if_upgt.c revision 1.12.2.1 1 /* $NetBSD: if_upgt.c,v 1.12.2.1 2017/04/05 19:54:19 snj Exp $ */
2 /* $OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
3
4 /*
5 * Copyright (c) 2007 Marcus Glocker <mglocker (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.12.2.1 2017/04/05 19:54:19 snj Exp $");
22
23 #ifdef _KERNEL_OPT
24 #include "opt_usb.h"
25 #endif
26
27 #include <sys/param.h>
28 #include <sys/callout.h>
29 #include <sys/device.h>
30 #include <sys/errno.h>
31 #include <sys/kernel.h>
32 #include <sys/kthread.h>
33 #include <sys/mbuf.h>
34 #include <sys/proc.h>
35 #include <sys/sockio.h>
36 #include <sys/systm.h>
37 #include <sys/vnode.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/intr.h>
41
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/if_dl.h>
46 #include <net/if_ether.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_radiotap.h>
52
53 #include <dev/firmload.h>
54
55 #include <dev/usb/usb.h>
56 #include <dev/usb/usbdi.h>
57 #include <dev/usb/usbdi_util.h>
58 #include <dev/usb/usbdivar.h>
59 #include <dev/usb/usbdevs.h>
60
61 #include <dev/usb/if_upgtvar.h>
62
63 /*
64 * Driver for the USB PrismGT devices.
65 *
66 * For now just USB 2.0 devices with the GW3887 chipset are supported.
67 * The driver has been written based on the firmware version 2.13.1.0_LM87.
68 *
69 * TODO's:
70 * - Fix MONITOR mode (MAC filter).
71 * - Add HOSTAP mode.
72 * - Add IBSS mode.
73 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
74 *
75 * Parts of this driver has been influenced by reading the p54u driver
76 * written by Jean-Baptiste Note <jean-baptiste.note (at) m4x.org> and
77 * Sebastien Bourdeauducq <lekernel (at) prism54.org>.
78 */
79
80 #ifdef UPGT_DEBUG
81 int upgt_debug = 2;
82 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
83 #else
84 #define DPRINTF(l, x...)
85 #endif
86
87 /*
88 * Prototypes.
89 */
90 static int upgt_match(device_t, cfdata_t, void *);
91 static void upgt_attach(device_t, device_t, void *);
92 static int upgt_detach(device_t, int);
93 static int upgt_activate(device_t, devact_t);
94
95 static void upgt_attach_hook(device_t);
96 static int upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
97 static int upgt_device_init(struct upgt_softc *);
98 static int upgt_mem_init(struct upgt_softc *);
99 static uint32_t upgt_mem_alloc(struct upgt_softc *);
100 static void upgt_mem_free(struct upgt_softc *, uint32_t);
101 static int upgt_fw_alloc(struct upgt_softc *);
102 static void upgt_fw_free(struct upgt_softc *);
103 static int upgt_fw_verify(struct upgt_softc *);
104 static int upgt_fw_load(struct upgt_softc *);
105 static int upgt_fw_copy(char *, char *, int);
106 static int upgt_eeprom_read(struct upgt_softc *);
107 static int upgt_eeprom_parse(struct upgt_softc *);
108 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
109 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
110 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
111 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
112
113 static int upgt_ioctl(struct ifnet *, u_long, void *);
114 static int upgt_init(struct ifnet *);
115 static void upgt_stop(struct upgt_softc *);
116 static int upgt_media_change(struct ifnet *);
117 static void upgt_newassoc(struct ieee80211_node *, int);
118 static int upgt_newstate(struct ieee80211com *, enum ieee80211_state,
119 int);
120 static void upgt_newstate_task(void *);
121 static void upgt_next_scan(void *);
122 static void upgt_start(struct ifnet *);
123 static void upgt_watchdog(struct ifnet *);
124 static void upgt_tx_task(void *);
125 static void upgt_tx_done(struct upgt_softc *, uint8_t *);
126 static void upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
127 static void upgt_rx(struct upgt_softc *, uint8_t *, int);
128 static void upgt_setup_rates(struct upgt_softc *);
129 static uint8_t upgt_rx_rate(struct upgt_softc *, const int);
130 static int upgt_set_macfilter(struct upgt_softc *, uint8_t);
131 static int upgt_set_channel(struct upgt_softc *, unsigned);
132 static void upgt_set_led(struct upgt_softc *, int);
133 static void upgt_set_led_blink(void *);
134 static int upgt_get_stats(struct upgt_softc *);
135
136 static int upgt_alloc_tx(struct upgt_softc *);
137 static int upgt_alloc_rx(struct upgt_softc *);
138 static int upgt_alloc_cmd(struct upgt_softc *);
139 static void upgt_free_tx(struct upgt_softc *);
140 static void upgt_free_rx(struct upgt_softc *);
141 static void upgt_free_cmd(struct upgt_softc *);
142 static int upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
143 struct usbd_pipe *, uint32_t *, int);
144
145 #if 0
146 static void upgt_hexdump(void *, int);
147 #endif
148 static uint32_t upgt_crc32_le(const void *, size_t);
149 static uint32_t upgt_chksum_le(const uint32_t *, size_t);
150
151 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
152 upgt_match, upgt_attach, upgt_detach, upgt_activate);
153
154 static const struct usb_devno upgt_devs_1[] = {
155 /* version 1 devices */
156 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST120G },
157 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG_V1 }
158 };
159
160 static const struct usb_devno upgt_devs_2[] = {
161 /* version 2 devices */
162 { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_PRISM_GT },
163 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST121G },
164 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
165 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
166 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
167 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
168 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GTST },
169 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_1 },
170 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_2 },
171 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122A2 },
172 { USB_VENDOR_FSC, USB_PRODUCT_FSC_E5400 },
173 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
174 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
175 { USB_VENDOR_INTERSIL, USB_PRODUCT_INTERSIL_PRISM_GT },
176 { USB_VENDOR_PHEENET, USB_PRODUCT_PHEENET_GWU513 },
177 { USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_CPWUA054 },
178 { USB_VENDOR_SHARP, USB_PRODUCT_SHARP_RUITZ1016YCZZ },
179 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
180 { USB_VENDOR_USR, USB_PRODUCT_USR_USR5422 },
181 { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR045G },
182 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_1 },
183 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_2 },
184 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_MD40900 },
185 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_XG703A }
186 };
187
188 static int
189 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
190 size_t *sizep)
191 {
192 firmware_handle_t fh;
193 int error;
194
195 if ((error = firmware_open(dname, iname, &fh)) != 0)
196 return error;
197 *sizep = firmware_get_size(fh);
198 if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
199 firmware_close(fh);
200 return ENOMEM;
201 }
202 if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
203 firmware_free(*ucodep, *sizep);
204 firmware_close(fh);
205
206 return error;
207 }
208
209 static int
210 upgt_match(device_t parent, cfdata_t match, void *aux)
211 {
212 struct usb_attach_arg *uaa = aux;
213
214 if (usb_lookup(upgt_devs_1, uaa->uaa_vendor, uaa->uaa_product) != NULL)
215 return UMATCH_VENDOR_PRODUCT;
216
217 if (usb_lookup(upgt_devs_2, uaa->uaa_vendor, uaa->uaa_product) != NULL)
218 return UMATCH_VENDOR_PRODUCT;
219
220 return UMATCH_NONE;
221 }
222
223 static void
224 upgt_attach(device_t parent, device_t self, void *aux)
225 {
226 struct upgt_softc *sc = device_private(self);
227 struct usb_attach_arg *uaa = aux;
228 usb_interface_descriptor_t *id;
229 usb_endpoint_descriptor_t *ed;
230 usbd_status error;
231 char *devinfop;
232 int i;
233
234 aprint_naive("\n");
235 aprint_normal("\n");
236
237 /*
238 * Attach USB device.
239 */
240 sc->sc_dev = self;
241 sc->sc_udev = uaa->uaa_device;
242
243 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
244 aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
245 usbd_devinfo_free(devinfop);
246
247 /* check device type */
248 if (upgt_device_type(sc, uaa->uaa_vendor, uaa->uaa_product) != 0)
249 return;
250
251 /* set configuration number */
252 error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
253 if (error != 0) {
254 aprint_error_dev(sc->sc_dev, "failed to set configuration"
255 ", err=%s\n", usbd_errstr(error));
256 return;
257 }
258
259 /* get the first interface handle */
260 error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
261 &sc->sc_iface);
262 if (error != 0) {
263 aprint_error_dev(sc->sc_dev,
264 "could not get interface handle\n");
265 return;
266 }
267
268 /* find endpoints */
269 id = usbd_get_interface_descriptor(sc->sc_iface);
270 sc->sc_rx_no = sc->sc_tx_no = -1;
271 for (i = 0; i < id->bNumEndpoints; i++) {
272 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
273 if (ed == NULL) {
274 aprint_error_dev(sc->sc_dev,
275 "no endpoint descriptor for iface %d\n", i);
276 return;
277 }
278
279 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
280 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
281 sc->sc_tx_no = ed->bEndpointAddress;
282 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
283 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
284 sc->sc_rx_no = ed->bEndpointAddress;
285
286 /*
287 * 0x01 TX pipe
288 * 0x81 RX pipe
289 *
290 * Deprecated scheme (not used with fw version >2.5.6.x):
291 * 0x02 TX MGMT pipe
292 * 0x82 TX MGMT pipe
293 */
294 if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
295 break;
296 }
297 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
298 aprint_error_dev(sc->sc_dev, "missing endpoint\n");
299 return;
300 }
301
302 /* setup tasks and timeouts */
303 usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
304 usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
305 callout_init(&sc->scan_to, 0);
306 callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
307 callout_init(&sc->led_to, 0);
308 callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
309
310 /*
311 * Open TX and RX USB bulk pipes.
