free_cmd(sc);
522
523 /* free firmware */
524 upgt_fw_free(sc);
525
526 if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
527 /* detach interface */
528 bpf_detach(ifp);
529 ieee80211_ifdetach(ic);
530 if_detach(ifp);
531 }
532
533 splx(s);
534
535 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
536
537 return 0;
538 }
539
540 static int
541 upgt_activate(device_t self, devact_t act)
542 {
543 struct upgt_softc *sc = device_private(self);
544
545 switch (act) {
546 case DVACT_DEACTIVATE:
547 if_deactivate(&sc->sc_if);
548 return 0;
549 default:
550 return EOPNOTSUPP;
551 }
552 }
553
554 static int
555 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
556 {
557
558 if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
559 sc->sc_device_type = 1;
560 /* XXX */
561 aprint_error_dev(sc->sc_dev,
562 "version 1 devices not supported yet\n");
563 return 1;
564 } else
565 sc->sc_device_type = 2;
566
567 return 0;
568 }
569
570 static int
571 upgt_device_init(struct upgt_softc *sc)
572 {
573 struct upgt_data *data_cmd = &sc->cmd_data;
574 const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
575 int len;
576
577 len = sizeof(init_cmd);
578 memcpy(data_cmd->buf, init_cmd, len);
579 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
580 aprint_error_dev(sc->sc_dev,
581 "could not send device init string\n");
582 return EIO;
583 }
584 usbd_delay_ms(sc->sc_udev, 100);
585
586 DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
587
588 return 0;
589 }
590
591 static int
592 upgt_mem_init(struct upgt_softc *sc)
593 {
594 int i;
595
596 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
597 sc->sc_memory.page[i].used = 0;
598
599 if (i == 0) {
600 /*
601 * The first memory page is always reserved for
602 * command data.
603 */
604 sc->sc_memory.page[i].addr =
605 sc->sc_memaddr_frame_start + MCLBYTES;
606 } else {
607 sc->sc_memory.page[i].addr =
608 sc->sc_memory.page[i - 1].addr + MCLBYTES;
609 }
610
611 if (sc->sc_memory.page[i].addr + MCLBYTES >=
612 sc->sc_memaddr_frame_end)
613 break;
614
615 DPRINTF(2, "%s: memory address page %d=0x%08x\n",
616 device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
617 }
618
619 sc->sc_memory.pages = i;
620
621 DPRINTF(2, "%s: memory pages=%d\n",
622 device_xname(sc->sc_dev), sc->sc_memory.pages);
623
624 return 0;
625 }
626
627 static uint32_t
628 upgt_mem_alloc(struct upgt_softc *sc)
629 {
630 int i;
631
632 for (i = 0; i < sc->sc_memory.pages; i++) {
633 if (sc->sc_memory.page[i].used == 0) {
634 sc->sc_memory.page[i].used = 1;
635 return sc->sc_memory.page[i].addr;
636 }
637 }
638
639 return 0;
640 }
641
642 static void
643 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
644 {
645 int i;
646
647 for (i = 0; i < sc->sc_memory.pages; i++) {
648 if (sc->sc_memory.page[i].addr == addr) {
649 sc->sc_memory.page[i].used = 0;
650 return;
651 }
652 }
653
654 aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
655 addr);
656 }
657
658
659 static int
660 upgt_fw_alloc(struct upgt_softc *sc)
661 {
662 const char *name = "upgt-gw3887";
663 int error;
664
665 if (sc->sc_fw == NULL) {
666 error = firmware_load("upgt", name, &sc->sc_fw,
667 &sc->sc_fw_size);
668 if (error != 0) {
669 if (error == ENOENT) {
670 /*
671 * The firmware file for upgt(4) is not in
672 * the default distribution due to its lisence
673 * so explicitly notify it if the firmware file
674 * is not found.
675 */
676 aprint_error_dev(sc->sc_dev,
677 "firmware file %s is not installed\n",
678 name);
679 aprint_error_dev(sc->sc_dev,
680 "(it is not included in the default"
681 " distribution)\n");
682 aprint_error_dev(sc->sc_dev,
683 "see upgt(4) man page for details about "
684 "firmware installation\n");
685 } else {
686 aprint_error_dev(sc->sc_dev,
687 "could not read firmware %s\n", name);
688 }
689 return EIO;
690 }
691 }
692
693 DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
694 name);
695
696 return 0;
697 }
698
699 static void
700 upgt_fw_free(struct upgt_softc *sc)
701 {
702
703 if (sc->sc_fw != NULL) {
704 firmware_free(sc->sc_fw, sc->sc_fw_size);
705 sc->sc_fw = NULL;
706 DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
707 }
708 }
709
710 static int
711 upgt_fw_verify(struct upgt_softc *sc)
712 {
713 struct upgt_fw_bra_option *bra_option;
714 uint32_t bra_option_type, bra_option_len;
715 uint32_t *uc;
716 int offset, bra_end = 0;
717
718 /*
719 * Seek to beginning of Boot Record Area (BRA).
720 */
721 for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
722 uc = (uint32_t *)(sc->sc_fw + offset);
723 if (*uc == 0)
724 break;
725 }
726 for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
727 uc = (uint32_t *)(sc->sc_fw + offset);
728 if (*uc != 0)
729 break;
730 }
731 if (offset == sc->sc_fw_size) {
732 aprint_error_dev(sc->sc_dev,
733 "firmware Boot Record Area not found\n");
734 return EIO;
735 }
736 DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
737 device_xname(sc->sc_dev), offset);
738
739 /*
740 * Parse Boot Record Area (BRA) options.