312 */
313 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
314 &sc->sc_tx_pipeh);
315 if (error != 0) {
316 aprint_error_dev(sc->sc_dev,
317 "could not open TX pipe: %s\n", usbd_errstr(error));
318 goto fail;
319 }
320 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
321 &sc->sc_rx_pipeh);
322 if (error != 0) {
323 aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
324 usbd_errstr(error));
325 goto fail;
326 }
327
328 /*
329 * Allocate TX, RX, and CMD xfers.
330 */
331 if (upgt_alloc_tx(sc) != 0)
332 goto fail;
333 if (upgt_alloc_rx(sc) != 0)
334 goto fail;
335 if (upgt_alloc_cmd(sc) != 0)
336 goto fail;
337
338 /*
339 * We need the firmware loaded from file system to complete the attach.
340 */
341 config_mountroot(self, upgt_attach_hook);
342
343 return;
344 fail:
345 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
346 }
347
348 static void
349 upgt_attach_hook(device_t arg)
350 {
351 struct upgt_softc *sc = device_private(arg);
352 struct ieee80211com *ic = &sc->sc_ic;
353 struct ifnet *ifp = &sc->sc_if;
354 usbd_status error;
355 int i;
356
357 /*
358 * Load firmware file into memory.
359 */
360 if (upgt_fw_alloc(sc) != 0)
361 goto fail;
362
363 /*
364 * Initialize the device.
365 */
366 if (upgt_device_init(sc) != 0)
367 goto fail;
368
369 /*
370 * Verify the firmware.
371 */
372 if (upgt_fw_verify(sc) != 0)
373 goto fail;
374
375 /*
376 * Calculate device memory space.
377 */
378 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
379 aprint_error_dev(sc->sc_dev,
380 "could not find memory space addresses on FW\n");
381 goto fail;
382 }
383 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
384 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
385
386 DPRINTF(1, "%s: memory address frame start=0x%08x\n",
387 device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
388 DPRINTF(1, "%s: memory address frame end=0x%08x\n",
389 device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
390 DPRINTF(1, "%s: memory address rx start=0x%08x\n",
391 device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
392
393 upgt_mem_init(sc);
394
395 /*
396 * Load the firmware.
397 */
398 if (upgt_fw_load(sc) != 0)
399 goto fail;
400
401 /*
402 * Startup the RX pipe.
403 */
404 struct upgt_data *data_rx = &sc->rx_data;
405
406 usbd_setup_xfer(data_rx->xfer, data_rx, data_rx->buf,
407 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
408 error = usbd_transfer(data_rx->xfer);
409 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
410 aprint_error_dev(sc->sc_dev,
411 "could not queue RX transfer\n");
412 goto fail;
413 }
414 usbd_delay_ms(sc->sc_udev, 100);
415
416 /*
417 * Read the whole EEPROM content and parse it.
418 */
419 if (upgt_eeprom_read(sc) != 0)
420 goto fail;
421 if (upgt_eeprom_parse(sc) != 0)
422 goto fail;
423
424 /*
425 * Setup the 802.11 device.
426 */
427 ic->ic_ifp = ifp;
428 ic->ic_phytype = IEEE80211_T_OFDM;
429 ic->ic_opmode = IEEE80211_M_STA;
430 ic->ic_state = IEEE80211_S_INIT;
431 ic->ic_caps =
432 IEEE80211_C_MONITOR |
433 IEEE80211_C_SHPREAMBLE |
434 IEEE80211_C_SHSLOT;
435
436 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
437 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
438
439 for (i = 1; i <= 14; i++) {
440 ic->ic_channels[i].ic_freq =
441 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
442 ic->ic_channels[i].ic_flags =
443 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
444 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
445 }
446
447 ifp->if_softc = sc;
448 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
449 ifp->if_init = upgt_init;
450 ifp->if_ioctl = upgt_ioctl;
451 ifp->if_start = upgt_start;
452 ifp->if_watchdog = upgt_watchdog;
453 IFQ_SET_READY(&ifp->if_snd);
454 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
455
456 if_attach(ifp);
457 ieee80211_ifattach(ic);
458 ic->ic_newassoc = upgt_newassoc;
459
460 sc->sc_newstate = ic->ic_newstate;
461 ic->ic_newstate = upgt_newstate;
462 ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
463
464 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
465 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
466 &sc->sc_drvbpf);
467
468 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
469 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
470 sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
471
472 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
473 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
474 sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
475
476 aprint_normal_dev(sc->sc_dev, "address %s\n",
477 ether_sprintf(ic->ic_myaddr));
478
479 ieee80211_announce(ic);
480
481 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
482
483 /* device attached */
484 sc->sc_flags |= UPGT_DEVICE_ATTACHED;
485
486 return;
487 fail:
488 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
489 }
490
491 static int
492 upgt_detach(device_t self, int flags)
493 {
494 struct upgt_softc *sc = device_private(self);
495 struct ifnet *ifp = &sc->sc_if;
496 struct ieee80211com *ic = &sc->sc_ic;
497 int s;
498
499 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
500
501 s = splnet();
502
503 if (ifp->if_flags & IFF_RUNNING)
504 upgt_stop(sc);
505
506 /* remove tasks and timeouts */
507 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
508 usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
509 callout_destroy(&sc->scan_to);
510 callout_destroy(&sc->led_to);
511
512 /* abort and close TX / RX pipes */
513 if (sc->sc_tx_pipeh != NULL) {
514 usbd_abort_pipe(sc->sc_tx_pipeh);
515 }
516 if (sc->sc_rx_pipeh != NULL) {
517 usbd_abort_pipe(sc->sc_rx_pipeh);
518 }
519
520 /* free xfers */
521 upgt_free_tx(sc);
522 upgt_free_rx(sc);
523 upgt_free_cmd(sc);
524
525 /* Close TX / RX pipes */
526 if (sc->sc_tx_pipeh != NULL) {
527 usbd_close_pipe(sc->sc_tx_pipeh);
528 }
529 if (sc->sc_rx_pipeh != NULL) {
530 usbd_close_pipe(sc->sc_rx_pipeh);
531 }
532
533 /* free firmware */
534 upgt_fw_free(sc);
535
536 if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
537 /* detach interface */
538 bpf_detach(ifp);
539 ieee80211_ifdetach(ic);
540 if_detach(ifp);
541 }
542
543 splx(s);
544
545 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
546
547 return 0;
548 }
549
550 static int
551 upgt_activate(device_t self, devact_t act)
552 {
553 struct upgt_softc *sc = device_private(self);
554
555 switch (act) {
556 case DVACT_DEACTIVATE:
557 if_deactivate(&sc->sc_if);
558 return 0;
559 default:
560 return EOPNOTSUPP;
561 }
562 }
563
564 static int
565 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
566 {
567
568 if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
569 sc->sc_device_type = 1;
570 /* XXX */
571 aprint_error_dev(sc->sc_dev,
572 "version 1 devices not supported yet\n");
573 return 1;
574 } else
575 sc->sc_device_type = 2;
576
577 return 0;
578 }
579
580 static int
581 upgt_device_init(struct upgt_softc *sc)
582 {
583 struct upgt_data *data_cmd = &sc->cmd_data;
584 const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
585 int len;
586
587 len = sizeof(init_cmd);
588 memcpy(data_cmd->buf, init_cmd, len);
589 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
590 aprint_error_dev(sc->sc_dev,
591 "could not send device init string\n");
592 return EIO;
593 }
594 usbd_delay_ms(sc->sc_udev, 100);
595
596 DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
597
598 return 0;
599 }
600
601 static int
602 upgt_mem_init(struct upgt_softc *sc)
603 {
604 int i;
605
606 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
607 sc->sc_memory.page[i].used = 0;
608
609 if (i == 0) {
610 /*
611 * The first memory page is always reserved for
612 * command data.
613 */
614 sc->sc_memory.page[i].addr =
615 sc->sc_memaddr_frame_start + MCLBYTES;
616 } else {
617 sc->sc_memory.page[i].addr =
618 sc->sc_memory.page[i - 1].addr + MCLBYTES;
619 }
620
621 if (sc->sc_memory.page[i].addr + MCLBYTES >=
622 sc->sc_memaddr_frame_end)
623 break;
624
625 DPRINTF(2, "%s: memory address page %d=0x%08x\n",
626 device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
627 }
628
629 sc->sc_memory.pages = i;
630
631 DPRINTF(2, "%s: memory pages=%d\n",
632 device_xname(sc->sc_dev), sc->sc_memory.pages);
633
634 return 0;
635 }
636
637 static uint32_t
638 upgt_mem_alloc(struct upgt_softc *sc)
639 {
640 int i;
641
642 for (i = 0; i < sc->sc_memory.pages; i++) {
643 if (sc->sc_memory.page[i].used == 0) {
644 sc->sc_memory.page[i].used = 1;
645 return sc->sc_memory.page[i].addr;
646 }
647 }
648
649 return 0;
650 }
651
652 static void
653 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
654 {
655 int i;
656
657 for (i = 0; i < sc->sc_memory.pages; i++) {
658 if (sc->sc_memory.page[i].addr == addr) {
659 sc->sc_memory.page[i].used = 0;
660 return;
661 }
662 }
663
664 aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
665 addr);
666 }
667
668
669 static int
670 upgt_fw_alloc(struct upgt_softc *sc)
671 {
672 const char *name = "upgt-gw3887";
673 int error;
674
675 if (sc->sc_fw == NULL) {
676 error = firmware_load("upgt", name, &sc->sc_fw,
677 &sc->sc_fw_size);
678 if (error != 0) {
679 if (error == ENOENT) {
680 /*
681 * The firmware file for upgt(4) is not in
682 * the default distribution due to its lisence
683 * so explicitly notify it if the firmware file
684 * is not found.
685 */
686 aprint_error_dev(sc->sc_dev,
687 "firmware file %s is not installed\n",
688 name);
689 aprint_error_dev(sc->sc_dev,
690 "(it is not included in the default"
691 " distribution)\n");
692 aprint_error_dev(sc->sc_dev,
693 "see upgt(4) man page for details about "
694 "firmware installation\n");
695 } else {
696 aprint_error_dev(sc->sc_dev,
697 "could not read firmware %s\n", name);
698 }
699 return EIO;
700 }
701 }
702
703 DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
704 name);
705
706 return 0;
707 }
708
709 static void
710 upgt_fw_free(struct upgt_softc *sc)
711 {
712
713 if (sc->sc_fw != NULL) {
714 firmware_free(sc->sc_fw, sc->sc_fw_size);
715 sc->sc_fw = NULL;
716 DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
717 }
718 }
719
720 static int
721 upgt_fw_verify(struct upgt_softc *sc)
722 {
723 struct upgt_fw_bra_option *bra_option;
724 uint32_t bra_option_type, bra_option_len;
725 uint32_t *uc;
726 int offset, bra_end = 0;
727
728 /*
729 * Seek to beginning of Boot Record Area (BRA).
730 */
731 for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
732 uc = (uint32_t *)(sc->sc_fw + offset);
733 if (*uc == 0)
734 break;
735 }
736 for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
737 uc = (uint32_t *)(sc->sc_fw + offset);
738 if (*uc != 0)
739 break;
740 }
741 if (offset == sc->sc_fw_size) {
742 aprint_error_dev(sc->sc_dev,
743 "firmware Boot Record Area not found\n");
744 return EIO;
745 }
746 DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
747 device_xname(sc->sc_dev), offset);
748
749 /*
750 * Parse Boot Record Area (BRA) options.
751 */
752 while (offset < sc->sc_fw_size && bra_end == 0) {
753 /* get current BRA option */
754 bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
755 bra_option_type = le32toh(bra_option->type);
756 bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
757
758 switch (bra_option_type) {
759 case UPGT_BRA_TYPE_FW:
760 DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
761 device_xname(sc->sc_dev), bra_option_len);
762
763 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
764 aprint_error_dev(sc->sc_dev,
765 "wrong UPGT_BRA_TYPE_FW len\n");
766 return EIO;
767 }
768 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
769 bra_option_len) == 0) {
770 sc->sc_fw_type = UPGT_FWTYPE_LM86;
771 break;
772 }
773 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
774 bra_option_len) == 0) {
775 sc->sc_fw_type = UPGT_FWTYPE_LM87;
776 break;
777 }
778 if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
779 bra_option_len) == 0) {
780 sc->sc_fw_type = UPGT_FWTYPE_FMAC;
781 break;
782 }
783 aprint_error_dev(sc->sc_dev,
784 "unsupported firmware type\n");
785 return EIO;
786 case UPGT_BRA_TYPE_VERSION:
787 DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
788 device_xname(sc->sc_dev), bra_option_len);
789 break;
790 case UPGT_BRA_TYPE_DEPIF:
791 DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
792 device_xname(sc->sc_dev), bra_option_len);
793 break;
794 case UPGT_BRA_TYPE_EXPIF:
795 DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
796 device_xname(sc->sc_dev), bra_option_len);
797 break;
798 case UPGT_BRA_TYPE_DESCR:
799 DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
800 device_xname(sc->sc_dev), bra_option_len);
801
802 struct upgt_fw_bra_descr *descr =
803 (struct upgt_fw_bra_descr *)bra_option->data;
804
805 sc->sc_memaddr_frame_start =
806 le32toh(descr->memaddr_space_start);
807 sc->sc_memaddr_frame_end =
808 le32toh(descr->memaddr_space_end);
809
810 DPRINTF(2, "%s: memory address space start=0x%08x\n",
811 device_xname(sc->sc_dev),
812 sc->sc_memaddr_frame_start);
813 DPRINTF(2, "%s: memory address space end=0x%08x\n",
814 device_xname(sc->sc_dev),
815 sc->sc_memaddr_frame_end);
816 break;
817 case UPGT_BRA_TYPE_END:
818 DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
819 device_xname(sc->sc_dev), bra_option_len);
820 bra_end = 1;
821 break;
822 default:
823 DPRINTF(1, "%s: unknown BRA option len=%d\n",
824 device_xname(sc->sc_dev), bra_option_len);
825 return EIO;
826 }
827
828 /* jump to next BRA option */
829 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
830 }
831
832 DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
833
834 return 0;
835 }
836
837 static int
838 upgt_fw_load(struct upgt_softc *sc)
839 {
840 struct upgt_data *data_cmd = &sc->cmd_data;
841 struct upgt_data *data_rx = &sc->rx_data;
842 struct upgt_fw_x2_header *x2;
843 const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
844 int offset, bsize, n, i, len;
845 uint32_t crc;
846
847 /* send firmware start load command */
848 len = sizeof(start_fwload_cmd);
849 memcpy(data_cmd->buf, start_fwload_cmd, len);
850 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
851 aprint_error_dev(sc->sc_dev,
852 "could not send start_firmware_load command\n");
853 return EIO;
854 }
855
856 /* send X2 header */
857 len = sizeof(struct upgt_fw_x2_header);
858 x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
859 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
860 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
861 x2->len = htole32(sc->sc_fw_size);
862 x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
863 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
864 sizeof(uint32_t));
865 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
866 aprint_error_dev(sc->sc_dev,
867 "could not send firmware X2 header\n");
868 return EIO;
869 }
870
871 /* download firmware */
872 for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
873 if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
874 bsize = UPGT_FW_BLOCK_SIZE;
875 else
876 bsize = sc->sc_fw_size - offset;
877
878 n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
879
880 DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
881 device_xname(sc->sc_dev), offset, n, bsize);
882
883 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
884 != 0) {
885 aprint_error_dev(sc->sc_dev,
886 "error while downloading firmware block\n");
887 return EIO;
888 }
889
890 bsize = n;
891 }
892 DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
893
894 /* load firmware */
895 crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
896 *((uint32_t *)(data_cmd->buf) ) = crc;
897 *((uint8_t *)(data_cmd->buf) + 4) = 'g';
898 *((uint8_t *)(data_cmd->buf) + 5) = '\r';
899 len = 6;
900 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
901 aprint_error_dev(sc->sc_dev,
902 "could not send load_firmware command\n");
903 return EIO;
904 }
905
906 for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
907 len = UPGT_FW_BLOCK_SIZE;
908 memset(data_rx->buf, 0, 2);
909 if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
910 USBD_SHORT_XFER_OK) != 0) {
911 aprint_error_dev(sc->sc_dev,
912 "could not read firmware response\n");
913 return EIO;
914 }
915
916 if (memcmp(data_rx->buf, "OK", 2) == 0)
917 break; /* firmware load was successful */
918 }
919 if (i == UPGT_FIRMWARE_TIMEOUT) {
920 aprint_error_dev(sc->sc_dev, "firmware load failed\n");
921 return EIO;
922 }
923 DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
924
925 return 0;
926 }
927
928 /*
929 * While copying the version 2 firmware, we need to replace two characters:
930 *
931 * 0x7e -> 0x7d 0x5e
932 * 0x7d -> 0x7d 0x5d
933 */
934 static int
935 upgt_fw_copy(char *src, char *dst, int size)
936 {
937 int i, j;
938
939 for (i = 0, j = 0; i < size && j < size; i++) {
940 switch (src[i]) {
941 case 0x7e:
942 dst[j] = 0x7d;
943 j++;
944 dst[j] = 0x5e;
945 j++;
946 break;
947 case 0x7d:
948 dst[j] = 0x7d;
949 j++;
950 dst[j] = 0x5d;
951 j++;
952 break;
953 default:
954 dst[j] = src[i];
955 j++;
956 break;
957 }
958 }
959
960 return i;
961 }
962
963 static int
964 upgt_eeprom_read(struct upgt_softc *sc)
965 {
966 struct upgt_data *data_cmd = &sc->cmd_data;
967 struct upgt_lmac_mem *mem;
968 struct upgt_lmac_eeprom *eeprom;
969 int offset, block, len;
970
971 offset = 0;
972 block = UPGT_EEPROM_BLOCK_SIZE;
973 while (offset < UPGT_EEPROM_SIZE) {
974 DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
975 device_xname(sc->sc_dev), offset, block);
976
977 /*
978 * Transmit the URB containing the CMD data.