741 */
742 while (offset < sc->sc_fw_size && bra_end == 0) {
743 /* get current BRA option */
744 bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
745 bra_option_type = le32toh(bra_option->type);
746 bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
747
748 switch (bra_option_type) {
749 case UPGT_BRA_TYPE_FW:
750 DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
751 device_xname(sc->sc_dev), bra_option_len);
752
753 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
754 aprint_error_dev(sc->sc_dev,
755 "wrong UPGT_BRA_TYPE_FW len\n");
756 return EIO;
757 }
758 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
759 bra_option_len) == 0) {
760 sc->sc_fw_type = UPGT_FWTYPE_LM86;
761 break;
762 }
763 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
764 bra_option_len) == 0) {
765 sc->sc_fw_type = UPGT_FWTYPE_LM87;
766 break;
767 }
768 if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
769 bra_option_len) == 0) {
770 sc->sc_fw_type = UPGT_FWTYPE_FMAC;
771 break;
772 }
773 aprint_error_dev(sc->sc_dev,
774 "unsupported firmware type\n");
775 return EIO;
776 case UPGT_BRA_TYPE_VERSION:
777 DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
778 device_xname(sc->sc_dev), bra_option_len);
779 break;
780 case UPGT_BRA_TYPE_DEPIF:
781 DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
782 device_xname(sc->sc_dev), bra_option_len);
783 break;
784 case UPGT_BRA_TYPE_EXPIF:
785 DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
786 device_xname(sc->sc_dev), bra_option_len);
787 break;
788 case UPGT_BRA_TYPE_DESCR:
789 DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
790 device_xname(sc->sc_dev), bra_option_len);
791
792 struct upgt_fw_bra_descr *descr =
793 (struct upgt_fw_bra_descr *)bra_option->data;
794
795 sc->sc_memaddr_frame_start =
796 le32toh(descr->memaddr_space_start);
797 sc->sc_memaddr_frame_end =
798 le32toh(descr->memaddr_space_end);
799
800 DPRINTF(2, "%s: memory address space start=0x%08x\n",
801 device_xname(sc->sc_dev),
802 sc->sc_memaddr_frame_start);
803 DPRINTF(2, "%s: memory address space end=0x%08x\n",
804 device_xname(sc->sc_dev),
805 sc->sc_memaddr_frame_end);
806 break;
807 case UPGT_BRA_TYPE_END:
808 DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
809 device_xname(sc->sc_dev), bra_option_len);
810 bra_end = 1;
811 break;
812 default:
813 DPRINTF(1, "%s: unknown BRA option len=%d\n",
814 device_xname(sc->sc_dev), bra_option_len);
815 return EIO;
816 }
817
818 /* jump to next BRA option */
819 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
820 }
821
822 DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
823
824 return 0;
825 }
826
827 static int
828 upgt_fw_load(struct upgt_softc *sc)
829 {
830 struct upgt_data *data_cmd = &sc->cmd_data;
831 struct upgt_data *data_rx = &sc->rx_data;
832 struct upgt_fw_x2_header *x2;
833 const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
834 int offset, bsize, n, i, len;
835 uint32_t crc;
836
837 /* send firmware start load command */
838 len = sizeof(start_fwload_cmd);
839 memcpy(data_cmd->buf, start_fwload_cmd, len);
840 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
841 aprint_error_dev(sc->sc_dev,
842 "could not send start_firmware_load command\n");
843 return EIO;
844 }
845
846 /* send X2 header */
847 len = sizeof(struct upgt_fw_x2_header);
848 x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
849 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
850 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
851 x2->len = htole32(sc->sc_fw_size);
852 x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
853 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
854 sizeof(uint32_t));
855 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
856 aprint_error_dev(sc->sc_dev,
857 "could not send firmware X2 header\n");
858 return EIO;
859 }
860
861 /* download firmware */
862 for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
863 if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
864 bsize = UPGT_FW_BLOCK_SIZE;
865 else
866 bsize = sc->sc_fw_size - offset;
867
868 n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
869
870 DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
871 device_xname(sc->sc_dev), offset, n, bsize);
872
873 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
874 != 0) {
875 aprint_error_dev(sc->sc_dev,
876 "error while downloading firmware block\n");
877 return EIO;
878 }
879
880 bsize = n;
881 }
882 DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
883
884 /* load firmware */
885 crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
886 *((uint32_t *)(data_cmd->buf) ) = crc;
887 *((uint8_t *)(data_cmd->buf) + 4) = 'g';
888 *((uint8_t *)(data_cmd->buf) + 5) = '\r';
889 len = 6;
890 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
891 aprint_error_dev(sc->sc_dev,
892 "could not send load_firmware command\n");
893 return EIO;
894 }
895
896 for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
897 len = UPGT_FW_BLOCK_SIZE;
898 memset(data_rx->buf, 0, 2);
899 if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
900 USBD_SHORT_XFER_OK) != 0) {
901 aprint_error_dev(sc->sc_dev,
902 "could not read firmware response\n");
903 return EIO;
904 }
905
906 if (memcmp(data_rx->buf, "OK", 2) == 0)
907 break; /* firmware load was successful */
908 }
909 if (i == UPGT_FIRMWARE_TIMEOUT) {
910 aprint_error_dev(sc->sc_dev, "firmware load failed\n");
911 return EIO;
912 }
913 DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
914
915 return 0;
916 }
917
918 /*
919 * While copying the version 2 firmware, we need to replace two characters:
920 *
921 * 0x7e -> 0x7d 0x5e
922 * 0x7d -> 0x7d 0x5d
923 */
924 static int
925 upgt_fw_copy(char *src, char *dst, int size)
926 {
927 int i, j;
928
929 for (i = 0, j = 0; i < size && j < size; i++) {
930 switch (src[i]) {
931 case 0x7e:
932 dst[j] = 0x7d;
933 j++;
934 dst[j] = 0x5e;
935 j++;
936 break;
937 case 0x7d:
938 dst[j] = 0x7d;
939 j++;
940 dst[j] = 0x5d;
941 j++;
942 break;
943 default:
944 dst[j] = src[i];
945 j++;
946 break;
947 }
948 }
949
950 return i;
951 }
952
953 static int
954 upgt_eeprom_read(struct upgt_softc *sc)
955 {
956 struct upgt_data *data_cmd = &sc->cmd_data;
957 struct upgt_lmac_mem *mem;
958 struct upgt_lmac_eeprom *eeprom;
959 int offset, block, len;
960
961 offset = 0;
962 block = UPGT_EEPROM_BLOCK_SIZE;
963 while (offset < UPGT_EEPROM_SIZE) {
964 DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
965 device_xname(sc->sc_dev), offset, block);
966
967 /*
968 * Transmit the URB containing the CMD data.
969 */
970 len = sizeof(*mem) + sizeof(*eeprom) + block;
971
972 memset(data_cmd->buf, 0, len);
973
974 mem = (struct upgt_lmac_mem *)data_cmd->buf;
975 mem->addr = htole32(sc->sc_memaddr_frame_start +
976 UPGT_MEMSIZE_FRAME_HEAD);
977
978 eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
979 eeprom->header1.flags = 0;
980 eeprom->header1.type = UPGT_H1_TYPE_CTRL;
981 eeprom->header1.len = htole16((
982 sizeof(struct upgt_lmac_eeprom) -
983 sizeof(struct upgt_lmac_header)) + block);
984
985 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
986 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
987 eeprom->header2.flags = 0;
988
989 eeprom->offset = htole16(offset);
990 eeprom->len = htole16(block);
991
992 mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
993 len - sizeof(*mem));
994
995 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
996 USBD_FORCE_SHORT_XFER) != 0) {
997 aprint_error_dev(sc->sc_dev,
998 "could not transmit EEPROM data URB\n");
999 return EIO;
1000 }
1001 if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) {
1002 aprint_error_dev(sc->sc_dev,
1003 "timeout while waiting for EEPROM data\n");
1004 return EIO;
1005 }
1006
1007 offset += block;
1008 if (UPGT_EEPROM_SIZE - offset < block)
1009 block = UPGT_EEPROM_SIZE - offset;
1010 }
1011
1012 return 0;
1013 }
1014
1015 static int
1016 upgt_eeprom_parse(struct upgt_softc *sc)
1017 {
1018 struct ieee80211com *ic = &sc->sc_ic;
1019 struct upgt_eeprom_header *eeprom_header;
1020 struct upgt_eeprom_option *eeprom_option;
1021 uint16_t option_len;
1022 uint16_t option_type;
1023 uint16_t preamble_len;
1024 int option_end = 0;
1025
1026 /* calculate eeprom options start offset */
1027 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1028 preamble_len = le16toh(eeprom_header->preamble_len);
1029 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1030 (sizeof(struct upgt_eeprom_header) + preamble_len));
1031
1032 while (!option_end) {
1033 /* the eeprom option length is stored in words */
1034 option_len =
1035 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1036 option_type =
1037 le16toh(eeprom_option->type);
1038
1039 switch (option_type) {
1040 case UPGT_EEPROM_TYPE_NAME:
1041 DPRINTF(1, "%s: EEPROM name len=%d\n",
1042 device_xname(sc->sc_dev), option_len);
1043 break;
1044 case UPGT_EEPROM_TYPE_SERIAL:
1045 DPRINTF(1, "%s: EEPROM serial len=%d\n",
1046 device_xname(sc->sc_dev), option_len);
1047 break;
1048 case UPGT_EEPROM_TYPE_MAC:
1049 DPRINTF(1, "%s: EEPROM mac len=%d\n",
1050 device_xname(sc->sc_dev), option_len);
1051
1052 IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
1053 break;
1054 case UPGT_EEPROM_TYPE_HWRX:
1055 DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
1056 device_xname(sc->sc_dev), option_len);
1057
1058 upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1059 break;
1060 case UPGT_EEPROM_TYPE_CHIP:
1061 DPRINTF(1, "%s: EEPROM chip len=%d\n",
1062 device_xname(sc->sc_dev), option_len);
1063 break;
1064 case UPGT_EEPROM_TYPE_FREQ3:
1065 DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
1066 device_xname(sc->sc_dev), option_len);
1067
1068 upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1069 option_len);
1070 break;
1071 case UPGT_EEPROM_TYPE_FREQ4:
1072 DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
1073 device_xname(sc->sc_dev), option_len);
1074
1075 upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1076 option_len);
1077 break;
1078 case UPGT_EEPROM_TYPE_FREQ5:
1079 DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
1080 device_xname(sc->sc_dev), option_len);
1081 break;
1082 case UPGT_EEPROM_TYPE_FREQ6:
1083 DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
1084 device_xname(sc->sc_dev), option_len);
1085
1086 upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1087 option_len);
1088 break;
1089 case UPGT_EEPROM_TYPE_END:
1090 DPRINTF(1, "%s: EEPROM end len=%d\n",
1091 device_xname(sc->sc_dev), option_len);
1092 option_end = 1;
1093 break;
1094 case UPGT_EEPROM_TYPE_OFF:
1095 DPRINTF(1, "%s: EEPROM off without end option\n",
1096 device_xname(sc->sc_dev));
1097 return EIO;
1098 default:
1099 DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1100 device_xname(sc->sc_dev), option_type, option_len);
1101 break;
1102 }
1103
1104 /* jump to next EEPROM option */
1105 eeprom_option = (struct upgt_eeprom_option *)
1106 (eeprom_option->data + option_len);
1107 }
1108
1109 return 0;
1110 }
1111
1112 static void
1113 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1114 {
1115 struct upgt_eeprom_option_hwrx *option_hwrx;
1116
1117 option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1118
1119 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1120
1121 DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1122 device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
1123 }
1124
1125 static void
1126 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1127 {
1128 struct upgt_eeprom_freq3_header *freq3_header;
1129 struct upgt_lmac_freq3 *freq3;
1130 int i, elements, flags;
1131 unsigned channel;
1132
1133 freq3_header = (struct upgt_eeprom_freq3_header *)data;
1134 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1135
1136 flags = freq3_header->flags;
1137 elements = freq3_header->elements;
1138
1139 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1140 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1141 __USE(flags);
1142
1143 for (i = 0; i < elements; i++) {
1144 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1145
1146 sc->sc_eeprom_freq3[channel] = freq3[i];
1147
1148 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1149 device_xname(sc->sc_dev),
1150 le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1151 }
1152 }
1153
1154 static void
1155 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1156 {
1157 struct upgt_eeprom_freq4_header *freq4_header;
1158 struct upgt_eeprom_freq4_1 *freq4_1;
1159 struct upgt_eeprom_freq4_2 *freq4_2;
1160 int i, j, elements, settings, flags;
1161 unsigned channel;
1162
1163 freq4_header = (struct upgt_eeprom_freq4_header *)data;
1164 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1165
1166 flags = freq4_header->flags;
1167 elements = freq4_header->elements;
1168 settings = freq4_header->settings;
1169
1170 /* we need this value later */
1171 sc->sc_eeprom_freq6_settings = freq4_header->settings;
1172
1173 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1174 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1175 DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
1176 __USE(flags);
1177
1178 for (i = 0; i < elements; i++) {
1179 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1180
1181 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1182
1183 for (j = 0; j < settings; j++) {
1184 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1185 sc->sc_eeprom_freq4[channel][j].pad = 0;
1186 }
1187
1188 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1189 device_xname(sc->sc_dev),
1190 le16toh(freq4_1[i].freq), channel);
1191 }
1192 }
1193
1194 static void
1195 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1196 {
1197 struct upgt_lmac_freq6 *freq6;
1198 int i, elements;
1199 unsigned channel;
1200
1201 freq6 = (struct upgt_lmac_freq6 *)data;
1202
1203 elements = len / sizeof(struct upgt_lmac_freq6);
1204
1205 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1206