979 */
980 len = sizeof(*mem) + sizeof(*eeprom) + block;
981
982 memset(data_cmd->buf, 0, len);
983
984 mem = (struct upgt_lmac_mem *)data_cmd->buf;
985 mem->addr = htole32(sc->sc_memaddr_frame_start +
986 UPGT_MEMSIZE_FRAME_HEAD);
987
988 eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
989 eeprom->header1.flags = 0;
990 eeprom->header1.type = UPGT_H1_TYPE_CTRL;
991 eeprom->header1.len = htole16((
992 sizeof(struct upgt_lmac_eeprom) -
993 sizeof(struct upgt_lmac_header)) + block);
994
995 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
996 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
997 eeprom->header2.flags = 0;
998
999 eeprom->offset = htole16(offset);
1000 eeprom->len = htole16(block);
1001
1002 mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1003 len - sizeof(*mem));
1004
1005 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
1006 USBD_FORCE_SHORT_XFER) != 0) {
1007 aprint_error_dev(sc->sc_dev,
1008 "could not transmit EEPROM data URB\n");
1009 return EIO;
1010 }
1011
1012 mutex_enter(&sc->sc_mtx);
1013 int res = cv_timedwait(&sc->sc_cv, &sc->sc_mtx, UPGT_USB_TIMEOUT);
1014 mutex_exit(&sc->sc_mtx);
1015 if (res) {
1016 aprint_error_dev(sc->sc_dev,
1017 "timeout while waiting for EEPROM data\n");
1018 return EIO;
1019 }
1020
1021 offset += block;
1022 if (UPGT_EEPROM_SIZE - offset < block)
1023 block = UPGT_EEPROM_SIZE - offset;
1024 }
1025
1026 return 0;
1027 }
1028
1029 static int
1030 upgt_eeprom_parse(struct upgt_softc *sc)
1031 {
1032 struct ieee80211com *ic = &sc->sc_ic;
1033 struct upgt_eeprom_header *eeprom_header;
1034 struct upgt_eeprom_option *eeprom_option;
1035 uint16_t option_len;
1036 uint16_t option_type;
1037 uint16_t preamble_len;
1038 int option_end = 0;
1039
1040 /* calculate eeprom options start offset */
1041 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1042 preamble_len = le16toh(eeprom_header->preamble_len);
1043 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1044 (sizeof(struct upgt_eeprom_header) + preamble_len));
1045
1046 while (!option_end) {
1047 /* the eeprom option length is stored in words */
1048 option_len =
1049 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1050 option_type =
1051 le16toh(eeprom_option->type);
1052
1053 switch (option_type) {
1054 case UPGT_EEPROM_TYPE_NAME:
1055 DPRINTF(1, "%s: EEPROM name len=%d\n",
1056 device_xname(sc->sc_dev), option_len);
1057 break;
1058 case UPGT_EEPROM_TYPE_SERIAL:
1059 DPRINTF(1, "%s: EEPROM serial len=%d\n",
1060 device_xname(sc->sc_dev), option_len);
1061 break;
1062 case UPGT_EEPROM_TYPE_MAC:
1063 DPRINTF(1, "%s: EEPROM mac len=%d\n",
1064 device_xname(sc->sc_dev), option_len);
1065
1066 IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
1067 break;
1068 case UPGT_EEPROM_TYPE_HWRX:
1069 DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
1070 device_xname(sc->sc_dev), option_len);
1071
1072 upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1073 break;
1074 case UPGT_EEPROM_TYPE_CHIP:
1075 DPRINTF(1, "%s: EEPROM chip len=%d\n",
1076 device_xname(sc->sc_dev), option_len);
1077 break;
1078 case UPGT_EEPROM_TYPE_FREQ3:
1079 DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
1080 device_xname(sc->sc_dev), option_len);
1081
1082 upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1083 option_len);
1084 break;
1085 case UPGT_EEPROM_TYPE_FREQ4:
1086 DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
1087 device_xname(sc->sc_dev), option_len);
1088
1089 upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1090 option_len);
1091 break;
1092 case UPGT_EEPROM_TYPE_FREQ5:
1093 DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
1094 device_xname(sc->sc_dev), option_len);
1095 break;
1096 case UPGT_EEPROM_TYPE_FREQ6:
1097 DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
1098 device_xname(sc->sc_dev), option_len);
1099
1100 upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1101 option_len);
1102 break;
1103 case UPGT_EEPROM_TYPE_END:
1104 DPRINTF(1, "%s: EEPROM end len=%d\n",
1105 device_xname(sc->sc_dev), option_len);
1106 option_end = 1;
1107 break;
1108 case UPGT_EEPROM_TYPE_OFF:
1109 DPRINTF(1, "%s: EEPROM off without end option\n",
1110 device_xname(sc->sc_dev));
1111 return EIO;
1112 default:
1113 DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1114 device_xname(sc->sc_dev), option_type, option_len);
1115 break;
1116 }
1117
1118 /* jump to next EEPROM option */
1119 eeprom_option = (struct upgt_eeprom_option *)
1120 (eeprom_option->data + option_len);
1121 }
1122
1123 return 0;
1124 }
1125
1126 static void
1127 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1128 {
1129 struct upgt_eeprom_option_hwrx *option_hwrx;
1130
1131 option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1132
1133 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1134
1135 DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1136 device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
1137 }
1138
1139 static void
1140 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1141 {
1142 struct upgt_eeprom_freq3_header *freq3_header;
1143 struct upgt_lmac_freq3 *freq3;
1144 int i, elements, flags;
1145 unsigned channel;
1146
1147 freq3_header = (struct upgt_eeprom_freq3_header *)data;
1148 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1149
1150 flags = freq3_header->flags;
1151 elements = freq3_header->elements;
1152
1153 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1154 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1155 __USE(flags);
1156
1157 for (i = 0; i < elements; i++) {
1158 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1159
1160 sc->sc_eeprom_freq3[channel] = freq3[i];
1161
1162 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1163 device_xname(sc->sc_dev),
1164 le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1165 }
1166 }
1167
1168 static void
1169 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1170 {
1171 struct upgt_eeprom_freq4_header *freq4_header;
1172 struct upgt_eeprom_freq4_1 *freq4_1;
1173 struct upgt_eeprom_freq4_2 *freq4_2;
1174 int i, j, elements, settings, flags;
1175 unsigned channel;
1176
1177 freq4_header = (struct upgt_eeprom_freq4_header *)data;
1178 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1179
1180 flags = freq4_header->flags;
1181 elements = freq4_header->elements;
1182 settings = freq4_header->settings;
1183
1184 /* we need this value later */
1185 sc->sc_eeprom_freq6_settings = freq4_header->settings;
1186
1187 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1188 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1189 DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
1190 __USE(flags);
1191
1192 for (i = 0; i < elements; i++) {
1193 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1194
1195 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1196
1197 for (j = 0; j < settings; j++) {
1198 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1199 sc->sc_eeprom_freq4[channel][j].pad = 0;
1200 }
1201
1202 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1203 device_xname(sc->sc_dev),
1204 le16toh(freq4_1[i].freq), channel);
1205 }
1206 }
1207
1208 static void
1209 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1210 {
1211 struct upgt_lmac_freq6 *freq6;
1212 int i, elements;
1213 unsigned channel;
1214
1215 freq6 = (struct upgt_lmac_freq6 *)data;
1216
1217 elements = len / sizeof(struct upgt_lmac_freq6);
1218
1219 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1220
1221 for (i = 0; i < elements; i++) {
1222 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1223
1224 sc->sc_eeprom_freq6[channel] = freq6[i];
1225
1226 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1227 device_xname(sc->sc_dev),
1228 le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1229 }
1230 }
1231
1232 static int
1233 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1234 {
1235 struct upgt_softc *sc = ifp->if_softc;
1236 struct ieee80211com *ic = &sc->sc_ic;
1237 int s, error = 0;
1238
1239 s = splnet();
1240
1241 switch (cmd) {
1242 case SIOCSIFFLAGS:
1243 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1244 break;
1245 if (ifp->if_flags & IFF_UP) {
1246 if ((ifp->if_flags & IFF_RUNNING) == 0)
1247 upgt_init(ifp);
1248 } else {
1249 if (ifp->if_flags & IFF_RUNNING)
1250 upgt_stop(sc);
1251 }
1252 break;
1253 case SIOCADDMULTI:
1254 case SIOCDELMULTI:
1255 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1256 /* setup multicast filter, etc */