1207 for (i = 0; i < elements; i++) {
1208 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1209
1210 sc->sc_eeprom_freq6[channel] = freq6[i];
1211
1212 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1213 device_xname(sc->sc_dev),
1214 le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1215 }
1216 }
1217
1218 static int
1219 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1220 {
1221 struct upgt_softc *sc = ifp->if_softc;
1222 struct ieee80211com *ic = &sc->sc_ic;
1223 int s, error = 0;
1224
1225 s = splnet();
1226
1227 switch (cmd) {
1228 case SIOCSIFFLAGS:
1229 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1230 break;
1231 if (ifp->if_flags & IFF_UP) {
1232 if ((ifp->if_flags & IFF_RUNNING) == 0)
1233 upgt_init(ifp);
1234 } else {
1235 if (ifp->if_flags & IFF_RUNNING)
1236 upgt_stop(sc);
1237 }
1238 break;
1239 case SIOCADDMULTI:
1240 case SIOCDELMULTI:
1241 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1242 /* setup multicast filter, etc */
1243 error = 0;
1244 }
1245 break;
1246 default:
1247 error = ieee80211_ioctl(ic, cmd, data);
1248 break;
1249 }
1250
1251 if (error == ENETRESET) {
1252 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1253 (IFF_UP | IFF_RUNNING))
1254 upgt_init(ifp);
1255 error = 0;
1256 }
1257
1258 splx(s);
1259
1260 return error;
1261 }
1262
1263 static int
1264 upgt_init(struct ifnet *ifp)
1265 {
1266 struct upgt_softc *sc = ifp->if_softc;
1267 struct ieee80211com *ic = &sc->sc_ic;
1268
1269 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1270
1271 if (ifp->if_flags & IFF_RUNNING)
1272 upgt_stop(sc);
1273
1274 ifp->if_flags |= IFF_RUNNING;
1275 ifp->if_flags &= ~IFF_OACTIVE;
1276
1277 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1278
1279 /* setup device rates */
1280 upgt_setup_rates(sc);
1281
1282 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1283 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1284 else
1285 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1286
1287 return 0;
1288 }
1289
1290 static void
1291 upgt_stop(struct upgt_softc *sc)
1292 {
1293 struct ieee80211com *ic = &sc->sc_ic;
1294 struct ifnet *ifp = &sc->sc_if;
1295
1296 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1297
1298 /* device down */
1299 ifp->if_timer = 0;
1300 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1301
1302 /* change device back to initial state */
1303 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1304 }
1305
1306 static int
1307 upgt_media_change(struct ifnet *ifp)
1308 {
1309 struct upgt_softc *sc = ifp->if_softc;
1310 int error;
1311
1312 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1313
1314 if ((error = ieee80211_media_change(ifp) != ENETRESET))
1315 return error;
1316
1317 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1318 (IFF_UP | IFF_RUNNING)) {
1319 /* give pending USB transfers a chance to finish */
1320 usbd_delay_ms(sc->sc_udev, 100);
1321 upgt_init(ifp);
1322 }
1323
1324 return 0;
1325 }
1326
1327 static void
1328 upgt_newassoc(struct ieee80211_node *ni, int isnew)
1329 {
1330
1331 ni->ni_txrate = 0;
1332 }
1333
1334 static int
1335 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1336 {
1337 struct upgt_softc *sc = ic->ic_ifp->if_softc;
1338
1339 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1340 callout_stop(&sc->scan_to);
1341
1342 /* do it in a process context */
1343 sc->sc_state = nstate;
1344 sc->sc_arg = arg;
1345 usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
1346
1347 return 0;
1348 }
1349
1350 static void
1351 upgt_newstate_task(void *arg)
1352 {
1353 struct upgt_softc *sc = arg;
1354 struct ieee80211com *ic = &sc->sc_ic;
1355 struct ieee80211_node *ni;
1356 unsigned channel;
1357
1358 mutex_enter(&sc->sc_mtx);
1359
1360 switch (sc->sc_state) {
1361 case IEEE80211_S_INIT:
1362 DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1363 device_xname(sc->sc_dev));
1364
1365 /* do not accept any frames if the device is down */
1366 upgt_set_macfilter(sc, IEEE80211_S_INIT);
1367 upgt_set_led(sc, UPGT_LED_OFF);
1368 break;
1369 case IEEE80211_S_SCAN:
1370 DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1371 device_xname(sc->sc_dev));
1372
1373 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1374 upgt_set_channel(sc, channel);
1375 upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1376 callout_schedule(&sc->scan_to, hz / 5);
1377 break;
1378 case IEEE80211_S_AUTH:
1379 DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1380 device_xname(sc->sc_dev));
1381
1382 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1383 upgt_set_channel(sc, channel);
1384 break;
1385 case IEEE80211_S_ASSOC:
1386 DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1387 device_xname(sc->sc_dev));
1388
1389 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1390 upgt_set_channel(sc, channel);
1391 break;
1392 case IEEE80211_S_RUN:
1393 DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1394 device_xname(sc->sc_dev));
1395
1396 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1397 upgt_set_channel(sc, channel);
1398
1399 ni = ic->ic_bss;
1400
1401 /*
1402 * TX rate control is done by the firmware.
1403 * Report the maximum rate which is available therefore.
1404 */
1405 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1406
1407 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1408 upgt_set_macfilter(sc, IEEE80211_S_RUN);
1409 upgt_set_led(sc, UPGT_LED_ON);
1410 break;
1411 }
1412
1413 mutex_exit(&sc->sc_mtx);
1414
1415 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1416 }
1417
1418 static void
1419 upgt_next_scan(void *arg)
1420 {
1421 struct upgt_softc *sc = arg;
1422 struct ieee80211com *ic = &sc->sc_ic;
1423
1424 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1425
1426 if (ic->ic_state == IEEE80211_S_SCAN)
1427 ieee80211_next_scan(ic);
1428 }
1429
1430 static void
1431 upgt_start(struct ifnet *ifp)
1432 {
1433 struct upgt_softc *sc = ifp->if_softc;
1434 struct ieee80211com *ic = &sc->sc_ic;
1435 struct ether_header *eh;
1436 struct ieee80211_node *ni;
1437 struct mbuf *m;
1438 int i;
1439
1440 /* don't transmit packets if interface is busy or down */
1441 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1442 return;
1443
1444 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1445
1446 for (i = 0; i < UPGT_TX_COUNT; i++) {
1447 struct upgt_data *data_tx = &sc->tx_data[i];
1448
1449 if (data_tx->m != NULL)
1450 continue;
1451
1452 IF_POLL(&ic->ic_mgtq, m);
1453 if (m != NULL) {
1454 /* management frame */
1455 IF_DEQUEUE(&ic->ic_mgtq, m);
1456
1457 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1458 m->m_pkthdr.rcvif = NULL;
1459
1460 bpf_mtap3(ic->ic_rawbpf, m);
1461
1462 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1463 aprint_error_dev(sc->sc_dev,
1464 "no free prism memory\n");
1465 m_freem(m);
1466 ifp->if_oerrors++;
1467 break;
1468 }
1469 data_tx->ni = ni;
1470 data_tx->m = m;
1471 sc->tx_queued++;
1472 } else {
1473 /* data frame */
1474 if (ic->ic_state != IEEE80211_S_RUN)
1475 break;
1476
1477 IFQ_POLL(&ifp->if_snd, m);
1478 if (m == NULL)
1479 break;
1480
1481 IFQ_DEQUEUE(&ifp->if_snd, m);
1482 if (m->m_len < sizeof(struct ether_header) &&
1483 !(m = m_pullup(m, sizeof(struct ether_header))))
1484 continue;
1485
1486 eh = mtod(m, struct ether_header *);
1487 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1488 if (ni == NULL) {
1489 m_freem(m);
1490 continue;
1491 }
1492
1493 bpf_mtap(ifp, m);
1494
1495 m = ieee80211_encap(ic, m, ni);
1496 if (m == NULL) {
1497 ieee80211_free_node(ni);
1498 continue;
1499 }
1500
1501 bpf_mtap3(ic->ic_rawbpf, m);
1502
1503 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1504 aprint_error_dev(sc->sc_dev,
1505 "no free prism memory\n");
1506 m_freem(m);
1507 ieee80211_free_node(ni);
1508 ifp->if_oerrors++;
1509 break;
1510 }
1511 data_tx->ni = ni;
1512 data_tx->m = m;
1513 sc->tx_queued++;
1514 }
1515 }
1516
1517 if (sc->tx_queued > 0) {
1518 DPRINTF(2, "%s: tx_queued=%d\n",
1519 device_xname(sc->sc_dev), sc->tx_queued);
1520 /* process the TX queue in process context */
1521 ifp->if_timer = 5;
1522 ifp->if_flags |= IFF_OACTIVE;
1523 usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1524 usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
1525 }
1526 }
1527
1528 static void
1529 upgt_watchdog(struct ifnet *ifp)
1530 {
1531 struct upgt_softc *sc = ifp->if_softc;
1532 struct ieee80211com *ic = &sc->sc_ic;
1533
1534 if (ic->ic_state == IEEE80211_S_INIT)
1535 return;
1536
1537 aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1538
1539 /* TODO: what shall we do on TX timeout? */
1540
1541 ieee80211_watchdog(ic);
1542 }
1543
1544 static void
1545 upgt_tx_task(void *arg)
1546 {
1547 struct upgt_softc *sc = arg;
1548 struct ieee80211com *ic = &sc->sc_ic;
1549 struct ieee80211_frame *wh;
1550 struct ieee80211_key *k;
1551 struct ifnet *ifp = &sc->sc_if;
1552 struct upgt_lmac_mem *mem;
1553 struct upgt_lmac_tx_desc *txdesc;
1554 struct mbuf *m;
1555 uint32_t addr;
1556 int i, len, pad, s;
1557 usbd_status error;
1558
1559 mutex_enter(&sc->sc_mtx);
1560 upgt_set_led(sc, UPGT_LED_BLINK);
1561 mutex_exit(&sc->sc_mtx);
1562
1563 s = splnet();
1564
1565 for (i = 0; i < UPGT_TX_COUNT; i++) {
1566 struct upgt_data *data_tx = &sc->tx_data[i];
1567
1568 if (data_tx->m == NULL)
1569 continue;
1570
1571 m = data_tx->m;
1572 addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1573
1574 /*
1575 * Software crypto.
1576 */
1577 wh = mtod(m, struct ieee80211_frame *);
1578
1579 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1580 k = ieee80211_crypto_encap(ic, data_tx->ni, m);
1581 if (k == NULL) {
1582 m_freem(m);
1583 data_tx->m = NULL;
1584 ieee80211_free_node(data_tx->ni);
1585 data_tx->ni = NULL;
1586 ifp->if_oerrors++;
1587 break;
1588 }
1589
1590 /* in case packet header moved, reset pointer */
1591 wh = mtod(m, struct ieee80211_frame *);
1592 }
1593
1594 /*
1595 * Transmit the URB containing the TX data.
1596 */
1597 memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
1598
1599 mem = (struct upgt_lmac_mem *)data_tx->buf;
1600 mem->addr = htole32(addr);
1601
1602 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1603
1604 /* XXX differ between data and mgmt frames? */
1605 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1606 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1607 txdesc->header1.len = htole16(m->m_pkthdr.len);
1608
1609 txdesc->header2.reqid = htole32(data_tx->addr);
1610 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1611 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1612
1613 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1614 IEEE80211_FC0_TYPE_MGT) {
1615 /* always send mgmt frames at lowest rate (DS1) */
1616 memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1617 } else {
1618 memcpy(txdesc->rates, sc->sc_cur_rateset,
1619 sizeof(txdesc->rates));
1620 }
1621 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1622 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1623
1624 if (sc->sc_drvbpf != NULL) {
1625 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1626
1627 tap->wt_flags = 0;
1628 tap->wt_rate = 0; /* TODO: where to get from? */
1629 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1630 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1631
1632 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1633 }
1634
1635 /* copy frame below our TX descriptor header */
1636 m_copydata(m, 0, m->m_pkthdr.len,
1637 data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
1638
1639 /* calculate frame size */
1640 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1641
1642 if (len & 3) {
1643 /* we need to align the frame to a 4 byte boundary */
1644 pad = 4 - (len & 3);
1645 memset(data_tx->buf + len, 0, pad);
1646 len += pad;
1647 }
1648
1649 /* calculate frame checksum */
1650 mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1651 len - sizeof(*mem));
1652
1653 /* we do not need the mbuf anymore */
1654 m_freem(m);
1655 data_tx->m = NULL;
1656
1657 ieee80211_free_node(data_tx->ni);
1658 data_tx->ni = NULL;
1659
1660 DPRINTF(2, "%s: TX start data sending\n",
1661 device_xname(sc->sc_dev));
1662
1663 usbd_setup_xfer(data_tx->xfer, sc->sc_tx_pipeh, data_tx,
1664 data_tx->buf, len, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1665 UPGT_USB_TIMEOUT, NULL);
1666 error = usbd_transfer(data_tx->xfer);
1667 if (error != USBD_NORMAL_COMPLETION &&
1668 error != USBD_IN_PROGRESS) {
1669 aprint_error_dev(sc->sc_dev,
1670 "could not transmit TX data URB\n");
1671 ifp->if_oerrors++;
1672 break;
1673 }
1674
1675 DPRINTF(2, "%s: TX sent (%d bytes)\n",
1676 device_xname(sc->sc_dev), len);
1677 }
1678
1679 splx(s);
1680
1681 /*
1682 * If we don't regulary read the device statistics, the RX queue
1683 * will stall. It's strange, but it works, so we keep reading
1684 * the statistics here. *shrug*
1685 */
1686 mutex_enter(&sc->sc_mtx);
1687 upgt_get_stats(sc);
1688 mutex_exit(&sc->sc_mtx);
1689 }
1690
1691 static void
1692 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1693 {
1694 struct ifnet *ifp = &sc->sc_if;
1695 struct upgt_lmac_tx_done_desc *desc;
1696 int i, s;
1697
1698 s = splnet();
1699
1700 desc = (struct upgt_lmac_tx_done_desc *)data;
1701
1702 for (i = 0; i < UPGT_TX_COUNT; i++) {
1703 struct upgt_data *data_tx = &sc->tx_data[i];
1704
1705 if (data_tx->addr == le32toh(desc->header2.reqid)) {
1706 upgt_mem_free(sc, data_tx->addr);
1707 data_tx->addr = 0;
1708
1709 sc->tx_queued--;
1710 ifp->if_opackets++;
1711
1712 DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
1713 DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1714 le32toh(desc->header2.reqid),
1715 le16toh(desc->status),
1716 le16toh(desc->rssi));
1717 DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
1718 break;
1719 }
1720 }
1721
1722 if (sc->tx_queued == 0) {
1723 /* TX queued was processed, continue */
1724 ifp->if_timer = 0;
1725 ifp->if_flags &= ~IFF_OACTIVE;
1726 upgt_start(ifp);
1727 }
1728
1729 splx(s);
1730 }
1731
1732 static void
1733 upgt_rx_cb(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1734 {
1735 struct upgt_data *data_rx = priv;
1736 struct upgt_softc *sc = data_rx->sc;
1737 int len;
1738 struct upgt_lmac_header *header;
1739 struct upgt_lmac_eeprom *eeprom;
1740 uint8_t h1_type;
1741 uint16_t h2_type;
1742
1743 DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1744
1745 if (status != USBD_NORMAL_COMPLETION) {
1746 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1747 return;
1748 if (status == USBD_STALLED)
1749 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1750 goto skip;
1751 }
1752 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1753
1754 /*
1755 * Check what type of frame came in.