1257 error = 0;
1258 }
1259 break;
1260 default:
1261 error = ieee80211_ioctl(ic, cmd, data);
1262 break;
1263 }
1264
1265 if (error == ENETRESET) {
1266 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1267 (IFF_UP | IFF_RUNNING))
1268 upgt_init(ifp);
1269 error = 0;
1270 }
1271
1272 splx(s);
1273
1274 return error;
1275 }
1276
1277 static int
1278 upgt_init(struct ifnet *ifp)
1279 {
1280 struct upgt_softc *sc = ifp->if_softc;
1281 struct ieee80211com *ic = &sc->sc_ic;
1282
1283 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1284
1285 if (ifp->if_flags & IFF_RUNNING)
1286 upgt_stop(sc);
1287
1288 ifp->if_flags |= IFF_RUNNING;
1289 ifp->if_flags &= ~IFF_OACTIVE;
1290
1291 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1292
1293 /* setup device rates */
1294 upgt_setup_rates(sc);
1295
1296 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1297 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1298 else
1299 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1300
1301 return 0;
1302 }
1303
1304 static void
1305 upgt_stop(struct upgt_softc *sc)
1306 {
1307 struct ieee80211com *ic = &sc->sc_ic;
1308 struct ifnet *ifp = &sc->sc_if;
1309
1310 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1311
1312 /* device down */
1313 ifp->if_timer = 0;
1314 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1315
1316 /* change device back to initial state */
1317 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1318 }
1319
1320 static int
1321 upgt_media_change(struct ifnet *ifp)
1322 {
1323 struct upgt_softc *sc = ifp->if_softc;
1324 int error;
1325
1326 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1327
1328 if ((error = ieee80211_media_change(ifp)) != ENETRESET)
1329 return error;
1330
1331 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1332 (IFF_UP | IFF_RUNNING)) {
1333 /* give pending USB transfers a chance to finish */
1334 usbd_delay_ms(sc->sc_udev, 100);
1335 upgt_init(ifp);
1336 }
1337
1338 return 0;
1339 }
1340
1341 static void
1342 upgt_newassoc(struct ieee80211_node *ni, int isnew)
1343 {
1344
1345 ni->ni_txrate = 0;
1346 }
1347
1348 static int
1349 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1350 {
1351 struct upgt_softc *sc = ic->ic_ifp->if_softc;
1352
1353 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1354 callout_stop(&sc->scan_to);
1355
1356 /* do it in a process context */
1357 sc->sc_state = nstate;
1358 sc->sc_arg = arg;
1359 usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
1360
1361 return 0;
1362 }
1363
1364 static void
1365 upgt_newstate_task(void *arg)
1366 {
1367 struct upgt_softc *sc = arg;
1368 struct ieee80211com *ic = &sc->sc_ic;
1369 struct ieee80211_node *ni;
1370 unsigned channel;
1371
1372 mutex_enter(&sc->sc_mtx);
1373
1374 switch (sc->sc_state) {
1375 case IEEE80211_S_INIT:
1376 DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1377 device_xname(sc->sc_dev));
1378
1379 /* do not accept any frames if the device is down */
1380 upgt_set_macfilter(sc, IEEE80211_S_INIT);
1381 upgt_set_led(sc, UPGT_LED_OFF);
1382 break;
1383 case IEEE80211_S_SCAN:
1384 DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1385 device_xname(sc->sc_dev));
1386
1387 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1388 upgt_set_channel(sc, channel);
1389 upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1390 callout_schedule(&sc->scan_to, hz / 5);
1391 break;
1392 case IEEE80211_S_AUTH:
1393 DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1394 device_xname(sc->sc_dev));
1395
1396 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1397 upgt_set_channel(sc, channel);
1398 break;
1399 case IEEE80211_S_ASSOC:
1400 DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1401 device_xname(sc->sc_dev));
1402
1403 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1404 upgt_set_channel(sc, channel);
1405 break;
1406 case IEEE80211_S_RUN:
1407 DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1408 device_xname(sc->sc_dev));
1409
1410 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1411 upgt_set_channel(sc, channel);
1412
1413 ni = ic->ic_bss;
1414
1415 /*
1416 * TX rate control is done by the firmware.
1417 * Report the maximum rate which is available therefore.
1418 */
1419 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1420
1421 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1422 upgt_set_macfilter(sc, IEEE80211_S_RUN);
1423 upgt_set_led(sc, UPGT_LED_ON);
1424 break;
1425 }
1426
1427 mutex_exit(&sc->sc_mtx);
1428
1429 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1430 }
1431
1432 static void
1433 upgt_next_scan(void *arg)
1434 {
1435 struct upgt_softc *sc = arg;
1436 struct ieee80211com *ic = &sc->sc_ic;
1437
1438 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1439
1440 if (ic->ic_state == IEEE80211_S_SCAN)
1441 ieee80211_next_scan(ic);
1442 }
1443
1444 static void
1445 upgt_start(struct ifnet *ifp)
1446 {
1447 struct upgt_softc *sc = ifp->if_softc;
1448 struct ieee80211com *ic = &sc->sc_ic;
1449 struct ether_header *eh;
1450 struct ieee80211_node *ni;
1451 struct mbuf *m;
1452 int i;
1453
1454 /* don't transmit packets if interface is busy or down */
1455 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1456 return;
1457
1458 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1459
1460 for (i = 0; i < UPGT_TX_COUNT; i++) {
1461 struct upgt_data *data_tx = &sc->tx_data[i];
1462
1463 if (data_tx->m != NULL)
1464 continue;
1465
1466 IF_POLL(&ic->ic_mgtq, m);
1467 if (m != NULL) {
1468 /* management frame */
1469 IF_DEQUEUE(&ic->ic_mgtq, m);
1470
1471 ni = M_GETCTX(m, struct ieee80211_node *);
1472 M_CLEARCTX(m);
1473
1474 bpf_mtap3(ic->ic_rawbpf, m);
1475
1476 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1477 aprint_error_dev(sc->sc_dev,
1478 "no free prism memory\n");
1479 m_freem(m);
1480 ifp->if_oerrors++;
1481 break;
1482 }
1483 data_tx->ni = ni;
1484 data_tx->m = m;
1485 sc->tx_queued++;
1486 } else {
1487 /* data frame */
1488 if (ic->ic_state != IEEE80211_S_RUN)
1489 break;
1490
1491 IFQ_POLL(&ifp->if_snd, m);
1492 if (m == NULL)
1493 break;
1494
1495 IFQ_DEQUEUE(&ifp->if_snd, m);
1496 if (m->m_len < sizeof(struct ether_header) &&
1497 !(m = m_pullup(m, sizeof(struct ether_header))))
1498 continue;
1499
1500 eh = mtod(m, struct ether_header *);
1501 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1502 if (ni == NULL) {
1503 m_freem(m);
1504 continue;
1505 }
1506
1507 bpf_mtap(ifp, m);
1508
1509 m = ieee80211_encap(ic, m, ni);
1510 if (m == NULL) {
1511 ieee80211_free_node(ni);
1512 continue;
1513 }
1514
1515 bpf_mtap3(ic->ic_rawbpf, m);
1516
1517 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1518 aprint_error_dev(sc->sc_dev,
1519 "no free prism memory\n");
1520 m_freem(m);
1521 ieee80211_free_node(ni);
1522 ifp->if_oerrors++;
1523 break;
1524 }
1525 data_tx->ni = ni;
1526 data_tx->m = m;
1527 sc->tx_queued++;
1528 }
1529 }
1530
1531 if (sc->tx_queued > 0) {
1532 DPRINTF(2, "%s: tx_queued=%d\n",
1533 device_xname(sc->sc_dev), sc->tx_queued);
1534 /* process the TX queue in process context */
1535 ifp->if_timer = 5;
1536 ifp->if_flags |= IFF_OACTIVE;
1537 usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1538 usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
1539 }
1540 }
1541
1542 static void
1543 upgt_watchdog(struct ifnet *ifp)
1544 {
1545 struct upgt_softc *sc = ifp->if_softc;
1546 struct ieee80211com *ic = &sc->sc_ic;
1547
1548 if (ic->ic_state == IEEE80211_S_INIT)
1549 return;
1550
1551 aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1552
1553 /* TODO: what shall we do on TX timeout? */
1554
1555 ieee80211_watchdog(ic);
1556 }
1557
1558 static void
1559 upgt_tx_task(void *arg)
1560 {
1561 struct upgt_softc *sc = arg;
1562 struct ieee80211com *ic = &sc->sc_ic;
1563 struct ieee80211_frame *wh;
1564 struct ieee80211_key *k;
1565 struct ifnet *ifp = &sc->sc_if;
1566 struct upgt_lmac_mem *mem;
1567 struct upgt_lmac_tx_desc *txdesc;
1568 struct mbuf *m;
1569 uint32_t addr;
1570 int i, len, pad, s;
1571 usbd_status error;
1572
1573 mutex_enter(&sc->sc_mtx);
1574 upgt_set_led(sc, UPGT_LED_BLINK);
1575 mutex_exit(&sc->sc_mtx);
1576
1577 s = splnet();
1578
1579 for (i = 0; i < UPGT_TX_COUNT; i++) {
1580 struct upgt_data *data_tx = &sc->tx_data[i];
1581
1582 if (data_tx->m == NULL)
1583 continue;
1584
1585 m = data_tx->m;
1586 addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1587
1588 /*
1589 * Software crypto.