1756 */
1757 header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1758
1759 h1_type = header->header1.type;
1760 h2_type = le16toh(header->header2.type);
1761
1762 if (h1_type == UPGT_H1_TYPE_CTRL &&
1763 h2_type == UPGT_H2_TYPE_EEPROM) {
1764 eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1765 uint16_t eeprom_offset = le16toh(eeprom->offset);
1766 uint16_t eeprom_len = le16toh(eeprom->len);
1767
1768 DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1769 device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
1770
1771 memcpy(sc->sc_eeprom + eeprom_offset,
1772 data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1773 eeprom_len);
1774
1775 /* EEPROM data has arrived in time, wakeup tsleep() */
1776 wakeup(sc);
1777 } else
1778 if (h1_type == UPGT_H1_TYPE_CTRL &&
1779 h2_type == UPGT_H2_TYPE_TX_DONE) {
1780 DPRINTF(2, "%s: received 802.11 TX done\n",
1781 device_xname(sc->sc_dev));
1782
1783 upgt_tx_done(sc, data_rx->buf + 4);
1784 } else
1785 if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1786 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1787 DPRINTF(3, "%s: received 802.11 RX data\n",
1788 device_xname(sc->sc_dev));
1789
1790 upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
1791 } else
1792 if (h1_type == UPGT_H1_TYPE_CTRL &&
1793 h2_type == UPGT_H2_TYPE_STATS) {
1794 DPRINTF(2, "%s: received statistic data\n",
1795 device_xname(sc->sc_dev));
1796
1797 /* TODO: what could we do with the statistic data? */
1798 } else {
1799 /* ignore unknown frame types */
1800 DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1801 device_xname(sc->sc_dev), header->header1.type);
1802 }
1803
1804 skip: /* setup new transfer */
1805 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, MCLBYTES,
1806 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1807 (void)usbd_transfer(xfer);
1808 }
1809
1810 static void
1811 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1812 {
1813 struct ieee80211com *ic = &sc->sc_ic;
1814 struct ifnet *ifp = &sc->sc_if;
1815 struct upgt_lmac_rx_desc *rxdesc;
1816 struct ieee80211_frame *wh;
1817 struct ieee80211_node *ni;
1818 struct mbuf *m;
1819 int s;
1820
1821 /* access RX packet descriptor */
1822 rxdesc = (struct upgt_lmac_rx_desc *)data;
1823
1824 /* create mbuf which is suitable for strict alignment archs */
1825 #define ETHER_ALIGN 0
1826 m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL);
1827 if (m == NULL) {
1828 DPRINTF(1, "%s: could not create RX mbuf\n",
1829 device_xname(sc->sc_dev));
1830 ifp->if_ierrors++;
1831 return;
1832 }
1833
1834 s = splnet();
1835
1836 if (sc->sc_drvbpf != NULL) {
1837 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1838
1839 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1840 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1841 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1842 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1843 tap->wr_antsignal = rxdesc->rssi;
1844
1845 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1846 }
1847
1848 /* trim FCS */
1849 m_adj(m, -IEEE80211_CRC_LEN);
1850
1851 wh = mtod(m, struct ieee80211_frame *);
1852 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1853
1854 /* push the frame up to the 802.11 stack */
1855 ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
1856
1857 /* node is no longer needed */
1858 ieee80211_free_node(ni);
1859
1860 splx(s);
1861
1862 DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
1863 }
1864
1865 static void
1866 upgt_setup_rates(struct upgt_softc *sc)
1867 {
1868 struct ieee80211com *ic = &sc->sc_ic;
1869
1870 /*
1871 * 0x01 = OFMD6 0x10 = DS1
1872 * 0x04 = OFDM9 0x11 = DS2
1873 * 0x06 = OFDM12 0x12 = DS5
1874 * 0x07 = OFDM18 0x13 = DS11
1875 * 0x08 = OFDM24
1876 * 0x09 = OFDM36
1877 * 0x0a = OFDM48
1878 * 0x0b = OFDM54
1879 */
1880 const uint8_t rateset_auto_11b[] =
1881 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1882 const uint8_t rateset_auto_11g[] =
1883 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1884 const uint8_t rateset_fix_11bg[] =
1885 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1886 0x08, 0x09, 0x0a, 0x0b };
1887
1888 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1889 /*
1890 * Automatic rate control is done by the device.
1891 * We just pass the rateset from which the device
1892 * will pickup a rate.
1893 */
1894 if (ic->ic_curmode == IEEE80211_MODE_11B)
1895 memcpy(sc->sc_cur_rateset, rateset_auto_11b,
1896 sizeof(sc->sc_cur_rateset));
1897 if (ic->ic_curmode == IEEE80211_MODE_11G ||
1898 ic->ic_curmode == IEEE80211_MODE_AUTO)
1899 memcpy(sc->sc_cur_rateset, rateset_auto_11g,
1900 sizeof(sc->sc_cur_rateset));
1901 } else {
1902 /* set a fixed rate */
1903 memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1904 sizeof(sc->sc_cur_rateset));
1905 }
1906 }
1907
1908 static uint8_t
1909 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1910 {
1911 struct ieee80211com *ic = &sc->sc_ic;
1912
1913 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1914 if (rate < 0 || rate > 3)
1915 /* invalid rate */
1916 return 0;
1917
1918 switch (rate) {
1919 case 0:
1920 return 2;
1921 case 1:
1922 return 4;
1923 case 2:
1924 return 11;
1925 case 3:
1926 return 22;
1927 default:
1928 return 0;
1929 }
1930 }
1931
1932 if (ic->ic_curmode == IEEE80211_MODE_11G) {
1933 if (rate < 0 || rate > 11)
1934 /* invalid rate */
1935 return 0;
1936
1937 switch (rate) {
1938 case 0:
1939 return 2;
1940 case 1:
1941 return 4;
1942 case 2:
1943 return 11;
1944 case 3:
1945 return 22;
1946 case 4:
1947 return 12;
1948 case 5:
1949 return 18;
1950 case 6:
1951 return 24;
1952 case 7:
1953 return 36;
1954 case 8:
1955 return 48;
1956 case 9:
1957 return 72;
1958 case 10:
1959 return 96;
1960 case 11:
1961 return 108;
1962 default:
1963 return 0;
1964 }
1965 }
1966
1967 return 0;
1968 }
1969
1970 static int
1971 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
1972 {
1973 struct ieee80211com *ic = &sc->sc_ic;
1974 struct ieee80211_node *ni = ic->ic_bss;
1975 struct upgt_data *data_cmd = &sc->cmd_data;
1976 struct upgt_lmac_mem *mem;
1977 struct upgt_lmac_filter *filter;
1978 int len;
1979 const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1980
1981 /*
1982 * Transmit the URB containing the CMD data.
1983 */
1984 len = sizeof(*mem) + sizeof(*filter);
1985
1986 memset(data_cmd->buf, 0, len);
1987
1988 mem = (struct upgt_lmac_mem *)data_cmd->buf;
1989 mem->addr = htole32(sc->sc_memaddr_frame_start +
1990 UPGT_MEMSIZE_FRAME_HEAD);
1991
1992 filter = (struct upgt_lmac_filter *)(mem + 1);
1993
1994 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
1995 filter->header1.type = UPGT_H1_TYPE_CTRL;
1996 filter->header1.len = htole16(
1997 sizeof(struct upgt_lmac_filter) -
1998 sizeof(struct upgt_lmac_header));
1999
2000 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2001 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
2002 filter->header2.flags = 0;
2003
2004 switch (state) {
2005 case IEEE80211_S_INIT:
2006 DPRINTF(1, "%s: set MAC filter to INIT\n",
2007 device_xname(sc->sc_dev));
2008
2009 filter->type = htole16(UPGT_FILTER_TYPE_RESET);
2010 break;
2011 case IEEE80211_S_SCAN:
2012 DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
2013 device_xname(sc->sc_dev), ether_sprintf(broadcast));
2014
2015 filter->type = htole16(UPGT_FILTER_TYPE_NONE);
2016 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2017 IEEE80211_ADDR_COPY(filter->src, broadcast);
2018 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2019 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2020 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2021 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2022 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2023 break;
2024 case IEEE80211_S_RUN:
2025 DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
2026 device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
2027
2028 filter->type = htole16(UPGT_FILTER_TYPE_STA);
2029 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2030 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
2031 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2032 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2033 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2034 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2035 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2036 break;
2037 default:
2038 aprint_error_dev(sc->sc_dev,
2039 "MAC filter does not know that state\n");
2040 break;
2041 }
2042
2043 mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
2044
2045 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2046 aprint_error_dev(sc->sc_dev,
2047 "could not transmit macfilter CMD data URB\n");
2048 return EIO;
2049 }
2050
2051 return 0;
2052 }
2053
2054 static int
2055 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
2056 {
2057 struct upgt_data *data_cmd = &sc->cmd_data;
2058 struct upgt_lmac_mem *mem;
2059 struct upgt_lmac_channel *chan;
2060 int len;
2061
2062 DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
2063 channel);
2064
2065 /*
2066 * Transmit the URB containing the CMD data.
2067 */
2068 len = sizeof(*mem) + sizeof(*chan);
2069
2070 memset(data_cmd->buf, 0, len);
2071
2072 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2073 mem->addr = htole32(sc->sc_memaddr_frame_start +
2074 UPGT_MEMSIZE_FRAME_HEAD);
2075
2076 chan = (struct upgt_lmac_channel *)(mem + 1);
2077
2078 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2079 chan->header1.type = UPGT_H1_TYPE_CTRL;
2080 chan->header1.len = htole16(
2081 sizeof(struct upgt_lmac_channel) -
2082 sizeof(struct upgt_lmac_header));
2083
2084 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2085 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
2086 chan->header2.flags = 0;
2087
2088 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
2089 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
2090 chan->freq6 = sc->sc_eeprom_freq6[channel];
2091 chan->settings = sc->sc_eeprom_freq6_settings;
2092 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
2093
2094 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
2095 sizeof(chan->freq3_1));
2096
2097 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
2098 sizeof(sc->sc_eeprom_freq4[channel]));
2099
2100 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
2101 sizeof(chan->freq3_2));
2102
2103 mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
2104
2105 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2106 aprint_error_dev(sc->sc_dev,
2107 "could not transmit channel CMD data URB\n");
2108 return EIO;
2109 }
2110
2111 return 0;
2112 }
2113
2114 static void
2115 upgt_set_led(struct upgt_softc *sc, int action)
2116 {
2117 struct ieee80211com *ic = &sc->sc_ic;
2118 struct upgt_data *data_cmd = &sc->cmd_data;
2119 struct upgt_lmac_mem *mem;
2120 struct upgt_lmac_led *led;
2121 struct timeval t;
2122 int len;
2123
2124 /*
2125 * Transmit the URB containing the CMD data.
2126 */
2127 len = sizeof(*mem) + sizeof(*led);
2128
2129 memset(data_cmd->buf, 0, len);
2130
2131 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2132 mem->addr = htole32(sc->sc_memaddr_frame_start +
2133 UPGT_MEMSIZE_FRAME_HEAD);
2134
2135 led = (struct upgt_lmac_led *)(mem + 1);
2136
2137 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2138 led->header1.type = UPGT_H1_TYPE_CTRL;
2139 led->header1.len = htole16(
2140 sizeof(struct upgt_lmac_led) -
2141 sizeof(struct upgt_lmac_header));
2142
2143 led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2144 led->header2.type = htole16(UPGT_H2_TYPE_LED);
2145 led->header2.flags = 0;
2146
2147 switch (action) {
2148 case UPGT_LED_OFF:
2149 led->mode = htole16(UPGT_LED_MODE_SET);
2150 led->action_fix = 0;
2151 led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2152 led->action_tmp_dur = 0;
2153 break;
2154 case UPGT_LED_ON:
2155 led->mode = htole16(UPGT_LED_MODE_SET);
2156 led->action_fix = 0;
2157 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2158 led->action_tmp_dur = 0;
2159 break;
2160 case UPGT_LED_BLINK:
2161 if (ic->ic_state != IEEE80211_S_RUN)
2162 return;
2163 if (sc->sc_led_blink)
2164 /* previous blink was not finished */
2165 return;
2166 led->mode = htole16(UPGT_LED_MODE_SET);
2167 led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2168 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2169 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2170 /* lock blink */
2171 sc->sc_led_blink = 1;
2172 t.tv_sec = 0;
2173 t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
2174 callout_schedule(&sc->led_to, tvtohz(&t));
2175 break;
2176 default:
2177 return;
2178 }
2179
2180 mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
2181
2182 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2183 aprint_error_dev(sc->sc_dev,
2184 "could not transmit led CMD URB\n");
2185 }
2186 }
2187
2188 static void
2189 upgt_set_led_blink(void *arg)
2190 {
2191 struct upgt_softc *sc = arg;
2192
2193 /* blink finished, we are ready for a next one */
2194 sc->sc_led_blink = 0;
2195 callout_stop(&sc->led_to);
2196 }
2197
2198 static int
2199 upgt_get_stats(struct upgt_softc *sc)
2200 {
2201 struct upgt_data *data_cmd = &sc->cmd_data;
2202 struct upgt_lmac_mem *mem;
2203 struct upgt_lmac_stats *stats;
2204 int len;
2205
2206 /*
2207 * Transmit the URB containing the CMD data.