1590 */
1591 wh = mtod(m, struct ieee80211_frame *);
1592
1593 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1594 k = ieee80211_crypto_encap(ic, data_tx->ni, m);
1595 if (k == NULL) {
1596 m_freem(m);
1597 data_tx->m = NULL;
1598 ieee80211_free_node(data_tx->ni);
1599 data_tx->ni = NULL;
1600 ifp->if_oerrors++;
1601 break;
1602 }
1603
1604 /* in case packet header moved, reset pointer */
1605 wh = mtod(m, struct ieee80211_frame *);
1606 }
1607
1608 /*
1609 * Transmit the URB containing the TX data.
1610 */
1611 memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
1612
1613 mem = (struct upgt_lmac_mem *)data_tx->buf;
1614 mem->addr = htole32(addr);
1615
1616 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1617
1618 /* XXX differ between data and mgmt frames? */
1619 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1620 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1621 txdesc->header1.len = htole16(m->m_pkthdr.len);
1622
1623 txdesc->header2.reqid = htole32(data_tx->addr);
1624 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1625 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1626
1627 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1628 IEEE80211_FC0_TYPE_MGT) {
1629 /* always send mgmt frames at lowest rate (DS1) */
1630 memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1631 } else {
1632 memcpy(txdesc->rates, sc->sc_cur_rateset,
1633 sizeof(txdesc->rates));
1634 }
1635 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1636 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1637
1638 if (sc->sc_drvbpf != NULL) {
1639 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1640
1641 tap->wt_flags = 0;
1642 tap->wt_rate = 0; /* TODO: where to get from? */
1643 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1644 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1645
1646 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1647 }
1648
1649 /* copy frame below our TX descriptor header */
1650 m_copydata(m, 0, m->m_pkthdr.len,
1651 data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
1652
1653 /* calculate frame size */
1654 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1655
1656 if (len & 3) {
1657 /* we need to align the frame to a 4 byte boundary */
1658 pad = 4 - (len & 3);
1659 memset(data_tx->buf + len, 0, pad);
1660 len += pad;
1661 }
1662
1663 /* calculate frame checksum */
1664 mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1665 len - sizeof(*mem));
1666
1667 /* we do not need the mbuf anymore */
1668 m_freem(m);
1669 data_tx->m = NULL;
1670
1671 ieee80211_free_node(data_tx->ni);
1672 data_tx->ni = NULL;
1673
1674 DPRINTF(2, "%s: TX start data sending\n",
1675 device_xname(sc->sc_dev));
1676
1677 usbd_setup_xfer(data_tx->xfer, data_tx, data_tx->buf, len,
1678 USBD_FORCE_SHORT_XFER, UPGT_USB_TIMEOUT, NULL);
1679 error = usbd_transfer(data_tx->xfer);
1680 if (error != USBD_NORMAL_COMPLETION &&
1681 error != USBD_IN_PROGRESS) {
1682 aprint_error_dev(sc->sc_dev,
1683 "could not transmit TX data URB\n");
1684 ifp->if_oerrors++;
1685 break;
1686 }
1687
1688 DPRINTF(2, "%s: TX sent (%d bytes)\n",
1689 device_xname(sc->sc_dev), len);
1690 }
1691
1692 splx(s);
1693
1694 /*
1695 * If we don't regulary read the device statistics, the RX queue
1696 * will stall. It's strange, but it works, so we keep reading
1697 * the statistics here. *shrug*
1698 */
1699 mutex_enter(&sc->sc_mtx);
1700 upgt_get_stats(sc);
1701 mutex_exit(&sc->sc_mtx);
1702 }
1703
1704 static void
1705 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1706 {
1707 struct ifnet *ifp = &sc->sc_if;
1708 struct upgt_lmac_tx_done_desc *desc;
1709 int i, s;
1710
1711 s = splnet();
1712
1713 desc = (struct upgt_lmac_tx_done_desc *)data;
1714
1715 for (i = 0; i < UPGT_TX_COUNT; i++) {
1716 struct upgt_data *data_tx = &sc->tx_data[i];
1717
1718 if (data_tx->addr == le32toh(desc->header2.reqid)) {
1719 upgt_mem_free(sc, data_tx->addr);
1720 data_tx->addr = 0;
1721
1722 sc->tx_queued--;
1723 ifp->if_opackets++;
1724
1725 DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
1726 DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1727 le32toh(desc->header2.reqid),
1728 le16toh(desc->status),
1729 le16toh(desc->rssi));
1730 DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
1731 break;
1732 }
1733 }
1734
1735 if (sc->tx_queued == 0) {
1736 /* TX queued was processed, continue */
1737 ifp->if_timer = 0;
1738 ifp->if_flags &= ~IFF_OACTIVE;
1739 upgt_start(ifp);
1740 }
1741
1742 splx(s);
1743 }
1744
1745 static void
1746 upgt_rx_cb(struct usbd_xfer *xfer, void * priv, usbd_status status)
1747 {
1748 struct upgt_data *data_rx = priv;
1749 struct upgt_softc *sc = data_rx->sc;
1750 int len;
1751 struct upgt_lmac_header *header;
1752 struct upgt_lmac_eeprom *eeprom;
1753 uint8_t h1_type;
1754 uint16_t h2_type;
1755
1756 DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1757
1758 if (status != USBD_NORMAL_COMPLETION) {
1759 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1760 return;
1761 if (status == USBD_STALLED)
1762 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1763 goto skip;
1764 }
1765 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1766
1767 /*
1768 * Check what type of frame came in.