2208 */
2209 len = sizeof(*mem) + sizeof(*stats);
2210
2211 memset(data_cmd->buf, 0, len);
2212
2213 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2214 mem->addr = htole32(sc->sc_memaddr_frame_start +
2215 UPGT_MEMSIZE_FRAME_HEAD);
2216
2217 stats = (struct upgt_lmac_stats *)(mem + 1);
2218
2219 stats->header1.flags = 0;
2220 stats->header1.type = UPGT_H1_TYPE_CTRL;
2221 stats->header1.len = htole16(
2222 sizeof(struct upgt_lmac_stats) -
2223 sizeof(struct upgt_lmac_header));
2224
2225 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2226 stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2227 stats->header2.flags = 0;
2228
2229 mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
2230
2231 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2232 aprint_error_dev(sc->sc_dev,
2233 "could not transmit statistics CMD data URB\n");
2234 return EIO;
2235 }
2236
2237 return 0;
2238
2239 }
2240
2241 static int
2242 upgt_alloc_tx(struct upgt_softc *sc)
2243 {
2244 int i;
2245
2246 sc->tx_queued = 0;
2247
2248 for (i = 0; i < UPGT_TX_COUNT; i++) {
2249 struct upgt_data *data_tx = &sc->tx_data[i];
2250
2251 data_tx->sc = sc;
2252
2253 data_tx->xfer = usbd_alloc_xfer(sc->sc_udev);
2254 if (data_tx->xfer == NULL) {
2255 aprint_error_dev(sc->sc_dev,
2256 "could not allocate TX xfer\n");
2257 return ENOMEM;
2258 }
2259
2260 data_tx->buf = usbd_alloc_buffer(data_tx->xfer, MCLBYTES);
2261 if (data_tx->buf == NULL) {
2262 aprint_error_dev(sc->sc_dev,
2263 "could not allocate TX buffer\n");
2264 return ENOMEM;
2265 }
2266 }
2267
2268 return 0;
2269 }
2270
2271 static int
2272 upgt_alloc_rx(struct upgt_softc *sc)
2273 {
2274 struct upgt_data *data_rx = &sc->rx_data;
2275
2276 data_rx->sc = sc;
2277
2278 data_rx->xfer = usbd_alloc_xfer(sc->sc_udev);
2279 if (data_rx->xfer == NULL) {
2280 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2281 return ENOMEM;
2282 }
2283
2284 data_rx->buf = usbd_alloc_buffer(data_rx->xfer, MCLBYTES);
2285 if (data_rx->buf == NULL) {
2286 aprint_error_dev(sc->sc_dev,
2287 "could not allocate RX buffer\n");
2288 return ENOMEM;
2289 }
2290
2291 return 0;
2292 }
2293
2294 static int
2295 upgt_alloc_cmd(struct upgt_softc *sc)
2296 {
2297 struct upgt_data *data_cmd = &sc->cmd_data;
2298
2299 data_cmd->sc = sc;
2300
2301 data_cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
2302 if (data_cmd->xfer == NULL) {
2303 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2304 return ENOMEM;
2305 }
2306
2307 data_cmd->buf = usbd_alloc_buffer(data_cmd->xfer, MCLBYTES);
2308 if (data_cmd->buf == NULL) {
2309 aprint_error_dev(sc->sc_dev,
2310 "could not allocate RX buffer\n");
2311 return ENOMEM;
2312 }
2313
2314 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
2315
2316 return 0;
2317 }
2318
2319 static void
2320 upgt_free_tx(struct upgt_softc *sc)
2321 {
2322 int i;
2323
2324 for (i = 0; i < UPGT_TX_COUNT; i++) {
2325 struct upgt_data *data_tx = &sc->tx_data[i];
2326
2327 if (data_tx->xfer != NULL) {
2328 usbd_free_xfer(data_tx->xfer);
2329 data_tx->xfer = NULL;
2330 }
2331
2332 data_tx->ni = NULL;
2333 }
2334 }
2335
2336 static void
2337 upgt_free_rx(struct upgt_softc *sc)
2338 {
2339 struct upgt_data *data_rx = &sc->rx_data;
2340
2341 if (data_rx->xfer != NULL) {
2342 usbd_free_xfer(data_rx->xfer);
2343 data_rx->xfer = NULL;
2344 }
2345
2346 data_rx->ni = NULL;
2347 }
2348
2349 static void
2350 upgt_free_cmd(struct upgt_softc *sc)
2351 {
2352 struct upgt_data *data_cmd = &sc->cmd_data;
2353
2354 if (data_cmd->xfer != NULL) {
2355 usbd_free_xfer(data_cmd->xfer);
2356 data_cmd->xfer = NULL;
2357 }
2358
2359 mutex_destroy(&sc->sc_mtx);
2360 }
2361
2362 static int
2363 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2364 usbd_pipe_handle pipeh, uint32_t *size, int flags)
2365 {
2366 usbd_status status;
2367
2368 status = usbd_bulk_transfer(data->xfer, pipeh,
2369 USBD_NO_COPY | flags, UPGT_USB_TIMEOUT, data->buf, size,
2370 "upgt_bulk_xmit");
2371 if (status != USBD_NORMAL_COMPLETION) {
2372 aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
2373 usbd_errstr(status));
2374 return EIO;
2375 }
2376
2377 return 0;
2378 }
2379
2380 #if 0
2381 static void
2382 upgt_hexdump(void *buf, int len)
2383 {
2384 int i;
2385
2386 for (i = 0; i < len; i++) {
2387 if (i % 16 == 0)
2388 printf("%s%5i:", i ? "\n" : "", i);
2389 if (i % 4 == 0)
2390 printf(" ");
2391 printf("%02x", (int)*((uint8_t *)buf + i));
2392 }
2393 printf("\n");
2394 }
2395 #endif
2396
2397 static uint32_t
2398 upgt_crc32_le(const void *buf, size_t size)
2399 {
2400 uint32_t crc;
2401
2402 crc = ether_crc32_le(buf, size);
2403
2404 /* apply final XOR value as common for CRC-32 */
2405 crc = htole32(crc ^ 0xffffffffU);
2406
2407 return crc;
2408 }
2409
2410 /*
2411 * The firmware awaits a checksum for each frame we send to it.
2412 * The algorithm used therefor is uncommon but somehow similar to CRC32.
2413 */
2414 static uint32_t
2415 upgt_chksum_le(const uint32_t *buf, size_t size)
2416 {
2417 int i;
2418 uint32_t crc = 0;
2419
2420 for (i = 0; i < size; i += sizeof(uint32_t)) {
2421 crc = htole32(crc ^ *buf++);
2422 crc = htole32((crc >> 5) ^ (crc << 3));
2423 }
2424
2425 return crc;
2426 }
2427