1769 */
1770 header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1771
1772 h1_type = header->header1.type;
1773 h2_type = le16toh(header->header2.type);
1774
1775 if (h1_type == UPGT_H1_TYPE_CTRL &&
1776 h2_type == UPGT_H2_TYPE_EEPROM) {
1777 eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1778 uint16_t eeprom_offset = le16toh(eeprom->offset);
1779 uint16_t eeprom_len = le16toh(eeprom->len);
1780
1781 DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1782 device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
1783
1784 mutex_enter(&sc->sc_mtx);
1785 memcpy(sc->sc_eeprom + eeprom_offset,
1786 data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1787 eeprom_len);
1788
1789 /* EEPROM data has arrived in time, wakeup upgt_eeprom_read */
1790 /* Note eeprom data arrived */
1791 cv_broadcast(&sc->sc_cv);
1792 mutex_exit(&sc->sc_mtx);
1793 } else
1794 if (h1_type == UPGT_H1_TYPE_CTRL &&
1795 h2_type == UPGT_H2_TYPE_TX_DONE) {
1796 DPRINTF(2, "%s: received 802.11 TX done\n",
1797 device_xname(sc->sc_dev));
1798
1799 upgt_tx_done(sc, data_rx->buf + 4);
1800 } else
1801 if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1802 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1803 DPRINTF(3, "%s: received 802.11 RX data\n",
1804 device_xname(sc->sc_dev));
1805
1806 upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
1807 } else
1808 if (h1_type == UPGT_H1_TYPE_CTRL &&
1809 h2_type == UPGT_H2_TYPE_STATS) {
1810 DPRINTF(2, "%s: received statistic data\n",
1811 device_xname(sc->sc_dev));
1812
1813 /* TODO: what could we do with the statistic data? */
1814 } else {
1815 /* ignore unknown frame types */
1816 DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1817 device_xname(sc->sc_dev), header->header1.type);
1818 }
1819
1820 skip: /* setup new transfer */
1821 usbd_setup_xfer(xfer, data_rx, data_rx->buf, MCLBYTES,
1822 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1823 (void)usbd_transfer(xfer);
1824 }
1825
1826 static void
1827 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1828 {
1829 struct ieee80211com *ic = &sc->sc_ic;
1830 struct ifnet *ifp = &sc->sc_if;
1831 struct upgt_lmac_rx_desc *rxdesc;
1832 struct ieee80211_frame *wh;
1833 struct ieee80211_node *ni;
1834 struct mbuf *m;
1835 int s;
1836
1837 /* access RX packet descriptor */
1838 rxdesc = (struct upgt_lmac_rx_desc *)data;
1839
1840 /* create mbuf which is suitable for strict alignment archs */
1841 #define ETHER_ALIGN 0
1842 m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL);
1843 if (m == NULL) {
1844 DPRINTF(1, "%s: could not create RX mbuf\n",
1845 device_xname(sc->sc_dev));
1846 ifp->if_ierrors++;
1847 return;
1848 }
1849
1850 s = splnet();
1851
1852 if (sc->sc_drvbpf != NULL) {
1853 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1854
1855 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1856 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1857 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1858 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1859 tap->wr_antsignal = rxdesc->rssi;
1860
1861 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1862 }
1863
1864 /* trim FCS */
1865 m_adj(m, -IEEE80211_CRC_LEN);
1866
1867 wh = mtod(m, struct ieee80211_frame *);
1868 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1869
1870 /* push the frame up to the 802.11 stack */
1871 ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
1872
1873 /* node is no longer needed */
1874 ieee80211_free_node(ni);
1875
1876 splx(s);
1877
1878 DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
1879 }
1880
1881 static void
1882 upgt_setup_rates(struct upgt_softc *sc)
1883 {
1884 struct ieee80211com *ic = &sc->sc_ic;
1885
1886 /*
1887 * 0x01 = OFMD6 0x10 = DS1
1888 * 0x04 = OFDM9 0x11 = DS2
1889 * 0x06 = OFDM12 0x12 = DS5
1890 * 0x07 = OFDM18 0x13 = DS11
1891 * 0x08 = OFDM24
1892 * 0x09 = OFDM36
1893 * 0x0a = OFDM48
1894 * 0x0b = OFDM54
1895 */
1896 const uint8_t rateset_auto_11b[] =
1897 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1898 const uint8_t rateset_auto_11g[] =
1899 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1900 const uint8_t rateset_fix_11bg[] =
1901 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1902 0x08, 0x09, 0x0a, 0x0b };
1903
1904 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1905 /*
1906 * Automatic rate control is done by the device.
1907 * We just pass the rateset from which the device
1908 * will pickup a rate.
1909 */
1910 if (ic->ic_curmode == IEEE80211_MODE_11B)
1911 memcpy(sc->sc_cur_rateset, rateset_auto_11b,
1912 sizeof(sc->sc_cur_rateset));
1913 if (ic->ic_curmode == IEEE80211_MODE_11G ||
1914 ic->ic_curmode == IEEE80211_MODE_AUTO)
1915 memcpy(sc->sc_cur_rateset, rateset_auto_11g,
1916 sizeof(sc->sc_cur_rateset));
1917 } else {
1918 /* set a fixed rate */
1919 memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1920 sizeof(sc->sc_cur_rateset));
1921 }
1922 }
1923
1924 static uint8_t
1925 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1926 {
1927 struct ieee80211com *ic = &sc->sc_ic;
1928
1929 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1930 if (rate < 0 || rate > 3)
1931 /* invalid rate */
1932 return 0;
1933
1934 switch (rate) {
1935 case 0:
1936 return 2;
1937 case 1:
1938 return 4;
1939 case 2:
1940 return 11;
1941 case 3:
1942 return 22;
1943 default:
1944 return 0;
1945 }
1946 }
1947
1948 if (ic->ic_curmode == IEEE80211_MODE_11G) {
1949 if (rate < 0 || rate > 11)
1950 /* invalid rate */
1951 return 0;
1952
1953 switch (rate) {
1954 case 0:
1955 return 2;
1956 case 1:
1957 return 4;
1958 case 2:
1959 return 11;
1960 case 3:
1961 return 22;
1962 case 4:
1963 return 12;
1964 case 5:
1965 return 18;
1966 case 6:
1967 return 24;
1968 case 7:
1969 return 36;
1970 case 8:
1971 return 48;
1972 case 9:
1973 return 72;
1974 case 10:
1975 return 96;
1976 case 11:
1977 return 108;
1978 default:
1979 return 0;
1980 }
1981 }
1982
1983 return 0;
1984 }
1985
1986 static int
1987 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
1988 {
1989 struct ieee80211com *ic = &sc->sc_ic;
1990 struct ieee80211_node *ni = ic->ic_bss;
1991 struct upgt_data *data_cmd = &sc->cmd_data;
1992 struct upgt_lmac_mem *mem;
1993 struct upgt_lmac_filter *filter;
1994 int len;
1995 const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1996
1997 /*
1998 * Transmit the URB containing the CMD data.
1999 */
2000 len = sizeof(*mem) + sizeof(*filter);
2001
2002 memset(data_cmd->buf, 0, len);
2003
2004 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2005 mem->addr = htole32(sc->sc_memaddr_frame_start +
2006 UPGT_MEMSIZE_FRAME_HEAD);
2007
2008 filter = (struct upgt_lmac_filter *)(mem + 1);
2009
2010 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2011 filter->header1.type = UPGT_H1_TYPE_CTRL;
2012 filter->header1.len = htole16(
2013 sizeof(struct upgt_lmac_filter) -
2014 sizeof(struct upgt_lmac_header));
2015
2016 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2017 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
2018 filter->header2.flags = 0;
2019
2020 switch (state) {
2021 case IEEE80211_S_INIT:
2022 DPRINTF(1, "%s: set MAC filter to INIT\n",
2023 device_xname(sc->sc_dev));
2024
2025 filter->type = htole16(UPGT_FILTER_TYPE_RESET);
2026 break;
2027 case IEEE80211_S_SCAN:
2028 DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
2029 device_xname(sc->sc_dev), ether_sprintf(broadcast));
2030
2031 filter->type = htole16(UPGT_FILTER_TYPE_NONE);
2032 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2033 IEEE80211_ADDR_COPY(filter->src, broadcast);
2034 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2035 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2036 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2037 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2038 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2039 break;
2040 case IEEE80211_S_RUN:
2041 DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
2042 device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
2043
2044 filter->type = htole16(UPGT_FILTER_TYPE_STA);
2045 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2046 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
2047 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2048 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2049 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2050 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2051 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2052 break;
2053 default:
2054 aprint_error_dev(sc->sc_dev,
2055 "MAC filter does not know that state\n");
2056 break;
2057 }
2058
2059 mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
2060
2061 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2062 aprint_error_dev(sc->sc_dev,
2063 "could not transmit macfilter CMD data URB\n");
2064 return EIO;
2065 }
2066
2067 return 0;
2068 }
2069
2070 static int
2071 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
2072 {
2073 struct upgt_data *data_cmd = &sc->cmd_data;
2074 struct upgt_lmac_mem *mem;
2075 struct upgt_lmac_channel *chan;
2076 int len;
2077
2078 DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
2079 channel);
2080
2081 /*
2082 * Transmit the URB containing the CMD data.
2083 */
2084 len = sizeof(*mem) + sizeof(*chan);
2085
2086 memset(data_cmd->buf, 0, len);
2087
2088 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2089 mem->addr = htole32(sc->sc_memaddr_frame_start +
2090 UPGT_MEMSIZE_FRAME_HEAD);
2091
2092 chan = (struct upgt_lmac_channel *)(mem + 1);
2093
2094 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2095 chan->header1.type = UPGT_H1_TYPE_CTRL;
2096 chan->header1.len = htole16(
2097 sizeof(struct upgt_lmac_channel) -
2098 sizeof(struct upgt_lmac_header));
2099
2100 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2101 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
2102 chan->header2.flags = 0;
2103
2104 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
2105 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
2106 chan->freq6 = sc->sc_eeprom_freq6[channel];
2107 chan->settings = sc->sc_eeprom_freq6_settings;
2108 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
2109
2110 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
2111 sizeof(chan->freq3_1));
2112
2113 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
2114 sizeof(sc->sc_eeprom_freq4[channel]));
2115
2116 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
2117 sizeof(chan->freq3_2));
2118
2119 mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
2120
2121 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2122 aprint_error_dev(sc->sc_dev,
2123 "could not transmit channel CMD data URB\n");
2124 return EIO;
2125 }
2126
2127 return 0;
2128 }
2129
2130 static void
2131 upgt_set_led(struct upgt_softc *sc, int action)
2132 {
2133 struct ieee80211com *ic = &sc->sc_ic;
2134 struct upgt_data *data_cmd = &sc->cmd_data;
2135 struct upgt_lmac_mem *mem;
2136 struct upgt_lmac_led *led;
2137 struct timeval t;
2138 int len;
2139
2140 /*
2141 * Transmit the URB containing the CMD data.
2142 */
2143 len = sizeof(*mem) + sizeof(*led);
2144
2145 memset(data_cmd->buf, 0, len);
2146
2147 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2148 mem->addr = htole32(sc->sc_memaddr_frame_start +
2149 UPGT_MEMSIZE_FRAME_HEAD);
2150
2151 led = (struct upgt_lmac_led *)(mem + 1);
2152
2153 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2154 led->header1.type = UPGT_H1_TYPE_CTRL;
2155 led->header1.len = htole16(
2156 sizeof(struct upgt_lmac_led) -
2157 sizeof(struct upgt_lmac_header));
2158
2159 led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2160 led->header2.type = htole16(UPGT_H2_TYPE_LED);
2161 led->header2.flags = 0;
2162
2163 switch (action) {
2164 case UPGT_LED_OFF:
2165 led->mode = htole16(UPGT_LED_MODE_SET);
2166 led->action_fix = 0;
2167 led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2168 led->action_tmp_dur = 0;
2169 break;
2170 case UPGT_LED_ON:
2171 led->mode = htole16(UPGT_LED_MODE_SET);
2172 led->action_fix = 0;
2173 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2174 led->action_tmp_dur = 0;
2175 break;
2176 case UPGT_LED_BLINK:
2177 if (ic->ic_state != IEEE80211_S_RUN)
2178 return;
2179 if (sc->sc_led_blink)
2180 /* previous blink was not finished */
2181 return;
2182 led->mode = htole16(UPGT_LED_MODE_SET);
2183 led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2184 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2185 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2186 /* lock blink */
2187 sc->sc_led_blink = 1;
2188 t.tv_sec = 0;
2189 t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
2190 callout_schedule(&sc->led_to, tvtohz(&t));
2191 break;
2192 default:
2193 return;
2194 }
2195
2196 mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
2197
2198 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2199 aprint_error_dev(sc->sc_dev,
2200 "could not transmit led CMD URB\n");
2201 }
2202 }
2203
2204 static void
2205 upgt_set_led_blink(void *arg)
2206 {
2207 struct upgt_softc *sc = arg;
2208
2209 /* blink finished, we are ready for a next one */
2210 sc->sc_led_blink = 0;
2211 callout_stop(&sc->led_to);
2212 }
2213
2214 static int
2215 upgt_get_stats(struct upgt_softc *sc)
2216 {
2217 struct upgt_data *data_cmd = &sc->cmd_data;
2218 struct upgt_lmac_mem *mem;
2219 struct upgt_lmac_stats *stats;
2220 int len;
2221
2222 /*
2223 * Transmit the URB containing the CMD data.
2224 */
2225 len = sizeof(*mem) + sizeof(*stats);
2226
2227 memset(data_cmd->buf, 0, len);
2228
2229 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2230 mem->addr = htole32(sc->sc_memaddr_frame_start +
2231 UPGT_MEMSIZE_FRAME_HEAD);
2232
2233 stats = (struct upgt_lmac_stats *)(mem + 1);
2234
2235 stats->header1.flags = 0;
2236 stats->header1.type = UPGT_H1_TYPE_CTRL;
2237 stats->header1.len = htole16(
2238 sizeof(struct upgt_lmac_stats) -
2239 sizeof(struct upgt_lmac_header));
2240
2241 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2242 stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2243 stats->header2.flags = 0;
2244
2245 mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
2246
2247 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2248 aprint_error_dev(sc->sc_dev,
2249 "could not transmit statistics CMD data URB\n");
2250 return EIO;
2251 }
2252
2253 return 0;
2254
2255 }
2256
2257 static int
2258 upgt_alloc_tx(struct upgt_softc *sc)
2259 {
2260 int i;
2261
2262 sc->tx_queued = 0;
2263
2264 for (i = 0; i < UPGT_TX_COUNT; i++) {
2265 struct upgt_data *data_tx = &sc->tx_data[i];
2266
2267 data_tx->sc = sc;
2268
2269 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES, 0, 0,
2270 &data_tx->xfer);
2271 if (err) {
2272 aprint_error_dev(sc->sc_dev,
2273 "could not allocate TX xfer\n");
2274 return err;
2275 }
2276
2277 data_tx->buf = usbd_get_buffer(data_tx->xfer);
2278 }
2279
2280 return 0;
2281 }
2282
2283 static int
2284 upgt_alloc_rx(struct upgt_softc *sc)
2285 {
2286 struct upgt_data *data_rx = &sc->rx_data;
2287
2288 data_rx->sc = sc;
2289
2290 int err = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
2291 USBD_SHORT_XFER_OK, 0, &data_rx->xfer);
2292 if (err) {
2293 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2294 return err;
2295 }
2296
2297 data_rx->buf = usbd_get_buffer(data_rx->xfer);
2298
2299 return 0;
2300 }
2301
2302 static int
2303 upgt_alloc_cmd(struct upgt_softc *sc)
2304 {
2305 struct upgt_data *data_cmd = &sc->cmd_data;
2306
2307 data_cmd->sc = sc;
2308
2309 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2310 USBD_FORCE_SHORT_XFER, 0, &data_cmd->xfer);
2311 if (err) {
2312 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2313 return err;
2314 }
2315
2316 data_cmd->buf = usbd_get_buffer(data_cmd->xfer);
2317
2318 cv_init(&sc->sc_cv, "upgteeprom");
2319 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
2320
2321 return 0;
2322 }
2323
2324 static void
2325 upgt_free_tx(struct upgt_softc *sc)
2326 {
2327 int i;
2328
2329 for (i = 0; i < UPGT_TX_COUNT; i++) {
2330 struct upgt_data *data_tx = &sc->tx_data[i];
2331
2332 if (data_tx->xfer != NULL) {
2333 usbd_destroy_xfer(data_tx->xfer);
2334 data_tx->xfer = NULL;
2335 }
2336
2337 data_tx->ni = NULL;
2338 }
2339 }
2340
2341 static void
2342 upgt_free_rx(struct upgt_softc *sc)
2343 {
2344 struct upgt_data *data_rx = &sc->rx_data;
2345
2346 if (data_rx->xfer != NULL) {
2347 usbd_destroy_xfer(data_rx->xfer);
2348 data_rx->xfer = NULL;
2349 }
2350
2351 data_rx->ni = NULL;
2352 }
2353
2354 static void
2355 upgt_free_cmd(struct upgt_softc *sc)
2356 {
2357 struct upgt_data *data_cmd = &sc->cmd_data;
2358
2359 if (data_cmd->xfer != NULL) {
2360 usbd_destroy_xfer(data_cmd->xfer);
2361 data_cmd->xfer = NULL;
2362 }
2363
2364 mutex_destroy(&sc->sc_mtx);
2365 cv_destroy(&sc->sc_cv);
2366 }
2367
2368 static int
2369 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2370 struct usbd_pipe *pipeh, uint32_t *size, int flags)
2371 {
2372 usbd_status status;
2373
2374 status = usbd_bulk_transfer(data->xfer, pipeh, flags, UPGT_USB_TIMEOUT,
2375 data->buf, size);
2376 if (status != USBD_NORMAL_COMPLETION) {
2377 aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
2378 usbd_errstr(status));
2379 return EIO;
2380 }
2381
2382 return 0;
2383 }
2384
2385 #if 0
2386 static void
2387 upgt_hexdump(void *buf, int len)
2388 {
2389 int i;
2390
2391 for (i = 0; i < len; i++) {
2392 if (i % 16 == 0)
2393 printf("%s%5i:", i ? "\n" : "", i);
2394 if (i % 4 == 0)
2395 printf(" ");
2396 printf("%02x", (int)*((uint8_t *)buf + i));
2397 }
2398 printf("\n");
2399 }
2400 #endif
2401
2402 static uint32_t
2403 upgt_crc32_le(const void *buf, size_t size)
2404 {
2405 uint32_t crc;
2406
2407 crc = ether_crc32_le(buf, size);
2408
2409 /* apply final XOR value as common for CRC-32 */
2410 crc = htole32(crc ^ 0xffffffffU);
2411
2412 return crc;
2413 }
2414
2415 /*
2416 * The firmware awaits a checksum for each frame we send to it.
2417 * The algorithm used therefor is uncommon but somehow similar to CRC32.
2418 */
2419 static uint32_t
2420 upgt_chksum_le(const uint32_t *buf, size_t size)
2421 {
2422 int i;
2423 uint32_t crc = 0;
2424
2425 for (i = 0; i < size; i += sizeof(uint32_t)) {
2426 crc = htole32(crc ^ *buf++);
2427 crc = htole32((crc >> 5) ^ (crc << 3));
2428 }
2429
2430 return crc;
2431 }
2432